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Abstract—In this paper, we describe a statistical model for the gradient vector field of the gray level in images validated by different

experiments. Moreover, we present a global constrained Markov model for contours in images that uses this statistical model for the

likelihood. Our model is amenable to an Iterative Conditional Estimation (ICE) procedure for the estimation of the parameters; our model

also allows segmentation by means of the Simulated Annealing (SA) algorithm, the Iterated Conditional Modes (ICM) algorithm, or the

Modes of Posterior Marginals (MPM) Monte Carlo (MC) algorithm. This yields an original unsupervised statistical method for edge-

detection, with three variants. The estimation and the segmentation procedures have been tested on a total of 160 images. Those tests

indicate that the model and its estimation are valid for applications that require an energy term based on the log-likelihood ratio. Besides

edge-detection, our model can be used for semiautomatic extraction of contours, localization of shapes, non-photo-realistic rendering;

more generally, it might be useful in various problems that require a statistical likelihood for contours.

Index Terms—Contours in images, edge-detection, parameter estimation, unsupervised statistical segmentation, Markov Random

Field model.

�

1 INTRODUCTION

DETECTION of contours is an important problem in Image
Processing. We make the distinction between methods

of extraction of contours, such as the active snake [1], the
live-wire [2] (based on the positions of the two endpoints of
a curve), the jetstream [3] (based on the initial position and
initial tangent vector of a curve), on one hand, and
edge-detection,1 on the other hand. In the first case, the
algorithm finds only the edge points that are located on an
optimal curve (in the sense of some prior geometric
knowledge about the curves sought); in the latter case,
one would like to detect all significant points of the image
that are located “on edges.” A further problem is
localization of shapes [4], based on a prior knowledge
about the shapes sought.

One standard edge-detection algorithm is the Canny
edge-detector [5]. This algorithm is based on an optimal
linear filter in the sense of three criteria (good detection, good
localization, and low multiplicity of the response to a single
edge), under a step edgemodel and for which the gradient of
a Gaussian kernel is a good approximation. Using variants of
Canny’s criteria, one obtains a second-order recursive filter
[6], or a first-order recursive filter [7] (also known as
exponential or Shen filter). These filters assume a continuous
signal. In [8], an optimal edge-detector is developed in the
case of discrete signals. The reader can consult [8], [9] for
numerous further references on edge-detectors.

The main inconvenience with the Canny edge-detector
algorithm and others that have been proposed in the

literature is the need for specifying thresholds or internal
parameters of the algorithm in order to classify the pixels as
“on edges” or “off edges” from the values of the filter
response. In [9], a method is proposed for evaluating edge-
detectors and selecting optimal parameter settings, based on
the Receiver Operating Characteristic (ROC) curves.
Roughly speaking, an ROC curve for a given edge-detector
consists of the leftmost boundary of the region formed by
the points ðTP;FPÞ corresponding to the various parameter
settings, with TP the proportion of true positives (with
respect to edge-detection) and FP the proportion of false
positives. In particular, this method requires a database of
images with a ground truth segmentation.

In [10], various filters are considered for edge-detection
and their conditional probability distributions “on edges”
and “off edges” are represented nonparametrically. Those
distributions are learned on a database of images equipped
with a ground truth segmentation, using the Chernoff
information and the ROC curves as quality measures. Edge-
detection is then formulated as a statistical inference based
on the log-likelihood ratio test. This follows [11], where it is
pointed out that the log-likelihood ratio can be used to
define appropriate energy terms in the active snake
algorithm [1] or other methods of extraction of contours.

Relying on a database and ground truth segmentations
presents an advantage in modeling various aspects of an
image simultaneously (because one then obtains a very
complex model). But, one might also be interested in
performing online estimations. In that case, it seems interest-
ing, in our opinion, to develop a parametric model for each
aspect of an image and then perform the fusion of all those
aspects at a higher level of decision-making. For instance,
edge-detection is one aspect and texture segmentation is
another aspect; a final image segmentation would then
depend on those two aspects (as well as others); see, for
instance, [12]. In the context of edge-detection, one would
then be interested in an online estimation procedure of the
conditional distributions of a filter response “on edges” and
“off edges,” according to a parametric model for contours.
Thepoint ofviewofusingaparametric familyofdistributions
is adopted in [11], in the context of extraction of roads in
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1. An “edge” is defined as a boundary point of an object or a point
presenting a significant contrast in gray level with some of its neighbors.
This definition is incomplete as it stands since we eventually take into
account the principle of low multiplicity of the filter-response to a single
edge by using the nonmaxima suppression procedure.
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images. In [3], the samepoint of view is adopted in proposing
a statistical model for the norm of the gradient of the gray-
level “off edges” and for a related random variable “on
edges,” in the context of semiautomatic extraction of con-
tours.

One might find it interesting to consider a Markovian
framework in order to formulate various estimation and
segmentation statistical criteria. For instance, the log-like-
lihood ratio test corresponds to the Maximum A Posteriori
(MAP) criterion in the case of a uniform prior distribution.
In [13], a Markov model with constraints for segmentation
of an image into regions or region boundaries has been
presented, but there are no statistical distributions, nor any
estimation procedure.

We present, in this paper, a parametric statistical model
(similar to [14], [15]) for the norm of the gradient of the gray
level for points “on” and “off edges,” as well as for the angle
between the gradient and the normal to segments “on” and
“off edges.” We also present a new constrained Markov
model for contours that takes into account the statistical
distribution of the gradient vector field of the gray level in the
image. Note that we do not describe directly the distribution
of the angle of the gradient of the gray level in the image, but
rather the distribution of the angle formed by the gradient
and the normal to a segment. For that reason, we find
convenient to consider a presegmentation set T consisting of
variouspaths that containspotentially all edge-points, aswell
as other points that will eventually be classified as “off
edges.” In this paper, we define T by the standard nonmax-
ima suppression procedure (upon using the principle of low
multiplicity of the response to a single edge), but see [10] for
other suggestions. This constrained model is used for an
Iterative Conditional Estimation (ICE) procedure [16], [17],
[18], [19], [20], [21], [22] for the estimation of the parameters.
Note that the ICE procedure was previously used only for
segmentation of an image into regions. Comparison between
histograms and estimated distributions suggests that our
model is reasonable for the tested images.

As an application of ourmodel, we view edge-detection in
an imageas a constrainedminimizationproblem.Wecan find
an optimal solution in the sense of theMaximumAPosteriori
(MAP) using the Simulated Annealing (SA) algorithm [23].
The IteratedConditionalModes (ICM)algorithm[24] canalso
be used to find a satisfactory suboptimal solution. One can
use a Monte Carlo (MC) algorithm to find an approximated
optimal solution in the sense of the Modes of Posterior
Marginals (MPM) [25]. This yields a new unsupervised
statistical method for edge-detection in images, with three
variants. Our model can also be used for localization of
shapes [14], [26] or semiautomatic extraction of contours [14],
[15]; in those two applications, we do not use a binary edge-
detection but only the estimation of the distributions. Note,
however, that, in [14], [15], [26], we have used slightly
different versions of the model presented here (for instance,
the estimation procedure has been improved in this paper),
but we obtain equivalent results (if not better) with the
present version.

This paper brings two contributions: 1) Our statistical
model is parametric and, hence, its parameters may be
estimated online and 2) our model yields a probabilistic
method for edge-detection, not just a binary detection. Thus,
our model might be useful for various problems that require
a statistical likelihood for contours, in the same spirit of [10],

but with a parametric model and an online estimation
procedure.

We have tested our method on the University of South
Florida (USF) image database, consisting of 10 aerial images
and 50 objects images and on the 100 natural images of the
University of California at Berkeley (UCB) image test data
set [27]. We think that all of them are optical images
obtained by electronic acquisition, though we do not have
that information at hand. Other types of images (such as
radar, MRI, or PET images) present different kinds of noise
and texture, due to other acquisition modes. So, we are
inclined to think that, for other types of images, our method
would require other edge-detection filters and, presumably,
other statistical distributions. Even with optical images, one
needs different filters to take into account various textures,
together with different statistical distributions. See, for
instance, [28] for a parametric model for texture segmenta-
tion and an online estimation procedure.

The remaining part of this paper is organized as follows:
The basic notations anddefinitions are presented in Section 2.
In Section 3, we present the statistical model for the gradient
vector field of the gray level. In Section 4, we explain the
constrained Markov model for contours. Section 5 presents,
in detail, the estimation procedure for themodel parameters.
In Section 6, we explain three variants of an unsupervised
method for edge-detection. In Section 7, we discuss experi-
mental results. Finally, we conclude in Section 8.

2 BASIC NOTATIONS AND DEFINITIONS

2.1 Graphs Considered

Given an image of sizeM �N , G ¼ ðVG;EGÞwill denote the
nonoriented graph consisting of the MN pixels of the image
together with the segments2 given by the usual 8-neighbors.
If s and t are adjacent sites of G, we denote the segment
joining s and t by ðs; tÞ (so, ðs; tÞ 2 EG).

VG0 will denote the set of all sites ofG together with the set
of its segments (VG0 ¼ VG [EG). We form a nonoriented
graph G0 ¼ ðVG0 ; EG0 Þ by making two adjacent sites in G also
adjacent inG0 and bymaking ðs; tÞ adjacent to its end points s
and t. Thus, EG0 ¼ EG [ fðs; uÞ; ðt; uÞ : u ¼ ðs; tÞ 2 EGg. See
Figs. 1 and 2 for an illustration of the graphs G and G0.

2.2 Random Fields Considered

We compute the gradient of the gray-level function I of an
image by the second-order approximation Ix ¼ 1

2 ðIðxþ
1; yÞ � Iðx� 1; yÞÞand Iy ¼ 1

2 ðIðx; yþ 1Þ � Iðx; y� 1ÞÞ.A first
order approximation seems to be more sensible to noise. For
eachsite s 2 VG, theobservable randomvariableYs represents
thenormof the gradient of the gray level at the corresponding
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2. The graph theoretical terminology of “edge” would be unfortunate in
the context of edge-detection.

Fig. 1. A pixel s and its eight neighbors (8 pixels) in the graph G.



pixel. Also, the hidden randomvariableXs takes its values in
the label set e1 ¼f “off edges”, e2 ¼ “on edges”g.

If ðs; tÞ 2 EG, we consider the angle (in absolute value) Yst

between themean of the gradient at s and twith the normal to
the segment ðs; tÞ. The angle is normalized between��=2 and
�=2 (before taking its absolute value). Whenever the mean of
thegradient at sand tvanishes,wedefineartificially theangle
to be �, an abstract value not in the interval ½0; �2�. We consider
the hidden random variableXst taking its values in the label
set fe1; e2g. A statistical model for the gradient vector field is
presented in Section 3, i.e., a model for the conditional
distributions P ðys j xsÞ and P ðyst j xstÞ.

For the ICE estimation procedure presented in Section 5,
as well as for our unsupervised method for edge-detection,
we need a constrained Markov model for contours. Thus,
we consider two random fields on the graph G0: the
observable continuous random field Y ¼ fYs; Yst : s 2
VG; ðs; tÞ 2 EGg and the hidden discrete random field
X ¼ fXs;Xst : s 2 VG; ðs; tÞ 2 EGg. The joint distribution of
the couple of random fields ðX;Y Þ is modeled by a
constrained Markov model in Section 4. The likelihood
P ðy j xÞ is based on the local conditional distributions of
Section 3, whereas the prior P ðxÞ is based on a
presegmentation set T , that we now describe.

2.3 Presegmentation Set

We consider a presegmentation set T � VG in which are
confined all points that might be classified as on edges. See
Fig. 3 for an illustration of the presegmentation set in the
case of the image of Fig. 6.

We define T in an ad hoc manner using the nonmaxima
suppression technique. Namely, given an image, consider, at
each pixel s, the approximation of the gradient of the gray
level by the nearest direction d̂d among thedirections d1; . . . ; d4

corresponding to the angles ��=4; 0; �=4; �=2. Define Tþ as
the set of all pixels forwhich thenormof thegradient isno less
than thenormof thegradient at its twoneighbors along d̂d. The
approximate value of the gradient is used only at this step.

Next, remove the isolated points of Tþ. A point of Tþ is
an isolated point if none of its 8-neighbors is in the set Tþ

(see Fig. 4 for an illustration). Finally, we remove from Tþ

the pixels at which the gradient of the gray level vanishes,
thus obtaining a presegmentation set T . We then define T �

to be the set of all segments ðs; tÞ with both end points in T .
Note that the presegmentation set T depends on the

observeddataof the image (i.e., thegradient of thegray level).
So, strictly speaking, it might be preferable to model T as the
observed realization of a discrete random field. Yet, for
simplicity, we view T as a “metaparameter” which is
estimated once and for all by nonmaxima suppression. The
role of the presegmentation set T is crucial in what follows
and our choice might not be optimal. Nevertheless, other
presegmentation sets are presented in [10] and it is reported
that theyappear tobeclose to theoneobtainedbynonmaxima
suppression.

2.4 Summary of the Main Technical Notations

For further reference, we collect in Table 1 the main symbols
that will be used in the next sections.

3 STATISTICAL MODEL FOR THE GRADIENT

VECTOR FIELD

We present in this section a model for the conditional
distributions of the gradient vector field of the gray level on
and off edges. These distributions are used to define the
likelihood of theMarkovmodel presented in the next section.

3.1 Norm of the Gradient

The distribution P ðys j xs ¼ e1Þ (corresponding to the sites
off edges) is modeled in [3] by an exponential distribution.
Here, we model P ðys j xs ¼ e1Þ by a shifted Weibull
distribution [29],

Wðys; min; C; �Þ ¼ C

�

�
ys �min

�

�C�1
exp

�
�
�
ys �min

�

�C�

defined for ys > min . Note that, if C ¼ 1, one recovers the
exponential distribution. In our tests, we have observed that
the estimated value of C varies approximately between 0.4
and 1.4, which justifies our preference for a Weibull
distribution. Since the norm is nonnegative, one has to take
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Fig. 2. Left: A pixel s and its 16 neighbors (8 pixels and 8 segments) in
the graph G0. Right: A segment ðs; tÞ and its two neighbors (2 pixels) in
the graph G0.

Fig. 3. Presegmentation set obtained by nonmaxima suppression for the
image of Fig. 6.

Fig. 4. Illustration of an isolated point of the set Tþ.



min < 0. In our tests, we took, systematically, min ¼ �10�3
after the normalization described in Section 7. We admit
that this is quite ad hoc and that the value of min should be
estimated. Nevertheless, the tests reported in Section 7
indicate that our choice is reasonable.

We model the distribution P ðys j xs ¼ e2Þ (corresponding
to pixels on edges) by a mixture of Gaussian kernels,

Mðys;wj; �j; �jÞ ¼
XK
j¼1

wjNðys;�j; �jÞ;

where
PK

j¼1 wj ¼ 1 and wj � 0, for j ¼ 1; . . . ; K. Roughly
speaking, each Gaussian kernel represents a class of edge-
points according to the relative degree of contrast in gray
level. As is well-known, a mixture of Gaussian kernels is a
good approximation to any given continuous distribution,
provided the number of kernels is sufficiently large.
Nevertheless, if the sample set is too small, a large number
of kernels will cause overfitting. In our tests, a mixture of
three Gaussian kernels seems flexible enough (as far as we
can tell) to model the wide range of variations in the
distribution P ðys j xs ¼ e2Þ from one image to an other. But,
in the case of very complex images, one might want to
consider greater values of K if the size of the image is

sufficiently large. For that matter, one could use the
Bayesian Information Criterion (BIC) [30].

Now, since the norm is nonnegative, the distribution
Wðys; min; C; �Þ should be restricted to ys � 0 and adjusted
by the factor

k1 ¼
Z 1
0

Wðy; min; C; �Þ dy
� ��1

¼ exp
�min

�

� �C
 !

:

However, if ð�min
� Þ

C � 0, this point can be ignored for
all practical purposes. Similarly, the distribution
Mðys;wj; �j; �jÞ should be adjusted by the factor k2 ¼
f
R1
0 Mðy;wj; �j; �jÞ dyg�1. Again, this factor can be

ignored if the values of �j are positive and sufficiently
large with respect to �j (for instance, �j > 3�j). The
experimental results reported in Section 7 indicate that
the effect of these simplifications is negligible in the
context of our applications.

Our hypothesis is that the norm of the gradient of the
gray level tends to be larger for points on edges than for
points off edges. This is captured in the distributions
adopted here whenever the values of �1; . . . ; �K are
sufficiently large with respect to �. We take this hypothesis
into account in the initialization step of the estimation
procedure explained in Section 5. See Fig. 5.
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TABLE 1
Summary of the Main Technical Notations

Fig. 5. Examples of distributions for the gradient of the gray level. From left to right: Norm of the gradient for points off edges; norm of the gradient for
points on edges; comparison between the two distributions; angle between the gradient and the normal to segments on edges. The rows correspond,
from top to bottom, to Figs. 6 and 7, respectively.



3.2 Angle between the Gradient and the Normal to
Segments

The random variable Yst can be viewed as the angle (in
absolute value) between a level curve of the gray-level
function and the curve going through the segment ðs; tÞ. If
the segment is off edges, there is no privileged value
expected for Yst. On the other hand, if the segment is located
on edges, we expect the value of Yst to be near 0, i.e., our
hypothesis is that a curve located on edges tends to coincide
locally with a level curve of the gray-level function. This
hypothesis is implicit in the hysteresis technique of the
Canny’s edge-detection algorithm.

Corresponding to the case where ðs; tÞ is off edges, we
consider the uniform distribution on ½0; �2�,

U yst; 0;
�

2

� �
¼ 2

�
; 0 � yst � �=2:

Corresponding to the case where the segment ðs; tÞ is located
on edges, we consider the truncated exponential law

Eðyst;�0Þ ¼
k0
�0

exp � yst
�0

� �
; 0 � yst � �=2:

The factor k0 is taken so as to obtain a distribution on the
interval ½0; �2�, i.e.,

k0 ¼
Z �

2

0

1

�0
exp � y

�0

� �
dy

� ��1
¼ 1� exp � �

2�0

� �� ��1
:

In order to take care of the case where the angle is not
defined (i.e., yst ¼ �), we consider the Dirac distribution ��

centered at the value �. Altogether, we model the distribu-

tion P ðyst j xst ¼ e1Þ by

q0U yst; 0;
�

2

� �
þ ð1� q0Þ��ðystÞ

and the distribution P ðyst j xst ¼ e2Þ by

q0Eðyst;�0Þ þ ð1� q0Þ��ðystÞ;
where q0 is the proportion of segments in the image for

which the mean of the gradient at the two end points does

not vanish.
Our tests reported in Section 7 suggest that our model

might be useful in some applications. See Fig. 5 for examples

of the empirical distributions and the estimateddistributions.

4 CONSTRAINED MARKOV MODEL FOR CONTOURS

We now describe the joint distribution of the couple of

random fields ðX;Y Þ. For the likelihood, we use the local

conditional distributions of Section 3

P ðys j xs ¼ e1Þ � Wðys; min; C; �Þ;

P ðys j xs ¼ e2Þ � Mðys;wj; �j; �jÞ;

P ðyst j xst ¼ e1Þ ¼ q0U yst; 0;
�
2

� �
þ ð1� q0Þ��ðystÞ;

P ðyst j xst ¼ e2Þ ¼ q0Eðyst;�0Þ þ ð1� q0Þ��ðystÞ:

We assume, as usual, that all the variables Ys and Yst are

mutually independent conditional to X ¼ x and that
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Fig. 6. Top left: Original image. Top right: Edge-detection using the SA algorithm. Bottom left: Segmentation using the Canny edge-detector (lower
threshold: 11.5; upper threshold: 23). Bottom right: Segmentation using the Canny edge-detector (lower threshold: 38; upper threshold: 76).



furthermore, P ðysjxÞ ¼ P ðysjxsÞ and P ðystjxÞ ¼ P ðystjxstÞ.
Thus, the likelihood P ðyjxÞ is given byY

s2VG

P ðys j xsÞ
Y

ðs;tÞ2EG

P ðyst j xstÞ:

As usual, the dependence structure among pixels is

captured by a Markov prior. For the prior distribution, we

consider the Gibbs energy �
P
ðs;tÞ2T �

�
1� �ðxs; xtÞ

�
in order

to favor a homogeneous segmentation within the set T ,

where �ð:Þ is the Kronecker delta function and � > 0 is a

parameter. We also impose the following two constraints on

a realization x of the labeling field X: 1) xs ¼ e1 for all s 62 T

(only pixels in the presegmentation set can be located on

edges) and 2) for any ðs; tÞ 2 EG, xs ¼ e2 and xt ¼ e2 if and

only if xst ¼ e2 (a segment is on edges if and only if its two

endpoints are on edges). We define a function �T on the set

of all realizations of X by setting �T ðxÞ ¼ 1 whenever x

satisfies the two constraints above and 0 otherwise. In

detailed form, �T ðxÞ can be expressed asY
s 62T

�ðxs; e1Þ
Y

ðs;tÞ2EG

�ðxs; xt; xstÞ;

where �ðxs; xt; xstÞ ¼ 1 if the equivalence xs ¼ xt ¼
e2 () xst ¼ e2 holds and �ðxs; xt; xstÞ ¼ 0 otherwise.
Given this model with constraints, the prior distribu-
tion P ðxÞ is equal to

k exp ��
X
ðs;tÞ2T �

�
1� �ðxs; xtÞ

�8<
:

9=
;�T ðxÞ;

where k is a normalizing constant.
Let U be the Gibbs energy3 defined by

Uðx; yÞ ¼
X
s2VG

� lnP ðys j xsÞ

þ
X
ðs;tÞ2EG

� lnP ðyst j xstÞ þ �
X
ðs;tÞ2T �

�
1� �ðxs; xtÞ

�
:

The a posteriori distribution can then be expressed as

P ðx j yÞ / exp
�
�Uðx; yÞ

�
�T ðxÞ;

where the omitted factor depends only on the observed
realization y.Due to the constraint expressedby�T , themodel
is called constrained Markov model, rather than Markov
model.

5 ESTIMATION PROCEDURE

5.1 The ICE Procedure

Let ðX;Y Þ be the couple of random fields presented in
Section 4. The observable random field Y is called the
“incomplete data” and Z ¼ ðX;Y Þ the “complete data.” As
has been presented in Section 4, the likelihood of the
model for contours depends on a vector of parameters
� ¼ ðq0; C; �; wj; �j; �j; �0Þ, whereas the prior distribution

depends on a parameter �. Note that the factor k0 can be

deduced directly from the value of �0. Various methods

have been developed for the estimation of the parameters

of a prior distribution in the complete data case (see [24],

[31], [32]), as well as in the incomplete data case (see, for

instance, [33]). Nevertheless, for simplicity, we fix the

parameter � equal to 1 throughout this paper and

concentrate solely on the estimation of the likelihood

parameters.

Inorder toobtainanestimationof the likelihoodparameter

vector � from the incomplete data, we resort to the ICE

algorithm. This procedure, described in detail in [16] for the

segmentation of an image into regions, relies on an estimator

�̂�ðx; yÞ of � for the complete data with good asymptotic

properties (suchas theMaximumLikelihood(ML)estimator).

One starts with an initial estimation �½0� (based on the

observed data y) and then considers the sequence defined

recursively by�½pþ1� ¼
R
x �̂�ðx; yÞP ðx j y;�½p�Þ dx. The proper-

ties of this sequence are not fully understood as of now, but

various experiments [16], [17], [18], [19], [20], [21], [22], [33]

indicate its relevance.

The computation of the expectation
R
x �̂�ðx; yÞP ðx j y;

�½p�Þ dx is impossible in practice, but we can approximate

it by,

1

n
�̂�ðxð1Þ; yÞ þ 	 	 	 þ �̂�ðxðnÞ; yÞ
	 


;

wherexðiÞ; i ¼ 1; . . . ; n are realizations ofX drawnaccording

to the posterior distribution P ðx j y;�½p�Þ. One can take n ¼ 1

without altering the quality of the estimation in the context of

[16]. In our case, taking n ¼ 5 seems satisfactory as the tests

reported in Section 7 indicate. In the context of region

segmentation, an image offers a larger sample of points than

in the context of edge-detection because there are fewer edge-

points. Hence, one needs in principle more simulations.
Altogether, the ICE procedure can be outlined as follows:

1. Initialization: �½0� is obtained from the parameters
estimated on each class of an initial segmentation
obtained by theK-means algorithm described in [34].

2. Set p ¼ 0 and repeat until a stopping criterion is met:

a. Simulation: Using the Gibbs sampler, n realiza-
tions xð1Þ; . . . ; xðnÞ are simulated according to the
posterior distribution P ðx j y;�½p�Þ, with para-
meter vector �½p�.

b. Estimation: The parameter vector �½pþ1� is ap-
proximated by the sum

1

n
�̂�ðxð1Þ; yÞ þ 	 	 	 þ �̂�ðxðnÞ; yÞ
	 


:

Set p pþ 1.

In our tests, the stopping criterion is that jj�½pþ1� � �½p�jj1
� "jj�½p�jj1, where " ¼ 10�2, with a maximum of 100 itera-

tions. We now explain the estimation procedure in details in

the context of our constrained Markov model for contours.
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3. Due to the presence of the Dirac distribution �� in the definition of
P ðyst j xstÞ, the Gibbs energy U can be equal to �1; however, this fact does
not affect any of the algorithms explained in the next two sections.



5.2 Initialization

We initialize the ICE procedure by the parameters estimated

on the complete data obtained by a K-means clustering

segmentation of T into two classes based on the norm of the

gradient of the gray level. The class with smallest mean is

labeled e1 ¼ “off edges.”

5.3 Simulation

We simulate a realization of X according to the posterior

distribution P ðx j y;�½p�Þ, with parameter vector �½p�. Our

model for contours has constraints. The constrained

stochastic relaxation has been developed in this context

[35] and could be used in the simulation of X. However, for

computational reasons, we impose directly the constraints

by setting xs ¼ e1 whenever s 62 T and xst ¼ e2 if and only if

xs ¼ e2 and xt ¼ e2. Thus, we simply use the Gibbs sampler

algorithm [23] on T [ T �. In doing so, we visit, sequentially,

the sites of T [ T � as follows: If s is a site of G, we let

EðsÞ ¼ ft : t 2 T; ðs; tÞ 2 EGg (the neighbors of the pixel s

which are in the set T ). There are two possible labels for s

and each one determines the label of ðs; tÞ, for t 2 EðsÞ,
upon using the constraint �ðxs; xt; xstÞ ¼ 1. For i ¼ 1; 2, we

consider the real number fðeiÞ equal to

P ðys j xs ¼ eiÞ
Y

t2EðsÞ
P ðyst j xstÞ expð��ð1� �ðei; xtÞÞÞ

with each xst adjusted so that �ðxs; xt; xstÞ ¼ 1. We then
draw xs according to the probabilities

fðeiÞ=ðfðe1Þ þ fðe2ÞÞ ¼ 1=
fðe1Þ
fðeiÞ

þ fðe2Þ
fðeiÞ

� �
;

for i ¼ 1; 2. Note that, in the case where yst ¼ �, one can
simply ignore the factor P ðyst j xstÞ because the ratio
��ðyst ¼ �Þ=��ðyst ¼ �Þ contributes to 1 in the calculation of
fðe1Þ=fðe2Þ or fðe2Þ=fðe1Þ.

5.4 Estimation

Given a realization x of X, the complete data Z ¼ ðX;Y Þ is
known. Henceforth, the parameters of the statistical
distribution associated to each class can be computed using
the appropriate ML estimators. We use the following
approximated estimation procedures:

. We compute the ML estimators of the Weibull
distribution as follows: Let Y1; . . . ; Ym be m random
variables i.i.d. according to a shifted Weibull law
Wðy; min; C; �Þ and let y1; . . . ; ym be a realization of
those variables. We assume that the value of min is
fixed and we set ~yyi ¼ yi �min . The log-likelihood
function is equal to

m lnC �mC ln�þ ðC � 1Þ
Xm
i¼1

ln ~yyi �
1

�C

Xm
i¼1

~yyCi :

Let ĈC and �̂� be the ML estimators of C and �. Then,

ðĈC; �̂�Þ is a critical point of the log-likelihood

function. In [36], it is proven that such a critical

point necessarily satisfies the identities

1

ĈC
¼ F ðĈCÞ; �̂� ¼

�
1

m

Xm
i¼1

~yyĈCi

�1
ĈC

;

where

F ðCÞ ¼
Pm

i¼1 ~yy
C
i ln ~yyiPm

i¼1 ~yy
C
i

� 1

m

Xm
i¼1

ln ~yyi:

In Appendix A, which can be found at http://www.
computer.org/tpami/archives.htm, we show that the
function 1

C � F ðCÞ is decreasing in the interval ð0;1Þ
and admits a unique root in that interval (except in the
degenerate case where all yi are equal). It follows that
the log-likelihood has a unique critical point. More-
over, we can use a dichotomy search algorithm based
on the sign of 1

C � F ðCÞ in order to efficiently solve the
equation 1

C � F ðCÞ ¼ 0. We stop the procedure when
the relative distance between two successive values is
less than 5� 10�3. In [29], it is suggested to use
Newton-Raphson’s method; however, there is no
guarantee of convergence. In contrast, the dichotomy
search always converges, provided there are two
values of the functionwith opposite sign, as is the case
here. This allows us to estimate ðC;�Þ on the set
fys : xs ¼ e1g.

. The ML estimators of the parameters of a mixture of
Gaussian distributions cannot be computed directly.
We use the SEM algorithm [37], which is a stochastic
version of the EM algorithm [38]. Let Y1; . . . ; Ym be
m random variables i.i.d. according to a mixture
of K Gaussian kernels Mðy;wj; �j; �jÞ and let
y1; y2; . . . ; ym be a realization of those variables.
Consider m hidden random variables X1; . . . ; Xm

taking their values in the set of auxiliary labels
ff1; . . . ; fKg. Set � ¼ ðwj; �j; �jÞ. The SEM algorithm
can be outlined as follows:

1. Initialization: Use the K-means algorithm to

obtain an initial segmentation and compute

the usual ML estimators ð�½0�j ; �
½0�
j Þ of a

Gaussian distribution on each class. Next,

compute the proportion w
½0�
j of each class,

thus obtaining �½0� ¼ ðw½0�j ; �
½0�
j ; �

½0�
j Þ for the

initial estimation of the parameters.
2. Set p ¼ 0 and repeat until a stopping criterion is

met:

a. Simulation: For i ¼ 1; . . . ;m, the label xi is
drawnaccording to theposterior distribution

P ðfj j yi;�½p�Þ ¼
w
½p�
j Nðyi;�

½p�
j ; �

½p�
j ÞPK

k¼1 w
½p�
k Nðyi;�

½p�
k ; �

½p�
k Þ

:

b. Estimation: Use the ML estimators on the
resulting segmentation to obtain the para-
meter vector �½pþ1�. Set p pþ 1.

The initialization step is used only at the first
ICE iteration; subsequently, we use the para-
meters estimated at the previous ICE iteration for
the initial value �½0�. Since an average over a
few simulations is performed within the ICE
procedure, we consider only one simulation
within the SEM algorithm. The stopping criterion
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is as for the ICEprocedure, butwithaminimumof
10 iterations and a maximum of 500 iterations
(in our tests, the algorithm usually stops
within 30 iterations). In this manner, we obtain
an estimation of ðwj; �j; �jÞ from the set
fys : xs ¼ e2g.

. For the truncated Exponential law, we compute
the ML estimator as follows: Let Y1; . . . ; Ym be
m random variables i.i.d. according to a truncated
Exponential law f�0ð1� expð� �

2�0
Þg�1 expð� y

�0
Þ. If

y1; y2; . . . ; ym is a realization of those variables, the
log-likelihood function is equal to

�m

�
lnf�0g þ ln 1� exp � �

2�0

� �� ��
�
Xm
i¼1

yi
�0

:

Now, theML estimator �̂�0 is a critical point of the log-
likelihood function and, hence, satisfies the equation

� 1

�̂�0
þ

� expð� �
2�̂�0
Þ

2�̂�2
0ð1� expð� �

2�̂�0
ÞÞ þ

1
m

Pm
i¼1 yi

�̂�2
0

¼ 0:

Thus, �̂�0 is a root of the function �0 �Hð�0Þ, where

Hð�0Þ ¼
1

m

Xm
i¼1

yi þ
�

2ðexpð �
2�0
Þ � 1Þ :

In Appendix B, which can be found at http://www.
computer.org/tpami/archives.htm, it is shown that
the function �0 �Hð�0Þ is increasing in the interval
ð0;1Þ and admits a unique root in that interval,
provided that 1

m

Pm
i¼1 yi <

�
4 . Thus, in that case, a

simple dichotomy search allows us to find �̂�0

efficiently. The stopping criterion is as for theWeibull
distribution. In the case where 1

m

Pm
i¼1 yi � �

4 , the log-
likelihood function is maximal at �0 ¼ 1 and the
truncated Exponential law is then the uniform
distribution. Inour tests, the latter caseneveroccurred.
We can thus estimate �0 on the set fyst : xst ¼ e2g.

6 APPLICATION TO UNSUPERVISED

EDGE-DETECTION

We view edge-detection in an image as finding a
realization x of X that maximizes the a posteriori
distribution P ðx j yÞ / P ðx; yÞ. In doing so, we minimize
the average cost function

R
X CMAPðX; xÞP ðX j yÞ dX, where

CMAPðX; xÞ is the Maximum A Posteriori (MAP) cost
function defined by 1� �ðX; xÞ. Equivalently, we want a
realization x that minimizes the Gibbs energy Uðx; yÞ
subject to the constraint �T ðxÞ ¼ 1, with U and �T as in
Section 4.

An optimal solution can be found using the Simulated
Annealing (SA) algorithm [35], though at the expense of a
significant computational cost. The SA depends on a para-
meter 	 called temperaturewhich, inprinciple, shouldbe equal
to 	p ¼ 	0

lnðpþ1Þ at iteration p � 0, where 	0 is a sufficiently large
initial temperature. Nevertheless, we take 	p ¼ 	0a

p, with
0 < a < 1.Thissuboptimalversionof theSAcanbeoutlinedas
follows in our context:

1. Random initialization: For each site s of VG, set xs ¼
e1 whenever s 62 T ; otherwise, set xs ¼ e1 or e2
randomly. Then, for each segment ðs; tÞ 2 EG, adjust
the label xst so that �ðxs; xt; xstÞ ¼ 1.

2. Set 	 ¼ 	0 and repeat until 	 is numerically small
(i.e., 	 ¼ 	f ):

a. Stochastic optimization: Visit sequentially the
sites of T [ T � as follows: If s is a site of G,
let EðsÞ ¼ ft : t 2 T; ðs; tÞ 2 EGg be as in
Section 5.3. For i ¼ 1; 2, let V ðeiÞ be equal to

� lnfP ðys j xs ¼ eiÞg

þ
X
t2EðsÞ

�
� lnfP ðyst j xstÞg þ �ð1� �ðei; xtÞÞ

�

with each xst adjusted so that �ðxs; xt; xstÞ ¼ 1.

Draw xs according to the probabilities4

expð� V ðeiÞ
	 Þ=ðexpð�

V ðe1Þ
	 Þ þ expð� V ðe2Þ

	 ÞÞ, i.e.,

1

exp
�
� V ðe1Þ�V ðeiÞ

	

�
þ exp

�
� V ðe2Þ�V ðeiÞ

	

� ;
for i ¼ 1; 2. After one sweep, set 	  a	 .

In our tests, we take 	0 ¼ 3, 	f ¼ 0:1, and a ¼ 0:995.
One can also obtain a good suboptimal solution by

means of the Iterated Conditional Modes (ICM) algorithm
[24]. The ICM in our context can be outlined as follows:

1. ML initialization: For each site s of VG, set xs ¼ e1
whenever s 62 T ; otherwise, set xs ¼ argmini¼1;2� ln
fP ðys j xs ¼ eiÞg. Then, for each segment ðs; tÞ 2 EG,
adjust the label xst so that �ðxs; xt; xstÞ ¼ 1.

2. Repeat until no more sites are modified after a
complete sweep:

a. Greedy optimization: Visit sequentially the sites
of T [ T � and take xs ¼ argmini¼1;2 V ðeiÞ, where
V ðeiÞ is as for the SA.

In the Markovian framework, one can also consider the
Modes of Posterior Marginals (MPM) [25] cost function
defined by CMPMðX; xÞ ¼

P
s2VG0 ð1� �ðXs; xsÞÞ. The com-

putation of an optimal solution x (i.e., a realization that
minimizes the average cost function

R
X CMPMðX; xÞ

P ðX j yÞ dX) is intractable, but one can find an approx-
imate value by means of the following Monte Carlo
(MC) algorithm:

1. Random initialization: As for the SA.
2. Simulation: Using the Gibbs sampler, n realizations

xð1Þ; xð2Þ; . . . ; xðnÞ are simulated sequentially accord-
ing to the posterior distribution P ðx j yÞ (see Section 5
for the details of the Gibbs sampler in our context).

3. Segmentation: For each site s of VG, set xs ¼ e1
whenever s 62 T ; otherwise, set xs to be the label
appearing the most frequently in the n simulations
xð1Þ; xð2Þ; . . . ; xðnÞ (after dropping the first few simu-
lations). Then, adjust the labels xst as above.

In our tests, we perform 150 simulations and ignore the
first 20 ones. Our tests reported in Section 7 indicate that the
MC algorithm yields a solution close to the SA algorithm,
even if the MPM and the MAP are different criteria.5
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4. Again, in the case where yst ¼ �, one can simply ignore the term
� lnP ðyst j xstÞ because the difference � ln ��ðyst ¼ �Þ þ ln ��ðyst ¼ �Þ con-
tributes to 0 in the calculation of V ðe1Þ � V ðe2Þ or V ðe2Þ � V ðe1Þ.

5. This would not necessarily hold if the prior model were changed, for
instance, if � 6¼ 1.



7 EXPERIMENTAL RESULTS

7.1 General Remarks

For the estimation and the segmentation procedures, we first

recalibrate the gray level of the image between 0 and 255 and

then apply a 3� 3 Gaussian mask. Afterward, we multiply

the gradient by 100=
, where 
 is themaximumof the normof

the gradient in the image. We present in Table 2 the time of

execution of the ICE procedure, the Viterbi algorithm, the

ICM, the MPM classifier, and the SA on a Workstation

2.0GHz, for the images of Figs. 6 and 7. See Fig. 5 for the

distributions corresponding to the images of Figs. 6 and 7.
In our other main tests, we have used the University of

South Florida (USF) database, consisting of 10 aerial images
and 50 indoor images, as well as the University of California
at Berkeley (UCB) test data set of 100 natural images. In
Table 3, we show the variation of some of the estimated
parameters on these databases. One can appreciate the point
of an online estimation procedure: One single distribution
(learned from a database) might not be fully adapted to a
given image, even if that image were taken from a similar
database. One can also observe that the factors k1 and k2 are
virtually equal to 1.

7.2 Evaluation of the Segmentation Methods

We have evaluated four variants of our edge-detection
method:

1. the Viterbi algorithm [39] with theMAP criterion on a
simplified version of the model that ignores junction points
(c.f. [15] and [14]),

2. the ICM algorithm with the MAP criterion (c.f.
Section 6),

3. the SA algorithm with the MAP criterion (c.f.
Section 6),

4. the MC algorithm with the MPM criterion (c.f.
Section 6).

We have compared the entropy � lnP ðx jy Þ of the solution
obtained by each of the methods 1, 2, 4 with the one obtained
by the SA. As expected, the SA yields the lowest entropy.
Although the MAP and the MPM are different criteria, the
MC yields the entropy closest to the SA. Finally, the ICM and
the Viterbi algorithm are comparable; note that the Viterbi
algorithm gives the optimal solution to a simplified model,
whereas the ICM gives a suboptimal solution to the full
model. We have also compared the classification error
produced by methods 1, 2, 4 with respect to the solution
obtained by the SA. Again, the MC is closest to the SA,

whereas the Viterbi algorithm and the ICM are comparable.
We have omitted the description of the simplified version of
the model in this paper since one might as well use the
ICMalgorithmon the fullmodel, for aquick algorithm, or else
the SA algorithm or the MPM classifier.

The results of the edge-detection using the SA algo-
rithm, as well as the energy map � ln P ðys j e2Þ

P ðys j e1Þ for the norm
of the gradient, for the databases mentioned above, can
be found at http://www.iro.umontreal.ca/~destremp/
PAMI02/.

We present in Figs. 6 and 7 the segmentations obtained by

ouredge-detectionmethod(withtheSAvariant)andcompare

itwithCanny’s edge-detection algorithm. It seems that, in our

case, most significant edges can be detectedwithout introdu-

cing more noise. Note also that, in the case of Canny’s

algorithm, one has to specify two thresholds. In contrast, our

method is unsupervised, except for the size of the Gaussian

mask and the values ofmin and � (though those values have

been fixed once and for all in all our tests) since the other

parametersareestimated, rather thanadjustedmanually.But,

most importantly, ourmethod allows the use of the statistical

distributions “on” and “off edges,” rather than the binary

segmentation itself. In fact, in our applications [14], we only

use the estimation procedure and postpone decision-making

to higher level procedures (such as localization of shapes).

7.3 Technical Evaluation of the Estimation
Procedure

To evaluate the validity of our model, we have compared,
for each image of the databases, the distributions estimated
by the ICE procedure with the empirical distributions,
using the segmentation obtained by the SA algorithm.
Namely, we calculate the Kullback-Leibler distance be-
tween the normalized histogram and the estimated dis-
tribution. In our tests, we have implemented the following
version of the Kullback-Leibler distance:

dðH;P Þ ¼
XN
i¼1

lnðHðtiÞ=P ðtiÞÞHðtiÞ;

whereH is the histogram andP is the estimated distribution,
both of which are defined on a bounded interval I split into
N ¼ 100 subintervals of equal length, and t1; . . . ; tN are the
midpoints of those subintervals. Here, H and P are normal-
ized so that

PN
i¼1 HðtiÞ ¼ 1 and

PN
i¼1 P ðtiÞ ¼ 1.Workingwith

the norm for now, this gives two measures that evaluate the
absolute errors made in the estimation procedure:

dðHðYs j e1Þ; P ðYs j e1ÞÞ ¼
XN
i¼1

ln
Hðti j e1Þ
P ðti j e1Þ

Hðti j e1Þ

� 1

N1

X
s: xs¼e1

ln
Hðys j e1Þ
P ðys j e1Þ

dðHðYs j e2Þ; P ðYs j e2ÞÞ ¼
XN
i¼1

ln
Hðti j e2Þ
P ðti j e2Þ

Hðti j e2Þ

� 1

N2

X
s: xs¼e2

ln
Hðys j e2Þ
P ðys j e2Þ

;

where N1 ¼ jfs : xs ¼ e1gj, N2 ¼ jfs : xs ¼ e2gj. We also
consider the two complementary measures defined by
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�ddðHðYs j e1Þ; P ðYs j e1ÞÞ ¼
XN
i¼1
� ln

Hðti j e1Þ
P ðti j e1Þ

Hðti j e2Þ

� 1

N2

X
s: xs¼e2

� ln
Hðys j e1Þ
P ðys j e1Þ

�ddðHðYs j e2Þ; P ðYs j e2ÞÞ ¼
XN
i¼1
� ln

Hðti j e2Þ
P ðti j e2Þ

Hðti j e1Þ

� 1

N1

X
s: xs¼e1

� ln
Hðys j e2Þ
P ðys j e2Þ

:

Next, we compute, for each image, the average value of

the energy term � ln P ð	 j e2Þ
P ð	 j e1Þ over the two classes “off edges”

and “on edges,” respectively. This gives a measure of

classification efficiency of the estimated distributions:

�norm ¼

1

N1

X
s: xs¼e1

� ln
P ðys j e2Þ
P ðys j e1Þ

( )
� 1

N2

X
s: xs¼e2

� ln
P ðys j e2Þ
P ðys j e1Þ

( )
;

and the analogue measure for the histograms:

~��norm ¼

1

N1

X
s: xs¼e1

� ln
Hðys j e2Þ
Hðys j e1Þ

( )
� 1

N2

X
s: xs¼e2

� ln
Hðys j e2Þ
Hðys j e1Þ

( )
:
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Fig. 7. Top left: Original image. Top right: Edge-detection using the SA algorithm. Bottom left: Segmentation using the Canny edge-detector (lower
threshold: 18.5; upper threshold: 37). Bottom right: Segmentation using the Canny edge-detector (lower threshold: 40; upper threshold: 80).



Note that the difference between the two efficiency

measures is given by

�norm ¼ j~��norm � �normj
� jdðHðYs j e1Þ; P ðYs j e1ÞÞ þ �ddðHðYs j e2Þ; P ðYs j e2ÞÞ
þ dðHðYs j e2Þ; P ðYs j e2ÞÞ þ �ddðHðYs j e1Þ; P ðYs j e1ÞÞj;

as a little calculation shows.

Finally, we are interested in the relative measures:

�norm ¼
�norm
�norm

; �angle ¼
�angle
�angle

; �total ¼
�norm þ �angle
�norm þ �angle

;

where �angle and �angle are defined similarly for the angle

distributions.
When � > 0, one can use the energy term � ln P ð	 j e2Þ

P ð	 j e1Þ in

order to distinguish points “on edges” from points “off

edges,” a lower value being in favor of the former case

(c.f. [11], [3], [14], [15], [26]). Furthermore, the measure �

evaluates the relative error between the previous classifi-

cation efficiency measure (based on the estimated dis-

tributions) and the one obtained using the histograms. In

Table 4, the values of the various measures are reported

for the USF and UCB databases. We obtained that �total is

always positive and that �total is on average less than 0.09.

Thus, the parametric model presented here is accurate

with less than 9 percent error on average, with respect to

the energy term � ln P ðys j e2Þ
P ðys j e1Þ � ln P ðyst j e2Þ

P ðyst j e1Þ .

8 CONCLUSION

In this paper, we have described a new statistical model for
the gradient vector field of the gray level in images validated

by various experiments. As pointed out in [8], [9], [10], the
gradient of aGaussiankernel is not the optimal filter for edge-

detection; nevertheless, we chose it for its simplicity and its
usefulness in applications such as localization of shapes. That

being said, it would be interesting to find a statistical

parametric model for the optimal edge-detector developed
in the case of discrete signals [8].

Moreover, we have presented a global constrained
Markov model for contours in images that uses the condi-
tional distributions of the gradient vector field on and off
edges for the likelihood. Admittedly, the Markovian frame-
work is a simplificationof thegreat complexityof information
contained in an image; however, this is a standard hypothesis
that appears to be very useful in the context of online
estimation procedures and unsupervised segmentation
methods. We exploit the Markovian framework in the
estimation procedure (using the ICE procedure) and in the
segmentation method (using a MAP or MPM criterion). This
yields an original unsupervised method for edge-detection.

The estimation and the segmentation procedures have

been tested on a total of 160 images. For the class of images
thatwe have tested, the experimental results indicate that the

model presented in this paper and its estimation procedure
are valid for applications that require the energy term based

on the log-likelihood ratio. Other kinds of images might
require other filters and other statistical distributions. As for

image segmentation, other aspects of an image (such as
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See the explanations in the text.



textures) require other filters as well and we admit that we
have treated only the aspect of edges in this paper.

Most importantly, our model can be used to define cost
functions suitable for semiautomatic extraction of contours,
as in the live-wire algorithm [2] or the jetstream algorithm [3]
(see [14] and [15]). As another application, our model can be
used for localization of shapes (see [14] and [26]). Our model
has also been used in computer graphics in the context of a
sketchingprocedure fornon-photo-realistic rendering [40]. In
all those applications, the binary edge-detection itself is not
used, but only the estimated distributions. For that matter,
our model might be useful in various problems requiring a
statistical likelihood for contours.
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[14] F. Destrempes, “Détection Non-Supervisée de Contours et
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