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Abstract—This paper investigates the use of a nonparametric regularization energy term for devising a example-based rendering and

segmentation technique. We have stated this problem in the multiresolution energy minimization framework and exploited the

multiscale structure proposed by Wei and Levoy for the texture synthesis problem. In this nonparametric energy minimization

framework, we also propose a computationally efficient coarse-to-fine recursive optimization method to minimize the cost function

related to this hierarchical model. In this context, the formulation of our example-based regularization term also allows to directly infer

an intuitive dissimilarity measure between two contour shapes. This measure is herein exploited to define an efficient shape descriptor

for the contour-based shape recognition and indexing problem.

Index Terms—Nonparametric multiscale energy-based (or multiresolution example-based) model, inpainting, Non-Photorealistic

Rendering (NPR), segmentation, contour-based shape recognition, shape indexing.
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1 INTRODUCTION

MANY tasks in computer vision, graphics, and image

processing can be expressed as global optimization

problems.Thegeneral issue is to find theglobalminimumofa

cost function (also called a energy function) involving the

observed data and the hidden variables, which are the

representations to be extracted from the original images.

Generally, these energy functions (either heuristically de-

signed or guided by a statistical modeling of the interaction

between the variables) involve two components. The first one

expresses the interactionbetween theunknownvariables and

the data, while the second one encodes constraints on the

desired solution [1], [2], [3], [4], [5], [6], [7]. This latter

component is often a regularization termwhose essential role

is to rightly constrain the ill-posed nature of the considered

inverse problem (it guarantees, to some extent, the existence

and the uniqueness of a consistent solution which continu-

ously depends on the data).
Within this energy minimization framework (herein

heuristically defined), we first investigate in this paper the
use of a nonparametric regularization term, deduced from a
recent example-based technique of texture synthesis pro-
posed by Efros and Leung [8], to constrain some inverse
(highly nonlinear) problems in computer graphics and
image analysis. Combined with an appropriate data-driven
term, we show the application of the resulting nonpara-
metric energy-based model to solve some Non-Photorealis-
tic Rendering (NPR) and segmentation problems.

Unfortunately, the introduction of such a nonparametric

regularization term leads to an intricate minimization

problem. The specified energy function depends on a very
largenumberofvariables andexhibitsmany localminima.To
circumvent this difficulty, hierarchical energy-based models
havebeenproposed in the literature.Aclassical schemecalled
themultiresolution approach consists of building a Gaussian
pyramid from the full resolution image and considering a set
of “similar” energy-based models on the different resolution
levelsof thepyramid [9], [10], [11], [12]. Insteadof considering
the minimization problem on the full and original configura-
tion space, the original inverse problem to be solved is
decomposed in a sequence of optimization problems of
reduced complexity (each one commonly thought of as a
“smooth” version of the original problem to be solved). From
analgorithmicpoint of view, theoptimizationproblemcanbe
solved in a coarse-to-fine manner using, as initialization of
each optimization problem (at each resolution level), the
solution obtained at previous level. Themajor advantage is to
reduce the number of variables. Consequently, it allows us to
drastically save computational effort and/or to provide an
accelerated convergence toward improved estimate. In
addition, hierarchicalmodels are interesting fromamodeling
point of view. They offer the appealing ability to capture a
priori characteristics of the solution image to be estimated
within a range of different scales and/or to introduce longer-
rangedependencies in theneighborhood(onwhich themodel
energy is often decomposed as a sum of local interaction
functions). They also allowus to integrate the information in a
progressive and efficient way.

In the same spirit, we also propose a computationally

efficient coarse-to-fine recursive optimization method to

minimize the energy function related to our nonparametric

hierarchical model. Another contribution of this paper is to

directly exploit the example-based regularization term,

extracted from Efros and Leung’s model, to infer an intuitive

dissimilarity measure between two contour shapes. This

measure is herein exploited to define an efficient shape

descriptor for the rapidshaperetrievaland indexingproblem.

184 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 2, FEBRUARY 2004

. The author is with DIRO, Département d’Informatique et de Recherche
Opérationnelle, C.P. 6128, Succ. Centre-ville, Montréal, Canada (Québec),
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The remaining parts of this paper are organized as

follows: In Sections 2 and 3, we provide a brief overview of

the texture synthesis model introduced by Efros and Leung

and its multiscale extension, presented byWey and Levoy in

[13]. We also give some examples and direct applications of

this technique for solving the image interpolation and

replacement problems. In Section 4, we present the exam-

ple-based regularization term that will be exploited in our

nonparametric energy-based multiresolution model, respec-

tively, inNPR (Section 5) and image segmentation (Section 6).

We present the coarse-to-fine recursive energy minimization

problem related to this hierarchical model in Section 7. The

shape descriptor derived from the example-based regular-

ization term is presented in Section 8. Finally, experimental

results and conclusions are presented in Sections 9 and 10.

2 PREVIOUS WORK

Recently, Efros and Leung [8] have proposed a nonpara-

metric model to synthesize an output image from a given

input texture sample. Their approach works surprisingly

well for a wide range of textures. Their algorithm consists of

the following steps:

. The output image is initialized with a random noise
whose histogram is equalized with respect to the one

of the input sample.
. For each pixel in the output image, in scan-line order,

the already-synthesized values in neighborhood of

current pixel z of a specific (fixed) size (NðzÞ) is

considered and is compared with all possible neigh-

borhoods NðxÞ from input sample. The value of the

input pixel x with the most similar NðxÞ is then

assigned to z.

The similarity of the two considered neighborhoods is

computed according to the L2 norm. In order to obtain good

synthesis results, the size of the neighborhood must be large

enough to capture the scale of the texture elements of the

input sample. Although this searching process is determinis-

tic, the random aspect of each synthesized texture is ensured

by the initial randomnoise (first, causing the boundary pixels

to be assigned semistochastically and then using these first

assignments as a seed). In this method, the input texture is

modeled as a Markov Random Field (MRF). This assumes

that theProbabilityDistribution Function (PDF) of brightness

values for a pixel depends only of the brightness values of its

spatial neighbors. Based on this MRF model, a stochastic

sampling would consist of constructing an approximation of

P ðz=NðzÞÞ for a given NðzÞ (e.g., by using histogramming

technique over the input textural sample) and then sampling

from it with a Gibbs or Metropolis sampler [5]. Due to the

exponential growth of the amount of data required to

empirically estimate a d-dimensional PDF when d (number

of neighbors) increases, this estimation technique is not

possible in the case of an input sample of small size. Unlike

MRF-based stochastic sampling,Efros andLeung’salgorithm

is completely deterministic and avoids explicit conditional

probability construction (like in [14]) and stochastic sam-

pling.1 By using adequately sized neighborhood, the algo-

rithmproduces surprisinglygoodresults in texture synthesis,

but remains very slow since a full search of the input image is

required to synthesize everypixel. This computational load is

all themore important in that the initial texture contains large

scale structure and we have to use large neighborhoods.

To cope with these problems, Wei and Levoy [13] have

proposed a multiscale synthesis scheme involving a pyrami-

dal structure of synthesized images and a multiresolution

(Gaussian)pyramid for the setof input images. Fromcoarse to

fine, each level of the pyramid is synthesized as in Efros’s

algorithm, except that the considered neighborhood uses

spatial adjacent sites and sites belonging to the coarser scale.

This method, combinedwith a tree-structured vector quanti-

zation to accelerate the search for the nearest neighbor, allows

us to use smaller neighborhood and, thus, dramatically

increases the speed of the synthesis process. This model is

similar to the Scale Causal Multigrid (SCM) model we have

proposed in [12], [18] for the sonar image segmentation issue.

Nevertheless, the technique introduced in [18] involves a

parametric model in which the prior PDF is expressed by a

classical Gibbs distribution whose the energy function (i.e.,

the regularization energy term) consists of a sum of local

interaction potentials involving a few parameters (called the

clique parameters). Wei and Levoy’s method is nonpara-

metric (i.e., example-based) and the synthesized textures can

be considerably more complex compared to the ones created

with the parametric version of this model [12]. Examples of

this synthesis algorithm on complex textures are shown in

Fig. 1. The synthesized textures arevery similar to the original

and seem to come from the same (underlying) stochastic

process as the corresponding input textural sample. Results

are good both for stochastic textures, i.e., textures without

explicit texture elements (texels) or for regular textures

(consisting of repeated texels) and do not exhibit “popout”

artifacts (i.e., simple repetitions of the original input sample)

and discontinuity artifacts.

3 APPLICATIONS OF WEI’S ALGORITHM

This multiscale texture synthesis method can also be used

directly as a tool for solving several practical problems in

graphics and image processing. In particular, we can cite the

textured image interpolation and the image replacement

problems.
Image interpolation through texture synthesis can be

used for inpainting, retouching, or restoration applications.

In image processing, the goal of the inpainting or retouch-

ing is to reconstitute the missing or damaged portions of an

image in order to revert deteriorations (e.g., cracks,

scratches, or scrambled regions on a scanned photograph,
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1. This example-based sampling algorithm has inspired some recent
research works in computer graphics. We can cite the work of Chen et al. on
facial caricature synthesis [15], Hertzmann et al. [16], or the work of
Jodoin et al. [17] that efficiently exploits this deterministic sampling
technique to generate, after learning from examples, hand-drawn styles of
curves for nonphotorealistic rendering and automatic synthesis of freehand
sketch drawings with a particular style.



dust spots in film, blocks of missing data in wireless image

transmission, etc.) or to add or remove elements (e.g.,

removal of stamped date, superimposed text, subtitles, or

publicity on the image, or entire undesirable objects such as

microphones, wires in special effects, etc.) (see [19] for an

excellent review of existing image inpainting techniques).

Contrary to the classical denoising algorithm, the informa-

tion to be recovered is not hidden by the (assumed) additive

noise but missing. The exploitable and available informa-

tion is mainly contained in the regions surrounding the area

to be inpainted and given by the different textures present

in the nondegraded portions of the image.

Inorder to solve thisproblem,a simplistic approachwould

consist of filling in the regions to be inpainted with a patch

extracted somewhere else in the image and exhibiting a

similar texture. This technique would produce visible

discontinuities at the boundaries and visible seams or

repetitive features. In order to overcome these problems, a

texture synthesis-based inpainting technique can be directly

exploited. To this end, a preprocessing step would consist of

preliminary filling of the areas to be inpainted with the

average color of the pixels surrounding it. To do that, we can

first decompose the image into multiple resolutions by

building a color Gaussian pyramid (missing pixels corre-

sponding to the region to be recovered are not considered as

being null but are not taken into account in the averaging

process). Due to this multiresolution process, the missing

regionsdisappear in thehigher levels of thepyramid. Second,
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Fig. 1. Wei and Levoy’s texture synthesis algorithm. The resulting texture is synthesized at twice the size of the original input sample (see [13] for
additional and color examples).



a coarse-to-fine duplication (cf. Fig. 2) of the pixel values is

realized for the missing pixels at each resolution level. We

then use the multiscale texture synthesis process in the

regions to be inpainted.

Figs. 3b and 3c show, respectively, a real image with a

synthetic deterioration and, finally, the restored image. In

this application, for the first coarse-to fine sampling, we use

a raster scan synthesis ordering, with a causal and spatial

neighborhood (using the RGB channels) for the fine level

with a symmetric spatial neighborhood in the coarse level.

A random order with a symmetric neighborhood in the fine

and coarse level is then used for the other iterations of the

sampling algorithm (three or four in our application). For

each coarse-to-fine pass of the sampling, we rebuild the

Gaussian pyramid from the estimated image at full

resolution. This strategy allows us to efficiently remove

discontinuity artifacts created at the boundaries of the areas

to be recovered. The same procedure can be used for image

replacement (see Figs. 3d and 3e). More precisely, one

portion of the textured image can be substituted with

another texture. In this case, the preprocessing step consists

of choosing the areas to be replaced and filling in these

areas with the average color of the desired texture.

These examples show that this nonparametric sampling

technique offers the appealing ability to model and

synthesize complex textures. We propose in the following

sections to deduce, from this model, a nonparametric

(regularization) term that will then be exploited to constrain

a rendering and segmentation procedure.

4 EXAMPLE-BASED REGULARIZATION TERM

Let us express Efros and Leung’s sampling technique as a

closely related global cost function minimization problem.

To this end, let us now consider, at full resolution, a couple

of variables ðx; zÞ, with z¼fzs; s2Sg and x¼fxs; s2Sxg, the
set of variables associated to the N and Nx pixels of the

output and input texture images, respectively, and located

on a lattice S and Sx of sites s. Each of the xs and zs take

their value in �¼f0; . . . ; 255g (i.e., the set of gray levels). All

possible output images z (i.e., the synthesized textures) are

contained within the configuration space � ¼ �N . Let

Urðx; zÞ the following energy function,

Urðx; zÞ ¼
X
s2S

min
p2Sx

D
�
NðxpÞ; NðzsÞ

�
; ð1Þ

where Dð:Þ is the L2 distance and NðxpÞ designates the

neighborhood of pixel of the output image x at site p (i.e., a

spatial neighborhood in the case of Efros and Leung’s

sampling procedure and a spatial and scale causal neighbor-

hood for the Wei and Levoy’s algorithm). From the energy

functiondefinedby (1),we can find aparticular configuration

of z that minimizes Urðx; zÞ by a global optimization

procedure such as a simulated annealing algorithm [1].

An alternative approach to this stochastic (and, thus,

computationally expensive) procedure is the Iterative Con-

ditionalModes (ICM) introduced by Besag [5]. Using (1), this

method consists of finding for each site s and, until

convergence is achieved, the value zs that minimizes

minp2Sx
D
�
NðxpÞ; NðzsÞ

�
. From an algorithmic point of view,

this procedure is similar to Efros and Leung’s procedure,

except that the ICM process has to be repeated until

convergence is achieved (and, generally, more than one

pass). This shows that (1) provides an interesting nonpara-

metric regularization energy term thatwill be exploited in the

following in our rendering and segmentation energy-based

procedure.
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Fig. 2. Duplication and “coarse-to-fine” minimization strategy.

Fig. 3. Texture synthesis-based inpainting restoration example: (a) real
image with a synthetic deterioration, (b) real image with a synthetic
deterioration, and (c) restoration result. Texture replacement example:
(d) real image with areas to be replaced and (e) replacement result.



5 RENDERING MODEL

In the past few years, there has been a great deal of research

work in creating artistic styles by computer. This field of

research is known as Non-Photorealistic Rendering (NPR).

These methods refer to any image processing techniques

which can transform an image into specific artistic styles (or,

more precisely, that suggest an artistic style) such as ink

painting, pointillist style, engraving, stylized halftoning,

charcoal drawing, etc., or, more generally, in a style other

than realism.Most of themethods proposed by the computer

graphics community are generally specifically tailored to a

particular rendering style and/or are purely algorithmic

techniques (see [20] for a excellent review of existing

NPR techniques). Let us mention, nevertheless, the frame-

work for processing images by example, called image

analogies, recently proposed by Hertzmann et al. and

involving two phases: a design phase in which a pair of

images, with one image purported to be a filtered version of

the other, is presented as training data; and an application

phase inwhich the learned filter is applied to somenew target

in order to create an analogous filtered result [21].
In our energy minimization framework, the example-

based regularization energy term given by (1) allows us to

efficiently capture the local and global visual characteristics

of a complex input texture (see Fig. 1) and also seems well-

suited to capture some characteristics of a particular render-

ing style fromanartistic illustration example.Combinedwith

the appropriate data-driven term, this cost function optimi-

zation strategy, with two energy terms, appears thus to be

well-suited to rerender an input image in the style of an other

image (for example, an artistic illustration sample). It is the

basic idea of the rendering method we propose.

In this context, let z (the set of hidden variables) now

represents the image to be synthesized with rendering effect

and y (the observation variables) represent the input image

to be rerendered. In our energy-based rendering model, we

define the following global energy function to be mini-

mized, at full resolution,

Uðx; y; zÞ ¼
X
s2S

min
p2Sx

�
DðNðxpÞ; NðysÞÞ þ �DðNðxpÞ; NðzsÞÞ

�
:

ð2Þ

The first energy term is the data-driven or likelihood energy

term, which tends to give a solution z visually and locally

similar to the data y. The second term (regularization term) is

a contextual example-based energy term (given by (1)) which

tends to build zwith neighborhood configurations similar to

the ones existing in the texture sample x. � is the factor that

provides a relative weighting between the two energy terms.

For �!1, we find an energy function whose the optimiza-

tion leads to a procedure closely related to the multiscale

texture sampling technique proposed byWei and Levoy. For

� ¼ 0, the solution image z becomes the real input image

whose the histogram has been stretched according to the one

of x. The resulting global energy functionUðx; y; zÞ is also in a

suitable form to exploit an efficient search technique allowing

to considerably decrease the computational requirement of

the deterministic optimization algorithmused in our applica-

tion (see Section 7). We will see in the following section that

this global energy form is also well-suited to find a

segmentation map of a noisy image corrupted by a standard

Gaussian degradation model.

6 SEGMENTATION MODEL

The goal of the segmentation is to assign, to each pixel of a

noisy image y, a label indicating to which class the pixel

belongs. The set of labels z, i.e., the segmentation to be

estimated, is called the label field and now takes its values

in �0 ¼fe0; . . . ; eng, representing the set of n possible classes.

By nature, an image segmentation is an ill-posed

problem, i.e., the data in themselves are insufficient to

unambiguously define the segmentation. In order to rightly

constrain the nature of this problem, some particular

knowledge about the scene is necessary. A simple a priori

knowledge may express the fact that nearby pixels are fairly

likely to belong to the same class. In a probabilistic

framework, such regularities are well-captured by MRF

[5]. Thanks to the Hammersley-Clifford theorem, this prior

model can be parametrically described by a Gibbs distribu-

tion based on spatially local interactions, called the clique

potential �st. For example, the standard Ising-type prior,

expressing the probability of the segmentation, for a

configuration z2�0ð¼ �0NÞ, is given by,

P ðz=�stÞ ¼
1

Zð�stÞ
exp

�
�
X
<s;t>

�st 1� �ðzs; ztÞ½ �
�
; ð3Þ

where<s; t> indicates that the summation is over neighbor-

ingpairs (traditionally, the four or eight nearest neighbors are

used) and � is thedeltaKronecker function. Such (parametric)

priors are typically very simple and lead, in a Bayesian

segmentation, to simply imposing homogeneous regions in

the solution. Unfortunately, this commonly used approach

does not allow preserving lines and fine or complex

structures which sometimes need to be recovered in the

segmentation map. To improve segmentation results, some

more complex MRF models, involving larger neighborhood

structure, have been proposed. Nevertheless, these methods

remain limited and also require complex parameter estima-

tionprocedures, often based onapproximated estimators.An

alternative approach we propose is to once again exploit the

example-based regularization energy term defined in (1) and

trained from a sample having the same spatial characteristics

of the solution to be estimated. By this way, it allows to

efficiently restrict the segmented image to some subspace

defined by the set of all possible neighborhoods taken on the

training sample. In this nonparametricmodeling framework,

x representsnow the training label field taking its values in�0.

More precisely, let us consider that x and z are now two

images quantized into n gray levels representing the gray-

level mean of the n possible regions or classes existing in y.

The second component of a Bayesian segmentationmodel

is the likelihood distribution, or the class conditional

probabilities P ðy=zÞ, expressing the probability of the set of

pixel taking each of the observable values, given its class
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membership field. A commonly used assumption is to

consider that the data y are independent conditional on the

labeling process z. If it is assumed, one gets P ðy=zÞ ¼
�s2SP ðys=zsÞ (i.e., the noise is assumed to not be correlated

with the data). We shall stick to this assumption throughout.

To describe the luminance y within each region, we then

consider the standard degradation model expressed by the

Gaussian distribution Nð�zs ; �zsÞ, where �zs and �zs are the

mean and variance associated with the class z at pixel s. We

thus let

P ðys=zsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2��2

zs

q exp
�
�ðys � �zsÞ

2

2�zs
2

�
: ð4Þ

Using this likelihood and, for a classical Markovian

segmentation, the Ising-type prior expressed by (3) (com-

monly used in a Markovian segmentation), we can express

the most probable MAP segmentation ẑzMAP knowing y (and

x): ẑzMAP ¼ argmaxz2�0 P ðz=yÞ or, equivalently, the corre-

sponding posterior energy to be minimized,

Uðx; y; zÞ ¼
X
s2S

�sðys; zsÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Udðy;zÞ

þ �st
�
1� �ðzs; ztÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Urðx;zÞ

; ð5Þ

where �sðys; zsÞ ¼ � lnP ðys=zsÞ. The first term (Udðy; zÞ) is
referred to as the data driven term and tends to give a

solution similar to the data. The second one (Urðx; zÞ) is

referred to as the regularization term and encourages

simply homogeneous regions in the solution.
In order to recover complex configurations of the labeling

process that cannot be expressed by the simple Ising-type

energy term, we now propose the following heuristic

nonparametric global energy to be minimized, similar to the

one used (at full resolution) in our rendering procedure,

Uðx; y; zÞ ¼
X
s2S

min
p2Sx

�
D
�
NðxpÞ; NðysÞ

�
þ �D

�
NðxpÞ; NðzsÞ

��
:

ð6Þ

In this global energy function, the second term is the example-
based regularization energy term given by (1) whose role, in
this segmentationprocedure, is to constrain the segmentation
problem by recovering from x, complex neighborhood
configurations that cannot be expressed mathematically.
The first term behaves as a data-driven term which can be
easily compared to the one expressed by a classical
Markovian segmentation. � is the factor that provides a
relative weighting between the two energy terms.

7 COARSE-TO-FINE OPTIMIZATION

Due to the multiscale structure of the model and the scale

causal specification of the neighborhood, we have, in fact, to

deal with the following coarse-to-fine recursive energy

minimization problem [12],

Ulðx; y; zÞ ¼
X
s2Sl

min
p2Sl

x

�
D
�
NðxpÞ; NðysÞ

�

þ �D
�
NðxpÞ; NðzsÞ

��
;

ð7Þ

where Sl and Sl
x define the set of pixels, at resolution level l,

of the output and input images, respectively.

In this multiresolution optimization framework, the

image z to be estimated, at each resolution level, leads to a

global energy functionminimization problem requiring a set

of estimations, given a query vector in the (d-)dimensional

space (and under the l2 norm), of the nearest neighbor. In this

context, the main drawback of this set of exact estimations of

the nearest neighbor remains its high-computational require-

ment (for reasonably large dimensions, brute-force search,

which compares the query point to each data point, often

remains the most efficient in practice). In order to overcome

this problem and to reduce the computational load, we

propose computing an approximated estimation of each

nearest neighbor. Due to the presence of NðxpÞ in the data-

driven and regularization energy term, this energy form is

suitable for such a technique. In this context, an interesting

practical data structure (based on KD-tree) and efficient

search method, called Approximate Nearest Neighbor

(ANN) have been recently proposed [22] and can be used,

at each resolution level l, in conjunction with a deterministic

optimization algorithm such as an ICM algorithm [5] to

minimize Ul. More precisely, the ANN search technique can

be efficiently used to accelerate the search of the conditional

mode of the ICM procedure (i.e., the configuration corre-

sponding to the maximum of minp2Sl
x
f:g). The deterministic

iterativeminimization at level ðl� 1Þ is then initialized by the

interpolation of the result previously obtained at coarser

level l [12] (see Fig. 2).

Like for other hierarchical approaches, the advantages of

this method are twofold. From amodeling point of view, this

hierarchical strategy offers an appealing ability to capture

a priori characteristics of the solution image z to be estimated

within a range of different scales. Consequently, the solution

is better constrained. From an algorithmic point of view,

contextual information is propagated in a more efficient way

[12]. Besides, multiscale optimization technique has been

shown to exhibit fast convergence property and robustness

against local minima for highly nonlinear combinational

problems (estimation results are nearly comparable to those

obtained by stochastic optimization procedures) [2], [12]. In

(7), � is the factor that provides a relative weighting between

the two energy terms (for �!1, we find the optimization

problem that is closely related to the multiscale sampling

technique proposed by Wei and Levoy in [13]).

8 CONTOUR-BASED SHAPE RECOGNITION

8.1 Introduction

Along with color and texture, widely used in the content-

based image retrieval community, shape information re-

mains an important, although relatively underexploited, cue

for pattern recognition and retrieval purposes in large image

database (see [23] for an extensive survey of shape matching

in computer vision). Nevertheless, even when color and

texture are absent, as in line drawing, the human visual
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system can recognize objects quite well and can also make

efficiently coarse distinctions very quickly. This demon-

strates thehighlydiscriminativeanddescriptivepower that is

only conveyed by the informationmodeled by a single shape

contour. One shape-based approach, commonly used in an

automatic image database retrieval system, is the deformable

template-based framework [23], [24], [25]. This approach of

shape matching through global deformations is now well

known and gives quite good results. A drawback of this

technique is its computational cost. Such an approach could

not be viable on a database of several thousand objects.While

a final stage of deformable matching may be necessary to

make very fine distinctions, it is interesting to do fast early

pruning based onmuch crudermeasures in order to produce

an accurate short list of candidatematches suitable for amore

careful (and also more time consuming) (possibly shape-

based) matching engine.

In that prospect, the example-based regularization term,

defined in (1) can once again be exploited. To this end, let

us notice that, using this constraint term and given the

initial textural sample x, an output synthesized image z is

a configuration for which the distance DistðxkzÞ, at full

resolution, is low with,

DistðxkzÞ ¼
X
s2S

min
p2Sx

DðN
�
xpÞ; NðzsÞ

�
; ð8Þ

This multiscale measure involving a spatial and scale

causal neighborhood offers the opportunity to capture very

efficiently the larger scale characteristics of a given binary

textural image (such as line drawings of a contour shape;

see, for example, the bottom right synthesized texture of

Fig. 1). Of course, a shape contour is fundamentally

different from a textural sample. Shapes generally contain

detailed and nonrepeating variations. Nevertheless, the

distance DistðxkzÞ also seems well-suited to capturing

some local geometric characteristics of a shape contour and

could be used to infer and define an efficient shape

descriptor [26].

8.2 Shape Similarity Distance

The query shape describes only one of the possible

instances of the considered shape class. In order to take

into account the variability of each possible shape related to

the object class to be detected in the database, we do not

directly exploit the discrete set of points, sampled from the

internal or external contours on the shape. Instead, we

exploit an edge potential field or a distance map. This field

is determined by the positions of the edge points in the

contour images. For a pixel ði; jÞ in the contour image I, we

define its edge potential by,

�Iði; jÞ ¼ exp
n
� 1

�
ð�2i þ �2j Þ

1
2

o
; ð9Þ

where ð�i; �jÞ is the displacement to the nearest edge point in

the image and � is a smoothing factor which controls the

degreeof smoothnessof thepotential fieldand, consequently,

the intrinsic variability of the object class to be detected.2 We

compute this potential field both for the (internal and

external) contours of the query shape and for the contours

of the candidate shape. The query and candidate images are

then decomposed into multiple resolutions by building two

Gaussian pyramids in order to get the multiscale structure

that will be used in ourmatching process. An example of this

multiscale potential edge field is shown in Fig. 4. This

multiscale 2D distance map can also be viewed as a

hierarchical Chamfer map [27], currently exploited in the

shape-based (binary) object detection techniques using

distance transforms [28].
Finally, in order to get a more robust shape dissimilarity

measure, the distance Distðq; cÞ between a query (q) and a
candidate (c) shape is defined as,

Distðq; cÞ ¼ max
�
DistðqkcÞ ; DistðckqÞ

�
; ð10Þ

with DistðqkcÞ ¼
X
s2Cc

min
p2Cq

D
�
Nð�qpÞ; Nð�csÞ

�
; ð11Þ

where the first summation is over the set of contour points

(Cc) of the candidate shape c. The search of the min is over

which are not previously selected. Nð�qpÞ and Nð�csÞ
designates, respectively, the (multiscale) set of edge

potential values contained in the (symmetric and causal)

neighborhood of contour point p and s of the query and

candidate image. The shape similarity distance Distðq; cÞ
can be also interpreted as a reconstruction error measure of

the contour of the query shape using multiscale contour

elements of the candidate shape (like a reconstruction given

by a puzzle made up of multiscale pieces) (see Fig. 5). In

this way, we expect to obtain low distance values for similar

shapes and high distance values for distinct ones.
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Fig. 4. (a) Original line drawing stemming from the Snodgrass and
Vanderwart database. (b) Multiscale edge potential map (with two levels
of pyramid and � ¼ 4) and example of multiscale piece of contour
extracted from this edge potential map.

2. We can easily complete this edge potential field �Iði; jÞ by adding to it
a directional component in order to obtain a directional edge potential field,
’Iði; jÞ ¼ �Iði; jÞ jcos�ði; jÞ j , where �ði; jÞ is the angle between the tangent
of the nearest edge and the tangent direction of the contour at ði; jÞ. This
potential is similar to the one proposed in [24] for the globally deformable
template-based matching approach.



9 EXPERIMENTAL RESULTS

We present, in this section, experimental results of the
rendering, segmentation, and contour-based shape recogni-
tion procedure presented in Sections 5, 6, and 8.

9.1 Rendering

In a preliminary step, we stretch the histogram of the input
image y in order to get the same minimal and maximal gray
level values of the input texture sample x. Then, the input
image and the texture sample are decomposed into multiple
resolutions bybuilding twoGaussianpyramids. Each level or
image of these pyramids is considered as being toroidal. This
assumption allows us to handle neighborhoods near the
image boundaries. We convert the input image y and the
input sample x in gray-level values for theGaussian pyramid
constructions. Consequently, only gray-level values are used
for the searching process. Color is simply recovered by
copying the R, G, and B channels at full resolution for each
selected pixel by the searching process.We use three levels of
pyramid (L ¼ 3). For the first coarse-to-fine sampling
process, we use a 7�7 spatial and causal neighborhood for
the constraint term and a 5�5 symmetric spatial neighbor-
hood for the data-driven term in the fine level. A 5�5
symmetric spatial neighborhood is used in the coarse level for
the constraint and data-driven term. For the other passes of
the algorithm,we use a 5�5 symmetric spatial neighborhood
in the fine and coarse levels for the constraint anddata-driven
term (cf. Fig. 6 and Table 1).

In order to eliminate the difference of contrast between x
and y, we use, in (7), instead of D

�
NðxpÞ; NðysÞ

�
, the

following measure,

D
�
�NðxpÞ þ ð1� �ÞNðxpÞ; NðysÞ

�
; ð12Þ

where NðxsÞ designates the mean of pixel values contained
in the neighborhood of xs and � is a parameter (2 ½0; 1�)
allowing us to normalize the local variance between x and
y. We recall that we use an ANN search technique [22] to
accelerate the search for the conditional mode of the ICM

procedure. Finally, for each coarse-to-fine pass of the
multiscale ICM, we rebuild the hierarchy of estimation
ẑz1; . . .; ẑzL from ẑz0 with a Gaussian pyramid.

Several examples of rendering results are shown in Figs. 7

and 8. In these examples, we try to transfer some artistic

rendering styles from a drawing image to an input real

photograph. In these cases, the multiscale example-based

regularization energy term allows to efficiently capture the

local and global visual characteristics of the line drawing

texture, the pointillist texture, the charcoal pen style, or the

ink painting or painting effect of the input source drawing

(see also [29] and http://www.iro.umontreal.ca/

~mignotte/ICPR02/ for additional and color rendering

results). We also present the results of our Rendering

method when the regularization term is trained with an

input textural sample (cf. Fig. 9). Obtained results show that

the proposed method allows us to constrain an input image

toward an image with the same local and global character-

istics of the input texture sample. � allows us to control the

weighting between the intrinsic visual characteristics of the
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Fig. 6. Two consecutive levels of the pyramidal data structure and
neighborhood used for the regularization term, respectively, for the first
pass of the ICM (black crosses) and for the other iterations (black circles).

TABLE 1
Multiscale Local Rendering Procedure

Fig. 5. Examples of reconstructions between a given query shape and two
candidate contour shapes (� ¼ 1 in this example). (a) and (d) Query
shape q. (b) and (e) Candidate shapes c. (c) Good reconstruction result
and, consequently, low distance value (DistðckqÞ¼6:8� 105) and good
similarity between the two shapes (a) and (b). (f) Less good reconstruction
result and, consequently, higher distance value (DistðckqÞ ¼ 9:65� 105)
and low similarity between the two shapes (d) and (e). The images in (e)
and (f) show an example of a multiscale piece of contour taken from the
candidate shape to reconstruct a part of the query shape.



input image and the characteristics of the texture sample.

The sampling process takes about 20 minutes per image (for

a nonoptimized code) on a 1.2 Ghz PC workstation under

Linux (for a 512� 512 size image). In addition to a rendering

or a stylized depiction procedure, the proposed technique

may eventually be applicable to a much broader application,

such as textural morphing (i.e., creation of image sequence

transforming a real image progressively into a texture or

vice versa), texture mixing algorithm, or in order to create a

very broad range of visual effects.

9.2 Segmentation

We use one level of the pyramid (L ¼ 1) and a 5� 5
symmetric spatial neighborhood is used in the fine and
coarse levels and for the data-driven and regularization
energy term. For the first iteration of the ICM algorithm, we
set � ¼ 0, thus considering a segmentation result without
example-based regularization term.

In order to get an unsupervised segmentation model,

parameters of the noise model can be estimated either by

conducting, alternatively, the segmentation and estimation

(by using Maximum Likelihood (ML) estimator of the

complete data on the segmented image). In this strategy,
initial parameters can be estimated by using ML estimator
on a rough segmentation obtained by a K-mean clustering
procedure on the set of gray value levels of the noisy image.
An alternative approach consists of having a two-step
process [12]. First, a parameter estimation step involving,
for example, the Expectation Maximization [30] method or
the Stochastic Expectation Maximization (SEM) [31] algo-
rithm. Then, a second step devoted to the segmentation
itself based on the values of estimated parameters.

Figs. 11 and 12 show two images (respectively, (a) shows
a noisy image of block letters and (b) shows an image made
up with line segments) corrupted by an additive synthetic
white Gaussian noise (with parameters �e0 ¼ 55, �2

e0
¼ 500,

�e1 ¼ 100, �2
e1
¼ 500) and their corresponding ground truth

segmentations. Figs. 11 and 12 show (c) the resulting
segmentations obtained with a Pott-type prior-based Mar-
kovian model and (d) our example-based method trained
with the sample shown in Fig 10 with � ¼ 1 (the
segmentation process takes 5 minutes on a 1.2 Ghz PC
workstation). In order to be able to only compare the
segmentation model, the noise parameters of the likelihood
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Fig. 7. Drawing image with, respectively, the following rendering styles: (a) hatching, (b) pointillist, (c) charcoal, (d) mixture of pointillist and cross-

hatching, and (e) etching (e). Real photograph and rendering results (� ¼ 1) based on each drawing example. (see also http:// www.iro.umontreal.ca/

~mignotte/ICPR02/ for additional and color rendering results).
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Fig. 8. (a) Drawing image with the ink painting style and rendering result (�¼1). (b) Drawing image with the painting style and rendering result (�¼1).

(see also http:// www.iro.umontreal.ca/~mignotte/ICPR02/, for additional and color rendering results).

Fig. 9. Texture sample (respectively: fire, water, clouds, satin) and rendering results (� ¼ 9) based on each one.



are the optimal parameters in the two cases. For the local
a priori model of the Markovian segmentation, we adopt a
standard isotropic Potts model with the 8 connexity spatial
neighborhood (see (3)). In this comparison, we use �st ¼ 1
for the horizontal, vertical, and diagonal cliques. We use the
stochastic procedure called simulated annealing [1] with
10,000 iterations (taking 10 minutes on a 1.2 Ghz PC) to
minimize the energy function related to this model. We can
notice that the results obtained by the Markovian segmen-
tation are poor compared to the ones obtained by our model
due to the unappropriated regularization term of Potts that
tends to only impose homogeneous regions in the solution.
By comparisons, synthetic textures, based on realizations of
the nonparametric model itself (without data-driven term),
show that the considered nonparametric model allows to
efficiently and easily capture complex structure such as
block letters or thin line segments (see the bottom left and
the bottom middle texture of the Fig. 1).

In order to test the ability of our example-basedmethod to

generalize the training data, we present two segmentation

results obtained for two noisy images exhibiting block letters

with a different font (see Figs. 13b and 13f) and the resulting

segmentations obtained with our example-based method

compared to a Pott-type regularization energy term based on

a Markovian model. Obtained segmentations with our

method are of lower quality compared to the one obtained

for a noisy imagewith a similar font, but remain better than a

Markovian segmentation based on a Pott-type prior.

9.3 Shape Descriptor

In this application, we use two levels of pyramid and a

17�17 spatial and symmetric neighborhood in the fine level

with a symmetric 17�17 spatial neighborhood in the coarse

level. We set � ¼ 4. Finally, we also use an ANN search

technique [22] to accelerate the search of each nearest

neighbor in (11). In order to reduce the computational cost,

the first summation and the search of the min of (11) is over

a subset of (regularly spaced) contour points on the query

and the candidate shapes. The algorithmic procedure

allowing to compute DistðqkcÞ is summarized in Table 2.

A similarity measure takes about 75 ms to perform a single

matching between two shapes on a 1.2 Ghz PC workstation.

Due to the local characteristic of this measure, an

implementation on parallel machines remains possible

and could greatly reduce the computational time.

This shape similarity measure has been tested on the

Snodgrass and Vanderwart line drawing database. This data

set, frequentlyused in thepsychophysics community for tests

with human subjects, contains line drawings of 260 com-

monly occurring and distinct objects (only one image per

object) [32]. In this test, nopreprocessingphase is required for

normalizing the shape size or for extracting the edges since

the images are only line drawings of fixed size. In the case of

raw images, a canny edge detector [33] would allow us to

extract line features from the images and a pretreatment

would be required for normalizing the size of the shapes. In
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Fig. 10. Training samples used by the nonparametric example-based
regularization energy term, respectively, for (a) the block letter
segmentation problem and (b) the thin line segmentation problem.

Fig. 11. (a) Image of block letters corrupted by an additive synthetic
white Gaussian noise (with parameters �e0 ¼ 55, �2e0 ¼ 500, �e1 ¼ 100,
�2e1 ¼ 500) and (b) corresponding ground truth segmentation, resulting
segmentations obtained with (c) a Pott-type prior-based Markovian
model compared to (d) our example-based method.

Fig. 12. Image made up of line segments corrupted by an additive
synthetic white Gaussian noise (with parameters �e0 ¼ 55, �2e0 ¼ 500,
�e1 ¼ 100, �2e1 ¼ 500), (b) corresponding ground truth segmentation,
resulting segmentations obtained with (c) a Pott-type prior-based
Markovian model compared to (d) our example-based method.



our application, we use only an Hotelling transform [34] in

order to align the binary shapes with their principal axes. In

order to also test the ability of this pruning method to deal

with possible deformations and occlusions (i.e., contours

partially detected) of the object class to be detected,we create,

for each shape, a synthetic distorted and/or warped and/or

occulted contour version that is added to the initial data set.
Fig. 14 shows some query shapes and a short list of

candidate matches (i.e., the four most similar shapes ranked
from 1 to 4) proposed by our pruning method. Our shape
similarity measure is quite insensitive to the deformations
and the distorted and/or occluded version of each shape is
correctly selected in the four closest matches. Moreover, our
pruning method allows us to find quite correctly visually
similar shapes. Results of the ranking are quite consistent
with the human visual system. This strategy of test is

similar to the one adopted by Mori et al. for the evaluation
of the discriminative power of their (context-based) shape
descriptor and their results can be compared to ours since
they use the same Snodgrass database [35]. Our shape
descriptor produces a more accurate short list of candidate
matches because our similarity measure is more sensitive to
the local difference of two contour shapes. But, on the other
hand, our shape similarity distance also requires (approx-
imatively) four times more computation.

Our method can be efficiently combined in a second stage
with a more powerful and more time consuming compar-
ison technique, such as a deformable template-based
matching algorithm, to only the short list, in order to refine
the search process.

10 CONCLUSION

In this paper, we have presented a example-based procedure
for the rendering and segmentation problem.We have stated
this problem in the multiresolution energy minimization
framework and exploited the scale causal and hierarchical
structure proposed in [12] and [13]. This procedure uses, for
themodeling part, amultilevel nonparametric regularization
term involving a spatial and scale-causal neighborhood and,
for the algorithmic part, a multiresolution optimization
technique involving a coarse-to-fine sequence of energy
function minimization. From a modeling point of view, it
offers the appealing ability to capture a priori characteristics
of the solution image to be estimated within a range of
different scales. From an algorithmic point of view, instead of
considering the minimization problem on the full and
original configuration space, the original inverse problem to
be solved is decomposed in a sequence of approximated
optimization problems of reduced complexity allowing to
drastically save computational effort and/or to provide an
accelerated convergence toward improved estimate.
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TABLE 2
Multiscale Shape Similarity Distance

Fig. 13. (a) and (e) Images of block letters, with a different font of the
considered training sample font, corrupted by an additive synthetic white
Gaussian noise (with parameters �e0 ¼ 55, �2e0 ¼ 500, �e1 ¼ 100,
�2e1 ¼ 500), (b) and (f) corresponding ground truth segmentation,
segmentation results obtained with a Pott-type prior based on a
Markovian model (c) and (g), and our method based on the training
sample shown in Fig. 10a (d) and (h).



Applied as rendering procedure, the proposed scheme is

able to rerender an input image in the style of an other image

allowing to create a very broad range of artistic and visual

effects. Applied to image segmentation, the proposed

technique allows us to recover complex configurations of

the labeling process that cannot be expressed easily in

mathematical form (for example, by classical Gibbs distribu-

tions). Finally, applied topattern recognition, thedefinitionof

our example-based regularization term allows us to infer an

intuitive dissimilarity measure between two contour shapes.

This measure is herein used to define an efficient shape

descriptor for the rapidshaperetrievaland indexingproblem.
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Fig. 14. Retrieval results. The first object of each column is the query shape. The remaining objects of each column show the closest four matches to

each query object.
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“Hatching by Example: A Statistical Approach,” Proc. Non-
Photorealistic Animation and Rendering, June 2002.
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