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Abstract—Current moving object detection systems typically detect shadows cast

by the moving object as part of the moving object. In this paper, the problem of

separating moving cast shadows from the moving objects in an outdoor

environment is addressed. Unlike previous work, we present an approach that

does not rely on any geometrical assumptions such as camera location and

ground surface/object geometry. The approach is based on a new spatio-temporal

albedo test and dichromatic reflection model and accounts for both the sun and the

sky illuminations. Results are presented for several video sequences representing

a variety of ground materials when the shadows are cast on different surface

types. These results show that our approach is robust to widely different

background and foreground materials, and illuminations.

Index Terms—Detecting moving objects, dichromatic reflection model, physics-

based segmentation, shadows in video, spatio-temporal albedo ratio.

�

1 INTRODUCTION

OVER the past several decades, many approaches have been
developed for detecting moving objects in indoor and outdoor
scenes. Recently, statistical-based approaches using a mixture
model have shown that many problematic phenomena such as
repetitive motion of the background (e.g., swaying trees), sudden
illumination changes (e.g., cloud cover), and sensor noise can be
modeled [4], [8], [16]. Despite this success, a statistical-based
approach fails to distinguish between the actual moving object and
its shadow silhouette. This is due to the fact that intensity changes
in the scene due to moving shadows are as high as those of the new
objects appearing in a scene.

Shadows are generally divided into static and dynamic
shadows. Static shadows are shadows due to static objects such
as buildings, parked cars, trees, etc. Statistical-based methods for
moving object detection in video do not suffer from static shadows
since static shadows are modeled as part of the background and
can be tracked by an adaptive procedure. Dynamic shadows in
video, the subject of interest in this paper, are due to moving
objects such as moving vehicles (cars, trucks), pedestrians, etc. The
shadows can take on any size and shape, and can be Umbra (dark
shadow), Penumbra (soft shadow), or both. Our research focuses on
outdoor scenes where we have a far away point source (sun) and a
diffuse source (sky) contributing to the illumination in the scene.
Since the distance between the objects and the background is
negligible compared to the distance of illumination sources to the
objects, most or all of the shadows are umbra or strong shadow
that we deal with in this paper. Note that penumbra or weak
shadow exist only when the sky is very cloudy and/or illumina-
tion is highly diffuse.

2 RELATED APPROACHES AND OUR CONTRIBUTIONS

Table 1 provides a summary of approaches for shadow detection.

A comparative study of selected works [1], [5], [7], [15] can be

found in [11].

In comparison with state-of-the-art, the contributions of this
paper are:

1. Integration of different physical models—Sound physical
models (dichromatic reflection model, and reflectance-
based analysis model) are used in an integrated and
principled manner. Our approach is different from all the
previous work (see Table 1) in that we make no
assumption about surface geometries (e.g., planar versus
curved, horizontal, versus vertical), surface texture (e.g.,
grass, brick, tiles, road, etc.), or types and shapes of
shadows, objects, and background. We solely rely on
models, which can represent wide classes of surface
materials. In addition, unlike all previous approaches that
make the assumption of one illumination source (white
light), our model incorporates multiple sources (sun and
sky) with different spectral power distribution (SPD). The
integrated “realistic” physical models are used for shadow
and object detection.

2. Temporal improvement—Spatial albedo ratio test [9], which
is a measure of constant reflectivity of a surface, is
extended temporally. The new test is called spatio-
temporal albedo ratio test, and it is utilized for surface
segmentation in video.

3. Experiments and performance evaluation—The algorithm is
tested on a wide variety of video data consisting of both
vehicles and people. We have provided physically important
independent variables such as surface types and materials,
surface orientation, and time of day, which are physically
linked to the scene and are used as benchmarks [11] in our
experiments.

3 TECHNICAL APPROACH

3.1 Shadow Modeling

Consider a single visible light point source (i.e., sun), a diffuse
extended light source (i.e., sky), and a Lambertian surface with
constant reflectance. Then, the observed surface intensity value, IV,
on a given surface can be calculated by integrating the reflectance
function over the entire visible spectrum for each light source and
then added.

IV ¼
Z

��1

K1L1 �ð Þf l; e; sð Þd�þ
Z

��2

K2L2 �ð Þd�; ð1Þ

where K1;K2 are the coefficient of reflectances due to sun and sky;
L1;L2 are intensity of the illumination sources sun and sky,
respectively, f(.) is a geometric term, and the angles are l (incident
angle of illumination), e (angle for viewing direction), and s (angle
for specular reflection). The first term of the model in (1) is due to
the point source and includes both specular and diffuse compo-
nents. If the interreflections are negligible, the color of a pixel is
only influenced by the light reaching it and reflected properties of
the surface.

The first term in (1) can be approximated by several reflectance
models. In the order of increasing sophistication, surface reflec-
tance is modeled by: 1) Lambertian model, 2) Phong model, and
3) Dichromatic model [13]. Considering the dichromatic model for
the first term in (1),

I ¼Lð�; l; e; sÞ ¼ Lið�; l; e; sÞ þ Lbð�; l; e; sÞ ¼ miðl; e; sÞCið�Þ
þmbðl; e; sÞCbð�Þ;

ð2Þ

where L is the total radiance of the reflected light, Li is radiance of
the light reflected at the surface, and Lb is radiance of the light
reflected from the body. Geometric terms for the surface and body
are mi and mb, respectively, and the angles are described as before.
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Ci and Cb are relative SPDs due to surface and body reflections
due to point source (e.g., sun).

The second term of the model in (1), due to extended-diffuse
illumination, is not influenced by the surface, illumination, and
viewing geometries, hence, no geometrical function is required like
the one in the first term of (1). Therefore, it can be replaced by an
additive term Ca representing relative SPD due to ambient
illumination (e.g., extended light source, sky). Using the term Ca

and (2), the model in (1) can be approximated by the extended
dichromatic model:

IV ¼ miðl; e; sÞCið�Þ þmbðl; e; sÞCbð�Þ þ Ca: ð3Þ

The approximation model in (3) has five unknown terms, mi, Ci,
mb, Cb, and Ca. The first two terms (mi and Ci) are due to specular
reflection and exist for surfaces with high reflectivity such as
polished or smooth surfaces and conductors. Assuming surfaces
have weak or no specularity and correcting for reflectance due to
ambient illumination, Ca, (e.g., subtracting Ca from (3)), we are left
primarily with only the reflectance due to body color Cb, which is
independent of geometrical influence due to angle of illumination
or viewing direction [13]. The body color Cb, an inherent property
of the subsurface representing the true color of the material under
white light, provides an invariant that is used in our approach to
distinguish background surfaces from the foreground surfaces for
shadow and object detection in video. In the existing literature,

illumination from the sky is not modeled (see Table 1). As a result,
the estimation of surface color is inaccurate. In real-world outdoor

scenes, the sources of illumination are both the sun and the sky

and the shadows are formed when the sunlight is blocked. The
SPD of the sky is more dominant (saturated) in the blue region of

the spectrum. Our approach works in RGB and Ci-Cb (dichromatic

space) not in HSV and the model in (2) is consistent with the RGB
space. It provides a more meaningful and physically linked

representation than HSV [13].

3.2 Physics-Based Shadow Detection

Our approach, depicted in Fig. 1, is a multistage approach where

each stage of the algorithm (marked in numerical order) removes

moving object pixels, which cannot be shadow pixels. Input video
frame is passed through the system and Mi is the binary mask of

potential shadow pixels updated after each step. At the end of the

last stage, we obtain the moving shadow pixels as well as moving
object pixels.

Step 1—Moving Object Detection: This step detects moving

pixels (object, shadow, and some erroneous pixels). Sensor fusion
techniques [8] are applied within a mixture model-based frame-

work [16] in RGB space for the initial object detection. In this

algorithm, each pixel is viewed as an independent process. To
model the background, recent history of each pixel x, is modeled

by a mixture of g Gaussians: PðxÞ ¼
Pg

i¼1 wi � �ðx;�i;�iÞ, where,
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Summary of Current Approaches to Shadow Detection



for each R, G, B channel, P(x) is the probability of observing pixel

value x, � is the Gaussian funtion whose ith mixture component is

characterized by the mean �i, covariance �i, and weight wi. The

moving object detection algorithm is initialized by first collecting

t initial frames, and then estimating the parameters of the mixture

for each pixel by K-means clustering technique. We use the AND

strategy [8] which specifies that an incoming pixel value must be

within three standard deviations of any of its g models in all three

(independent R, G, B) channels to be considered a background

pixel; otherwise, it is classified as a moving pixel. This strategy

provides the highest detection rate in comparison to other fusion

strategies [8]. After the initial detection, the binary mask (M1 in

Fig. 1) contains the moving object, its shadow and noisy isolated

pixels. Our segmentation algorithm (Step 4) needs a background

image, which is simply tracked in memory.

Step 2—Initial Shadow Pixel Reduction: The test at this step

states that pixels on a detected surface cannot be shadow if they have

higher intensity than the actual background. Once we have the

current “segmented” image and the background from Step 1, the

following intensity test is applied to moving objects and shadow

pixels to further reduce their number. Let pfxg be a pixel where

x 2 ðR;G;BÞ is background pixel and x 2 ðr; g;bÞ is foreground

moving object, its shadow, and some erroneous background pixels.

Let M2 ¼ � (initially an empty mask), then

8p 2 M1 if ðpr < pRÞ&ðpg < pGÞ&ðpb < pBÞ ) M2 ¼ M2 [ p: ð4Þ

This test does not reduce the shadow areas, but may successfully

reduce object areas, thus reducing the binary mask and computa-

tion at later steps. In addition, this step also eliminates pixels due

to specular reflection which helps in our diffuse component

estimation (Step 6).
Step 3—Blue Ratio Test: This step exploits the observation that

shadow pixels falling on neutral surfaces, such as asphalt roads,

tend to be more blueish. This is also true for many gray structures

such as concrete buildings, walkways, etc. Shadow regions are

illuminated by the sky and sky is assumed to be blue and the only

source of illumination on shadowed regions. Although all RGB

values are lower in the shadow region, we have observed that the

amount by which this reduction occurs is not proportional. This is

used to further refine the shadow segmentation. Let pfxg be defined

as in Step 2, then the ratio (pb=pB) tends to be larger than (pr=pR)

and (pg=pG) in shadow regions. We hypothesize a pixel in the

image under the mask M2 to be a shadow pixel and generate a

mask M3 (initially M3 ¼ �) of hypothesized shadow pixels as:

8p 2 M2 if ½ðpb=pBÞ > ðpr=pRÞ�&½ðpb=pBÞ > ðpg=pGÞ� )
M3 ¼ M3 [ p:

ð5Þ

Shadow pixels tend to have lower intensity. They are more

saturated toward blue, and their vectors in RGB space make

smaller angle with the blue axis. Equation (5) is not applied to all

the pixels in mask M2, but to neutral or gray surfaces that have low

saturation (< 0:3). Highly saturated surfaces do not exhibit this

phenomenon due to high selectivity of the reflected color. The

output of this step (M3) provides further reduction in the number
of pixels from Step 2.

Step 4—Albedo Ratio Segmentation: This step performs
surface segmentation based on a new spatio-temporal albedo ratio
test. Our surface color estimation algorithm (see Step 6 and Fig. 3)
relies on the fact that the image has been segmented into uniform
regions; where each region is potentially a shadow. Segmentation
algorithm must define a uniformity test that provides the criterion
for segmentation. In [9], such a criterion is introduced based on
spatial albedo ratio of neighboring pixels and is given as:
(I1=I2 ¼ �1=�2) where I1; I2 are intensity and �1; �2 are albedo
(reflectance) of neighboring pixels. It has been shown [9] that this
ratio is independent of reflectance function, illumination direction
and intensity, and surface geometry (such as flat versus curved
surfaces). This ratio is extended to the temporal domain as
described below. First, we define the connectivity C of two
neighboring pixels p1 and p2 (see Fig. 2) with intensities u and v as
follows:

Cðp1; p2Þ ¼ 1 if Hðu; vÞj j < T
0 Otherwise;

�
ð6Þ

where, unlike the ratio of reflectance mentioned in the previous
work [9], [15], we use the following spatio-temporal relation and
define the following ratios:

R1 ¼
utþ1 � ut
utþ1 þ ut

; R2 ¼
vtþ1 � vt
vtþ1 þ vt

;Hðu; vÞ ¼ R1 �R2

R1 þR2
: ð7Þ

The first two ratios R1 and R2 are temporal ratios; therefore,
Hðu; vÞ is the spatio-temporal albedo ratio. If two neighboring
pixels belong to the same surface they will have temporal ratios
that are close together; hence, the spatio-temporal relation will be
close to zero. A small value for T in (6) is chosen to account for
noise and other artifacts. Note that, in the spatio-temporal albedo
test, the spatial constancy of the normal to the object surface is
assumed. This assumption is propagated to the temporal domain
where surface normals of neighboring pixels are the same. This
assumption is valid for both the spatial and temporal domains for
rigid bodies. It fails for deformable bodies where the surface
normal can change over time.

In order to segment the image into regions of uniform reflectance
(Step 4A), we spatially segment the image using the connectivity
criterion (6) in a segmentation algorithm that first performs a
sequential labeling [9]. Since border pixels are not reliable, the
algorithm shrinks the binary mask (of the object and shadow) from
the previous step by 1 pixel before applying the criterion (6).
Furthermore, a size filter (S) removes spurious segments (Step 4B)
and a new mask (M4) is generated. The choices for T and the size
filter (S) are discussed in Section 4.3. If the reflected light reaching
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Fig. 2. Two neighboring pixels in the foreground (t + 1) and background (t)

image. Background image contains no moving object/shadow (just the surface

background).

Fig. 1. Different steps of physics-based shadow detection algorithm.



the sensor has both the specular and diffuse components, the ratio in
(6) may not produce a meaningful result; therefore, to make this
ratio useful, we must assume that the surfaces have little or no
specular component. This assumes that there are few highlights in
the image. Most matte, dielectrics, and natural surfaces have mostly
diffuse reflections. This is usually not a problem in shadow regions
where specular reflections do not exist.

Step 5—Ambient Illumination Correction: This step removes
the effect of sky illumination. At this step, the input image under
the mask has been segmented into uniform regions. Some of the
segments belong to actual objects and some to the background due
to shadows, but all of them have some uniform reflectance
properties. Since we do not know which segment belongs to an
actual object and which to a background surface, we assume that
all are background surfaces.

According to (3), the shadow model developed in Section 3.1,
the reflection due to sky illumination (called ambient reflection) is
considered as an additive component; therefore, we subtract the
foreground pixel values from the background over the masked
area (M4). The result now contains the values where the reflectance
due to the sky illumination has been eliminated, so only the
contribution from the sun is left. For those regions that belong to an
actual object, this subtraction causes the background surface to
have a very different color vector than the color vector expected for
the shadow region. The hypothesis here is that all segmented
surfaces are due to shadow. If our hypothesis is correct, then we
should be able to correctly find the diffuse color vector due to
sunlight only. On the other hand, if our hypothesis is wrong, in the
case of object surfaces with very different color than the back-
ground, then we do not expect to get the correct results; hence, in
our verification stage, these vectors will not be matched.

Step 6—Body Color Estimation: This step performs body color
estimation (Cb) using a diffuse color estimation algorithm. At this
step, the input image under the mask has been segmented into
several regions and ambient reflection due to sky has been
subtracted from each region. Assuming each segment is a shadow,
we obtain the diffuse component (Cb) of the model (2) and then
compare this to our original estimation called, the initial estimate.
Two questions now remain: 1) How do we get the Cb from our
current information? 2) How do we measure it in the first place so
we can compare it with our new measurement? We first answer
question 1), and postpone the answer of 2) to Section 4.2.

The model in (2) is represented by four unknowns, mi, mb, Ci,
and Cb, for each pixel. This requires at least four values for a pixel.

These values can be obtained by three different methods: 1) moving
the illumination source, 2) moving the camera, or 3) sampling the
pixel values on larger but similar areas. Since we have no control
over the illumination source and assume static camera, the first
two methods do not apply. The third method requires a uniform
surface that is obtained at Step 4. The algorithm for estimating the
color of a surface is given in Fig. 3.

The body color (Cb) is in the form of a 3-dimensional unit vector
in unit RGB space. The vector corresponding to the largest
eigenvalue is estimated as the body color. Depending on the
surface type (planar or curved) that matrix M represents, and the
viewing geometry, the pixels in matrix M may form point-like,
linear, or planar clusters. The eigenvalues and eigenvectors
represent the extent and orientation of ellipsoids that fit the data.

Step 7—Verification: This step performsmatching of body color
of various surfaces with the stored body color of materials that we
expect to see in the scene. The algorithm has training and testing
phases. In the training phase, we calculate the body color of surfaces
that come under shadow in the scene. This is accomplished by
precomputing the body vectorCb for various surfacematerials such
as concrete, grass, red-brick, asphalt, etc. During the testing phase,
for each frame after Step 7, for each segment, we compare the body
color vector of the segment with any of the body color vectors in our
database. Assume that the body color of a surface patch is VpVp and the
true body color of the surface is VtVt, then the angle � between the two
vectors is defined as: � ¼ cos�1½ðVpVp � VtVtÞ=ðjjVpVpjj jjVtVtjjÞ�. If this angle is
small, then the two vectors are similar; hence, they indicate similar
colors and belong to the same surface. All the pixels for the segment
whose vector is just matched, are considered and collected as a
shadow binary mask image. Once all the segments are verified, the
result are the detected shadows. The objects are obtained by
subtracting detected shadows from mask M1 that contained both
moving object and moving shadows.

4 EXPERIMENTAL RESULTS

4.1 Data and Parameters

Video data is obtained with a SONY DCR-VX1000 camera with
three CCD sensors. No filter is used and all the controls for the
camera (shutter speed, aperture, gain control, white balance, etc.)
are set in automatic mode. The data consists of moving vehicles
and people with background materials and surfaces found in
urban areas, which contain structures such as buildings, houses,
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Fig. 4. (a) Background image and (b) foreground image. During the training, a user selects a patch of shadowed region from a frame. Steps 6 and 7 of our algorithm are

then applied and the body color vector Cb is estimated and stored.

Fig. 3. Diffuse color estimation algorithm.



walkways, roads, parks, etc. The range of physical conditions in

our experiments (shown in the heading of examples) include:

1. background surface materials—grass (parks), wood (trees),
concrete (buildings), asphalt (roads);

2. foreground surface materials—semipermeable (human
skin), dielectric (clothing), vehicle body;

3. colors—typical uniform surface colors, textured colors,
saturated and neutral;

4. surface slopes—vertical, horizontal, slopes (such as a hill);
5. sun angle—morning, high noon, early afternoon, late

afternoon; and
6. distance to objects: approximately 10-200 feet.

The number of Gaussians (g at Step 1) is fixed at 3.
The three parameters that affect our algorithm are: 1) threshold

T = 0.05 selected for surface albedo ratio segmentation (Step 4A),
2) size filter S = 10 pixels (Step 4B), and c) the angle threshold
� ¼ 1� selected for color equivalency (Step 7). All these thresholds
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Fig. 5. Example 1, vehicles casting shadows on asphalt and walkway concrete.



remain constant for all the results shown in the paper. The test
video data are short sequences (400-4,500 frames); therefore, no
background update is necessary.

4.2 Performance Evaluation

In order to evaluate the performance of our algorithm, the ground-
truth data are obtained for each frame by manually drawing a
contour around the moving objects and their shadows. Results are
shown using a confusion matrix for shadow (S), object (O), and
background (B). During the training phase, for the initial

estimation of the diffuse background color, the user selects areas
of typical backgrounds when they are shadowed. As shown in
Fig. 4, after user selection, Steps 6 and 7 are applied to these areas
to calculate a table of diffuse color vectors for various materials.
This table is used during the testing. Note that the body color of the
background surface cannot be guaranteed to have the correct color
vector if its reflectance is due to multiple illumination sources of
different SPDs. The effect of sky illumination must first be
accounted for. This is only possible if the other sources (e.g.,
sun) can be blocked, the surface reflectance due to sky estimated,
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Fig. 6. (a) Example 2 and (b) Example 3. Shadows are cast on different vertical and horizontal surfaces.



and then subtracted from the original background. For testing,

once the moving pixels and associated mask M1 are obtained in

Step 1, they are used as the input to Step 2 of the algorithm. At each

subsequent step of the algorithm, we only need to modify the

image pixels under the mask for computational efficiency.

Example 1. Fig. 5 indicates two examples from two different scenes

with moving vehicles where shadow of vehicles either follows

or precedes them. The scene includes both asphalt with

different texture, and concrete. As indicated by the confusion

matrix for each example, when the initial detection accuracy is

reasonably high, the shadow detection performs well. In frames

31 and 117 of Example 1b, the vehicle windows are not initially

detected where the pixels on the windows of the vehicles are as

dark as the background. Note that the shadow detection

algorithm performs better for cases where both objects and

their shadows are closer to the camera.
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Fig. 7. Three examples. (a) Example 4, (b) Example 5, and (c) Example 6.



Example 2. Fig. 6a is representative of different types of back-
ground surfaces including vertical, horizontal, textured, uni-
form, brick, and concrete. The detection algorithm performed
consistently for all the geometry and surface types present in
this example. As indicated in the confusion matrix, on the
average 73 percent of shadow pixels are correctly detected
while the percentage of object pixels classified as shadow is
minimal.

Example 3. Fig. 6b is an example of shadow cast on typical
textured concrete found in buildings with subject wearing a
textured shirt. Despite the noise in the initial detection (Step 1),
on the average over 80 percent of the shadow is correctly
detected.

Example 4. Fig. 7a represents an inclined and curved grass surface.
As the subject and its shadow move closer to the camera, the
detection improves. This is also an example of a surface that
exhibits highly saturated color and specularities due to the
surface type of grass and angles of incidence. This is a
challenging test since we do not account for specularities that
introduce noise, which affects the estimation of Cb. Due to high
saturation, Step 3 is bypassed.

Example 5. Fig. 7b shows a highly saturated color surface. The
background is red polished tile and the foreground subject is
wearing textured and uniformed colored clothes. The shadow
cast by the moving object on the grass is not initially detected at
Step 1; therefore, it is not considered by the rest of the
algorithm. Due to the proximity of the surfaces to each other
there exist high interreflections that are not modeled in our
approach.

Example 6. Fig. 7c shows multiple moving objects at different
distances from the camera. The initial moving object detection
performed superbly, but shadows of objects at considerable
distances are missed. This is due to the choice of the size filter
used at Step 4B. Shadows of objects that are far away are
segmented into smaller segments which are filtered out.

Example 7. Fig. 8 illustrates a difficult shadow and object color
situation. In this case, part of the object and the shadow have
the same diffuse color—the person’s pant has a neutral gray
color, the same as the background, and it is self-shadowed. As a
result, part of the pant is labeled as shadow. The self-shadowed
region of pant, however, has higher luminance than the real
shadow on the ground; hence, we utilize a statistical luminance

test based on histogram analysis to further classify these two
regions as shown.

4.3 Discussion of Experimental Results and Parameters

Accuracy versus Number of Shadow Pixels: Fig. 9 shows the
detection of shadow for Example 4. It shows the percentage of
shadow pixels detected correctly vs. distance of the moving object
to camera and number of (groundtruth) shadow pixels. As the
object comes closer to the camera, its shadow gets larger and the
camera signal becomes better since it is inversely proportional to
the distance of the reflected light. Larger areas with uniform
reflectance contribute to larger segments in Steps 4 and 6, thus
contributing to better diffuse color estimation.

Effect of Parameters T and S: Table 2 shows the effect of
parameters T and S. It shows the initial number of segments with
uniform reflectance, obtained at Step 4A, with a threshold value of
T = 0.05. A larger value for T will merge smaller segments into a
large segment whose diffuse color component may not be reliable
due to inclusion of several types of surfaces, each with a different
color. As indicated by our experiments, we have found that a value
of the threshold T = 0.05 is appropriate. Table 2 also shows that the
size segment threshold (S), Step 4B, greatly reduces the computa-
tional load before Step 7. By choosing large segments, we also
eliminate smaller segments as well that may actually be shadows.
This is indicated in Example 6 where several subjects are at
different distances to the camera. The initial detection may fail to
detect enough pixels on objects that are far away; hence,
segmentation may result in many small surfaces that may be
filtered out by the choice of S.

Effect of Parameter �: The parameter (�) determines the
sensitivity to color vector matching. Plots in Figs. 10a and 10b
are receiver operating characteristic curves (ROC) for two different
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Fig. 8. Similar foreground and background colors, self-shadowing, and refined shadow. (a) Diffuse color of pant (red) and shadow (blue) for frame 152 in RGB

space. (b) Histogram analysis.

Fig. 9. Effect of shadow size.



scenes (Example 2 and Example 3) that indicate the sensitivity of
the algorithm to color vector matching angle (�). We use a
threshold of 1� for all our examples, which corresponds to values
at the lower left part of the curves where probability of false alarm
is extremely low. The upper bound on the detection rate (Pd) is
dependent on the initial moving object detection algorithm, the
size segment threshold, the accuracy of the color estimation, and
whether we consider border pixels or not. In most cases, the
uniformity test causes the border pixels for object and shadow to
naturally fall into smaller segments and the size filter eliminates
them. We have adopted to shrink the object and its shadow by one
pixel first. We note that this reduces the detection rate.

5 CONCLUSIONS

In this paper, a novel approach consisting of an original ensemble
of techniques for detecting shadows and moving objects based on
sound physical models was presented. Experimental results
demonstrated that our approach is robust to widely different
1) background surfaces, commonly encountered in real-world
urban environments, such as concrete, asphalt, bricks, tiles, and
grass, 2) foreground materials such as human skin, variety of
colored and textured textiles, metallic surfaces such as vehicle
surfaces, and 3) illumination conditions at different times of the
day and locations. Furthermore, the physical attributes such as
surface type, surface roughness, and surface orientation and
illumination condition were physically associated to the scene
and the detection algorithm as shown in our experimental results.
Steps 1, 2, and 3 of our algorithm effectively reduced the
computational load for potential shadow pixels, whereas Steps 4,
5, and 6 provided a new robust method for distinguishing the
shadow pixels from the moving object pixels. The spatio-temporal
albedo ratio test provided a criterion for physically driven surface
segmentation. The surface color estimation is based on a physical
model and we have provided a robust method for estimating the
body color of surfaces. The integrated system is implemented in
Matlab, which is an interpreted environment, and it takes 4 seconds
to complete processing for one frame. This environment is chosen
for its extensive functionality, but it is inherently slow. In the
future, a real-time implementation at video rate will be explored.
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TABLE 2
Number of Segments after Segmentation (Step 4A), Size Filter (Step 4B), and Verification (Step 7)

Fig. 10. ROC plots—(a) frame 344 of Example 2 and (b) frame 360 of Example 5.


