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Abstract—We propose a new binocular stereo algorithm that estimates scene

structure as a collection of smooth surface patches. The disparities within each

patch are modeled by a continuous-valued spline, while the extent of each patch is

represented via a pixelwise partitioning of the images. Disparities and extents are

alternately estimated in an iterative, energy minimization framework. Experimental

results demonstrate that, for scenes consisting of smooth surfaces, the proposed

algorithm significantly improves upon the state of the art.

Index Terms—Binocular stereo vision, energy minimization, graph cuts, hybrid

system, smooth surfaces, surface fitting, boundary localization, sharp

discontinuities, quantitative comparison.
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1 INTRODUCTION

THE foundations of stereo are correspondence and triangulation.
Given two images, if one can find a pair of left and right image
points that correspond to the same world point, geometry readily
yields the three-dimensional position of that world point. It is the
search for such corresponding pairs that is the central part of the
stereo problem.

There are several constraints that help to solve correspondence.
Given geometric calibration, the epipolar constraint reduces the
search for possible point matches from two dimensions to one.
Given photometric calibration, color constancy further narrows the
possibilities to points that look alike. Marr and Poggio [15]
proposed two additional heuristics that mitigate the ill-posedness
of stereo: uniqueness, which states that “each item from each image
may be assigned at most one disparity value,” and continuity,
which states that “disparity varies smoothly almost everywhere.”
Of these four constraints, the former two are relatively straightfor-
ward, but the application of the latter two varies greatly [2], [9],
[18]. We propose a three-axis categorization of binocular stereo
algorithms according to their interpretation of continuity and
uniqueness. In the following sections, we list last, for all three axes,
that category which we consider to be the most preferable.

1.1 Continuity

The first axis describes the modeling of continuity of disparities

within smooth surface patches.
Constant. Every point within any one smooth surface patch is

assigned the same disparity value. This value is usually chosen

from a finite, predetermined set of possible disparities, such as the

set of all integers within a given range or the set of all multiples of

a given fraction (e.g., 1=4 or 1=2) within a given range. Examples of

prior work in this category include traditional sum-of-squared-

differences (SSD) correlation, as well as [5], [10], [12], [13], [15].
Discrete. Disparities are again limited to discrete values, but

with multiple distinct values permitted within each surface patch.

Surface smoothness in this context means that, within each surface,

neighboring pixels should have disparity values that are numeri-

cally as close as possible to one another. Examples of prior work in

this category include [3], [11], [17], [21].
Real. Disparities within each smooth surface patch vary

smoothly over the real numbers. Various interpretations of

smoothness can be used; most try to minimize local first or

second-order differences in disparity. Examples of prior work in

this category include [1], [4], [19], [20].

1.2 Discontinuity

The second axis describes the treatment of discontinuities at the

boundaries of surface patches: The penalty for a discontinuity is

examined as a function of the size of the jump of the discontinuity.
Free. Discontinuities are not specifically penalized. These

methods often fail to resolve the ambiguity caused by periodic

textures or textureless regions. Examples of prior work in this

category include traditional SSDcorrelation, aswell as [12], [15], [21].
Infinite. Discontinuities are penalized infinitely, i.e., they are

disallowed. The recovered disparity map is “smooth” everywhere.

Examples of prior work in this category include [16], [19].
Convex. Discontinuities are allowed, but a penalty is imposed

that is a finite, positive, convex function of the size of the jump of

the discontinuity. The resulting discontinuities often tend to be

somewhat blurred because the cost of two adjacent discontinuities

is no more than that of a single discontinuity of the same total size.

Examples of prior work in this category include [11], [17], [20].
Nonconvex. Discontinuities are allowed, but a penalty is

imposed that is a nonconvex function of the size of the jump of

the discontinuity. The resulting discontinuities often tend to be

fairly clean because the cost of two adjacent discontinuities is

generally more than that of a single discontinuity of the same total

size. Examples of prior work in this category include [3], [6], [7],

[10].

1.3 Uniqueness

The third axis describes the application of uniqueness, especially to

occlusions.
One-Way. Uniqueness is assumed within a chosen reference

image, but not considered within the other. That is, each location in
one image is assigned at most one disparity, but the disparities at
multiple locations in that image may point to the same location in
the other image. Typically, each location in one image is assigned
exactly one disparity, with occlusion relationships being ignored.
Examples of prior work in this category include traditional SSD
correlation, as well as [4], [6], [12].

Asymmetric Two-Way. Uniqueness is encouraged for both

images, but the two images are treated unequally. That is,

reasoning about occlusion is done and the occlusions that

accompany depth discontinuities are qualitatively recovered, but

there is still one chosen reference image, resulting in asymmetries

in the reconstructed result. Examples of prior work in this category

include [1], [5], [15], [20], [21].
Symmetric Two-Way. Uniqueness is enforced in both images

symmetrically; detected occlusion regions are marked as being

without correspondence. Examples of prior work in this category

include [3], [10], [11], [13].

1.4 Overview

In this paper, we propose an algorithm (described more fully in

[14]) that lies in the most preferable category along all three axes.

To the authors’ knowledge, ours is the first such algorithm for

binocular stereo. We contend that, for scenes consisting of smooth

surfaces, our algorithm improves upon the state of the art,

achieving both more accurate localization in depth of surface

interiors via subpixel disparity estimation and more accurate

localization in the image plane of surface boundaries via the

symmetric treatment of images with proper handling of occlusions.
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Section 2 describes our mathematical model of the stereo
problem. Sections 3 and 4 describe surface fitting and boundary
localization, while Section 5 summarizes the overall algorithm.
Finally, Sections 6 and 7 present some experimental results and a
few concluding remarks.

2 PRELIMINARIES

In this section, we develop a mathematical abstraction of the stereo

problem in a continuous domain. Discretization for computational
feasiblity will be discussed in subsequent sections.

2.1 Mathematical Abstraction

We use a layered model [8] to represent possible solutions to the

stereo problem. We follow the common practice of assuming that
input images have been normalized for both photometric and

geometric calibration. In particular, we assume that the images are
rectified. Let

I ¼ fp ¼ ðx; y; tÞg ¼ ðR �R� f}LEFT}; }RIGHT}gÞ

be the space of image locations and let

I : I 7! Rm

be the given input image pair. Typically, m ¼ 3 for color images,

and m ¼ 1 for grayscale images. Note that I is defined on a
continuous domain; in practice, it is interpolated from discrete

pixels.
Our abstract model of a hypothesized solution consists of a

labeling (or segmentation) f , which assigns each point of the two
input images to zero or one of n surfaces, plus n disparity maps

d½k�, each of which assigns a disparity value to each point of the
two input images:

½segmentation� f : I 7! f0; 1; . . . ; Ng
½disparity map� d½k� : I 7! R for k in f1; 2; . . . ;Ng:

The segmentation function f specifies to which one of n surfaces, if

any, each image location “belongs.” We take belonging to mean the
existence of a world point which 1) projects to the image location in

question and 2) is visible in both images. For each surface, the
signed disparity function d½k� defines the correspondence (or

matching) function m½k� between image locations:

m½k� : I 7! I
m½k�ðx; y; tÞ ¼

�
xþ d½k�ðx; y; tÞ; y; :t

�
;

where : }LEFT} ¼ }RIGHT} and vice versa. The interpretation of
this model is:

for all p : fðpÞ ¼ k with k > 0 ) p corresponds to m½k�ðpÞ
fðpÞ ¼ 0 ) p corresponds to no location in the other image:

2.2 Desired Properties

Using this abstraction, how can we evaluate a hypothesized
solution? We propose three properties that together characterize a

“good” solution: consistency, smoothness, and nontriviality.
Consistency. Correspondence should be bidirectional: If p and q

are images of the same world point, then each corresponds to the
other; otherwise, neither corresponds to the other. It cannot be that

p corresponds to q but that q does not correspond to p. This
translates into a constraint on each m½k�, equivalent to a constraint

on each d½k�, and additionally into a constraint on f :

for all k; p : m½k�ðm½k�ðpÞÞ ¼ p ð1Þ
for all p : fðpÞ ¼ k with k > 0 ) fðm½k�ðpÞÞ ¼ k: ð2Þ

Ideally, consistency should be exact, but computationally, it is

merely maximized.
Smoothness. Continuity dictates that a recovered disparity

map should consist of smooth surface patches separated by cleanly

defined, smooth boundaries. Thus, both d½k� and f should be

smooth. The disparity maps d½k� are continuous-valued functions,

so we take the smoothness of d½k� to mean differentiability, with

the magnitude of higher derivatives being relatively small. The

segmentation function f is piecewise constant, so we take the

smoothness of f to mean simplicity of the boundaries separating

those pieces, with the total boundary length being relatively small.
Nontriviality. Good solutions should explain the input as much

as possible. For example, any two images could be interpreted as
views of two distinct surfaces, each shown to one camera; such a
trivial interpretation would be valid but undesirable. Moreover,
although color constancy can be violated, a solution that does so
excessively would also be undesirable. That is, we expect that a
correspondence exists, and that color constancy holds, for “most”
image locations:

for most p : fðpÞ > 0

for most p where fðpÞ > 0 : I
�
m½fðpÞ�ðpÞ

�
� IðpÞ:

2.3 Energy Minimization

We formalize the stereo problem in an energy minimization
framework. We formulate six energy terms, corresponding to each
of the three desired properties, applied to both disparity maps over
surface interiors and segmentation via surface boundaries; total
energy is the sum thereof.

3 SURFACE FITTING

In this section, we consider the subproblem of estimating the

disparity maps d½k�, supposing that the segmentation f is known.

Using this context, we formulate and discuss the minimization of

the three energy terms that encourage surface nontriviality,

smoothness, and consistency.

3.1 Surface Model

We model the disparity map of each surface as a bicubic B-spline.

The control points of the spline are placed in each image on a fixed,

uniform rectangular grid (5� 5 in our experiments). The resulting

spline surface can be thought of as a linear combination of shifted

basis functions, with shifts constrained to the grid. Mathematically,

we restrict each d½k� as follows:

d½k�ðx; y; tÞ ¼
X
i;j

�
D½k�½i; j; t� � bðx� in; y� jnÞ

�
; ð3Þ

where b is the bicubic basis function, D is the lattice of control

points, and n is the spacing thereof.

3.2 Surface Nontriviality

This energy term, often called the “data term” in other literature,

penalizes any deviation from color constancy. We quantify such

deviation using a scaled sum of squared differences:

E match I ¼
X
p

(
gðIðm½k�ðpÞÞ � IðpÞ;AðpÞÞ if fðpÞ ¼ k with k > 0;
0 otherwise;

ð4Þ

where gðv;AÞ ¼ vT � A � v, and where AðpÞ is a measure of certainty,

defined as follows:
Let I be the m�m identity matrix and x2 be shorthand for the

outer product xxT . Let G� � I represent the convolution of I with a

Gaussian of width �. Then, for all p, we define
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A ¼
h
� IþG� � ðI2Þ � ðG� � IÞ2

i�1

;

where � and � are small constants. Intuitively, AðpÞ serves to
normalize the local contrast of I around p. Note that this and the
next two energy terms should be defined as integrals over all
p 2 I , but, for computational convenience, we merely take a finite
sum over discrete pixel positions.

3.3 Surface Smoothness

Although our spline model already ensures some degree of surface
smoothness, this inherent smoothness is limited to a spatial scale
not much larger than that of the spline control point grid. Because
we would also like to have smoothness on a more global scale, we
impose an additional energy term which, loosely speaking, is
proportional to the global “variance” of the surface slope:

E smooth d½k� ¼ � smooth d �
X
p

��rd½k�ðpÞ �meanðrd½k�Þ
��2;

where the summation and the mean are both taken over all discrete
pixel positions p, independent of the segmentation f . This energy
term attempts to quantify deviations from global planarity.

3.4 Surface Consistency

For perfect consistency, a surface should have left and right views
that coincide exactly with one another, as specified in (1).
However, with left and right views simultaneously constrained
each to have the form of (3), exact coincidence is generally no
longer possible. Therefore, to allow but discourage any noncoinci-
dence, we propose the energy term

E match d½k� ¼ � match d �
X
p

�
m½k�ðm½k�ðpÞÞ � p

�2
;

which, intuitively, measures the distance between the surfaces
defined by the left and right views. Again, the sum is taken over all
discrete pixel positions p, independent of the segmentation f .

3.5 Surface Optimization

Given a particular k, this section’s subproblem is to minimize total
energy by varying d½k� while holding f and the remaining d½j�
constant. Total energy is a sum of six terms, three of which were
shown in this section to depend smoothly on d½k�. In Section 4, the
remaining three terms are shown either to depend only on f or to
depend smoothly on d½k�. Hence, the total energy as a function of d½k�
is differentiable and can be minimized with standard gradient-
based numerical methods. For convenience, we use MATLAB’s
optimization toolbox; the specific algorithm chosen is a trust region
method with a 2D quadratic subproblem. For each k > 0, we call
minimizing total energy over d½k�, a surface-fitting step.

4 SEGMENTATION

In this section, we consider the subproblem of estimating the
segmentation f , supposing that the disparity maps d½k� are known.
Using this context, we formulate and discuss the minimization of
the three energy terms that encourage segmentation nontriviality,
smoothness, and consistency.

4.1 Segmentation by Graph Cuts

Boykov et al. [6] showed that certain labeling problems can be
formulated as energy minimization problems and solved effi-
ciently by finding minimum-cost cuts of associated network
graphs. Formally, let L be a finite set of labels, P be a finite set
of items, and N � P � P be the set of interacting pairs of items.
The methods of [6] find a labeling f that assigns exactly one label
fp 2 L to each item p 2 P, subject to the constraint that an energy
function of the form

EðfÞ ¼
X

ðp;qÞ2N
Vp;qðfp; fqÞ þ

X
p2P

DpðfpÞ ð5Þ

be minimized. Individual energies Dp can be arbitrary, while

interaction energies Vp;q should be either semimetric or metric.
This generic formulation of an energy-minimizing labeling

problem maps to our formulation of the stereo problem as follows:

The labels are the integers 0 . . .N that are the possible values of the
segmentation function f and the items are the pixels of each input

image. This is in contrast to [6] in which the items are the pixels of

a single reference image and to [13] in which the items are pairs of
potentially corresponding pixels. In our formulation, the indivi-

dual energies stem from testing color constancy at varying
disparities and the interaction energies stem from the expectations

of smoothness and consistency.
Our algorithm prohibits pixels from being split spatially among

several surfaces, instead constraining surface boundaries to lie on

pixel boundaries. Thus, in representing the continuous-domain
segmentation function f with a finite number of unknowns, we

performnearest-neighbor interpolationonadiscrete gridofpixelsF ,

defined on an integer lattice:

fðx; y; tÞ ¼ F ðroundðxÞ; roundðyÞ; tÞ:

4.2 Segmentation Nontriviality

The primary goal of the segmentation subproblem is to assign each

pixel to the surface it fits best. This is accomplished by minimizing
E match I, defined in (4); here, we consider it as a functional of f

withm½k� being constant, instead of vice versa. However, note that,

since gð�Þ is nonnegative, E match I is trivially minimized by
fðpÞ � 0. To discourage solutions with a large number of

unassigned pixels, we add a fixed penalty for each unassigned
pixel:

E unassigned ¼
X
p

(
� unassigned if fðpÞ ¼ 0;
0 otherwise:

Thus, the underlying segmentation problem, for the moment
ignoring smoothness and consistency, is to find the labeling f that

minimizes the sum E match I þ E unassigned. Put into the form
of (5), this corresponds to the following definition of individual

pixel preferences:

DpðfpÞ ¼ g
�
Iðm½k�ðpÞÞ � IðpÞ;AðpÞ

�
for fp > 0;

Dpð0Þ ¼ � unassigned:

4.3 Segmentation Smoothness

A secondary goal is to encourage a simple segmentation with
“smooth” boundaries of surface extents. There are several
attributes which can formalize this notion; we choose to minimize
boundary length because it is relatively simple to optimize and
works fairly well in practice.

In addition to this preference for simple boundaries, there is also
an expectation that boundaries will generally be correlated with
monocular image features (called “static cues” in [6]). To estimate
edge likelihood, we use a function of gradients and local contrast.
This measure of edge likelihood at each point is then used to adjust
the cost per unit length of boundaries passing through that point.

There is one more issue to consider: Which boundaries do we
want to minimize? Intuitively, minimizing the length of a boundary
will tend to shorten or remove any protrusions or indentations that
are long and thin. This makes sense for regions that correspond to
surfaces, but not for regions that correspond to occlusions because
occlusion regions are in fact usually long and thin.

To encourage a simple segmentation, we thus define this

energy term for each surface k > 0:
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E smooth f ½k� ¼
X

p adjacent to q

wsðp; qÞ if fðpÞ ¼ k xor fðqÞ ¼ k;
0 otherwise;

�

where adjacency is according to 4-connectedness within each

image and where

wsðp; qÞ ¼ � smooth f �
�
1þ e�ðjrIjT �A�jrIjÞ=�

�
;

where � smooth f and � are constants and rI and A are both

evaluated at ðpþ qÞ=2.
Put into the form of (5), E smooth f ½k� corresponds to this

penalty function:

Vp;qðfp; fqÞ ¼ wsðp; qÞ �
X
k>0

T
�
fp ¼ k xor fq ¼ k

�

¼ wsðp; qÞ �
0 if fp ¼ fq

1 if fp 6¼ fq with fp ¼ 0 or fq ¼ 0

2 if fp 6¼ fq with fp > 0 and fq > 0

8><
>:

for p adjacent to q, where T ð�Þ equals 1 if its argument is true and

equals 0 otherwise.

4.4 Segmentation Consistency

For exact consistency, the segmentation f should satisfy (2)

everywhere. To quantify and discourage any inconsistencies, we

formulate an energy term for each surface k > 0:

E match f ½k� �
X
p

� match f if fðpÞ ¼ k xor fðm½k�ðpÞÞ ¼ k;
0 otherwise;

�

which approximates the area of regions where (2) does not hold.
Ideally, as with those in Section 3, this term should be defined with
an integral, but, in this case, a naive finite sum is not an adequate
substitute when subpixel disparities are allowed, as explained in
[14]. Instead, we take

E match f ½k� ¼
X
p;q

� match f � ĥh
�
jm½k�ðpÞ � qj

�
if fðpÞ ¼ k xorfðqÞ ¼ k;

0 otherwise;

(

where p and q are on conjugate epipolar lines, and where

ĥhð4dÞ ¼
1
2 for j4dj 	 1

2 ;
3
4 �

j4dj
2 for 1

2 < j4dj < 3
2 ;

0 for j4dj 
 3
2 :

8<
:

Note that our implementation modifies ĥh by rounding its “corners”

(at j4dj ¼ 1
2 and j4dj ¼ 3

2 ) so that total energy remains differenti-

able with respect to d½k�.
Put into the form of (5), E match f ½k� corresponds to this

penalty function:

Vp;qðfp; fqÞ ¼
X
k>0

wc½k�ðp; qÞ � T
�
fp ¼ k xor fq ¼ k

�
for p and q in corresponding scanlines, where

wc½k�ðp; qÞ ¼ � match f �
�
ĥh
�
m½k�ðpÞ � q

�
þ ĥh

�
m½k�ðqÞ � p

��
and � match f is a constant.

4.5 Segmentation Optimization

This section’s subproblem is to minimize total energy by varying f

while holding all d½k� constant. Total energy is a sum of six terms,

two of which are independent of f . In this section, the remaining

four terms are written in the form of (5); moreover, our Vp;q can be

verified to be metric. Hence, the total energy as a function of f can

be optimized with graph cut methods [6].

We use a modified version of the expansion algorithm of [6].

This algorithm is built from expansion moves and gets its power

from the generality of such moves: An expansion on a label k finds

the best configuration reachable by relabeling any subset of pixels

with k. We precede each expansion of any label k with a

contraction of the same label (by first replacing all instances of k

with the spatially nearest label that is not k) which strictly enlarges

the set of reachable configurations. We call such a contraction-

expansion pair on any one label a segmentation step.

5 OVERALL OPTIMIZATION

In this section, we consider the problem of simultaneously

determining surface shape in the form of disparitymaps and surface

support in the form of segmentation, when both are unknown.
Our algorithm is built from the surface-fitting and segmentation

steps of Sections 3 and 4. Since each of these steps reduces total

energy, given a reasonable initial hypothesis, iterating these steps

until convergence might give a reasonable final solution. However,

during the course of such component-wise optimization, it is quite

possible to reach a local minimum. These undesirable configura-

tions are generally of two types: those in which one hypothesized

surface spans several actual surfaces and those in which several

hypothesized surfaces span one actual surface.
Our algorithm currently cannot reliably extract itself from the

former type of local minima and therefore relies upon careful

initialization to avoid getting into such situations. The initial

hypothesis is formed by placing one fronto-parallel surface at

every integer disparity within the specified range of possible

disparities; all pixels are initially unassigned (with f � 0).
The latter type of situation is more easily handled. Often, when

several hypothesized surfaces span one actual surface, one

hypothesized surface will eventually come to dominate and the

others will naturally be driven to extinction. When this is not the

case, a merge step will generally remedy the situation. To take a

merge step, we first save a snapshot of the current state. We then

forcefully remove one surface. The “orphaned” pixels are relabeled

with f ¼ 0, but are immediately redistributed among the remain-

ing surfaces by a series of segmentation steps. Further surface

fitting and segmentation steps are then taken until either the total

energy falls below that of the saved snapshot, in which case the

merge succeeds and the snapshot is discarded, or the total energy

plateaus above that of the snapshot, in which case the merge fails

and the snapshot is restored.
The complete algorithm is as follows:

1. Initialize hypothesis with surfaces at integer disparity.
2. Repeat:

a. Alternately apply segmentation and surface fitting
steps until progress is negligible.

b. For each surface, attempt to merge it until one merge
succeeds or all merges fail.

until all merges fail.
3. Optionally “fill in” unmatched regions, using neighboring

matched regions (see [14]).

6 EXPERIMENTAL RESULTS

We have implemented our algorithm using a combination of

MATLAB and C, and tested it on several nonsynthetic stereo pairs

available online [4], [14], [18]. In this section, we present the results

of our experiments on a representative subset of these images and

compare them to those achieved by other algorithms. Complete

results can be found in [14].
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6.1 Quantitative Results

To evaluate the accuracy of our algorithm, we use the general
framework proposed by Scharstein and Szeliski [18], who provide
four sample stereo pairs with ground truth, describe a metric for
comparing results against ground truth, and tabulate results for
20 algorithms. They evaluate overall results by measuring the
fraction of “unoccluded” pixels where estimated and ground truth
disparities differ by more than one pixel; in particular, they ignore
the estimated disparity at occluded pixels. In contrast, we measure
the fraction of all pixels (both occluded and unoccluded) where
disparity error exceeds a threshold. We also consider a range of
thresholds, and plot the fraction of “bad” pixels as a function
thereof. In these plots, we compare our algorithm with the four
that appear to be the most accurate among the others tabulated in
[18]. Due to space limitations, we only show results for two of the
four stereo pairs used in [18].

“Venus.” This color stereo pair (Fig. 1a) shows five slanted

planes, including some regions with virtually no texture. Two of the

surfaces are joined by a crease edge; the remaining boundaries are

all step edges. Our algorithm does extremely well, producing about

five times fewer “bad” pixels than the nearest competition in [18] for

a significant range of disparity error thresholds. Our largest error

occurs at the corner of the V-shaped depth discontinuity, where our

penalty for boundary length causes the tip of the “V” to be missed.

This type of behavior is a typical result of minimizing boundary

length without regard for boundary curvature and junctions.
“Tsukuba.” This color stereo pair (Fig. 1b) shows a laboratory

scene consisting of various planar, smoothly curved, and non-

smooth surfaces. Several long and thin structures are present; our

algorithm tends to oversimplify the boundaries thereof. It is

notable, however, that, while the given ground truth represents all

surfaces as being fronto-parallel at integer disparity, our algorithm

produces curved surfaces with subpixel disparities. In particular,

our algorithm models the entire head as one curved surface, with a

disparity range of approximately one half pixel.

6.2 Qualitative Results

“Clorox.” To verify both that our algorithm can recover crease

edges and also that it needs neither color nor dense texture, we

tested it on two of the grayscale stereo pairs used in Birchfield and

Tomasi [4], but, due to space limitations, we only show results for

one. The original version of this stereo pair shows minor

photometric variations between the left and right images, as well

as minor geometric distortion. Here (Fig. 2a), we use a modified

version from which the photometric variations have been mostly

removed. Note that the geometric distortion was left in place; this

manifests itself in the apparent curvature of the floor, as recovered

by our algorithm.
This stereo pair is well approximated by five slanted planes.

Not all disparity edges are well marked by intensity edges and

some distracting intensity edges do not accompany disparity

edges. Birchfield and Tomasi’s multiway cut algorithm [4]

struggles with these images, deceived by the misleading intensity

edges into misplacing the crease edges there. Our algorithm does

not have this problem, but instead makes a different error: The

Clorox box is represented with only one surface.
“Umbrella.” To verify that our algorithm can reconstruct

curved surfaces without dense texture, we also tested it on a

stereo pair of our own creation. This stereo pair (Fig. 2b) shows five

surfaces. Three are essentially planar but strongly slanted; among

these, the floor has low-contrast, fine-grained texture, while both

checkerboard patterns have high-contrast, coarse-grained texture.

Additionally, the rear surface is a large, somewhat warped,

essentially textureless sheet of cardboard and the strongly curved

umbrella is composed of large, essentially textureless panels joined

together by high-contrast color edges that are not disparity edges.

The simultaneous combination of all these disparate features

makes this stereo pair particularly challenging.
Although we do not have results by other algorithms for this

stereo pair, we note that few of the algorithms in [18] are capable of

representing smoothly curved surfaces with subpixel disparity
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Fig. 1. (a) “Venus” and (b) “Tsukuba” stereo pairs: estimated disparities, disparity errors, and error distributions.



values and, among those, fewer still readily reproduce sharp

discontinuities in the disparity map.
Our algorithm correctly segments the scene into five smooth

surfaces, each of which is represented by a real-valued disparity

map that contains no kinks or creases, even in the presence of

strong color edges that might suggest otherwise. Our algorithm

places boundaries accurately at crease edges as well as at edges

accompanied by significant occlusion regions and qualitatively

recovers the curvature of both the background and the umbrella

with very little help from texture.

7 DISCUSSION AND FUTURE WORK

The quantitative and qualitative results presented suggest that, for
scenes consisting of smooth surfaces, our algorithm produces very
accurate reconstructions, with subpixel disparity values and
explicit and precise localization of boundaries, whether the
surfaces are planar or curved, textured or untextured, high-
contrast or low-contrast, color or grayscale. Despite this achieve-
ment, however, there is nonetheless much room for improvement.

The most limiting aspect of our current implementation is its

model of surfaces. Although our model works quite well for most

of the results that we have presented, it can be overly restrictive for

scenes whose surfaces are less smooth. To be able to handle

surfaces with more shape detail, our implementation should use a

much finer grid for the control points of the splines that define

surface shape. This would likely require a more refined model of

surface smoothness.
Finally, we note that many of the parameters of our algorithm,

controlling such things as coarseness of segmentation and amount
of surface shape detail, do not have to be constant, but can in fact
vary from surface to surface and even within the same surface. If,
in addition to the disparity maps and segmentation, these
parameters themselves could be estimated separately and adap-
tively for each surface, we believe that our algorithmic framework
would be capable of producing accurate results for a much wider
variety of scenes.
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Fig. 2. (a) “Clorox” and (b) “Umbrella” stereo pairs: input images, grayscale estimated disparities, and color-coded estimated disparities. (All trademarks remain the
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