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Abstract

We address the problem of comparing attributed trees and propose four novel

distance measures centered around the notion of a maximal similarity common

subtree. The proposed measures are general and defined on trees endowed with

either symbolic or continuous-valued attributes, and can be equally applied to

ordered and unordered, rooted and unrooted trees. We prove that our measures

satisfy the metric constraints and provide a polynomial-time algorithm to compute

them. This is a remarkable and attractive property, since the computation of tra-

ditional edit-distance-based metrics is NP-complete, except for ordered structures.

We experimentally validate the usefulness of our metrics on shape matching tasks,

and compare them with edit-distance measures.
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1 Introduction

Graph-based representations have long been used with considerable success in com-

puter vision and pattern recognition in the abstraction and recognition of objects and

scene structure. Concrete examples include the use of shock graphs to represent shape-

skeletons [14, 26], the use of trees to represent articulated objects [12, 40] and the use

of aspect graphs for 3D object representation [8]. The attractive feature of structural

representations is that they concisely capture the relational arrangement of object prim-

itives, in a manner which can be invariant to changes in object viewpoint. Using this

framework we can transform a recognition problem into a relational matching problem.

The problem of how to measure the similarity or distance of pictorial information using

graph abstractions has been a widely researched topic of over twenty years.

Early work on the topic included Barrow and Burstall’s idea [2] of characterizing

the similarity of two graphs using the cardinality of their maximum common subgraphs,

and the extension of the concept of string edit-distance to graph-matching by Fu and his

co-workers [9]. Haralick and Shapiro [23] have described a relational distance measure

between structural descriptions. There have also been attempts to use an information

theoretic approach. Here, Wong and You [35] have computed the entropy for random

graphs, while Boyer and Kak [4] have used mutual information. More recently, Christ-

mas, Kittler and Petrou [7], and Wilson and Hancock [34] have developed probabilistic

measures of graph-similarity. Unfortunately, with the notable exception of edit-distance,

the resulting measures are not metrics, i.e. they are either non-symmetric, negative, or

violate the triangular inequality. The lack of metric properties makes the undistorted

embedding in a vector space impossible and does not provide a natural ordering within

a database of graphs.

The idea behind edit-distance [9], which has become the standard metric approach to

graph comparison, is that it is possible to identify a set of basic edit operations on nodes

and edges of a structure, and to associate with these operations a cost. The edit-distance

is found by searching for sequences of edit operations that will make the two graphs

isomorphic with one-another, and the distance between the two graphs is then defined
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to be the minimum over all the costs of these sequences. By making the evaluation of

structural modification explicit, edit-distance provides a very effective way of measuring

the similarity of relational structures. Moreover, the method has considerable potential

for error tolerant object recognition and indexing problems. Unfortunately, the task

of calculating edit-distance is a computationally hard problem [38], hence, goal-directed

approximations are necessary to calculate it. The result is that the approximation almost

invariably breaks the theoretical metric properties of the measure.

Recently, a new and more principled approach to the definition of distance measure

has emerged. In [6], Bunke and Shearer introduce a distance measure on unattributed

graphs based on the maximum common subgraph and prove that it is a metric. Wallis

et al. [32] introduce a variant of this distance based on the size of the minimum common

supergraph. Finally, Fernandez and Valiente [10] define a metric based on the differ-

ence in size between maximum common subgraph and minimum common supergraph.

More recently, in [11] Hidović and Pelillo extend these metrics to the case of attributed

graphs. Unfortunately all these metrics require the calculation of the maximum common

subgraph, which is computationally equivalent to the calculation of edit-distance [5].

In many computer vision and pattern recognition applications, such as shape recog-

nition [22, 40, 25, 29], pattern recognition [16], and image processing [21], the graphs at

hand have a peculiar structure: they are connected and acyclic, i.e., they are trees, either

rooted or unrooted, ordered or unordered, and frequently they are endowed with sym-

bolic and/or continuous-valued attributes. Most metrics on trees found in the literature

are defined in terms of edit-distance [30, 33]. Zhang and Shasha [37] have investigated

a special case of edit-distance which involves trees with an order relation among sibling

nodes in a rooted tree. This special case constrains the solution to maintain the order

of the children of a node. They showed that this constrained tree-matching problem

is solvable in polynomial time and gave an algorithm to solve it. Recently, Sebastian,

Klein and Kimia [22] use a similar algorithm to compare shock trees. Other constrained

solutions proved to be solvable in polynomial time have been proposed [36], yet in the

general case the problem has been proven to be NP-complete both for rooted [38] and
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unrooted trees [39]. Recently, Valiente [31] introduced a bottom-up distance measure

between trees that is an extension to trees of the graph metric introduced by Bunke and

Shearer [6], proving that the measure can be calculated in polynomial time on trees,

but falling short of proving that the measure is a metric. While this measure can be

calculated efficiently both on ordered and unordered trees, it is limited to rooted and

unattributed trees. Another bottom-up method for computing the distance between

trees has also been proposed by Tanaka [27].

Motivated by the work described in [11], in this paper we propose four distance mea-

sures, two normalized and two non-normalized, for trees equipped with either symbolic

or continuous-valued attributes. We prove that all our measures fulfill the properties of

a metric, and provide a polynomial-time algorithm to compute them. This is an im-

portant property which make them particularly attractive. In fact, as mentioned above,

traditional metrics on trees, which are based on edit-distance, are computationally hard

unless we confine ourselves to special cases. At an abstract level, our approach involves

the computation of a maximum similarity common subtree. This allows us to define

equivalent variations of the metrics on ordered and unordered, rooted and unrooted,

and attributed and unattributed trees. They can also be viewed as variants of the met-

rics developed by Bunke and Shearer [6], Wallis et al. [32], and Fernandez and Valiente

[10] on arbitrary graphs.

Since edit-distance on ordered trees can be computed in polynomial time, in the

paper we focus on the unordered case where our approach provides a clear computational

advantage. To show the validity of the proposed measures, we present experiments on

various shape matching tasks and compare our results with those obtained using edit-

distance metrics.

The outline of the paper is as follows. Section 2 introduces formalisms and concepts

required throughout the paper. In Section 3, we present a polynomial-time algorithm to

calculate the maximum similarity common subtree needed to compute all our metrics,

and in Section 4 we define our measures and prove that they satisfy the metric properties.

Finally section 6 provides some experimental validation of the usefulness of the metrics
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and in Section 7 we draw our conclusions.

2 Preliminaries

Let G = (V,E) be a graph, where V is the set of nodes (or vertices) and E is the set of

undirected edges. Two nodes u, v ∈ V are said to be adjacent (denoted u ∼ v) if they

are connected by an edge. A path is any sequence of distinct nodes u0u1 . . . un such that

for all i = 1 . . . n, ui−1 ∼ ui; in this case, the length of the path is n. If un ∼ u0 the path

is called a cycle. A graph is said to be connected if any two nodes are joined by a path.

Given a subset of nodes C ⊆ V , the induced subgraph G[C] is the graph having C as

its node set, and two nodes are adjacent in G[C] if and only if they are adjacent in G.

With the notation |G| we shall refer to the cardinality of the node-set of graph G.

A connected graph with no cycles is called an unrooted tree. A rooted (or hierarchi-

cal) tree is a tree with a special node that can be identified as the root. In what follows,

when using the word “tree” without qualification, we shall refer to both the rooted and

unrooted cases. Trees have a number of interesting properties. One which turns out to

be very useful is that in a tree any two nodes are connected by a unique path. Given

two nodes u, v ∈ V in a rooted tree, u is said to be an ancestor of v (and similarly v is

said to be a descendent of u ) if the path from the root node to u is a subpath of the

path from the root to v. Furthermore, if u ∼ v, u is said to be the parent of v and v is

said to be a child of u. Both ancestor and descendent relations are order relations in V .

Let T1 = (V1, E1) and T2 = (V2, E2) be two trees. Any bijection φ : H1 → H2, with

H1 ⊆ V1 and H2 ⊆ V2, is called a subtree isomorphism if it preserves both the adjacency

relationships between the nodes and the connectedness of the matched subgraphs. For-

mally, this means that, given u, v ∈ H1, we have u ∼ v if and only if φ(u) ∼ φ(v) and, in

addition, the induced subgraphs T1[H1] and T2[H2] are connected. Two trees or rooted

trees T1 and T2 are isomorphic, and we write T1
∼= T2, if there exists an isomorphism

between them that maps every node in T1 to every node in T2. It is easy to verify that

isomorphism is an equivalence relation. We shall use the notations Dom(φ) and Im(φ)
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to denote the domain and the image of φ, respectively.

A word of caution about terminology is in order here. Despite name similarity, we are

not addressing the standard subtree isomorphism problem, which consists of determining

whether a given tree is isomorphic to a subtree of a larger one. In fact, we are dealing

with a generalization thereof, the maximum common subtree problem, which consists of

determining the largest isomorphic subtrees of two given trees. We shall continue to use

our own terminology, however, as it emphasizes the role of the isomorphism φ.

Formally, an attributed tree is a triple T = (V,E, α), where (V,E) is the “underlying”

tree and α is a function which assigns an attribute vector α(u) to each node u ∈ V . It is

clear that in matching two attributed trees, our objective is to find an isomorphism which

pairs nodes having “similar” attributes. To this end, let σ be any similarity measure on

the attribute space, i.e., any (symmetric) function which assigns a positive number to

any pair of attribute vectors. If φ : H1 → H2 is a subgraph isomorphism between two

attributed trees T1 = (V1, E1, α1) and T2 = (V2, E2, α2), the overall similarity between

the induced subtrees T1[H1] and T2[H2] can be defined as follows:

Wσ(φ) =
∑
u∈H1

σ(u, φ(u)) . (1)

where, for simplicity, we define σ(u, φ(u)) ≡ σ(α1(u), α2(φ(u))). The isomorphism φ is

called a maximum similarity subtree isomorphism if Wσ(φ) is largest among all subtree

isomorphisms between T1 and T2. For the rest of the paper we will omit the subscript σ

when the node-similarity used is clear from the context. Two isomorphic attributed trees

T1 = (V1, E1, α1) and T2 = (V2, E2, α2), with isomorphism φ, are said to be attribute-

isomorphic if for all u ∈ V1 we have α1(u) = α2(φ(u)). In this case we shall write

T1
∼=a T2. Attribute-isomorphism is clearly an equivalence relation.

We note that, although our treatment has started from the assumption that explicit

attributes are available on each node, the framework is more general and can well be

applied to situations where this is not the case but, rather, only pairwise measures are

known.

Note that the problem of determining a maximum similarity subtree isomorphism is

a direct extension of the standard problem of finding a maximum (cardinality) common
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subtree, in fact the two problems are equivalent when the similarity σ is degenerate, i.e.,

σ(u, v) = 1.

Now, given a set S, a function d : S × S → R is a metric on S if the following

properties hold for any x, y, z ∈ S.

1. d(x, x) ≥ 0 (non-negativity)

2. d(x, y) = 0 ⇔ x = y (identity and uniqueness)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality).

Furthermore, if the function satisfies d(x, y) ≤ 1 it is said to be a normalized metric.

If d : S × S → R+ is a normalized metric, then the similarity function derived from

δ, defined as

σ(x, y) = 1− d(x, y) (2)

fulfills the identity, uniqueness and similarity properties. Furthermore, it fulfills the

following variant of the triangular inequality:

σ(x, y) + σ(y, z)− σ(x, z) ≤ 1 . (3)

This property can be obtained from the definition and the triangular inequality of the

metric d:

σ(x, y) + σ(y, z)− σ(x, z) ≤ 1 ⇔ (1− d(x, y)) + (1− d(y, z))− (1− d(x, z)) ≤ 1 ⇔
− d(x, y)− d(y, z) + d(x, z) ≤ 0 ⇔ d(x, y) + d(y, z) ≥ d(x, z) .

In the rest of the paper, we shall assume that all similarity functions are indeed derived

from normalized metrics.

It is straightforward to show that, with this assumption, we have

T1
∼=a T2 ⇔ |T1| = |T2| = W (φ) (4)

where φ is a maximum similarity isomorphism between T1 and T2.
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3 Extracting a Maximum Similarity Common

Subtree

In this section we give a polynomial-time algorithm for finding a maximum similarity

subtree. The algorithm is based on the subtree identification algorithm presented by

Matula [15], extending it in two ways. First, it generalizes it to deal with attributed

trees and, second, it extends it to solve the more general problem of extracting the

maximum (similarity) subtree and not merely to verify whether one tree is a subtree

of the other. We give an algorithm to find the maximum similarity common subtree

problem for rooted trees, and then we show how the same algorithm can be used for the

unrooted tree case.

Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted trees, and let u ∈ V1 and w ∈ V2.

We say that a subtree isomorphism between T1 and T2 is anchored at nodes u and

w, if the subtrees of T1 and T2 induced by the isomorphism are rooted at u and w,

respectively. In this case, we shall write φ(u,w) to refer to any isomorphism anchored at

u and w. Clearly, if φ is a maximum similarity subtree isomorphism, we have

W (φ) = max
(u,w)∈V1×V2

max
φ(u,w)

W (φ(u,w)) .

In reality, since if neither u nor w is a root of T1 or T2, we can add the parents of u and

w to the mapping without reducing the similarity, we have:

W (φ) = max
(u,w)∈({r1}×V2)∪(V1×{r2})

max
φ(u,w)

W (φ(u,w)) .

where r1 and r2 are the roots of T1 and T2, respectively.

To determine the maximum similarity subtree isomorphism anchored at nodes u and

w we adopt a divide-and-conquer approach. Let u1, · · · , un be the children of node u

in T1, and w1, · · · , wm the children of node w in T2. Without loss of generality, we

can assume n ≤ m. Moreover, let us assume that we know, for each i = 1, · · · , n and

j = 1, · · · ,m, a maximum similarity subtree isomorphism φ̂(ui,wj) anchored at ui and

wj. Let Wij be the similarity of φ̂(ui,wj), then the computation of a maximum similarity
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subtree isomorphism anchored at u and w can be reduced to an assignment problem on

the children of u and w, i.e.,

W (φ(u,w)) = σ(u, w) + max
π∈Σm

n

n∑
i=1

Wiπ(i) , (5)

where Σm
n is the space of all possible assignments between a set of cardinality n and one

of cardinality m. As a consequence, if π is the optimal assignment, the function φ(u,w)

defined as:

φ(u,w)(x) =





w if x = u

φ̂(ui,wπ(i))(x) if x ∈ Dom(φ̂(ui,wπ(i)))

(6)

turns out to be a maximum similarity subtree isomorphism anchored at u and w.

Figure 1 shows the resulting algorithm for determining a maximum similarity sub-

tree isomorphism of two rooted attributed trees. Since in the rest of the paper we only

need the maximum similarity induced by an isomorphism, and not the isomorphism

itself, for simplicity the main procedure MaxSimilarity accepts as input a pair of at-

tributed rooted trees and returns only the similarity value. It makes use of a recursive

procedure AnchoredSimilarity that accepts as input two vertices, one from T1 and the

other from T2 and returns the similarity of the maximum isomorphism anchored at the

input vertices, according to (5). To this end, it needs a procedure for solving an assign-

ment (or, equivalently, a bipartite matching) problem, of which the algorithms literature

abound (see., e.g., [17]). The calculation of the maximum similarity common subtree

of two trees with N and M nodes respectively, is reduced to at most NM weighted

assignments problems of dimension at most b, where b is the maximum branching fac-

tor of the two trees. The computational complexity of our algorithm heavily depends

on the actual implementation of the assignment procedure. A popular way of solving

it, and the one we actually employed, is the so-called Hungarian algorithm, which has

complexity O(n2m), n and m being the number of children of u and v as used in (5),

with n ≤ m. It is simple to show that, using the Hungarian algorithm, our algorithm

has overall complexity of O(bNM). Of course, the algorithm can be sped up by using

more sophisticated assignment procedures [1].
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MaxSimilarity(T1,T2)

maxsim=0

for each node u in T1

sim=AnchoredSimilarity(u,root(T2))

if sim > maxsim

maxsim=sim

for each node w in T2

sim=AnchoredSimilarity(root(T1),w)

if sim > maxsim

maxsim=sim

return maxsim

AnchoredSimilarity(u,w)

Cu=children(u)

Cw=children(w)

for each ui in Cu

for each wj in Cw

wij=AnchoredSimilarity(ui, wj)

return σ(u,w) + Assign({wij})

Figure 1: A polynomial-time algorithm for computing the maximum similarity between

two trees.
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Finally, if we have two unrooted trees T1 = (V1, E1) and T2 = (V2, E2), we can

still pick two nodes r1 ∈ V2 and r2 ∈ V2, and consider the trees T r1
1 = (V1, E1) and

T r2
2 = (V2, E2) rooted at r1 and r2, respectively. Note that if φ is an isomorphism between

T r1
1 and T r2

2 with similarity W , then it is an isomorphism between T1 and T2 with the

same similarity. This yields a straightforward O(bN3M) algorithm for unrooted trees,

which consists of iteratively calling MaxSimilarity(T u
1 , Tw

2 ) for all u ∈ V1 and w ∈ V2,

and taking the maximum. However, we do not actually need to try all possible pairs of

roots since by simply fixing the root in one tree and let the other vary among all possible

vertices in the other tree, the algorithm is still guaranteed to achieve the maximum

similarity. This follows easily from the observation made above that it always exists a

maximum similarity (rooted) subtree isomorphism mapping at least one of the roots of

the two trees. Indeed, without loss of generality, let us root T1 on an arbitrary node u.

Then, either u is mapped (say, to node w ∈ V2) by a maximum similarity isomorphism, or

it remains unmapped. In the former case, we clearly obtain the optimum by applying the

rooted algorithm to T u
1 and Tw

2 . In the latter case, a maximum similarity isomorphism

φ will induce a subtree in T u
1 rooted at, say, v ∈ V1. Clearly, the algorithm called on

T u
1 and T

φ(v)
1 will return the optimum. This yields an O(bN2M) algorithm for unrooted

trees.

4 Distance Metrics

In this section, we present the main contribution of this paper: We define our measures

for comparing attributed trees and prove that they fulfill the metric properties. First,

we prove a lemma that turns out to be instrumental to prove our results. Second, we

introduce two non-normalized metrics and, finally, we present the normalized versions

of the previous measures.

Lemma 1 Let T1, T2 and T3 be three trees, and φ12 φ23, and φ13 be maximum similarity

subtrees isomorphisms between T1 and T2, T2 and T3, and T1 and T3, respectively. Then,

we have: |T2| ≥ W (φ12) + W (φ23)−W (φ13).
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Proof. Let V 1
2 = Im(φ12) ⊆ V2, V 3

2 = Dom(φ23) ⊆ V2 be the sets of nodes in V2 mapped

by the isomorphisms φ12 and φ23, respectively. Furthermore, let V̂2 = V 1
2 ∩ V 3

2 , be the

set of vertices in V2 that are mapped by both isomorphisms. It is clear that the subtrees

T̂1 = T1[φ
−1
12 (V̂2)] and T̂3 = T3[φ23(V̂2)] are isomorphic to each-other, with isomorphism

φ̂13 = φ12 ◦ φ23, where ◦ denotes the standard function composition operator, restricted

to the nodes of T̂1. The similarity of this isomorphism is

W (φ̂13) =
∑

v∈V̂2

σ(φ−1
12 (v), φ23(v)) .

Since φ13 is a maximum similarity subtree isomorphism between T1 and T3, we have

W (φ13) ≥ W (φ̂13). Hence

W (φ12) + W (φ23)−W (φ13) ≤ W (φ12) + W (φ23)−W (φ̂13) =
∑

v∈V 1
2

σ(φ−1
12 (v), v) +

∑

v∈V 3
2

σ(v, φ23(v))−
∑

v∈V̂2

σ(φ−1
12 (v), φ23(v)) =

∑

v∈V 1
2 \V 3

2

σ(φ−1
12 (v), v) +

∑

v∈V 3
2 \V 1

2

σ(v, φ23(v))+

∑

v∈V̂2

[
σ(φ−1

12 (v), v) + σ(v, φ23(v))− σ(φ−1
12 (v), φ23(v))

] ≤

|V 1
2 \ V 3

2 |+ |V 3
2 \ V 1

2 |+ |V 1
2 ∩ V 3

2 | = |V 1
2 ∪ V 3

2 | ≤ |T2| ,

where the inequality follows from the triangular inequality for metric-derived similari-

ties (3). ¤

4.1 Non-Normalized Metrics

Let T be the quotient set of trees modulo attribute-isomorphism, that is the set of trees

on which two trees are considered the same if they are attribute-isomorphic.1 For any

1The quotient set formalizes the intuitive idea that two attributed trees are indistinguishable when

they are attribute-isomorphic. Furthermore, it is needed in order to fulfill the uniqueness property of a

metric.
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T1, T2 ∈ T we define the following distance functions

d1(T1, T2) = max(|T1|, |T2|)−W (φ12) (7)

d2(T1, T2) = |T1|+ |T2| − 2W (φ12) (8)

where φ12 is the maximum similarity common subtree isomorphism between T1 and T2.

As noted before, the calculation of φ12 and, consequently, the optimal value of W (φ12),

is going to be different for rooted and unrooted trees. Nevertheless, once the optimal

similarity is at hand, the definition of the distance and the analysis of its properties are

independent on whether the trees are rooted or not.

Theorem 1 d1 and d2 are metrics in T .

Proof.

1. d1(T1, T2) ≥ 0 and d2(T1, T2) ≥ 0.

We have W (φ12) ≤ min(|T1|, |T2|) ≤ |T1|+|T2|
2

≤ max(|T1|, |T2|). Hence, d1(T1, T2) =

max(|T1|, |T2|)−W (φ12) ≥ 0 and d2(T1, T2) = |T1|+ |T2| − 2W (φ12) ≥ 0.

2. d1(T1, T2) = 0 ⇐⇒ T1
∼=a T2 and d2(T1, T2) = 0 ⇐⇒ T1

∼=a T2.

Let us consider the direction of implication ⇐ (identity). From (4), we have

T1
∼=a T2 ⇒ |T1| = |T2| = W (φ12). Hence d1(T1, T2) = max(|T1|, |T2|)−W (φ12) = 0

and d2(T1, T2) = |T1|+ |T2| − 2W (φ12) = 0.

For the reverse implication (uniqueness), we have d1(T1, T2) = 0 ⇒ W (φ12) =

max(|T1|, |T2|). Since W (φ12) ≤ min(|T1|, |T2|) ≤ max(|T1|, |T2|), we have W (φ12) =

min(|T1|, |T2|) = max(|T1|, |T2|). Hence, (4) yields T1
∼=a T2.

Similarly, d2(T1, T2) = 0 ⇒ 2W (φ12) = |T1|+|T2|, and since 2W (φ12) ≤ 2 min(|T1|, |T2|) ≤
|T1|+ |T2|, we have W (φ12) = |T1| = |T2|, or T1

∼=a T2.

3. d1(T1, T2) = d1(T2, T1) and d2(T1, T2) = d2(T2, T1)

This follows directly from the symmetry of the maximum similarity graph and of

the function max.
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4. d1(T1, T2) + d1(T2, T3) ≥ d1(T1, T3) and d2(T1, T2) + d2(T2, T3) ≥ d2(T1, T3).

To prove the triangular inequality of d1, we need to separately analyze each of the

six possible cases

1. |T1| ≥ |T2| ≥ |T3| 2. |T1| ≥ |T3| ≥ |T2| 3. |T2| ≥ |T1| ≥ |T3|
4. |T2| ≥ |T3| ≥ |T1| 5. |T3| ≥ |T1| ≥ |T2| 6. |T3| ≥ |T2| ≥ |T1|.
However, the roles of T1 and T3 in our proofs are symmetric, hence we can use this

symmetry to reduce the analysis to three cases: |T2| ≥ |T1| ≥ |T3|, |T1| ≥ |T2| ≥
|T3|, and |T1| ≥ |T3| ≥ |T2|.

(a) |T2| ≥ |T1| ≥ |T3|

d1(T1, T2)+d1(T2, T3)−d1(T1, T3) = |T2|−W (φ12)+|T2|−W (φ23)−|T1|+W (φ13) =

(|T2| − |T1|) + [|T2| − (W (φ12) + W (φ23)−W (φ13))] ≥ 0.

(b) |T1| ≥ |T2| ≥ |T3|

d1(T1, T2)+d1(T2, T3)−d1(T1, T3) = |T1|−W (φ12)+|T2|−W (φ23)−|T1|+W (φ13) =

|T2| − (W (φ12) + W (φ23)−W (φ13)) ≥ 0.

(c) |T1| ≥ |T3| ≥ |T2|

d1(T1, T2)+d1(T2, T3)−d1(T1, T3) = |T1|−W (φ12)+|T3|−W (φ23)−|T1|+W (φ13) =

|T3|−(W (φ12)+W (φ23)−W (φ13)) ≥ |T2|−(W (φ12)+W (φ23)−W (φ13)) ≥ 0.

On the other hand, for d2, we have

d2(T1, T2)+d2(T2, T3)−d2(T1, T3) = |T1|+ |T2|−2W (φ12)+ |T2|+ |T3|−2W (φ23)

− |T1| − |T3|+ 2W (φ13) = 2 [|T2| − (W (φ12) + W (φ23)−W (φ13))] ≥ 0. ¤

4.2 Normalized Metrics

The metrics introduced above are unbounded and provide an absolute measure of dis-

similarity between two attributed trees, in the sense that a particular perturbation on

13



a tree “moves” it in tree-space by a distance which is independent of the whole tree

mass. Therefore, it is sometimes useful to have a metric which is bounded from above

and provides a measure of relative dissimilarity. For these reasons, we now introduce

the following measures

d3(T1, T2) = 1− W (φ12)

max(|T1|, |T2|) (9)

d4(T1, T2) = 1− W (φ12)

|T1|+ |T2| −W (φ12)
(10)

which are the normalized counterparts of the metrics introduced in the previous section.

Theorem 2 d3 and d4 are normalized metric in T .

Proof. We need to prove the properties defined in Section 2. Indeed, the normalization

property is trivial, and the proof of the first three metric properties (non-negativity,

identity and uniqueness, and symmetry) is similar to that of the non-normalized metrics,

and therefore we omit them.

With simple algebraic operations, the triangular inequality d3(T1, T2) + d3(T2, T3) ≥
d3(T1, T3) can be simplified to

max(|T1|, |T2|) max(|T2|, |T3|) max(|T1|, |T3|) ≥
W (φ12) max(|T2|, |T3|) max(|T1|, |T3|) + W (φ23) max(|T1|, |T2|) max(|T1|, |T3|)−

W (φ13) max(|T1|, |T2|) max(|T2|, |T3|) (11)

As was the case for the proof for metric d1, due to the symmetry of our proof, we need

to analyze the three cases: |T2| ≥ |T1| ≥ |T3|, |T1| ≥ |T2| ≥ |T3|, and |T1| ≥ |T3| ≥ |T2|.

1. |T2| ≥ |T1| ≥ |T3|

The triangular inequality reduces to |T1||T2| ≥ W (φ12)|T1|+W (φ23)|T1|−W (φ13)|T2|.

|T1||T2| ≥ |T1|
(
W (φ12)+W (φ23)−W (φ13)

) ≥ W (φ12)|T1|+W (φ23)|T1|−W (φ13)|T2|

2. |T1| ≥ |T2| ≥ |T3|

14



Equation (11) reduces to |T1||T2| ≥ W (φ12)|T2|+ W (φ23)|T1| −W (φ13)|T2|.

|T1||T2| = |T2|(|T1| − |T2|) + |T2|2 ≥ W (φ23)(|T1| − |T2|) + |T2|2 ≥
W (φ23)(|T1| − |T2|) + |T2| (W (φ12) + W (φ23)−W (φ13)) =

W (φ12)|T2|+ W (φ23)|T1| −W (φ13)|T2|

3. |T1| ≥ |T3| ≥ |T2|

We have |T1||T3| ≥ W (φ12)|T3|+ W (φ23)|T1| − |T3|W (φ13).

|T1||T3| ≥ |T1||T2| − |T2||T3|+ |T2||T3| ≥ W (φ23)(|T1| − |T3|) + |T3||T2| ≥
W (φ23)(|T1| − |T3|) + |T3| (W (φ12) + W (φ23)−W (φ13)) =

W (φ12)|T3|+ W (φ23)|T1| − |T3|W (φ13).

In order to prove the triangular inequality for metric d4, we define the quantity w13 =

min(W (φ13),W (φ12) + W (φ23)). Clearly, we have |T2| ≥ W (φ12) + W (φ23) − w13 ≥ 0.

Furthermore, we have d4(T1, T3) ≤ 1− w13

|T1|+|T2|−w13
. Hence, to prove the inequality, it is

sufficient to prove:

1− W (φ12)

|T1|+ |T2| −W (φ12)
− W (φ23)

|T2|+ |T3| −W (φ23)
− w13

|T1|+ |T2| − w13

.

Let us define the quantities

x = |T1|+ |T2|+ |T3| −W (φ12)−W (φ23) ≥ 0

x1 = |T1| −W (φ12) ≥ 0

x2 = |T2| − [W (φ12) + W (φ23)− w13] ≥ 0

x3 = |T3| −W (φ23) ≥ 0

(12)

Clearly, we can rewrite the triangular inequality as:

1− W (φ12)

x− x3

+ 1− W (φ23)

x− x1

≥ 1− w13

x− x2

.

This inequality holds if and only if the following holds

(x− x1)(x− x2)(x− x3)−W (φ12)(x− x1)(x− x2)

−W (φ23)(x− x2)(x− x3) + w13(x− x1)(x− x3) ≥ 0.
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The left-hand side of this inequality can be expanded to the polynomial

x2 [x− x1 − x2 − x3 −W (φ12)−W (φ23) + w13]

+x [W (φ12)(x1 + x2) + W (φ23)(x2 + x3)− w13(x1 + x3) + x1x3]

+x1x2 [x−W (φ12)− x3] + x2x3 [x−W (φ23)] + x1x3w13.

This polynomial is the sum of non-negative terms and hence it will greater or equal to

0. In fact, by expanding the definition, we have:

x− x1 − x2 − x3 −W (φ12)−W (φ23) + w13 = 0.

Furthermore, remembering that |T2| ≥ W (φ12)+W (φ23)−w13 ≥ 0 and |T1| ≥ W (φ12)+

W (φ13)−W (φ23) ≥ W (φ12) + w13 −W (φ23), we have:

W (φ12)(x1 + x2) + W (φ23)(x2 + x3)− w13(x1 + x3) + x1x3 =

(W (φ12) + W (φ23)− w13) [|T2| − (W (φ12) + W (φ23)− w13)]

+(|T3| −W (φ23)) [|T1| − (W (φ12) + w13 −W (φ23))]

+W (φ12)(|T1| −W (φ12)) ≥ 0.

Finally, we have:

x−W (φ12)− x3 = (|T1| −W (φ12)) + (|T2| −W (φ12)) ≥ 0,

and:

x−W (φ23) = (|T1| −W (φ12)) + (|T2| −W (φ23)) + (|T3| −W (φ23)) ≥ 0.

Hence the triangular inequality holds. ¤

5 Experimental Results

We evaluated the new metrics on three different tree-based shape representations. The

first is the shock tree representation used by Pelillo, Siddiqi and Zucker in [19], which

is based on the differential structure of the boundary of a 2D shape. It is obtained by

extracting the skeleton of the shape, determined as the set of singularities (shocks) arising
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from the inward evolution of the shape boundary, and then examining the differential

behavior of the radius of the bitangent circle to the object boundary, as the skeleton

is traversed. This yields a classification of local differential structure into four different

classes [25]. The so-called shock-classes, distinguish between the cases where the local

bitangent circle has maximum, minimum, constant, or monotonic radius. The labeled

shock-groups are then abstracted using a rooted tree where two vertices are adjacent

if the corresponding shock-groups are adjacent in the skeleton, and the distance from

the root is related to the distance from the shape barycenter. Here, we used the same

attributes and node-distances employed in [19]. Each shock was attributed with its

coordinates, distance from the border, and propagation velocity and direction. The

distance between two nodes, was defined as a convex combination of the (normalized)

Euclidean distances of length, distance to the border, propagation speed, and curvature.

We compared our distance metrics with edit-distance. To approximate the edit-

distance we used the relaxation labeling algorithm presented in [29] with the following

costs: we defined the cost of matching node u to node w to be equal to the distance

between their attributes, while the cost of removing any node to be equal to 1. Note

that, with these costs, edit-distance is not normalized.

Our shape database contained 29 shapes from 8 different classes. Figure 2 shows

the distance matrices obtained using our metrics and edit-distance. The first row con-

tains our non-normalized matrices, the second row their normalized counterparts, and

the last one edit-distance. Here, lighter colors represent lower distances while darker

colors represent higher distances. As can be seen, the same block structure emerges

in all five matrices. In particular, the main diagonal blocks are almost identical in all

five cases, while the off-diagonal blocks present a wider variation. Essentially, the most

significant differences among the five metrics are the dark bands clearly visible in the

non-normalized matrices. To better visualize the distances we performed 2D multidi-

mensional scaling (MDS) on the five matrices. The results can be observed in Figure 3.

In order to assess the ability of the distances to preserve class structure, we per-

formed pairwise clustering. In particular, we used two pairwise clustering algorithms:
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Figure 2: Distance matrices from the first experiment. Top to bottom, left to right: d1,

d2, d3, d4, and edit-distance.

Shi and Malik’s Normalized Cut [24], and Pavan and Pelillo’s Dominant Sets [18]. Fig-

ure 4 shows the clusters obtained with Normalized Cut, displayed in order of extraction,

while Figure 5 presents the clusters obtained with the Dominant Sets approach. While

the performance of the clustering algorithms, on this shape recognition task, varied sig-
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Figure 3: Multidimensional scaling from the first experiment. Top to bottom, left to

right: d1, d2, d3, d4, and edit-distance.

nificantly, the dependency on the choice of the distance measure was less pronounced.

Nonetheless, some differences can be observed. In particular, we notice how Normalized
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d1 d2 d3 d4 Edit-distance

Figure 4: Clusters obtained with Normalized Cut in the first experiment.

Cut exhibits a well-known tendency to over-segment the data, a behavior particularly

visible on the non-normalized metrics d1 and d2. A particularly interesting example is

from the classification of the two horses: the shock-tree representation of the horses have

the highest average number of nodes of all shape classes, and they present the highest

variation in terms of number of nodes. For this reason, as can be seen by looking at the

MDS results, the non-normalized measures strongly separate the two instances, while the

normalized versions are able to keep them close together. The clusters obtained with

the Dominant Sets approach are much better, with our normalized metrics providing

results almost identical to edit-distance.

As for the running times, on a Pentium 4 2.5GHz PC, the maximum similarity

algorithm presented in Section 3, took around 8 seconds to compute our metrics, while

the relaxation labeling algorithm computed edit-distance in over 30 minutes.
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d1 d2 d3 d4 Edit-distance

Figure 5: Clusters obtained with Dominant Sets in the first experiment.

Our second set of experiments used a larger database of shapes abstracted again in

terms of shock-trees. Here, however, we used a different set of attributes introduced in

[3] and recently analyzed in [28], i.e., the proportion of the shape boundary generating

the corresponding shock-group. The database consisted of 150 shapes divided into 10

classes of 15 shapes each, and presented a higher structural noise than the previous

one. Here the node distance and node-matching cost for edit-distance was defined as the

absolute difference between the attributes, while the node removal cost was the value of

the attribute itself. With this edit costs edit-distance is a normalized metric.

Figure 6 shows the distance matrices obtained using our metrics and edit-distance,

and Figure 7 shows the results of MDS applied to them. Note that all measures extract

the same block structure, with non-normalized metrics showing the same off-diagonal

dark bands as in the previous experiments. In particular, the metrics d1 and d2 do not

distribute the shapes uniformly, but, rather, on a tight band along a curve. There are

two reasons for this behavior: First, the metrics are inherently non-Euclidean, while

MDS performs an “optimal” embedding on a Euclidean space; Second, the metrics d1

and d3 take the tree-similarity, which is smaller than the cardinality of the smallest tree,

and balances it against the cardinality of the maximum tree. The other two proposed
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Misclassification rate Rand index

d1 25.3% 90.1%

d2 28.7% 90.1%

d3 23.3% 90.3%

d4 22.7% 90.5%

edit 22.7% 90.4%

Table 1: Validation measures of clusters obtained with Normalized Cut in the second

experiment.

metrics balance the weight against the average cardinality, thereby providing a “tighter”

measure.

Next, we applied the same clustering algorithms used in the previous series of ex-

periments. In order to assess the quality of the groupings, we used two well-known

cluster-validation measures [13]. The first is the standard misclassification rate. We

assigned to each cluster the class that has most members in the cluster. The members

of the cluster that belong to a different class are considered misclassified. The misclas-

sification rate is the percentage of misclassified shapes over the total number of shapes.

To avoid the bias towards higher segmentation that this measure exhibits, we also used

a second validation measure, i.e., Rand index. We count the number of pairs of shapes

that belong to the same class and that are clustered together and the number of pairs of

shapes belonging to different classes that are in different clusters. The sum of these two

figures divided by the total number of pairs gives us the Rand index. Here, the higher

the value, the better the classification.

Table 1 summarizes the results obtained using Normalized Cut, while Table 2 presents

the results obtained with the Dominant Sets approach. The Dominant Sets method

provides better results in this case as well, while the different metrics generate clusters

with comparable validation measures.

The last set of experiments was performed on a tree representation of Northern

Lights [20]. As in the previous experiments, the representation used is derived from the
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Figure 6: Distance matrices from the second experiment. Top to bottom, left to right:

d1, d2, d3, d4, and edit-distance.
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Figure 7: Multidimensional scaling from the second experiment. Top to bottom, left to

right: d1, d2, d3, d4, and edit-distance. The numbers in each plot represent class labels.

morphological skeleton, but the choice of structural representation was different from

the one adopted for shock-graphs, and the extracted trees tend to be larger.

The database consisted of 1440 shapes. Using our metrics we were able to extract the
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Misclassification rate Rand index

d1 20.7% 90.8%

d2 22.7% 90.8%

d3 21.3% 90.8%

d4 20.7% 90.8%

edit 24.0% 90.8%

Table 2: Validation measures of clusters obtained with Dominant Sets in the second

experiment.

Figure 8: Multidimensional scaling of the distances obtained with our metrics from the

third experiment. Top to bottom, left to right: d1, d2, d3, and d4.

25



50 trees 1440 trees

d1 0.0270 0.0159

d2 0.0232 0.0135

d3 0.0486 0.0165

d4 0.0349 0.0155

edit 0.0232 —

Table 3: Davies-Bouldin index of clusters obtained with Normalized Cut in the third

experiment.

full distance matrices within a few hours, but it was infeasible to compute edit-distance

on the entire database. For this reason, in order to be able to compare the results with

edit-distance, we also performed experiments using a smaller database consisting of 50

shapes. The calculation of edit-distance, even on this reduced database, took a full

weekend.

Figure 8 displays the results of applying MDS to the distance matrices obtained with

our measures. Here the hue of the point varies uniformly from red on the first shape

to purple on the last. While there is no clear separation, there is a clear locality in

shape-space of trees with similar indices.

In this case, we did not have the ground truth for the class memberships, so we

needed a different cluster-validation measure. We opted for a standard measure that

favors compact and well-separated clusters: the Davies-Bouldin index [13]. Let ei be

the average distance between elements in class i, and dij the average distance between

elements in cluster i and elements in cluster j The Davies-Bouldin index is

DB =
1

c

c∑
i=1

max
j

Rij

where c is the number of clusters and Rij =
ei+ej

dij
is the cluster separation measure.

Clearly, lower values correspond to better separated and more compact clusters.

Table 3 provides the values of the Davies-Bouldin index on the clusters extracted

using Normalized Cut, while Table 4 shows the value obtained using the Dominant Sets
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50 trees 1440 trees

d1 0.0695 0.0057

d2 0.0670 0.0055

d3 0.0723 0.0074

d4 0.0670 0.0068

edit 0.0635 —

Table 4: Davies-Bouldin index of clusters obtained with Dominant Sets in the third

experiment.

algorithm.

6 Conclusions

In this paper we have presented four novel distance measures for attributed trees based

on the notion of a maximum similarity subtree isomorphism, and provided a polynomial-

time algorithm to calculate them. We have proven that this measures satisfy the metric

properties and have experimentally validated their usefulness by comparing them with

edit-distance on three different shape recognition tasks. Our experimental results show

that, in terms of quality, the proposed metrics compare well with edit-distance, their

computation being, however, orders of magnitude faster.
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