
IEEE TRANSACTION PAMI 1

Index Terms

Automata (F.1.1.a), Classes defined by grammars or automata (F.4.3.b), Machine learning

(I.2.6.g), Language acquisition (I.2.6.h), Language models (I.2.7.c), Language parsing and under-

standing (I.2.7.d), Machine translation (I.2.7.f), Speech recognition and synthesis (I.2.7.g), Structural

Pattern Recognition (I.5.1.f), Syntactic Pattern Recognition (I.5.1.g).



IEEE TRANSACTION PAMI 2

Probabilistic Finite-State Machines – Part II

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta and R. C. Carrasco

Abstract

Probabilistic finite-state machines are used today in a variety of areas in pattern recognition,

or in fields to which pattern recognition is linked. In part I of this paper, we surveyed these objects

and studied their properties. In this part II, we study the relations between probabilistic finite-state

automata and other well known devices that generate strings like hidden Markov models and n-

grams, and provide theorems, algorithms and properties that represent a current state of the art of

these objects.

I. INTRODUCTION

In part one [1] of this survey we introduced probabilistic finite-state automata (PFA), their

deterministic counterparts (DPFA) and the properties of the distributions these objects can

generate; topology was also discussed, and so were consistency and equivalence issues.

In this second part we will describe additional features that are of use to those wishing to

work with PFA or DPFA. As mentioned before there are many other finite-state machines that

describe distributions. Section II is entirely devoted to compare them with PFA and DPFA.

The comparison will be algorithmic: techniques (when existing) allowing to transform one

model into another equivalent, in the sense that the same distribution is represented, will be

provided. We will study n-grams along with stochastic local languages in section II-A and

HMMs in section II-C. In addition, in Section II-B we will present a probabilistic extension

of the classical morphism theorem that relates local languages with regular languages in

general.

Dr. Vidal and Dr. Casacuberta are with Dto. Sistemas Informáticos y Computación and Instituto Tecnológico de
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Once most of the issues concerning the task of dealing with existing PFA have been

examined, we turn to the problem of building these models, presumably from samples. First,

we address the case where the underlying automaton structure is known; then, we deal

(section III-A) with the one of estimating the parameters of the model [2]–[7]. The case

where the model structure is not known enters the field of machine learning and a variety

of learning algorithms has been used. Their description, proofs and a comparison of their

qualities and draw-backs would deserve a detailed survey in itself. We provide, in section III-

B, an overview of the main methods, but we do not describe them throughly. We hope the

bibliographical entries we provide, including the recent review which appears in [8], will be

of use for the investigator who requires further reading in this subject. Smoothing [9]–[11]

(in section III-C) is also becoming a standard issue.

A number of results do not fall into any of these main questions. Section IV will be a

pot-pourri, presenting alternative results, open problems and new trends. Among these, more

complex models such as stochastic transducers (in section IV-A), probabilistic context-free

grammars [12] (in section IV-B), or probabilistic tree automata [13]–[15] (in section IV-C)

are taking importance when coping with increasingly structured data.

The proofs of some of the propositions and theorems are left to the corresponding appen-

dices.

As all surveys this one is incomplete. In our particular case the completeness is particularly

difficult to achieve due to the enormous and increasing amount of very different fields where

these objects have been used. In advance we would like to apologize to all those whose

work on the subject we have not recalled.

II. OTHER FINITE-STATE MODELS

Apart from the various types of PFA, a variety of alternative models has been proposed in

the literature to generate or model probability distributions on the strings over an alphabet.

Many different definitions of probabilistic automata exist. Some assume probabilities on

states, others on transitions. But the deep question is “which is the distinctive feature of the

probability distribution defined?”. All the models describe discrete probability distributions.

Many of them aim at predicting the next symbol in a string, thereby describing probability

distributions over each Σn, ∀n>0. We will concentrate here on models where parsing will
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be done from left to right, one symbol at a time. As a consequence, the term predicting

history will correspond to the amount of information one needs from the prefix to compute

the next-symbol probability. Multiplying these next-symbol probabilities is called the chain

rule which will be discussed in section II-A.

Among the models proposed so far, some are based on acyclic automata [1], [16]–[19].

Therefore, the corresponding probability distributions are defined on finite sets of strings,

rather than on Σ?. In [18] automata that define probability distributions over Σn, for some

fixed n > 0. This kind of models can be used to represent, for instance, logic circuits, where

the value of n can be defined in advance. A main restriction of this model is that it cannot

be used to compare probabilities of strings of different lengths. Ron et al. [19] define other

probabilistic acyclic deterministic automata and apply them to optical character recognition.

Another kind of model describes a probability distribution over Σ?; that is, over an

infinite number of strings. Stolcke and Omohundro [20] use other types of automata that are

equivalent to our definition of DPFA. Many probabilistic automata, such as those discussed

here, the HMM and the Markov chain (also known as the n-gram model), also belong to this

class.

We give here an overview of some of the most relevant of these models. In all cases we will

present them in comparison with the probabilistic finite-state automata. The comparison will

be algorithmic: techniques (when existing) allowing to transform one model into another,

equivalent in the sense that the same distribution is represented, will be provided. From

the simpler to the more complex objects we will study n-grams and stochastic k-testable

languages (in section II-A), and HMMs (in section II-C). We will include in section II-B

a probabilistic extension of an important result in the classical theory of formal languages,

known as the morphism theorem.

A. N -grams and stochastic k-testable automata

N-grams have been the most widely used models in natural language processing, speech

recognition, continuous handwritten text recognition, etc. As will be seen below, under certain

assumptions, n-grams are equivalent to a class of DPFA known as stochastic k-testable

automata. Despite the popularity and success of these models, we shall prove that they

cannot model all distributions that can be modeled by DPFA.
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N -gram models:

N-grams are traditionally presented as an approximation to a distribution of strings of

fixed length. For a string x of length m, the chain rule is used to (exactly) decompose the

probability of x as [21]:

Pr(x) = Pr(x1) ·
m∏

l=2

Pr(xl | x1, . . . , xl−1). (1)

The n-gram approximation makes the assumption that the probability of a symbol depends

only on the n − 1 previous symbols; that is:1

Pr(x) ≈
m∏

l=1

Pr(xl | xl−n+1, . . . , xl−1) .

As the exact equation (1), this approximation also defines a probability distribution over

Σm. Nevertheless, for practical reasons it is often interesting to extend it to define a probability

distribution over Σ?. To this end, the set of events, Σ, which are predicted by the n−1 previous

symbols, is extended by considering an additional end-of-string event (denoted by #), with

probability Pr(#|xm−n+2, . . . , xm). As a result, the probability of any string x ∈ Σ? is

approximated as:

Pr(x) ≈
( |x|∏

l=1

Pr(xl | xl−n+1, . . . , xl−1)
)
· Pr(# | x|x|−n+2, . . . , x|x|) . (2)

By making use of our convention that a string such as xi . . . xj denotes λ if i > j,

this approximation accounts for the empty string. In fact, if x = λ, the right-hand side of

equation (2) is 1·Pr(#|λ), which may take values greater then 0. The resulting approximation

will be referred to as “extended n-gram model”. The parameters of this model are estimates

of Pr(a|z), a ∈ Σ∪{#}, z ∈ Σ<n, which will be referred to as Pn(a|z). The model assigns

a probability Prn(x) for any string x ∈ Σ? as:

Prn(x) =
( |x|∏

l=1

Pn(xl | xl−n+1, . . . , xl−1)
)
· Pn(# | x|x|−n+2, . . . , x|x|)) . (3)

Note that (unlike the classical n-gram model for fixed-length strings) Prn(x) can be

deficient. This may happen for certain “degenerate” values of Pn(a|z), a ∈ Σ ∪ {#}, z ∈
1For the sake of simplifying the notation, if i ≤ 1 the expression Pr(xj |xi, . . . , xj−1) is assumed to denote

Pr(xj |x1, . . . , xj−1). If j = 1, it is just Pr(x1|λ), interpreted as Pr(x1).



IEEE TRANSACTION PAMI 6

Σ<n, which may lead to infinite-length strings with non-null probability. Disregarding these

degenerate cases and provided that

∑

a∈Σ

Pn(a|z) + Pn(#|z) = 1 ∀z ∈ Σ<n,

this model is consistent; i.e., it defines a probability distribution, Dn, over Σ?.

It follows from the above definition that, if Dn is described by an extended n-gram, for any

n′ > n there is an extended n′-gram which describes a distribution Dn′ such that Dn = Dn′ .

In other words, there is a natural hierarchy of classes of n-grams, where the classes with

more expressive power are those with larger n. The simplest interesting class in this hierarchy

is the class for n = 2, or bigrams. This class is interesting for its generative power, in the

sense discussed later (Section II-B).

On the other hand, perhaps the most interesting feature of n-grams is that they are easily

learnable from training data. All the parameters of a n-gram model can be maximum-

likelihood estimated by just counting the relative frequency of the relevant events in the

training strings [21]. If S is a training sample, Pn(a | z) is estimated as f(za) / f(z), a ∈

Σ∪{#}, z ∈ Σ<n, where f(y) is the number of times the substring y appears2 in the strings

of S. Interestingly, the degenerate cases mentioned above can never happen for n-grams

trained in this way and the resulting trained models are always consistent.

The n-grams estimated in this way from a fixed S exhibit an interesting hierarchy for

decreasing values of n. Let DS be the empirical distribution associated with S and let

Ln =
∏

x∈S PrDn(x) be the likelihood with which an extended n-gram generates S. Then

for m = maxx∈S|x|, DS = Dm and for all m′′ < m′ < m, Lm′′ ≤ Lm′ . In other words,

starting with n = m, the sample S is increasingly generalized for decreasing values of n.

Stochastic k-testable automata :

N-grams are closely related to a family of regular models called k-testable stochastic

automata (k-TSA) [22].3 In fact, we shall see that for every extended k-gram model there is

2For substrings shorter than n, f(y) is the number of times that y appears as a prefix of some string in S.
3In the traditional literature, a k-testable automaton (K-TA) is (more properly) referred to as a k-testable automaton

in the strict sense (K-TSA) [23], [24]. In these references, the name k-testable automaton is reserved for more powerful

models which are defined as boolean compositions of K-TSA. A stochastic extension of K-TA would lead to models which,

in some cases, can be seen as mixtures of stochastic k-TSA.



IEEE TRANSACTION PAMI 7

a k-TSA which generates the same distribution.

In the traditional literature, a k-testable language is characterized by two sets of strings,

corresponding to permitted prefixes and suffixes of length less than k, and a set of permitted

substrings of length k [22]–[24]. A straightforward probabilistic extension adequately assigns

probabilities to these substrings, thereby establishing a direct relation with n-grams. For the

sake of brevity, we will only present the details for 2-testable distributions, also called

stochastic local languages.

Definition 1: A stochastic local language (or 2-testable stochastic language) is defined

by a four-tuple Z = 〈Σ, PI , PF , PT 〉, where Σ is the alphabet, and PI , PF : Σ → [0, 1],

and PT : Σ × Σ → [0, 1] are, respectively, initial, final, and symbol transition probability

functions. PI(a) is the probability that a ∈ Σ is a starting symbol of the strings in the

language and, ∀a ∈ Σ, PT (a′, a) is the probability that a follows a′, while PF (a′) is the

probability that no other symbol follows a′ (i.e. a′ is the last symbol) in the strings of the

language.

As in the case of n-grams, this model can be easily extended to allow the generation of

empty strings. To this end, PF can be redefined as PF : Σ∪{λ} → [0, 1], interpreting PF (λ)

as the probability of the empty string, according to the following normalization conditions:

∑

a∈Σ

PI(a) + PF (λ) = 1,

∑

a∈Σ

PT (a′, a) + PF (a′) = 1 ∀a′ ∈ Σ .

Disregarding possible “degenerate” cases (similar to those of extended n-grams discussed

above), the model Z is consistent; i.e., it defines a probability distribution DZ on Σ? as:

PrZ(x) =





PF (λ) if x = λ ,

PI(x1) ·
|x|∏

i=2

PT (xi−1, xi) · PF (x|x|) if x ∈ Σ+.
(4)

Comparing equation (3) and (4), the equivalence of local language and extended bigram

distributions can be easily established by letting:

PI(a) = P2(a), ∀a∈ Σ ,

PF (a) = P2(# | a), ∀a∈ Σ ∪ {λ} ,

PT (a′, a) = P2(a | a′), ∀a, a′ ∈ Σ .
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Therefore, the following proposition holds:

Proposition 1: For any extended bigram distribution D2 there exists a local language

model Z such that DZ = D2, and vice versa.

A stochastic 2-testable model Z = 〈Σ, PI , PF , PT 〉 can be straightforwardly represented by

a 2-testable stochastic automaton (2-TSA). This automaton is a DPFA A = 〈Q, Γ, δ, q0, F, P 〉

built as follows:

Γ = Σ, Q = Σ ∪ {λ}, q0 = λ,

δ = {(λ, a, a) | a ∈ Σ, PI(a) > 0}
⋃

{(a′′, a, a) | a, a′′ ∈ Σ, PT (a′′, a) > 0)},

∀a, a′′ ∈ Σ, P (a′′, a, a) = PT (a′′, a), P (λ, a, a) = PI(a), F (a) = PF (a), F (λ) = PF (λ) .

(5)

An example of this construction is shown in figure 3 (middle), page 11, corresponding to

example 2 below. Definition 1, proposition 1 and the above construction (5) can be easily

extended to show the equivalence of extended k-grams and k-TSA for any finite k.

As in the case of n-grams, k-TSA can be easily learned from training data [22]. Given

the equivalence with extended n-grams, k-TSA exhibit the same properties for varying

values of k. In particular, in this case, the m-TSA obtained from a training sample S for

m = maxx∈S |x| is an acyclic DPFA which is identical to the probabilistic prefix tree

automaton representation of S.

N -grams and k-TSA are less powerful than DPFA:

We now show that extended n-grams or stochastic k-testable automata do not have as

much modeling capabilities as DPFA have.

Proposition 2: There are regular deterministic distributions that cannot be modeled by a

k-TSA or extended k-gram, for any finite k.

This is a direct consequence of the fact that every regular language is the support of at least

one stochastic regular language, and there are regular languages which are not k-testable. The

following example illustrates this lack of modeling power of extended n-grams or k-TSA.

Example 1: Let Σ = {a, b, c, d} and let D be a probability distribution over Σ? defined

as:

PrD(x) =





1/2i+1 if x = abic ∨ x = dbie, i > 0 ,

0 otherwise .
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This distribution can be exactly generated by the DPFA of figure 1, but it can not be properly

approached by any k-TSA for any given k. The best k-TSA approximation of D, Dk, is:

PrDk
(x) = 1/2i+1, PrDk

(x′) = 0 ∀i ≤ k − 2 ,

PrDk
(x) = PrDk

(x′) = 1/2i+2 ∀i > k − 2 ,

for any string x of the form abic or dbie, and x′ of the form dbic or abie.

In other words, using probabilistic k-testable automata or extended k-grams, only the

probabilities of the strings up to length k can be approached while, in this example, the error

ratio4 for longer strings will be at least 1/2 (or larger if k-TSA probabilities are estimated

from a finite set of training data). As a result, for all finite values of k the logarithmic

distance dlog(D,Dk) is infinite.

This can be seen as a probabilistic manifestation of the well known over/under-generalization

behavior of conventional k-testable automata [25].

1
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4

5

6
f=1

d (0.5)

a (0.5)

b (0.5)

b (0.5)

b (1)

b (1)

c (0.5)

e (0.5)

Fig. 1. A DPFA which generates a regular deterministic distribution that cannot be modeled by any k-TSA or n-gram.

B. Stochastic morphism theorem

In classical formal language theory the morphism theorem [26] is a useful tool to overcome

the intrinsic limitations of k-testable models and to effectively achieve the full modelling

capabilities of regular languages in general. Thanks to this theorem, the simple class of

2-testable languages becomes a “base set” from which all the regular languages can be

generated.

However, no similar tool existed so far for the corresponding stochastic distributions. This

section extends the standard construction used in the proof of the morphism theorem so that

a similar proposition can be proved for stochastic regular languages.

4The error-ratio for a string x is the quotient between the true and the approximated probabilities for x.
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Theorem 3 (Stochastic morphism theorem): Let Σ be a finite alphabet and D a stochastic

regular language on Σ?. There exists then a finite alphabet Σ′, a letter-to-letter morphism

h : Σ′? → Σ?, and a stochastic local language over Σ′, D2, such that D = h(D2); i.e.,

∀x ∈ Σ? PrD(x) = PrD2(h
−1(x)) =

∑

y∈h−1(x)

PrD2(y) , (6)

where h−1(x) = {y ∈ Σ′? | x = h(y)}.

The proof of this proposition is in the Appendix A.

The following example illustrates the construction used in this proof and how to obtain

exact 2-TSA-based models for given, possibly non-deterministic stochastic regular languages.

Example 2: Consider the following distribution D over Σ = {a, b}:

Pr(x) =





Pr(i) if x = abi, i ≥ 0 ,

0 otherwise,

with Pr(i) = p1 · (1− p2) · p2
i +(1− p1) · (1− p3) · p3

i and p1 = 0.5, p2 = 0.7 and p3 = 0.9.

This distribution (which is similar to that used in part I [1] to prove that the mean of two

deterministic distributions may not be deterministic) is exactly generated by the PFA shown in

figure 3 (left). From a purely structural point of view, the strings from the language underlying

this distribution constitute a very simple local language that can be exactly generated by a

trivial 2-testable automaton. However, from a probabilistic point of view, D is not regular

deterministic, nor by any means local. In fact, it can not be approached with arbitrary

precision by any k-TSA, for any finite value of k. The best approximations for k = 2, 3, 4, 5

produce error-ratios greater than 2 for strings longer than 35, 40, 45 and 52, respectively,

as it is shown in figure 2. In fact, the logarithmic distance between the true and k-TSA-

approximated distributions is infinite for any finite k. Nevertheless, the construction given

by the stochastic morphism theorem yields a stochastic finite-state automaton that exactly

generates D.

Using the construction of the proof of the stochastic morphism theorem, a 2-TSA,

Z = 〈Σ′, PI, PF , PT 〉, is built from the DPFA A0 = 〈Q, Σ, δ, q0, F, P 〉 shown in figure 3 (left)
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Fig. 2. Error-ratio of the probabilities provided by different k-testable automata that best approach the stochastic language

of example 2, with respect to the true probability of strings in this language.

as follows:

Σ′ = {a2, a3, b2, b3} ,

PI(a2) = PI(a3) = P (1, a, 2) = P (1, a, 3) = 0.5 ,

PF (a2) = PF (b2) = F (2) = 0.3, PF (a3) = PF (b3) = F (3) = 0.1 ,

PT (a2, b2) = PT (b2, b2) = P (2, b, 2) = 0.7, PT (a3, b3) = PT (b3, b3) = P (3, b, 3) = 0.9 ,

(7)

all the other values of PI , PF and PT are zero.

The corresponding 2-TSA is shown in figure 3 (middle). Applying the morphism h (i.e.

dropping sub-indexes) to this automaton yields the PFA A shown in figure 3 (right). For any

string x of the form abi, we have:

PrA(x) = 0.5 · 0.3 · 0.7i + 0.5 · 0.1 · 0.9i ∀i ≥ 0.

which is exactly the original distribution, D. 2

1

3
f=0.1

2
f=0.3a (0.5)

a (0.5) b (0.9)

b (0.7)

f=0.3

f=0.1

b2
f=0.3

f=0.1

a3

a2

a3(0.5)

a2(0.5)

b3

b3(0.9)
b3(0.9)

b2(0.7)

b2(0.7)

1

2
f=0.3

4
f=0.1

3
f=0.3

5
f=0.1

a(0.5)

a(0.5)

b(0.9)
b(0.9)

b(0.7)

b(0.7)

Fig. 3. Left: finite-state stochastic automaton which generates the stochastic language of example 2; Center and right:

automata obtained through the construction used in the proof of the stochastic morphism theorem.
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C. Hidden Markov models

Nowadays, hidden Markov models (HMMs) are basic components of the most successful

natural language processing tasks, including speech [21], [27], [28] and handwritten text

recognition [29], [30], speech translation [31], [32] and shallow parsing [33], to name but a

few. HMMs have also proved useful in many other pattern recognition and computer vision

tasks, including shape recognition, face and gesture recognition, tracking, image database

retrieval and medical image analysis [34], [35] and other less conventional applications such

as financial returns modeling [36].

There exist many variants of Markov models, including differences as to whether the

symbols are emitted at the states or at the transitions. See for example [21], [27], [28], [37].

Definition 2: A HMM is a 6-tuple M = 〈Q, Σ, I, qf , T, E〉, where

• Q is a finite set of states,

• Σ is a finite alphabet of symbols,

• T : (Q−{qf}) × Q → R+ is a state to state transition probability function,

• I : Q−{qf} → R+ is an initial state probability function,

• E : (Q−{qf}) × Σ → R+ is a state-based symbol emission probability function,

• qf ∈ Q is a special (final) state,

subject to the following normalization conditions:

∑

q∈Q−{qf}

I(q) = 1 ,

∑

q′∈Q

T(q, q′) = 1, ∀q ∈ Q−{qf} ,

∑

a∈Σ

E(q, a) = 1, ∀q ∈ Q−{qf} .

We will say that the model M generates (or emits) a sequence x = x1 . . . xk with

probability PrM(x). This is defined in two steps. First let θ be a valid path of length k;

i.e., a sequence (s1, s2, . . . , sk) of states, with sk = qf . The probability of θ is:

PrM(θ) = I(s1) ·
∏

2≤j≤k

T(sj−1, sj) .
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and the probability of generating x through θ is:

PrM(x | θ) =
∏

1≤j<k

E(sj, xj) .

Then if ΘM(x) is the set of all valid paths for x, the probability that M generates x is:

PrM(x) =
∑

θ∈ΘM(x)

PrM(x | θ) · PrM(θ) .

It should be noticed that the above model cannot emit the empty string. Moreover, as in

the case of PFA, some HMMs can be deficient. Discarding these degenerate cases, it can

easily be seen that
∑

x∈Σ+ PrM(x) = 1. Correspondingly, a HMM M defines a probability

distribution DM on Σ+.

In some definitions, states are allowed to remain silent or the final state qf is not included

in the definition of a HMM. As in the case of n-grams, this latter type of model defines a

probability distribution on Σn for each n, rather than on Σ+ [37].

Some relations between HMMs and PFA are established by the following propositions.

Proposition 4: Given a PFA A with m transitions and PrA(λ) = 0, there exists a HMM

M with at most m states, such that DM = DA.

Proposition 5: Given a HMM M with n states there exists a PFA A with at most n states

such that DA = DM.

In order to have a self-contained article, the proofs of propositions 4 and 5 are given in the

appendix (sections B and C). They nonetheless also appear in [8] using a slightly different

method regarding proposition 4.

III. LEARNING PROBABILISTIC AUTOMATA

Over the years researchers have attempted to learn, infer, identify or approximate PFA

from a given set of data. This task, often called language modeling [38] is seen as essential

when considering pattern recognition [27], machine learning [39], computational linguistics

[40] or biology [14]. The general goal is to construct a PFA (or some alternative device) given

data assumed to have been generated from this device, and perhaps the partial knowledge

of the underlying structure of the PFA. A recent review on probabilistic automata learning

appears in [8]. Here only a quick, in most cases complementary review, along with a set

of relevant references, will be presented. We will distinguish here between the estimation
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of the probabilities given an automaton structure and the identification of the structure and

probabilities altogether.

A. Estimating PFA probabilities

The simplest setting of this problem arises when the underlying structure corresponds to

a n-gram or a k-TSA. In this case, the estimation of the parameters is as simple as the

identification of the structure [21], [22].

We assume more generally that the structural components, Σ, Q, and δ, of a PFA A are

given. Let S be a finite sample of training strings drawn from a regular distribution D.

The problem is to estimate the probability parameters I, P, F of A in such a way that DA

approaches D.

Maximum likelihood (ML) is one of the most widely adopted criteria for this estimation:

(Î , P̂ , F̂ ) = argmax
I,P,F

∏

x∈S

PrA(x). (8)

Maximizing the likelihood is equivalent to minimizing the empirical cross entropy X̂ (S,DA)

(see section VI of [1]). It can be seen that, if D is generated by some PFA A′ with the same

structural components of A, optimizing this criterion guarantees that DA approaches D as

the size of S goes to infinity [41].

The optimization problem (8) is quite simple if the given automaton is deterministic [42].

Let 〈Q, Σ, δ, q0, F, P 〉 be the given DPFA whose parameters F and P are to be estimated.

For all q ∈ Q, a ML estimation of the probability of the transition P (q, a, q′) is obtained by

just counting the number of times this transition is used in the deterministic derivations of

the strings in S and normalizing this count by the frequency of use of the state q. Similarly,

the final state probability F (q) is obtained as the relative frequency of state q being final

through the parsing of S. Probabilistic parameters of non-ambiguous PFA or λ-PFA can also

be easily ML-estimated in the same way.

However, for general (non-deterministic, ambiguous) PFA or λ-PFA, multiple derivations

are possible for each string in S and things become more complicated. If the values of I ,

P and F of A are constrained to be in Q+, the decisional version of this problem is clearly

in NP and the conjecture is that this problem is at least NP-Hard. In practice, only locally

optimal solutions to the optimization (8) are possible.
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As discussed in [5], the most widely used algorithmic solution to (8) is the well known

expectation-maximization (EM) Baum-Welch algorithm [2], [3], [6]. It iteratively updates

the probabilistic parameters (I , F and P ) in such a way that the likelihood of the sample

is guaranteed not to decrease after each iteration. The parameter updating is based on the

forward and backward dynamic programming recurrences to compute the probability of a

string discussed in section-III of [1]. Therefore the method is often referred to as backward-

forward re-estimation. The time and space complexities of each Baum-Welch iteration are

O(M ·N) and O(K ·L+M), respectively, where M = |δ| (number of transitions), K = |Q|

(number of states) N = ||S|| (number of symbols in the sample), and L = maxx∈S |x|

(length of the longest training string) [5].

Using the optimal path (Viterbi) approximation rather than the true (forward) probability

(see [1], sections III-B and III-A, respectively) in the function to be optimized (8), a simpler

algorithm is obtained, called the Viterbi re-estimation algorithm. This is discussed in [5],

while re-estimation algorithms for other criteria different from ML can be found in [7],

[43]–[45].

Baum-Welch and Viterbi re-estimation techniques adequately cope with the multiple-

derivations problem of ambiguous PFA. Nevertheless, they can also be applied to the simpler

case of non-ambiguous PFA and, in particular, the deterministic PFA discussed above. In these

cases, the following properties hold:

Proposition 6: For non-ambiguous PFA (and for DPFA in particular),

1) the Baum-Welch and the Viterbi re-estimation algorithms produce the same solution;

2) the Viterbi re-estimation algorithm stops after only one iteration;

3) the solution is unique (global maximum of equation (8)).

B. Learning the structure

We will first present informally the most classic learning paradigms and discuss their

advantages and drawbacks. We will then present the different results of learning.

Learning paradigms: In the first learning paradigm, proposed by Gold [46], [47], there

is an infinite source of examples that are generated following the distribution induced by a

hidden target. The learning algorithm is expected to return after each new example some
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hypothesis, and we will say that the class is identifiable in the limit with probability one if

whatever the target the algorithm identifies the target (i.e. there is a point from which the

hypothesis is equivalent to the target) with probability one.

The main drawbacks of this paradigm are:

• it does not entail complexity constraints;

• we usually don’t know if the amount of data needed by the algorithm is reached;

• an algorithm can be proven to identify in the limit and might return arbitrary bad answers

if the required amount of data is not provided.

Despite these drawbacks, the identification in the limit paradigm can be seen as a necessary

condition for learning a given class of model. If this condition is not met, that means that

some target is not learnable.

A second learning paradigm was proposed by Valiant and extended later [48]–[52]. This

paradigm, called probably approximatively correct (PAC) learning, requires that the learner

returns a good approximation of the target with high probability. The words good and high

are formalized in a probabilistic framework and are function of the amount of data provided.

These frameworks have been adapted to the cases where the target concept is a probabilistic

model [19], [53]–[58].

Finally, another framework comes from traditional methods for HMM estimation. In this

framework, the structure of the model is somehow parameterized and learning is seen as a

problem of parameter estimation. In the most general statement of this problem for PFA,

only the alphabet (of size n) and the number of states (m) are given and the problem is to

estimate the probabilities of all the n ·m2 possible transitions. As discussed in section III-A,

the Baum-Welch (or the Viterbi) algorithm can be used for a locally optimal estimation of

these parameters. However, given the very large amount of parameters, this general method

has seldom proved useful in practice. Related approaches where the amount of parameters

to estimate is explicitly constrained are discussed in [8].

What can be learned?: This section addresses previous works related to the learning of

probabilistic finite-state automata. The first results came from Horning [53] who showed that

any recursively enumerable class of languages can be identified in the limit with probability

one. The problem of the proof —among others of the same spirit [54], [55]— is that it does



IEEE TRANSACTION PAMI 17

not provide us with a reasonable algorithm to perform the learning task.

A more constructive proof, relying on a reasonable algorithm, was proposed in [57]:

Identification in the limit of DPFA is shown. This proof is improved in [59] with results

concerning the identification of rational random variables.

Work has also been done in the Probably Approximately Correct (PAC) learning paradigm.

The results are rather different depending on the object we want to infer and/or what we know

about it. Actually, Abe and Warmuth [17] showed that non-deterministic acyclic automata

that defined a probability distribution over Σn, with n and Σ known, could be approximated in

polynomial time. Moreover, they showed that learnability is not polynomial in the size of the

vocabulary. Kearns et al. [18] showed that an algorithm that aims at learning a probabilistic

function cannot reach its goal5 if the probability distribution can be generated by a DPFA over

{0, 1}n. Thus knowing the class of the object we want to infer helps a lot the inference since

the object dealt with in [17] are more complex than the ones addressed in [18]. Following this

idea, Ron and al. [19] proposed a practical algorithm that converges in a PAC like framework

that infers a restricted class of acyclic automata. More recently Clark and Thollard [58]

showed that the result holds with cyclic automata as soon as a bound on the expected length

of the generated strings is known.

Some algorithms: If we restrict ourselves to the class of n-gram or k-TSA distributions, as

previously mentioned, learning both the structure and the probabilities of n-grams or k-TSA

is simple and already very well known [21], [22]

For more general PFAs, another strategy can be followed: first the probabilistic prefix

tree automaton (PPTA), which models the given training data with maximum-likelihood, is

constructed. This PPTA is then generalized using state-merging operations. This is usually

called the state-merging strategy.

Following this strategy, Carrasco and Oncina [60] proposed the ALERGIA algorithm for

DPFA learning. Stolcke and Omohundro [20] proposed another learning algorithm that infer

DPFA based on Bayesian learning. Ron and al. [19] reduced the class of the language to be

learned and provided another state-merging algorithm and Thollard and al. [61] proposed the

5Actually, the authors showed that this problem was as hard as learning parity functions in a noisy setting for the

non-probabilistic PAC framework. This problem is generally believed to be untractable.
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MDI algorithm under the same framework. MDI has been shown to outperform ALERGIA

on a natural language modeling task [61] and on shallow parsing [62]. A recent variant

of ALERGIA was proposed in [63] and evaluated on a natural language modeling task. A

modification of this algorithm was also used in [64] to discover the underlying model in

structured text collections.

Other learning approaches: While not a learning algorithm in itself, a (heuristic) general

learning scheme which is worth mentioning can be derived from the stochastic morphism

theorem shown in Section II-B. In fact, the use of the conventional morphism theorem [26]

was already proposed in [65] to develop a general methodology for learning general regular

languages, called “morphic generator grammatical inference” (MGGI). The basic idea of

MGGI was to rename the symbols of the given alphabet in such a manner that the syntactic

restrictions which are desirable in the target language can be described by simple local

languages. MGGI constitutes an interesting engineering tool which has proved very useful

in practical applications [25], [65].

We briefly discuss here how the stochastic morphism theorem can be used to obtain a

stochastic extension of this methodology, which will be called stochastic MGGI (SMGGI).

Let S be a finite sample of training sentences over Σ and let Σ′ be the alphabet required to

implement an adequate renaming function g : S → Σ′?. Let h : Σ′? → Σ? be a letter-to-letter

morphism; typically one such that h(g(S)) = S. Then, a 2-TSA model can be obtained and

the corresponding transition and final-state probabilities max-likelihood estimated from g(S)

using conventional bigram learning or the 2-TSI algorithm [22].

Let D2(g(S)) be the stochastic local language generated by this model. The final outcome

of SMGGI is then defined as the regular distribution D = h(D2(g(S)); that is:

∀x ∈ Σ?, PrD(x) =
∑

y∈h−1(x)

PrD2(g(S))(y) , (9)

where h−1(x) = {y ∈ Σ′? : y = h(x)}.

From a practical point of view, the morphism h is just applied to the terminal symbols of

the 2-TSA generating D2(g(S)). While this automaton (defined over Σ′) has deterministic

structure and therefore is unambiguous, after applying h the resulting automaton is often
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ambiguous, thus precluding a simple max-likelihood estimation of the corresponding tran-

sition and final state probabilities. Nevertheless, equation (9) allows us to directly use the

the 2-TSA probabilities with the guarantee that they constitute a proper estimation for the

possibly ambiguous resulting automaton.

C. Smoothing issues

The goal of smoothing is estimating the probability of events that have never been seen in

the training data available. From the theoretical point of view, smoothing must be taken into

account since estimates must behave well on the whole set Σ?. From the practical point of

view, we saw that the probability of a sequence is computed using products of probabilities

associated with the symbols. Smoothing is necessary to distinguish a very probable sequence

with a unique unknown symbol (e.g. in natural language modeling this can be a sentence

with an unknown proper noun) from a sequence composed of impossible concatenations of

symbols.

Even though some work has been done in order to theoretically justify some smooth-

ing techniques – e.g. the Good-Turing estimator [39], [66] – smoothing has mainly been

considered from the practical point of view. The main line of research is considering the

n-gram model as the base model and a back-off strategy as the smoothing technique [10],

[38], [67]–[69]. In the back-off strategy another model is used (usually a more general one)

in order to estimate the probability of a sequence; for example, if there is no trigram to

estimate a conditional probability, a bigram can be used to do it. In order to guaranty an

overall consistent model, several variants have been considered. After the backing-off, the

trigram can again be used to estimate the probabilities.

Smoothing PFA is a harder problem. Even if we can think about backing-off to simpler

and more general models, it is not easy to use the PFA to continue the parsing after the

backing-off. A first strategy consists in backing-off to a unigram and finishing the parsing

in the unigram [70] itself. A more clever strategy is proposed by Llorens et al. [71], which

use a (recursively smoothed) n-gram as a back-off model. The history of each PFA state is

computed in order to associate it with the adequate n-gram state(s). Parsing can then go back

and forth through the full hierarchy of PFA and m-gram states, 0 < m ≤ n, as needed for the

analysis of any string in Σ?. This strategy performs better in term of predicting power, but is
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obviously more expensive in terms of computing time. An error correcting approach can also

be used, which consists in looking for the string generated by the PFA that with maximum

likelihood may have been “distorted” (by an error model) into the observed string [11], [72].

Smoothing can be considered either as a distribution estimation technique or as a post-

processing technique used to improve the result of a given estimator. Some other pre/post

processing techniques have been proposed in order to improve a machine learning algorithm.

In the spirit of pre-processing the data, [73] cluster the data using a statistical clustering

algorithm [74]. The inference algorithm will then provide a class-model. This technique

allows to work on tasks with large vocabularies (e.g. 65,000 words). Moreover, it seems

to improve the power of prediction of the model. Another way of dealing with the data is

by typing it. For example, in natural language processing, we can type a word using some

syntactic information such as the part of speech it belongs to. The idea is to take external

information into account during the inference. A general framework for taking into account

typed data for the inference of PFA was studied in [75].

Another technique that pre-processes the data is bagging [76]. It was successfully adapted

to the inference of PFA applied on a noun phrase chunking task [62].

IV. PROBABILISTIC EXTENSIONS

A number of natural extensions of the PFA and DPFA have been proposed. We mention

in the sequel some of the most important ones. These include probabilistic finite-state

transducers, and stochastic finite-state tree automata. These models are related with the

more general stochastic context-free grammars, for which a short account is also given.

A. Probabilistic finite-state transducers

Stochastic finite-state transducers (SFSTs) are similar to PFA, but in this case two different

alphabets are involved: source (Σ) and target (∆) alphabets. Each transition in a SFST has

attached a source symbol and a (possible empty) string of target symbols.

Different types of SFSTs have been applied with success in some areas of machine

translation and pattern recognition [77]–[83]. On the other hand, in [40], [84], [85], weighted

finite-state transducers are introduced. Another (context-free) generalization, head transducer

models, was proposed in [86], [87].
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A SFST T is defined as an extension of PFA: T =〈Q, Σ, ∆, δ, I, F, P 〉, where:

Q is a finite set of states; Σ and ∆ are the source and target alphabets, respectively,

δ ⊆ Q × Σ × ∆∗ × Q is a set of transitions; I : Q → R+ and F : Q → R+ are the initial-

and final-state probabilities, respectively; and P : δ → R+ are the transition probabilities,

subject to the following normalization constraints:

∑

q∈Q

I(q) = 1, and ∀q ∈ Q, F (q) +
∑

a∈Σ, q′∈Q,y∈∆∗

P (q, a, y, q′) = 1.

A particular case of SFST is the deterministic SFST, where (q, a, u, r) ∈ δ and (q, a, v, s) ∈

δ implies u = v and r = s. A slightly different type of deterministic SFST is the subsequential

transducer (SST) which can produce an additional target substring when the end of the input

string has been detected.

Much in the same way a PFA generates an inconditional distribution on Σ?, if a SFST has

no useless states it generates a joint distribution PrT on Σ? × ∆?.

Given a pair (t, x) ∈ ∆∗ × Σ∗, the computation of PrT (t, x) is quite similar to the

computation of PrA(x) for a PFA A [81]. Other related problems arise in the context of

SFST [7], [88]. One of the most interesting is the stochastic translation problem: Given a

SFST T and x ∈ Σ?, compute6:

argmax
t∈∆?

PrT (t, x) . (10)

This problem has been proved to be NP-Hard [88], but an approximate solution can be

computed in polynomial time by using an algorithm similar to the Viterbi algorithm for

PFA [7], [43].

For certain particular cases of SFSTs, the (exact) stochastic translation problem is compu-

tationally tractable. If the SFST T is non-ambiguous in the translation sense (∀x ∈ Σ? there

are not two target sentences t, t′ ∈ ∆?, t 6= t′, such that PrT (t, x) > 0 and PrT (t′, x) > 0),

the translation problem is polynomial. Moreover, if T is simply non-ambiguous (∀x ∈ Σ?

and ∀t ∈ ∆? there are not two different sequences of states that deal with (x, t) with

probability greater then zero), the translation problem is also polynomial. In these two cases,

the computation can be carried out using an adequate version of the Viterbi algorithm. Finally,

6SFSTs can be used in statistical machine translation, where the problem is to find a target-language sentence that

maximizes the conditional probability Pr(t | x). This is equivalent to equation 10; i.e., maxt Pr(t | x) = maxt Pr(t, x).
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if T is subsequential, or just deterministic with respect to the input symbol, the stochastic

translation problem is also polynomial, though in this case the computational cost is O(|x|),

independent of the size of T .

The components of a SFST (states, transitions and the probabilities associated to the

transitions) can be learned from training pairs in a single process or in a two-step pro-

cess. In the latter case, first the structural component is learned and next the probabilistic

components are estimated from training samples. The GIATI (Grammatical Inference and

Alignments for Translator Inference)7 is a technique of the first type [81], [89], while OSTIA

(Onward Subsequential Transducer Inference Algorithm) and OMEGA (OSTIA Modified for

Employing Guarantees and Alignments) are techniques for learning the structural component

of a SFST [79], [80]. Only a few other techniques exist to infer finite-state transducers [77],

[90]–[92]

To estimate the probabilistic component in the two-step approaches, maximum likelihood

or other criteria can be used [7], [45], [93]. One of the main problems associated with

the learning process is the modeling of events not seen in the training set. As previously

discussed for PFA, this problem can be tackled by using smoothing techniques; either in the

estimation of the probabilistic components of the SFSTs [94] or within of the process of

learning both components [81].

B. Stochastic context-free grammars

Stochastic context-free grammars are the natural extension of probabilistic finite-state

transducers. These models are defined as a tuple 〈Q, Σ, S, R, P 〉, where Q is a set of non-

terminal symbols, Σ is an finite alphabet, S ∈ Q is the initial symbol, R is a set of rules

A → ω with ω ∈ (Q ∪ Σ)? and P : R → R+ is the set of probabilities attached to the rules

such that
∑

ω∈(Q∪Σ)? P (A → ω) = 1 for all A ∈ Q.

In general, parsing strings with these models is in O(n3) (although quadratic algorithms can

be designed for special types of stochastic context-free grammars) [4], [5]. Approximations to

stochastic context-free grammars using probabilistic finite-state automata have been proposed

in [95], [96]. Algorithms for the estimation of the probabilities attached to the rules are

7In earlier papers this technique was called MGGI (Morphic Generator Transducer Inference).
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basically the inside-outside algorithm [4], [97] and a Viterbi-like algorithm [98]. The relation

between the probability of the optimal path of states and the probability of generating a string

has been studied in [99]. The structure of stochastic context-free grammars (the non-terminal

symbols and the rules) can currently be learned from examples [100]–[102] in very limited

settings only (e.g., when grammars are even linear). An alternative line is to learn the context-

free grammar from the examples and by ignoring the distribution: Typically, Sakakibara’s

reversible grammars [103] have been used for this purpose; then, the inside-outside algorithm

is used to estimate the probabilities.

There are also extensions of stochastic context-free grammars for translation: stochastic

syntax-directed translation schemata [104] and head transducer models were proposed in

[86], [87].

C. Stochastic finite-state tree automata

Stochastic models that assign a probability to a tree can be useful, for instance, in natural

language modeling to select the best parse tree for a sentence and resolve structural ambiguity.

For this purposes, finite-state automata that operate on trees can be defined [15]. In contrast

to the case of strings, where the automaton computes a state for every prefix, a frontier-to-

root tree automaton processes the tree bottom-up and state is computed for every subtree.

The result depends on both the node label and the states obtained after the node subtrees.

Therefore, a collection of transition functions, one for each possible number of subtrees,

is needed. This probabilistic extension defines a probability distribution over the set TΣ of

labeled trees.

A probabilistic finite-state tree automaton (PTA) is defined as M = (Q, Σ, ∆, P, ρ), where

• Q is a finite set of states;

• Σ is the alphabet;

• ∆ = {δ0, δ1, . . . , δM} is a collection of transition sets δm ⊂ Q × Σ × Qm;

• P is a collection of functions P = {p0, p1, p2, . . . , pM} of the type pm : δm → [0, 1];

• ρ are the root probabilities ρ : Q → [0, 1].

The required normalizations are
∑

q∈Q

ρ(q) = 1 , (11)
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and, for all q ∈ Q,

∑

a∈Σ

M∑

m=0

∑

i1,...,im∈Q:
(q,a,i1,...,im)∈δm

pm(q, a, i1, . . . , im) = 1 . (12)

The probability of a tree t in the stochastic language generated by A is defined as

p(t|A) =
∑

q∈Q

ρ(q) · π(q, t) , (13)

where π(q, t) is recursively defined as:

π(q, t) =





p0(q, a) if t = a ∈ Σ ,

∑

i1,...,im∈Q:

(q,a,i1,...,im)∈δm

pm( q, a, δ(t1), . . . , δ(tm)) · π(i1, t1) · · ·π(im, tm) ,

if t = a(t1 · · · tm) ∈ TΣ − Σ ,

0 otherwise.

(14)

As in the case of PFA it is possible to define deterministic PTA as those where the set

{q ∈ Q : (q, a, i1, ..., im) ∈ δm} has size at most 1 for all a ∈ Σ, for all m ≥ 0 and for all

i1, ..., im ∈ Q. In such a case, a minimal automaton can be defined and it can be identified

from samples [15].

In contrast, the consistency of probabilistic tree automata is not guaranteed by the nor-

malizations (11) and (12) even in the absence of useless states. Consistency requires that the

spectral radius of the production matrix Λ defined below is strictly smaller than 1 [42]:

Λij =
∑

a∈Σ

M∑

m=1

∑

i1,i2,...,im∈Q:
(i,a,i1,...,im)∈δm

pm(i, a, i1, i2, ..., im) · (1(j, i1) + · · · + 1(j, im)) , (15)

where 1(i, j) is Kronecker’s delta defined before.

V. CONCLUSION

We have in this paper proposed a survey of the properties concerning deterministic and

non-deterministic probabilistic finite-state automata. A certain number of results have been

proved and others can be fairly straightforwardly derived from them. On the other hand, we

have left many questions not answered in this work. They correspond to problems that to

our knowledge are open or, even in a more extensive way, to research lines that should be

followed. Here are some of these:
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1) We studied in the section concerning topology of part I [1] the questions of computing

the distances between two distributions represented by PFA. In the case where the PFA

are DPFA the computation of the L2 distance and of the Kullback-Leibler divergence

can take polynomial time, but what about the L1, L∞ and logarithmic distances?

2) In the same trend it is reasonably clear that if at least one of the distributions is

represented by a PFA, the problem of computing or even approximating the L1 (or

L∞) is NP-hard. What happens for the other distances? The approximation problem

can be defined as follows: Given an integer m decide if d(D,D′) < 1
m

.

3) In [105] the question of computing the weight of a language inside another (or follow-

ing a regular distribution) is raised. Technically, it requires computing
∑

w∈LA
PrB(w)

where A is a DFA and B is a DPFA. Techniques for special cases are proposed in [105]

but the general question is not solved. The problem is clearly polynomially solvable;

the problem is that of finding a fast algorithm.

4) The equivalence of HMM has been studied in [106], where it is claimed that it can

be tested in polynomial time. When considering the results from our section II-C it

should be possible to adapt the proof in order to obtain an equivalent result for PFA.

5) We have provided a number of results on distances in the section concerning distances

of part I [1]. Yet a comparison of these distances, and how they relate to learning

processes would be of clear interest. From the theoretical point of view, in probabilis-

tic PAC learning framework, the error function used is usually the Kullback-Leibler

divergence [17]–[19], [56], [58]. As we mentioned many other measures exist and it

should be interesting to study learnability results while changing the similarity measure.

6) Smoothing is a crucial issue for language modeling (see section III-C). Good smooth-

ing techniques for PFA and DPFA would surely improve the modeling capacities of

these models, and it can be conjectured that they might perform better than standard

techniques.

7) Testing the closeness of two distributions from samples is also an issue that matters:

Whether to be able to use larger data sets for learning or to be able to decide merging

in learning algorithms, one wishes to be able to have a simple test to decide if two

samples come from the same (or sufficiently similar) distribution or not.
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8) Following [88], we recall that the problem of deciding whether the probability of the

most probable string is more than a given fraction is NP-hard. It is not known if the

problem belongs to NP.

Obviously there are many topics related with PFA that require further research efforts

and here only few are mentioned. To mention but one of these topics, probabilistic (finite

or context-free) transducers are increasingly becoming important devices, where only a

few techniques are known to infer finite-state transducers from training pairs or to smooth

probabilistic finite-state transducers when the training pairs are scarce.

Solving some of the above problems, and in a more general way, better understanding

how PFA and DPFA work, would necessarily increase their importance and relevance in a

number of fields, and specifically those that are related to pattern recognition.
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APPENDIX

A. Proof of the Theorem 3

Theorem 3 (Stochastic morphism theorem)

Let Σ be a finite alphabet and D a stochastic regular language on Σ?. There exist then a

finite alphabet Σ′, a letter-to-letter morphism h : Σ′? → Σ?, and a stochastic local language

over Σ′, D2, such that D = h(D2); i.e.,

∀x ∈ Σ?, PrD(x) = PrD2(h
−1(x)) =

∑

y∈h−1(x)

PrD2(y) , (16)

where h−1(x) = {y ∈ Σ′? | x = h(y)}.

Proof: By proposition 11 of [1], D can be generated by a PFA with a single initial

state. Let A =< Q, Σ, δ, q0, F, P > be such a PFA. Let Σ′ = {aq|(q′, a, q) ∈ δ} and define

a letter-to-letter morphism h : Σ′ → Σ by h(aq) = a. Next, define a stochastic local

language, D2, over Σ′ by Z = (Σ′, PI , PF , PT ), where

PI(aq) = P (q0, a, q), PF (aq) = F (q), PT (a′
q′ , aq) = P (q′, a, q) . (17)

Now, let x = x1 . . . xn be a non-empty string over Σ, with PrD(x) > 0. Then, at least one

valid path exists for x in A. Let θ be one of these paths, with s0 = q0:

θ = (s0, x1, s1) . . . (sn−1, xn, sn) .

Associated with θ, define a string y over Σ′ as:

y = y1 . . . yn = x1s1
. . . xnsn

.

Let Y be the set of strings in Σ′? associated with all the valid paths for x in A. Note that for

each y ∈ Y there is a unique path for x and vice-versa. Note also that x = h(y). Therefore

Y = h−1(x).

If x = λ, it has a unique degenerate path consisting only in q0; that is Y = {λ} and

PrD2(λ) = F (q0) = PrD(λ). Otherwise, from equations (4) and (17), the probability of

every y ∈ Y is:

PrD2(y) = PI(x1s1
) ·

n∏

i=2

PT (xi−1si−1
, xisi

) · PF (xnsn
)

= P (s0, x1, s1) ·
n∏

i=2

P (si−1, xi, si) · F (sn) ;
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which, according to equation (1) in section II-F of [1] (and noting that in our PFA I(q0) = 1),

is the probability of the path for x in A y is associated with. Finally, following equation (2)

in section II-F of [1] (that gives the probability of generating a string),

∑

y∈Y

PrD2(y) = PrA(x) ∀x : PrD(x) > 0 .

On the other hand, if PrD(x) = 0, then Y = ∅, leading to
∑

y∈Y PrD2(y) = 0. Therefore,

since Y = h−1(x), we have h(D2) = D.

This proof is a probabilistic generalization of the proof for the classical morphism the-

orem [26]. Given the non-equivalence of PFA and DPFA, the present construction required

the use of non-deterministic and possibly ambiguous finite-state automata.

B. Proof of the Proposition 4

Proposition 4 Given a PFA A with m transitions and PrA(λ) = 0, there exists a HMM

M with at most m states, such that DM = DA.

Proof: Let A = 〈Q, Σ, δ, I, F, P 〉 be a PFA. We create an equivalent HMM M =

〈Q, Σ, I, qf , T, E〉 as follows

• Q = Q × Q;

• I(q, q′) = I(q) ·
∑

a∈Σ P (q, a, q′) for all (q, q′) ∈ Q;

• T((q, q′), (q′, q′′)) =
∑

a∈Σ P (q′, a, q′′) and T((q, q′), qf) = F (q′);

• E((q, q′), a) = P (q,a,q′)P
b∈Σ P (q,b,q′) if P (q, a, q′) 6= 0

For each x = x1 . . . x|x| ∈ Σ? with PrA(x) 6= 0, there is at least a sequence of states

(s0, . . . , s|x|) that generates x with probability:

I(s0) · P (s0, x1, s1) · · · · P (s|x|−1, x|x|, s|x|−1, s|x|) · F (s|x|) .

And in M,

I(s0, s1) · E((s0, s1), x1) · T((s0, s1), (s1, s2)) . . .E((s|x|−1, s|x|), x|x|) · T((s|x|−1, s|x|), qf) .

For each path in A there is one and only one path in HMM, the theorem holds.
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C. Proof of the Proposition 5

Proposition 5 Given a HMM M with n states there exists a PFA A with at most n states

such that DA = DM.

Proof: Let M = 〈Q, Σ, I, qf , T, E〉 be a HMM. We create an equivalent PFA A′ =

〈Q, Σ, I, δ, F, P 〉 as follows:

Q = Q;

I(q) = I(q), for all q ∈ Q�{qf}, and I(qf) = 0;

δ = {(q, a, q′) : T(q, q′) 6= 0 and E(q, a) 6= 0};

F (q) = 0 for all q ∈ Q�{qf}, and F (qf) = 1;

P (q, a, q′) = E(q, a) · T(q, q′).

For each x = x1 . . . x|x| ∈ Σ? with PrM(x) 6= 0, there is at least a sequence of states

(s1, . . . , s|x|, qf) that generates with x with probability:

I(s1) · E(s1, x1) · T(s1, s2) · · ·T(s|x|−1, s|x|) · E(s|x|, x|x|) · T(s|x|, qf) .

And in A′,

I(s1) · P (s1, x1, s2) · · ·P (s|x|, x|x|, qf) .

For each path in M there is one and only one path in A′. Moreover, by construction,

I(s1) = I(s1) and P (q, a, q′) = E(q, a) ·T(q, q′); Therefore DA′ = DM. Finally, by proposi-

tion 11 of [1], we can build a PFA A, with at most |Q| = n states, such that DA′ = DA.
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