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Abstract—A novel adaptive smoothing approach is proposed for noise removal and feature preservation where two distinct measures

are simultaneously adopted to detect discontinuities in an image. Inhomogeneity underlying an image is employed as a multiscale

measure to detect contextual discontinuities for feature preservation and control of the smoothing speed, while local spatial gradient is

used for detection of variable local discontinuities during smoothing. Unlike previous adaptive smoothing approaches, two discontinuity

measures are combined in our algorithm for synergy in preserving nontrivial features, which leads to a constrained anisotropic diffusion

process that inhomogeneity offers intrinsic constraints for selective smoothing. Thanks to the use of intrinsic constraints, our smoothing

scheme is insensitive to termination times and the resultant images in a wide range of iterations are applicable to achieve nearly

identical results for various early vision tasks. Our algorithm is formally analyzed and related to anisotropic diffusion. Comparative

results indicate that our algorithm yields favorable smoothing results, and its application in extraction of hydrographic objects

demonstrates its usefulness as a tool for early vision.

Index Terms—Adaptive smoothing, inhomogeneity, spatial gradient, noise removal, feature preservation, anisotropic diffusion, local

scale control, multiple scales, the termination problem, extraction of hydrographic objects.
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1 INTRODUCTION

INorder to understand an image, a multistage processing is
necessary in human visual system [1]. The early stage of a

vision system plays an important role in visual information
processing, which critically determines the ultimate inter-
pretation of an image. On the other hand, real images are
complex since there are large numbers of diversified objects
in the physical world and the imaging process is inevitably
corrupted by noise from various sources. In computer
vision, smoothness is a generic assumption that many types
of images have approximately piece-wise constant gray
levels, which characterizes the coherence and homogeneity
of an object. Therefore, smoothing is viewed as a general tool
in the low-level of machine vision [2], [3], [4], [5], [6], [7], [8].
In general, the purpose of smoothing is of twofold: noise is
eliminated to facilitate further processing, and the features
irrelevant to a given problem are ruled out to reduce the
complexity for subsequent processing.

Smoothing techniques have been extensively studied in
the computer vision community. In general, smoothing
algorithms are roughly classified into two categories: linear
and nonlinear smoothing [7]. For linear smoothing, local
operators are uniformly applied to an image to form the
output intensity of a pixel from a weighted summation of
input intensities of its neighboring pixels. A major short-
coming of linear smoothing is that important features, e.g.,
boundaries between different regions, are blurred after
smoothing. Nonlinear smoothing has been developed to
overcome the shortcoming, which tends to preserve impor-
tant features along with noise removal during smoothing.

Adaptive smoothing is a class of typical nonlinear
smoothing techniques that have been studied for many
years [2], [5], [9], [10], [11], [12], [13], [14], [15]. The general
idea underlying adaptive smoothing is to adapt pixel
intensities to the local attributes of an image on the basis
of discontinuity measures. Inspired by Perona and Malik’s
seminal work [16], there have been exploratory efforts in
connecting adaptive smoothing with systems of nonlinear
partial differential equations [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], which is
argued to provide a theoretical foundation for adaptive
smoothing [32], [33]. In this framework, adaptive smoothing
is simulated as a nonuniform diffusion process, where noise
is removed and important features are preserved. Adaptive
smoothing has been applied to many computer vision tasks
ranging from medical image processing to postprocessing
of noisy data (for a review, see [34]).

In adaptive smoothing, a discontinuity measure critically
determines its performance. For most adaptive smoothing
approaches, spatial gradient iswidely used as adiscontinuity
measure. Owing to overlocality, however, it is inadequate to
detect significant discontinuities from a noisy image, which
causes an adaptive smoothing algorithm to yield poor
results. For instance, Fig. 2c illustrates a spatial gradient
map of the image in Fig. 2b which is a noisy version of an
image shown in Fig. 2a. It is observed from Fig. 2c that
discontinuities of boundaries of the smallest circle (cf., Fig. 2a)
cannot be distinguished from substantial noise. Thus, some
nontrivial features would fail to survive independently
during smoothing if the spatial gradient is solely used for
detecting discontinuities; in other words, they either cosur-
vive or are smoothed out simultaneously with substantial
noise while noise is removed from the image. To tackle the
problem, different efforts have been made in the last decade.
These efforts in the context of adaptive smoothing can be
classified into two categories; one is spatial regularization
and the other is alternative discontinuitymeasures. In spatial
regularization, a Gaussian kernel is employed for removing
noise prior to gradient estimation [17], [18], [32], [33].
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Although noise may be removed by spatial regularization, it
may cause important discontinuities to be blurred since a
Gaussian operation has the linear smoothing effect. On the
other hand,miscellaneous discontinuitymeasures have been
proposed for robustness. A direct extension from spatial
gradient is introducing measures of higher order differentia-
tions and/or taking feature directions into consideration [6],
[13], [14], [19], [24], [31], [32]. To some extent, however, these
techniques incur significantly higher computational com-
plexity since, in those approaches, a discontinuity measure
has to be used in each iteration of adaptive smoothing. In
addition, other discontinuity measures have also been
developed to overcome overlocality, a weakness of spatial
gradient. Unlike spatial gradient, some image-dependent
morphological or structural information has been considered
in these measures so that even in the presence of substantial
noise important features still can be detected in a proper scale
[15], [35]. However, finding a proper scale becomes a
nontrivial problem for practical applications. Recently, Saha
et al. proposed an algorithm that automatically determines
local scales everywhere for a given image [36], which leads to
an alternative image-dependent discontinuity measure. As a
result, such a measure has been applied to adaptive
smoothing and yields impressive performance in medical
image processing [29]. Although their measure outperforms
spatial gradient and other discontinuity measures, our
empirical studies indicate that it might still fail to accurately
detect nontrivial discontinuities in the presence of severe
noise. Apart from the aforementioned efforts, Crespo and
Schafer explicitly used edge information to represent sig-
nificant discontinuities [37], which implies that they were
using the solution to the problem that we attempt to solve. In
general, identification of nontrivial discontinuities from an
image is a challenging problem and, therefore, robust
measures of a low computational complexity are still worth
exploring for practical applications.

As a defining characteristic, iterative operations are
inevitably involved in adaptive smoothing. Thus, perfor-
mance of an iterative algorithm highly depends upon the
termination time, which, coupled with the fact that adaptive
smoothing algorithms generally converge to a uniform
intensity image [3], [16], causes what we often refer to as
the termination problem [8]. In other words, when and where
to stop smoothing is a challenging problem in adaptive
smoothing and no explicit stopping criterion has been found
yet. Although little theoretical research has been done for
solving the termination problem, there have been several
heuristicmethods to determine the stopping time in adaptive
smoothing [17], [20], [33], [38], [39]. However, most of them
are rather tricky and hard to use in practice. Recent studies
reveal that the termination problem is strongly associated
with the automatic control of local scales in image processing
[40], [41]. Liang and Wang propose a criterion with the local
scale control for stopping adaptive smoothing [41].However,
it is unclear whether such a gradient-based criterion enables
adaptive smoothing to stop in a finite number of iterations.
As pointed out by Saha and Udupa [29], there might be
leakages on boundaries caused by local blurring artifacts. If
the stopping criterion fails to detect such a leakage, adaptive
smoothing would never stop at the boundary. As a
consequence, smoothing runs straight across that boundary,
and the intensity mass of adjacent regions would inevitably
interact each other as long as adaptive smoothing runs for a
sufficiently long time. In general, the termination problem is
still open, which indeed becomes an obstacle for the use of
adaptive smoothing in practice.

In our earlier work [35], we proposed a weight adaptation
scheme for an oscillatory neural network in the context of
image segmentation. In essence, this neuronal scheme tends
to play a role of adaptive smoothing prior to segmentation. In
this scheme, two different discontinuity measures, spatial
variance of a single spatial scale (a tunable parameter) and
local discontinuity defined in the immediate neighborhood
of a pixel, are jointly employed for robustness. Although the
scheme turns out to be effective for miscellaneous images,
there are still several open problems. First, the contextual
discontinuity measure of a single spatial scale leads to a
difficulty in accurately capturing the intrinsic structure of a
given image since the image often demands multiple local
scales for characterizing its nature. Next, several parameters
have to be tuned for a desirable contextual discontinuity
map. If any proper parameters fail to be achieved, its
performancewould be considerably degraded. Furthermore,
parameter tuning is rather tedious and complicated, which
becomes a big hurdle for the scheme to be applied in practice.
Apart from the tedious parameter tuning, our weight
adaptation schemewas proposed simply based on a heuristic
idea and there was no formal analysis on this scheme and its
behaviors. Also, it is yet unclear about how such a scheme, as
converted into an adaptive smoothing algorithm, is related to
the well understood anisotropic diffusion theory.

In this paper, we further develop our previous heuristic
idea [35] from an alternative perspective in order to come up
with a systematic and theoretically supported adaptive
smoothing approach. Unlike our earlier work, we first
explore alternative discontinuity measures for detecting
contextual and local discontinuities. Recently, Saha et al.
proposed a scale-based affinity theory [36], which leads to a
parameter-free algorithm for detecting region homogeneity
based on local scales [36], [42]. Instead of the spatial variance,
we modify their algorithm to come up with an alternative
contextual discontinuity measure, hereinafter named inho-
mogeneity, for our purpose. The inhomogeneity measure not
onlyavoidsa tediousparameter tuningprocessbut alsooffers
image-dependent local scales for a given image. In addition,
spatial gradient is simply employed as a local discontinuity
measure to monitor variations of local discontinuities during
smoothing. Furthermore,we analyze the proposed algorithm
andshowhowour smoothingprocess is related toanisotropic
diffusion, a generic framework for understanding adaptive
smoothing. This analysis uncovers that our adaptive smooth-
ingalgorithmturnsout tobeanalternative implementationof
the nonlinear anisotropic diffusion process, first proposed by
Perona and Malik [16], by introducing two complementary
discontinuity measures to diffusion coefficients. The use of a
contextual discontinuity measure in adaptive smoothing is
actually exploiting the intrinsic nature of a given image to
sensibly constrain diffusion, which forms a genuine non-
linear anisotropic diffusion process. A formal analysis on
behaviors of our algorithmwith respect to a step edge is also
presented. By simulations, we demonstrate that the resultant
images in a wide range of iterations lead to the nearly
identical results, which provides, to a great extent, a practical
way to alleviate the termination problem. To evaluate its
performance, we have applied our adaptive smoothing
algorithm to images corrupted by a variety of noise and a
special image segmentation task—extraction of hydro-
graphic objects from satellite images. Simulations indicate
that our algorithm yields favorable results in comparison
with several recent smoothing algorithms, and its application
in extraction of hydrographic objects demonstrates its
usefulness as a tool for early vision.

CHEN: ADAPTIVE SMOOTHING VIA CONTEXTUAL AND LOCAL DISCONTINUITIES 1553



The contributions of this paper are summarized as
follows: First, we introduce a multiscale contextual disconti-
nuity measure based on the scale-based affinity theory [36],
[42] to our adaptive smoothing scheme and come up with a
new normalization scheme to further enhance the measure.
Such a multiscale measure along with its normalization
scheme turns out to effectively overcome the weakness of
our previous heuristic idea [35]. As a result, the proposed
inhomogeneity measure of multiple local scales without the
need of parameter tuning captures the intrinsic structure of a
given image more accurately, which significantly distin-
guishes from the spatial variance of a single local scale
obtained by parameter tuning and then uniformly applied to
the image for encoding contextual discontinuities [35].
Second, we formally analyze stability and behaviors of our
algorithmwith respect to a step edge, which offers an insight
into how our algorithm works during smoothing. Further-
more, we show that our algorithm provides a novel
implementation of the nonlinear anisotropic diffusion
process [16]; i.e., our algorithm leads to a sensibly con-
strained diffusion process that distinguishes from those
generated by existing adaptive smoothing algorithms. This
contribution relates our algorithm closely to existing
adaptive smoothing algorithms and gains a clear insight
into the essence of our algorithm. Finally, by an empirical
study, we demonstrate the usefulness of our adaptive
smoothing algorithm with its favorite features, e.g., insensi-
tive to termination times and free of parameter tuning.

The reminder of this paper is organized as follows:
Section 2 presents different discontinuity measures and our
adaptive smoothing algorithm. Section 3 analyzes our
algorithm and its behaviors and further relates it to
anisotropic diffusion. Section 4 describes simulations in-
cluding methodology, comparative results of smoothing,
and an application in extraction of hydrographic objects
from satellite images. Section 5 discusses related issues, and
the last section draws conclusions.

2 ADAPTIVE SMOOTHING BY COMBINING

DISCONTINUITY MEASURES

In this section, we first describe two different discontinuity
measures and then present an adaptive smoothing algo-
rithm by integrating both discontinuity measures.

2.1 Discontinuity Measures

It is well-known that discontinuities in an image likely
correspond to important features.However, noise corruption
can generate discontinuities as well. Therefore, how to
measure significant discontinuities is a nontrivial issue. To
facilitate smoothing, two types of discontinuity are used in
our approach: local and contextual discontinuity. A local
measure is used to detect variable local discontinuities and
acutely sensitive to any local intensity change. However, the
local discontinuity measure is not always robust. If noise is
substantial in an image, this measure cannot distinguish
between significant features andnoisedue to overlocality.On
the other hand, we observe that contextual information, i.e.,
the attributes of neighboring pixels, can be used to reduce
ambiguity even in noisy circumstances. An ensemble of
coupled pixels provides a basis of detecting contextual
discontinuities corresponding to potentially important fea-
tures, and it is anticipated that an effective contextual
discontinuity measure can detect the intrinsic nature of an
image. Essentially, we would like local discontinuities to
indicate the details of local structures and contextual

discontinuities to offer a “road map” to specify where
important features are in a given image. Unlike our earlier
work [35], we employ the spatial gradient [7] as a local
discontinuity measure and derive a new contextual disconti-
nuity measure from the scale-based affinity theory [36].

2.1.1 Spatial Gradient

As a common local discontinuity measure in image
processing, spatial gradient is approximately estimated in
a nearest neighborhood [7]. For a pixel ðx; yÞ, we define its
neighborhood, N xyðRÞ, as

N xyðRÞ ¼
n
ði; jÞ j jx�ij�R; jy�jj�R

o
; ð1Þ

where R ðR � 0 and R 2 ZÞ is a parameter that determines
the size of this neighborhood. Note that here the neighbor-
hood is defined without explicitly considering image
boundaries. The neighborhood is delimited by the image
boundaries. For convenience in notation, we stipulate that
N xyð0Þ is pixel ðx; yÞ itself, which is actually not a
neighborhood of the pixel. As described later, the parameter
R > 0 specifies a local spatial scale associated with
pixel ðx; yÞ that critically determines results of the con-
textual discontinuity measure. Obviously, the nearest
neighborhood of pixel ðx; yÞ is always N xyð1Þ. As defined
in [7], spatial gradient at pixel ðx; yÞ is the first derivatives of
its image intensity function:

rIIðx;yÞ ¼
h @Iðx;yÞ

@x
;
@Iðx;yÞ
@y

iT
; ð2Þ

where the derivatives are approximated in N xyð1Þ by

@Iðx;yÞ
@x

¼Iðxþ1;yÞ � Iðx�1;yÞ; ð3aÞ

@Iðx;yÞ
@y

¼Iðx;yþ1Þ � Iðx;y�1Þ: ð3bÞ

Here, Iðx;yÞ is the intensity of pixel ðx; yÞ. Accordingly, the
magnitude of the gradient vector in (2) is given by

jrIIðx;yÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� @Iðx;yÞ
@x

�2

þ
� @Iðx;yÞ

@y

�2

s
: ð4Þ

2.1.2 Inhomogeneity

We now derive a contextual discontinuity measure, i.e.,
inhomogeneity, from the scale-based affinity theory pro-
posed by Saha et al. [36]. The basic idea underlying the
scale-based affinity between two pixels ðx; yÞ and ði; jÞ in a
gray-level image is finding out a proper neighborhood or
local scale at two pixels so that all the pixels in the
neighborhood meet an intensity uniformity criterion. Using
this idea, we first determine an appropriate size of
neighborhood or scale Rxy for any pixel in a given image
and further define the inhomogeneity measure.

To facilitate our presentation, we define the boundary

region of a neighborhood of pixel ðx; yÞ of size R by

BxyðRÞ ¼ fði; jÞ j ði; jÞ 2 N xyðRÞ � N xyðR� 1Þg: ð5Þ

Here, R > 0 ðR 2 ZÞ and the region is delimited by the
image boundaries. As defined in [36], the uniformity
criterion for testing the similarity between pixel ðx; yÞ and
the ensemble of pixels in the boundary region of its
neighborhood of size R is
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Uðx;yÞðRÞ ¼
P

ði;jÞ2BxyðRÞ exp
h
�ðIðx;yÞ�Iði;jÞÞ2

2�2u

i
jBxyðRÞj

; ð6Þ

where jBxyðRÞj is the cardinality of BxyðRÞ and �u is a
parameter reflecting the statistics of local intensity differ-
ence in a given image. As suggested by Saha et al. [36], this
parameter is determined by estimating statistics of local
intensity differences over the entire image. In other words,
for each pixel ðx; yÞ in the image, its local intensity
differences, jIðx;yÞ � Iði;jÞj, are first calculated based on its
nearest neighborhood, ði; jÞ 2 Bxyð1Þ. After ruling out the
upper 10 percent values of all the local intensity differences,
which are assumed to present interobject boundaries, we
estimate the mean and the variance of the remaining
90 percent values of differences, �d and �d. Suppose that the
remaining local intensity difference is subject to the
Gaussian distribution, the parameter �u is determined by

�u ¼ �d þ 3�d; ð7Þ
which indicates a fact on the Gaussian distribution; i.e.,
three standard deviations on both sides of the mean cover
99.7 percent of the population. Intuitively, �u can be viewed
as an estimate of noise or trivial details within intraobjects.
Therefore, (6) offers a similarity measure to determine the
coherence between a pixel and the ensemble of all pixels in
the boundary region of its neighborhood. Thus, finding a
local scale based on (6) becomes a problem to search for the
maximal neighborhood for each pixel where the focused
pixel is coherent with the ensemble of pixels in all possible
boundary regions up to this neighborhood; i.e., for
pixel ðx; yÞ its optimal local scale is

Rxy ¼ argmax
r2Z; r>1

fUðx;yÞðrÞ � Tsg

s:t: 8R 2 Z ð1 � R < Rxy�1Þ; Uðx;yÞðr�RÞ � Ts;
ð8Þ

where Ts is a tolerance parameter and fixed to be 0.85 as
recommended in [36]. Apparently, a solution to the local
optimization problem in (8) is in compliance with an
exhausted search procedure that checks the similarity
between a pixel and its possible boundary regions in an
ascent order from r ¼ 2. Note that, unlike the definition in
[36], we stipulate that the minimal local scale or neighbor-
hood of a pixel be one or its nearest neighborhood rather
than zero or the pixel itself for robustness thanks to our
previous investigation [43].

Once optimal local scales are obtained, we further
determine the disconnectedness or incoherence between
two adjacent pixels where one pixel is a member of the
nearest neighborhood of the other mutually. For a pair of
adjacent pixels ðx; yÞ and ði; jÞ, two neighborhoods are
defined based on their optimal local scales Rxy and Rij:

N xy;ijðx; yÞ ¼ fðv; wÞ j jx�vj � Rxy;ij; jy�wj � Rxy;ijg;
N xy;ijði; jÞ ¼ fðv0; w0Þ j ji�v0j � Rxy;ij; jj�w0j � Rxy;ijg:

Here, Rxy;ij ¼ minfRxy; Rijg. By the definition, two adjacent
pixels always have neighborhoods of the same size such
that a correspondence between two neighborhoods can be
established to achieve local intensity differences. Suppose
that pixels ðv; wÞ and ðv0; w0Þ are an aligned pair of pixels in
neighborhoodsN xy;ijðx; yÞ andN xy;ijði; jÞ, respectively; they
must satisfy the constraints: x�v ¼ i�v0 and y�w ¼ j�w0.
As defined in [36], the intensity differences between
neighborhoods N xy;ijðx; yÞ and N xy;ijði; jÞ are

Dþ
xy;ij ¼

X
ðv;wÞ2Nxy;ijðx;yÞ
ðv0 ;w0 Þ2Nxy;ijði;jÞ

s:t: x�v¼i�v0 ;y�w¼j�w0

�
1�exp

�
�

ðdþ
vw;v0w0

Þ2

2R2
xy;ij

��
exp

�
�

d2xy;vw

2R2
xy;ij

�
; ð9aÞ

D�
xy;ij ¼

X
ðv;wÞ2Nxy;ijðx;yÞ
ðv0 ;w0 Þ2Nxy;ijði;jÞ

s:t: x�v¼i�v0 ;y�w¼j�w0

�
1�exp

�
�

ðd�
vw;v0w0

Þ2

2R2
xy;ij

��
exp

�
�

d2xy;vw

2R2
xy;ij

�
; ð9bÞ

where

d2xy;vw ¼ ðx� vÞ2 þ ðy� wÞ2;

dþvw;v0w0 ¼
Iðv;wÞ � Iðv0;w0Þ; if Iðv;wÞ � Iðv0;w0Þ > 0;

0; otherwise:

�

d�vw;v0w0 ¼ Iðv;wÞ � Iðv0;w0Þ; if Iðv;wÞ � Iðv0;w0Þ < 0;
0; otherwise:

�
As argued by Saha and Udupa [42], Dþ

xy;ij and D�
xy;ij in (9)

together offer a measure for detecting intra and interobject
intensity variations in the vicinity of pixels ðx; yÞ and ði; jÞ.
Therefore, we define the disconnectedness or incoherence
between two adjacent pixels ðx; yÞ and ði; jÞ as

�½N xy;ijðx; yÞ;N xy;ijði; jÞ� ¼
jDþ

xy;ij �D�
xy;ijjP

ðv;wÞ2N xy;ijðx;yÞ exp

�
� d2xy;vw

2R2
xy;ij

� :

Here, we anticipate that �½N xy;ijðx; yÞ;N xy;ijði; jÞ� indicates
the degree of nonuniformity of the regions, defined by
N xy;ijðx; yÞ and N xy;ijði; jÞ, surrounding pixels ðx; yÞ and
ði; jÞ. That is, the value of�½N xy;ijðx; yÞ;N xy;ijði; jÞ�would be
high if pixels ðx; yÞ and ði; jÞ are located around a boundary
or a nontrivial discontinuity, otherwise, its value tends to be
low. Thus, we define the inhomogeneity of pixel ðx; yÞ as

Hðx;yÞ ¼
P

ði;jÞ2Bxyð1Þ �½N xy;ijðx; yÞ;N xy;ijði; jÞ�
jBxyð1Þj

: ð10Þ

As a robust multiscale measure defined by an ensemble of
coupled pixels, inhomogeneity tends to reveal the intrinsic
disconnectedness or incoherence between a pixel and its
surrounding by means of a scale-based or image-dependent
property.

To facilitate the use of inhomogeneity as a contextual
discontinuity measure, we normalize Hðx;yÞ by

�HHðx;yÞ ¼
Hðx;yÞ �Hmin

Hmax �Hmin
; ð11Þ

where Hmax and Hmin are the maximal and minimal
inhomogeneity values across the entire image, respectively.
For an image, all the normalized inhomogeneity values
monotonically distribute within the interval ½0; 1� to ensure
that the maximum is one and the minimum is zero. In order
to enhance the contextual discontinuities underlying an
image, we further introduce a nonlinear transformation to
highlight higher inhomogeneity that more likely corre-
sponds to important features. There are a variety of
nonlinear transformations to meet such a requirement. One
of them used in our simulations is a sine transformation:

ĤHðx;yÞ ¼ sin

�
�

2
�HHðx;yÞ

�
; 0 � �HHðx;yÞ � 1: ð12Þ
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The effect of such a nonlinear transformation is depicted in
Fig. 1a. As a demonstration, an example of the normalized
inhomogeneity map and its nonlinear version are illustrated
in Figs. 1b and 1c for the noisy image shown in Fig. 2b. In
the maps, brightness is proportional to the degree of
inhomogeneities. Thus, it is evident that the inhomogeneity
maps readily indicate locations of significant discontinuities
and homogeneous regions. Moreover, the map correspond-
ing to the nonlinear version suggests that the inhomogene-
ities indicating most of important features, e.g., boundaries
of circles, are enhanced, which may better protect sig-
nificant discontinuities from being blurred during adaptive
smoothing. We argue that the normalized inhomogeneity
and its nonlinear version offer a multiscale contextual
discontinuity measure, which forms a “road map” for
guiding adaptive smoothing. Here, we emphasize that there
is no parameter tuning in detection of such inhomogeneity.

2.2 Algorithm
The generic form of adaptive smoothing is to update a
pixel’s intensity through local weighted averaging of its
neighboring pixels’ intensities. A critical issue in adaptive
smoothing is how to utilize local image structures to
determine proper weights for averaging. In general, a large
weight should be assigned to a pixel that involves low
discontinuities, and vice versa. Most of adaptive smoothing
algorithms simply use one discontinuity measure, e.g.,
spatial gradient, to generate weights. Unlike previous
algorithms, we develop an alternative adaptive smoothing
scheme by combining both inhomogeneity and spatial
gradient described in Section 2.1 as follows:

I
ðtþ1Þ
ðx;yÞ ¼ I

ðtÞ
ðx;yÞ þ �ðx;yÞ

P
ði;jÞ2Bxyð1Þ �ði;jÞ�

ðtÞ
ði;jÞðI

ðtÞ
ði;jÞ � I

ðtÞ
ðx;yÞÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

; ð13Þ

where I
ðtÞ
ðx;yÞ is the intensity of pixel ðx; yÞ at iteration t. �ðx;yÞ

and �
ðtÞ
ðx;yÞ are defined as

�ðx;yÞ ¼ gðĤHðx;yÞ; hÞ; ð14aÞ

�
ðtÞ
ðx;yÞ ¼ gðjrII

ðtÞ
ðx;yÞj; SÞ: ð14bÞ

Here, gð�; �Þ is a nonnegative monotonically decreasing
function. There are numerous functions of such a property.
Two common forms are

gðz;KÞ ¼ exp
�
� z2

2K2

�
; ð15aÞ

gðz;KÞ ¼ 1

1þ z2

K2

: ð15bÞ

In (14), parameter h ð0<h<1Þ is used to determine to what
extent potential important features should be preserved in
terms of contextual discontinuities, and parameter S ðS>0Þ
determines to what extent local discontinuities should be
preservedduringsmoothing.Theselectionof twoparameters
will be discussed later on. By nonlinear transformations in
(14), the � term encodes the effect of intrinsic contextual
discontinuities while the � term encodes the instantaneous
effect of local discontinuities during smoothing.

In (13), the intensity of pixel ðx; yÞ is updated based on its
neighboring attributes in terms of both contextual and local
discontinuities. While the intensity of pixel ðx; yÞ is updated,
both �

ðtÞ
ði;jÞ and �ði;jÞ associated with its nearest neighbors (cf.,

(13) and (14)) are jointly used to determine weights for local
weighted averaging, and �ðx;yÞ itself is employed for the gain
control of smoothing. For local weighted averaging, �

ðtÞ
ði;jÞ

would play a dominant role for noise removal and feature
preservationwhenall the adjacentpixels of ðx; yÞhave similar
contextual discontinuities. In this circumstance, pixel ðx; yÞ
should be within a relatively homogeneous region and its
intensity is updated to fit its local structures in terms of the
parameter S. On the other hand, if the adjacent pixels of ðx; yÞ
have different contextual discontinuities, weights for update
must be determined by both contextual and local disconti-
nuities. In this case, pixel ðx; yÞ and its neighbors are likely
near a boundaryofdifferent regions and, therefore, the role of
its neighbors in update is determined by the overall effects of
local and contextual discontinuities. That is, for aneighboring
pixel ði; jÞ, it will play a more important role in update if its
overall discontinuities are relatively low or the value of

�ði;jÞ�
ðtÞ
ði;jÞ is relatively large, and vice versa. As mentioned

before, the local discontinuity measure is sensitive to any
local intensity changes, while the contextual discontinuity
measure is relatively not butmore robust. The joint use of the
two measures leads to a complementary effect for feature
preservation. In addition, if pixel ðx; yÞ resides in a relatively
homogeneous region, the value of �ðx;yÞ is large so that fast
smoothing is performed there, otherwise, the smoothing
tends to be slow under control of �ðx;yÞ so that important
features can be preserved. The use of contextual disconti-
nuity in this way introduces a novel mechanism for
preserving important features along with noise removal.

Given an image, I
ð0Þ
ðx;yÞ denotes the original intensity of

pixel ðx; yÞ. We summarize the proposed adaptive smooth-
ing algorithm as follows:
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Fig. 1. Inhomogeneity transformations and their effects. (a) Linear and
sine transformations. (b) The linear transformation of inhomogeneities
underlying the image shown in Fig. 2b. (c) The nonlinear transformation
of inhomogeneities underlying the image shown in Fig. 2b.



1. Initialization.

1.1. Input a given image.

1.2. Set parameters h, S for smoothing and T
(maximal iteration number) for termination.

2. For each pixel ðx; yÞ, compute �ðx;yÞ by the inhomo-
geneity measure in Section 2.1.2 and (14a).

3. Iterate until t ¼ T .

3.1. For each pixel ðx; yÞ, compute �
ðtÞ
ðx;yÞ by (3), (4),

and (14b).

3.2. Perform local weighted averaging to update
I
ðtÞ
ðx;yÞ:

I
ðtþ1Þ
ðx;yÞ ¼ I

ðtÞ
ðx;yÞ

þ �ðx;yÞ

P
ði;jÞ2Bxyð1Þ �ði;jÞ�

ðtÞ
ði;jÞðI

ðtÞ
ði;jÞ � I

ðtÞ
ðx;yÞÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

:

Parallelism is a desirable characteristic of an efficient

imageprocessingalgorithm.Our smoothingalgorithmcanbe

recognized as a parallel process at the pixel level. By parallel

computation, elementary operations, e.g., addition, multi-

plication, and exponential, are applied simultaneously to

each pixel of the image. Note that the evaluation of �xy needs

to be computed only once prior to smoothing though it may
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Fig. 2. Smoothing results of a synthetic image. (a) A synthetic image consisting of 256�256 pixels. (b) A noisy image of (a) where Gaussian noise of
� ¼ 0 and � ¼ 50 was added [7]. (c) A spatial gradient map of the image in (b). (d) The hypergraph algorithm. (e) The AS algorithm with k ¼ 11:5.
(f) The ADS algorithm with K ¼ 6:5. (g) The EEDS algorithm with � ¼ 4:5 and � ¼ 1:5. (h) Ours with h ¼ 0:125 and S ¼ 31:1. (i) SNR evolution.



take relatively long time. Operations relevant to indexing,
such as computing �ðtÞ

xy and local weighted averaging, need
only information on immediate neighbors of a pixel, which
can be efficiently carried out on a parallel computer without
difficulty. In summary, our algorithm provides a simplified
yet efficient way of utilizing multiple local scales for
information fusion. However, it is different from general
multiple scale approaches [44]. Instead of applying the same
operator ofdifferent scales toan image, statistical information
is acquired through inhomogeneity in a scale-dependent
contextual neighborhood and mainly employed to guide the
local smoothing, and geometrical constraints in a local
neighborhood are enforced through local smoothing for
preserving significant boundaries precisely.

3 ALGORITHM ANALYSIS

In this section, we formally analyze our adaptive smoothing
algorithm. We first analyze its stability and behaviors in
terms of a blurred step edge. Then, we relate our algorithm to
nonlinear anisotropic diffusion from different perspectives.

3.1 Stability

For an adaptive scheme, stability is an important issue that
concerns possible unbounded growth or boundness of the
final result of the adaptive scheme. The essential criterion
defining stability is that this numerical process must restrict
the amplification of all components from the initial
conditions. Here, we show that the stability of our
smoothing scheme is guaranteed. Let Imax and Imin denote
the maximum and the minimum of intensities across a
given image. According to (13), we have

I
ðtþ1Þ
ðx;yÞ ¼ I

ðtÞ
ðx;yÞ þ �ðx;yÞ

P
ði;jÞ2Bxyð1Þ �ði;jÞ�

ðtÞ
ði;jÞðI

ðtÞ
ði;jÞ � I

ðtÞ
ðx;yÞÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

¼ ð1� �ðx;yÞÞIðtÞðx;yÞ

þ �ðx;yÞ
X

ði;jÞ2Bxyð1Þ

�ði;jÞ�
ðtÞ
ði;jÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

I
ðtÞ
ði;jÞ:

Therefore, we can achieve

I
ðtþ1Þ
ðx;yÞ ¼ ð1� �ðx;yÞÞIðtÞðx;yÞ

þ �ðx;yÞ
X

ði;jÞ2Bxyð1Þ

�ði;jÞ�
ðtÞ
ði;jÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

I
ðtÞ
ði;jÞ

� ð1� �ðx;yÞÞIðtÞðx;yÞ þ �ðx;yÞImin � Imin:

Similarly, we can also obtain

I
ðtþ1Þ
ðx;yÞ ¼ ð1� �ðx;yÞÞIðtÞðx;yÞ

þ �ðx;yÞ
X

ði;jÞ2Bxyð1Þ

�ði;jÞ�
ðtÞ
ði;jÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

I
ðtÞ
ði;jÞ

� ð1� �ðx;yÞÞIðtÞðx;yÞ þ �ðx;yÞImax � Imax:

Thus, the intensity of any pixel ðx; yÞ in a smoothed image is

alwaysboundedby Imin � I
ðtþ1Þ
ðx;yÞ � Imax,whichguarantees the

stability of our algorithm.

3.2 Behaviors on Step Edge

As a desirable characteristic, adaptive smoothing is capable
of feature preservation along with noise removal. A step
edge with the significant contrast is one of the most
important discontinuities. Now, we analyze the behaviors
of our algorithm with respect to a blurred step edge or a
continuous version of a hard step edge.

Without loss of generality, here, we consider only a one-
dimensional case. Thus, a blurred step edge can be modeled
by a sigmoid function with a steep slope. For such a blurred
step edge, we have the following properties in the vicinity of

its inflection: @Ix@x >0, @
2Ix
@x2 ¼0, and @3Ix

@x3 <0. Recall thatweights of
pixels for adaptive smoothing depend upon inhomogenei-
tyand spatial gradient with a nonlinear transformation in
(15). For analysis, we adopt (15a) given that the same analysis
canbeextended to (15b)withoutdifficulty. Basedon (15a),we
rewrite the weight of point x by dropping the normalization
term, which does not affect the analysis, as follows:

CðtÞ
x ¼ �x�

ðtÞ
x ¼ exp

�
�
�
ĤH2

x

2h2
þ 1

2S2

�
@IðtÞx

@x

�2�	
: ð16Þ

Here, we approximate the response of ĤHx to a step edge by
a Gaussian function with the center at the point of
inflection, which is differentiable with the property:
@2ĤHx

@x2
<0. To observe the behaviors of our algorithm with

respect to a step edge, we examine the spatial gradient
change in the point of inflection along the time dimension.
In the Appendix, we derive an expression on such an
iteration-dependent change as follows:

@

@t

�
@IðtÞx

@x

�
¼ CðtÞ

x

@3IðtÞx

@x3

�
1� 1

S2

�
@IðtÞx

@x

�2�

þ CðtÞ
x

h2

@IðtÞx

@x

�
ðĤH2

x�h2Þ
�
@ĤHx

@x

�2

�ĤHx
@2ĤHx

@x2

�
:

ð17Þ

Based on the properties of sigmoid and Gaussian functions,

we have @3I
ðtÞ
x

@x3 <0, @I
ðtÞ
x

@x >0, and @2ĤHx

@x2 <0. In addition, CðtÞ
x of the

exponential form and ĤHx are always positive. Thus, the sign

of @
@t ð

@I
ðtÞ
x

@x Þ in (17) is critically determined by ½1� 1
S2 ð@I

ðtÞ
x

@x Þ
2� and

ðĤH2
x�h2Þ. Obviously, the sign of @

@t ð
@I

ðtÞ
x

@x Þ would be always

positive if ½1� 1
S2 ð@I

ðtÞ
x

@x Þ
2�<0 and ðĤH2

x�h2Þ > 0. That is, the

magnitude of spatial gradient in the vicinity of the step edge

will always increase during smoothing when @I
ðtÞ
x

@x > S and

ĤHx > h. It manifests that a step edge would be always

sharpened if significant spatial gradient and inhomogeneity

are detected there. Naturally, parameters S and h play the

role specifying significant discontinuities. Note that all the

terms associated with ĤHx in (17) are determined once an

image is given and, therefore, are regardless of iterations,

which plays a regularization role in identifying significant

discontinuities in the presence of substantial noise. More-

over, (17) provides a basis for explaining behaviors of our

algorithm, which will be further discussed later on.

3.3 Smoothing and Diffusion

Anisotropic diffusion has become a framework to build a
theoretical foundation for adaptive smoothing. Here, we
show how our smoothing process closely relates to

1558 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 10, OCTOBER 2005



anisotropic diffusion and further present an analysis that
distinguishes our algorithm from classical anisotropic
diffusion algorithms in light of the energy-based framework
for image reconstruction [4]. First, we consider the one-
dimensional case for intuition. As a result, we reformulate
our smoothing scheme as follows:

Iðtþ1Þx ¼ IðtÞx þ �x

P
i2Bxð1Þ �i�

ðtÞ
i ðIðtÞi � IðtÞx ÞP

i2Bxð1Þ �i�
ðtÞ
i

:

Here, Bxð1Þ ¼ fx�1; xþ1g. Therefore, the iterative update
process is

Iðtþ1Þx ¼ IðtÞx þ
�x�x�1�

ðtÞ
x�1ðI

ðtÞ
x�1 � IðtÞx Þ þ �x�xþ1�

ðtÞ
xþ1ðI

ðtÞ
xþ1 � IðtÞx Þ

�x�1�
ðtÞ
x�1 þ �xþ1�

ðtÞ
xþ1

:

To facilitate the presentation, we use a term c
ðtÞ
i;x to denote

the weights of point i in the nearest neighborhood of point
x, i 2 fx�1; xþ1g, at iteration t as

c
ðtÞ
i;x ¼ �x�i�

ðtÞ
i

�x�1�
ðtÞ
x�1 þ �xþ1�

ðtÞ
xþ1

¼ gðĤHx; hÞgðĤHi; hÞgðjrI
ðtÞ
i j; SÞ

gðĤHx�1; hÞgðjrI
ðtÞ
x�1j; SÞ þ gðĤHxþ1; hÞgðjrI

ðtÞ
xþ1j; SÞ

:

Thus, we have

Iðtþ1Þx ¼ IðtÞx þ c
ðtÞ
x�1;xðI

ðtÞ
x�1 � IðtÞx Þ þ c

ðtÞ
xþ1;xðI

ðtÞ
xþ1 � IðtÞx Þ

¼ IðtÞx þ c
ðtÞ
xþ1;xðI

ðtÞ
xþ1 � IðtÞx Þ � c

ðtÞ
x�1;xðIðtÞx � I

ðtÞ
x�1Þ;

which can be rewritten as

Iðtþ1Þx � IðtÞx ¼ c
ðtÞ
xþ1;xðI

ðtÞ
xþ1 � IðtÞx Þ � c

ðtÞ
x�1;xðIðtÞx � I

ðtÞ
x�1Þ: ð18Þ

Apparently, (18) is approximating the anisotropic diffusion
equation proposed by Perona and Malik [16]:

@I

@t
¼ @

@x

�
c
ðtÞ
i;x

@I

@x

�
¼ rðcðtÞi;xrIÞ; ð19Þ

where c
ðtÞ
i;x becomes the diffusion coefficients.

For the two-dimensional case, our smoothing scheme is a
discretization on a 3� 3 square lattice. Unlike Perona and
Malik’s implementation, we adopt an eight-nearest-neigh-
bors discretization of Laplacian operator. That is,

I
ðtþ1Þ
ðx;yÞ ¼ I

ðtÞ
ðx;yÞ þ

�
cE4EI þ cNE4NEI þ cN4NI þ cNW4NWI

þ cW4WI þ cSW4SWI þ cS4SI þ cSE4SEI
�ðtÞ

ðx;yÞ
:

Here, E; NE; N; NW; W; SW; S, and SE are the mne-
monic subscripts for eight directions, i.e., East, North-East,
North, North-West, West, South-West, South, and South-
West. The superscript and subscripts on the parenthesis
are applied to all the terms enclosed, and the symbol 4
stands for nearest-neighbor differences. Let 4Iij;xy denote
the local intensity difference Iði;jÞ � Iðx;yÞ. We have

4EIðx;yÞ ¼ 4Ixþ1y;xy; 4NEIðx;yÞ ¼ 4Ixþ1y�1;xy;

4NIðx;yÞ ¼ 4Ixy�1;xy; 4NWIðx;yÞ ¼ 4Ix�1y�1;xy;

4WIðx;yÞ ¼ 4Ix�1y;xy; 4SWIðx;yÞ ¼ 4Ix�1yþ1;xy;

4SIðx;yÞ ¼ 4Ixyþ1;xy; and 4SEIðx;yÞ ¼ 4Ixþ1yþ1;xy:

The diffusion coefficients are updated at every iteration as a
nonlinear function of the magnitude of local discontinuities
under control of contextual discontinuities or inhomogene-
ity. For pixel ði; jÞ 2 Bxyð1Þ, its diffusion coefficient is

c
ðtÞ
ij;xy ¼

�ðx;yÞ�ði;jÞ�
ðtÞ
ði;jÞP

ði;jÞ2Bxyð1Þ �ði;jÞ�
ðtÞ
ði;jÞ

: ð20Þ

Accordingly, we have

c
ðtÞ
Eðx;yÞ

¼ c
ðtÞ
xþ1y;xy; c

ðtÞ
NEðx;yÞ

¼ c
ðtÞ
xþ1y�1;xy; c

ðtÞ
Nðx;yÞ

¼ c
ðtÞ
xy�1;xy;

c
ðtÞ
NWðx;yÞ

¼ c
ðtÞ
x�1y�1;xy; c

ðtÞ
Wðx;yÞ

¼ c
ðtÞ
x�1y;xy; c

ðtÞ
SWðx;yÞ

¼ c
ðtÞ
x�1yþ1;xy;

c
ðtÞ
Sðx;yÞ

¼ c
ðtÞ
xyþ1;xy; and c

ðtÞ
SEðx;yÞ

¼ c
ðtÞ
xþ1yþ1;xy:

As an alternative implementation, our smoothing scheme
provides an approximate discretization of (19) for a gray-
level image.

The energy-based methodology is a unified framework
for early vision [4]. The basic idea in this framework is that
an image processing process, e.g., edge detection and image
segmentation, is performed by minimizing an energy
function in the following form:

EðIIÞ ¼
X

ðx;yÞ2I;ði;jÞ2N xyðRÞ
P ðIðx;yÞ; Iði;jÞÞ þ

X
ðx;yÞ2I

QðIðx;yÞÞ: ð21Þ

Here, II is the intensity set of all the pixels in a gray image.
In (21), the first sum term is the a priori term encoding the
a priori knowledge of the image space [2], while the second
sum term is encoding the knowledge on the data available.
P ð�; �Þ is usually an even function with respect to only the
value of difference of its arguments and, therefore, can be
written as P ðIðx;yÞ; Iði;jÞÞ ¼ P ðIðx;yÞ�Iði;jÞÞ. As shown by
Perona and Malik [16], the approximation of anisotropic
diffusion is simply a gradient descent of the a priori part of
the energy function in (21) as R ¼ 1. That is,

@I
ðtÞ
ðx;yÞ
@t

¼ �
X

ði;jÞ2N xyð1Þ
cðIðtÞðx;yÞ�I

ðtÞ
ði;jÞÞðI

ðtÞ
ðx;yÞ � I

ðtÞ
ði;jÞÞ; ð22Þ

where � ð0<�<1Þ is a “speed” factor to control the gradient
decent search and cðIðtÞðx;yÞ�I

ðtÞ
ði;jÞÞ is the iteration-dependent or

time-dependent diffusion coefficients. In our algorithm, a
diffusion coefficient (c.f., (20)) is determined by three comp-
onents, �ðx;yÞ, �ði;jÞ, and �

ðtÞ
ði;jÞ. The first two components are

iteration-independent or time-independent while the last
one is the same as those in classical diffusion schemes, e.g.,
that of Perona and Malik [16], that use only spatial gradient
to detect discontinuities. Let us denote ��ðx;yÞ as �ðx;yÞ and
�
ðtÞ
ði;jÞ as cðI

ðtÞ
ðx;yÞ�I

ðtÞ
ði;jÞÞ. According to (22), our algorithm may

be seen as approximating anisotropic diffusion in a
constrained way by the minimization of the a priori part
of the energy function in (21):

@I
ðtÞ
ðx;yÞ
@t

¼ �ðx;yÞ
X

ði;jÞ2N xyð1Þ
�ði;jÞcðIðtÞðx;yÞ�I

ðtÞ
ði;jÞÞðI

ðtÞ
ðx;yÞ � I

ðtÞ
ði;jÞÞ:

Along with local discontinuity, the use of contextual
discontinuity via inhomogeneity reshapes the landscape
of the energy function with respect to a given image by
taking account of the intrinsic local structural information
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in the a priori term of (21) so that its search space can be
limited to a great extent. Unlike other diffusion schemes,
our gradient descent search is further under the control of
image-dependent “speed” factors, i.e., �ðx;yÞ, which yields a
genuine anisotropic diffusion process. In light of the
energy-based framework, we conclude that the joint use
of contextual and local discontinuity measures in our
algorithm leads to a constrained diffusion process. Such a
constrained diffusion generates a favorite feature for
practical use; i.e., our algorithm is insensitive to termination
conditions. In other words, important features can be
preserved in a wide range of iterations, which will be
demonstrated with simulation results reported in Section 4.

4 SIMULATIONS

In this section, we first describe the methodology used in
our simulations then report comparative smoothing results
for a variety of noisy images. Finally, we demonstrate that
as a useful tool for early vision, our algorithm incorporated
into a simple region growing algorithm effectively extracts
hydrographic objects from satellite images, a special image
segmentation task.

4.1 Methodology

It is a nontrivial issue to evaluate performance of an image
processing algorithm, and there is less agreement on which
method to use for perfectly evaluating all imageries [7], [8].
Based on an extensive literature search in the context of
image smoothing, we can classify the existing performance
evaluation methods into three categories; i.e., objective,
subjective, and application-based methodologies. By the objec-
tive methodology, an evaluation is performed by comparing
the smoothed image and its ground-truth to see how much
noise has been removed from a noisy image. Based on the
ground-truth, a gain or noise-reduction measure is defined
for evaluating the improvement after smoothing. As long as
the ground-truth of a test image is available, the objective
methodology has become the first choice for performance
evaluation [7], [9], [10], [11], [15], [20], [23], [28], [31], [40],
[45], [46], [47], [48]. Unfortunately, the ground truth of a
noisy image is often unavailable. Under the circumstance,
almost all researchers adopt the subjective methodology for
performance evaluation. By the subjective methodology, a
noisy image used for test and its smoothed images are
illustrated. Thus, the performance of an algorithm is
evaluated by human’s common sense gained from very
much sophisticated visual perception experience [2], [5],
[12], [13], [14], [15], [16], [17], [18], [19], [21], [22], [24], [25],
[26], [27], [30], [33], [35], [37], [38], [39], [41], [43], [49], [50]. In
addition, there is an application-based methodology for
performance evaluation while two aforementioned meth-
odologies dominate performance evaluation of smoothing
algorithms. By the application-based methodology, images
in a certain application domain are used for test and the
smoothing results are assessed by either a specialist who has
expertise in the domain or a comparison with an anticipated
result set up prior to the test [29].

In order to demonstrate the favorite feature of our
algorithm, insensitive to termination times, it is anticipated
that multiple smoothed results in a wide range of iterations
are presented. Due to limited space here, it is unrealistic to
entirely adopt a subjective method for performance evalua-
tion by illustrating many resultant images. Therefore, an

objective method would be a proper choice where we can
define a gain measure to encode smoothed results in a
concise form, which is further backed by illustrating few
typical snapshots. Here, a snapshot refers to a resultant
image at a specific iteration. As a consequence, we first use
synthetic and benchmark gray-level images for a test where
their ground-truth is known and we add a variety of noise
into them to generate various noisy images. Thus, we can
evaluate its performance by an objective method as an
adaptive smoothing algorithm is applied to such a noisy
image. In order to demonstrate the effectiveness, we
compare our algorithm to three classical adaptive smooth-
ing algorithms: adaptive smoothing (AS) [5], anisotropic
diffusion smoothing (ADS) [16], and edge-enhanced diffu-
sion smoothing (EEDS) [33]. We also apply the adaptive
hypergraph model [47], a noniterative algorithm, recently
developed based on a generic hypergraph imaging theory
[48] to the same images for further comparison. The
ultimate goal of image smoothing is to facilitate the
subsequent processing for early vision. To demonstrate
the usefulness of our algorithm in an early vision task, we
apply our algorithm to a special image segmentation task,
extraction of hydrographic objects from satellite images, for
an application-based evaluation.

Now, we define a gain measure, signal-to-noise ratio
(SNR), for our objective evaluation. SNR measure has been
widely used in evaluating performance of a smoothing
algorithm in the objective methodology [7], [9], [10], [11],
[15], [20], [23], [28], [31], [40], [45], [46], [47], [48]. For a given
noisy image II, I

ðtÞ
ðx;yÞ denotes the intensity of pixel ðx; yÞ 2 II at

iteration twhile an adaptive smoothing algorithm is applied
to thenoisy image. IIðgtÞ is its ground-truth.As a result, anSNR
measure is defined as follows:

SNRðt;�Þ ¼
P

ðx;yÞ2IIðI
ðgtÞ
ðx;yÞÞ

2P
ðx;yÞ2IIðI

ðgtÞ
ðx;yÞ � I

ðtÞ
ðx;yÞÞ

2
; ð23Þ

where � is the set of parameters in an algorithm and, here,
the number of iterations is viewed as another parameter. As
the ground-truth of a noisy image is available, this measure
converts parameter tuning into an optimization problem,
which is highly consistent with a parameter tuning
procedure for anisotropic diffusion suggested in [6]. Thus,
parameter tuning in our simulations becomes finding a
solution:

ðt�;��Þ ¼ argmax
ðt;�Þ

SNRðt;�Þ:

Note that the optimality definition is based on theoretical
studies as follows: diffusive smoothing generally has the
property of causality; no spurious detail should be
generated going from finer to coarser scale corresponding
to temporal evolution, and a diffusion algorithm generally
converges to a uniform intensity image [3], [16]. It is also
worth mentioning that the use of such a measure also gives
us an insight into the selection of two tunable parameters, S
and h, in our algorithm, which will be discussed later on.

4.2 Comparative Results

Fig. 2a shows a noise-free synthetic image containing a set
of circles of different sizes and the boundary sharpness
varies considerably around different circles. The intensities
of four homogeneous regions are 20; 75; 150, and 235,
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respectively. Fig. 2b shows a noisy version of this image
corrupted by Gaussian noise [7]. The noisy image shown in
Fig. 2b is challenging to an adaptive smoothing algorithm
with only a local discontinuity measure, e.g., the AS and
ADS algorithms, because weak edges, e.g., boundaries of
the smallest circle, may either be detected along with many
noisy details in a small scale or hardly be detected at all in a
large scale, as illustrated in Fig. 2c, where its spatial
gradient map is shown. Fig. 2d depicts the optimal result
with an SNR of 66.3 by the adaptive hypergraph model [47],
which will be discussed later on. Figs. 2e, 2f, 2g, and 2h
show a set of snapshots for four adaptive smoothing
algorithms. In each column, the upper image corresponds
to an optimal snapshot and the lower one is the snapshot
after 1; 000 iterations. Fig. 2i shows evolution of SNRs
corresponding to different algorithms during smoothing. It
is evident from the comparative results that our algorithm
outperforms the others in restoration of the noisy image. In
terms of SNRs and the snapshots after 1; 000 iterations, the
optimal result by our algorithm only slightly alters, whereas
the results by the other three adaptive smoothing algo-
rithms evolve towards a uniform intensity image and some
important features, e.g., boundaries of the smallest circle,
have been smoothed out or severely blurred.

Fig. 3a is another noisy version of Fig. 2a generated by
further adding salt-and-pepper noise [7] to the image in
Fig. 2b. The composite noise leads to a more challenging
image for an adaptive smoothing algorithm. It is well-known
thatmedian filters are particularly effective in the presence of
salt-and-pepper noise. Hence, we first apply a set of median
filters and adaptive hypergraph models [47] of different
windowsorneighborhoodorders to the image. In lightof (23),
Figs. 3b and 3c shows the optimal results by themedian filter
with theSNRof53:2and theadaptivehypergraphmodelwith
the SNRof 41:1. Figs. 3d, 3e, 3f, and 3g showa set of snapshots
for four adaptive smoothing algorithms arranged in the same
order as Fig. 2. By comparison, our algorithm manages to
smooth out both Gaussian and impulse noise and is
evidential by a considerable SNR gain from 8:25 to 187:45
(see also discussions later on).However, other algorithms fail
to completely remove noise and gains of their SNRs are far
lower than that of our algorithm. Snapshots corresponding to
1; 000 iterations along with evolution of SNRs depicted in
Fig. 3i show that, to a great extent, our algorithm maintains
the optimal snapshot in a wide range of iterations.

Fig. 4a shows a benchmark image, Pepper, where there
are different regions including large homogeneous regions
and fine details. For test, we add Gaussian noise to this
benchmark image and the noisy version is shown in Fig. 4b.
We apply five algorithms to the noisy image and illustrate
resultant images in Figs. 4c, 4d, 4e, 4f, and 4g. By the
adaptive hypergraph model [47] we achieve the optimal
resultant image with the SNR of 87.3 as illustrated in Fig. 4c.
For four adaptive smoothing algorithms, it is observed that,
except the AS algorithm, the other three adaptive smooth-
ing algorithms produce reasonably good performance after
a number of iterations as illustrated in their optimal
snapshots (the upper image in each column); important
features including most of fine details are preserved, while
noise is readily removed. It should be mentioned that the
AS algorithm fails to yield the satisfactory performance;
noise still survives in its optimal shot. After 1; 000 iterations,
however, many important features are missing or blurred

for the three adaptive smoothing algorithms used for
comparison. In contrast, our algorithm performs well; most
of important features are still preserved well even after
1; 000 iterations. The above outcome is clearly confirmed by
evolution of SNRs as illustrated in Fig. 4h. The AS
algorithm leads to a small SNR gain from 38:74 to 76:28 at
the optimal snapshot, while other three algorithms raise
SNRs to at least 224:36. Although the SNR of the EEDS
algorithm at the optimal snapshot slightly outperforms
ours, further, few iterations make its SNRs drop quickly. In
contrast, our algorithm does not suffer from such a quick
SNR drop and is capable of maintaining a reasonably high
SNR even after 500 iterations, as seen in Fig. 4g.

4.3 Extraction of Hydrographic Objects

As high resolution satellite images are increasingly available,
the effective image processing techniques are highly de-
manded to provide up-to-date and accurate geographic
information. For example, the United States Geological
Survey (USGS) is seeking effective strategies to improve
map revision capabilities based on satellite images [51]. An
ultimate goal is to automatically extract semantically mean-
ingful objects with a certain accuracy from images for map
revision [52]. Satellite images are often corrupted by noise
fromvarious sources. In general, pixelswithin a semantically
meaningful entity are not homogeneous, while pixels
belonging to different entities may have similar attributes.
As a result, most of traditional segmentation techniques have
limited success and other image processing techniques like
smoothing are incorporated into a segmentation method in
order to extract accurate geographic information [49].

Extracting a hydrographic object refers to grouping the
pixels corresponding to a water body, e.g., river, together
and putting other objects into the background, which can be
viewed as a special image segmentation task. Hydrographic
objects tend to be more homogeneous in comparison with
other kinds of objects. As a region growing algorithm is
applied, we can take advantage of this property to generate
seeds so that only pixels belonging to hydrographic objects
can be identified as seeds, and other objects are naturally
put into a background. The images used in our simulations
are provided by the USGS. These high resolution satellite
images are processed using a nonlinear transformation to
compensate for variations in actual pixel sizes on the
ground due to perspective projection. In addition, a set of
original topographic maps are available for some areas so
that we can compare the extracted hydrographic objects
with the corresponding maps, the relative ground-truth, for
testing our algorithm. Incorporated by a simple region
growing algorithm [7], our smoothing algorithm has been
applied to hydrographic object extraction. In our simula-
tions, we fix the parameters used in our algorithm for all the
images and only 20 iterations are run for smoothing.

Fig. 5a shows a satellite image, where intensity values
and local attributes change considerably. Fig. 5b shows the
smoothing result, and Fig. 5c shows the extraction result. To
facilitate comparisons, we display the river in Fig. 5c by
marking it as white and superimposing it on the original
image. For evaluating our result, Fig. 5d shows the
corresponding part of the USGS 1:24,000 topographic
map. The simulation result shows that the boundaries of
small islands are localized accurately even though they are
covered by forests. Similarly, the forests along the river
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banks are preserved well. A bridge connects the lake and
the river is also preserved. As shown in Fig. 5a, the bridge is
spatially small and it would be very difficult for nonlinear
smoothing algorithms to preserve this cartographic feature.
Furthermore, we can see that hydrographic regions have
changed from the map by comparing Fig. 5d with Fig. 5a.
Note, for example, the lower part of the left branch. This
geographical change illustrates the constant nature of such
changes and the need for frequent map revision. With
precise region boundaries achieved, we trust that our
method is suited for frequent map revision purposes. While
the major features are the same, the lake has shrunk in size,
and such shrinkage is captured by our algorithm (see

Fig. 5c). This suggests that our method can be used for
monitoring changes of hydrographic features.

Fig. 6a shows another satellite image, where almost all
the boundaries are irregular and the pixels within a
hydrographic object are not homogeneous. Fig. 6b shows
the smoothing image, where the pixels within a hydro-
graphic object tend to be homogeneous and their bound-
aries are accurately preserved. Fig. 6c shows the extraction
result. We observe that the major hydrographic objects are
accurately extracted even along the noisy banks and, in
particular, a small narrow branch in the middle of the
image is extracted as well. Moreover, important details are
preserved, such as the small islands in the lake at the left of
the image. Fig. 6d shows the corresponding part of the
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Fig. 3. Smoothing results for a synthetic image. (a) A noisy image by adding salt-and-pepper noise with probabilities Pa ¼ 0:03 and Pb ¼ 0:03 [7].
(b) Optimal result by the median filter. (c) The hypergraph algorithm. (d) The AS algorithm with k ¼ 12:0. (e) The ADS algorithm with K ¼ 7:0. (f) The
EEDS algorithm with � ¼ 4:5 and � ¼ 2:0. (g) Ours with h ¼ 0:125 and S ¼ 34:6. (h) SNR evolution.



USGS 1:24,000 topographic map. The alignment between
Figs. 6c and 6d indicates that all the important hydro-
graphic objects extracted match those in the map very well.

Here, we mention that, without the smoothing, their
performance of most region-growing algorithms [7] is
rather poor; the boundaries of water bodies are missing
and some water bodies are unexpectedly oversegmented so
that the correct water bodies fail to be extracted. In contrast,
the above simulation results, as well as others not reported
here due to limited space, show that the extracted regions
are comparable with existing topographic maps.

Unlike traditional map revision methods based on aerial
photogrammetry [52], the use of our smoothing algorithm

and a simple growing algorithm offers an effective and

efficient underpinning technique to develop a map revision

system. For a large image, such a system automatically

partitions it into a set of image patches of the same size, e.g.,

640� 640. All patches can be processed independently and

then all the extraction results are seamlessly collected to

form a segmented image by an algorithm [49]. An

alignment of the segmented image with its corresponding

topographic map reveals any changes of hydrographic

objects (see Figs. 5c and 5d, for example), which provides an

alternative yet efficient computational procedure for map

revision on a general-purpose computer [49], [52].

CHEN: ADAPTIVE SMOOTHING VIA CONTEXTUAL AND LOCAL DISCONTINUITIES 1563

Fig. 4. Smoothing results for a benchmark image. (a) The original image consisting of 512� 512 pixels. (b) A noisy version of the image in (a) with

Gaussian noise of � ¼ 0 and � ¼ 20. (c) The hypergraph algorithm. (d) The AS algorithm with k ¼ 7:5. (e) The ADS algorithm with K ¼ 5:5. (f) The

EEDS algorithm with � ¼ 1:0 and � ¼ 0:5. (g) Ours with h ¼ 0:091 and S ¼ 18:5. (h) SNR evolution.



5 DISCUSSIONS

In our algorithm, there are two tunable parameters S and h
whose values critically determine its performance. As
argued previously based on (17), they are responsible for
setting up thresholds in order to identify important features
from potential discontinuities detected by two different
measures. As our algorithm is applied in practice, how to
tune the parameters would be a nontrivial issue. Fortu-
nately, the SNR objective function in (23) allows us to have
an empirical study based on the images whose ground-
truth is known or available. By an exhausted search, we
always find a set of parameters which yields the optimal
performance for a given image. Our simulations on various
images including those not reported here uncover that the
optimal value of S is always around the mean of local
intensity differences on homogeneous regions, �d, in (7)
while the optimal value of h is around the mean of the
lowest 20 percent inhomogenity values across a whole
image. This suggests that we can fix two parameters in our
algorithm once we have measured its inhomogeneity for a
given image. In fact, parameters used in our simulations on
satellite images are actually selected in this way, which
results in the satisfactory performance (cf., Figs. 5 and 6).

In general, there is an implicit condition for adaptive
smoothing; i.e., an image has a piecewise constant structure.
Therefore, an adaptive smoothing algorithm often works
well in the presence of noise subject to the uniformed or
Gaussian distribution but fails for images violating the
piecewise constant condition, e.g., those full of severe salt-
and-pepper noise or irregular texture. The use of
two complementary discontinuities enables our algorithm
to remove salt-and-pepper noise to a certain extent. Now, we
analyze the behavior of our algorithm in the presence of

impulse noise based on (17). Although a local discontinuity
measure, e.g., spatial gradient, indicates a significant dis-
continuity in the presence of impulse noise, a contextual
discontinuity measure, e.g., inhomogeneity, may not report
the same due to its ensemble nature, in particular, as impulse
noise appears inside a homogeneous region. Under such a

circumstance, there are jrI
ðtÞ
ðx;yÞj>S but ĤHðx;yÞ < h. Thus it is

likely that the sign of

@

@t

@I
ðtÞ
ðx;yÞ
@x

0
@

1
A

in (17) is negative, which eventually leads to the effect of
impulse noise removal.

Unlike adaptive smoothing, there are alternative smooth-
ing techniques for impulsive noise removal without itera-
tions, e.g., order-statistics filters [7]. Hypergraph imaging
model [48] was proposed based on the finite combinatorial
set concepts and has been applied in image analysis. Derived
from the aforementioned theory, an adaptive hypergraph
model [47] was recently developed for impulsive noise
detection and removal with a subsequent processing. By
observations from results in Figs. 2, 3, and 4 and others not
reported here, we found that the hypergraph model
effectively filters out impulsive noise, not only salt-and-
pepper noise but also high frequency components of
Gaussian noise. In essence, this hypergraph model is an
impulsive noise detector with a certain spatial scale, i.e., the
neighborhood order [47], and actually never alters any
properties of the image, which distinguishes from other
smoothing-like methods. This salient feature would make
this hypergraph model become another discontinuity
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Fig. 5. The result of extracting hydrographic objects for a satellite image.
(a) Raw image consisting of 640�640 pixels. (b) The smoothed image.
(c) The extraction result. (d) A topographic map corresponding to the
image in (a).

Fig. 6. The result of extracting hydrographic objects for a satellite image.
(a) Raw image consisting of 640�640 pixels. (b) The smoothed image.
(c) The extraction result. (d) A topographic map corresponding to the
image in (a).



measure to overcome the weakness of adaptive smoothing.
However, finding a proper neighborhood order for a given
image inevitably incurs a parameter tuning process and our
simulations indicate that this parameter critically determines
its performance of the hypergraphmodel. As argued by Saha
et al. [36] (see also discussions below), there are miscella-
neous local structures in a given image that indicate the
intrinsic nature of the image. Therefore, this hypergraph
model should be extended by the use of multiple neighbor-
hood orders corresponding to appropriate local scales. Our
preliminary simulations not reported here suggest that such
an extension based on the automatic local scale selection
procedure described in (5)-(8) can lead to better results in
impulsive noise detection. As a consequence, we would
regard such an improved adaptive hypergraph model as
another discontinuity measure responsible for impulsive
noise detection and somehow incorporate it into our
algorithm in our ongoing work.

Spatial scale or size of window for operations in image
processing is one of the most important factors in determin-
ing resultant images. For adaptive smoothing, most of
algorithms adopt only a local discontinuity measure, e.g.,
spatial gradient, in a 3�3 window to detect discontinuities.
As noise substantially appears in an image, these algorithms
fail to distinguish significant discontinuities from noise due
to overlocality. Using a window of larger size for disconti-
nuity detection, the SUSAN smoothing algorithm overcomes
the weakness but encounters a new problem on how to select
a proper spatial scale [15]. On the other hand, many spatial
regularization methods have been proposed to tackle the
overlocality problem,where aGaussian filter of larger scale is
used isotropically to remove noise prior to estimation of local
discontinuities [17], [18], [19], [25], [33]. Thus, two different
spatial scales may be used in adaptive smoothing. Although
doing so indeed alleviates the noise influence, these algo-
rithms may blur discontinuities (for instance, see simulation
results of the EEDS algorithm [33] in Section 4) and lead to a
higher computational complexity since the Gaussian filter of
large scale has to operate at every iteration. Alternatively,
Meer et al. employed spatial variance as a discontinuity
measure in their multiresolution adaptive image smoothing
algorithm [50], where three local windows of different sizes
were used simultaneously to estimate spatial variance at
every iteration. Undoubtedly, their algorithm benefits from
the use of multiple spatial scales but suffers from a high
computational burden. Apart from the expensive computa-
tion, a fatalweakness of the aforementioned algorithmsusing
multiple spatial scales is a lack of consideration on local
structures inagiven image.AsarguedbySahaet al. [36], there
are miscellaneous local structures in a given image that
indicate the intrinsic nature of the image. Therefore, those
miscellaneous local structures underlying an image can be
detected only by image-specific spatial scales. Although
multiple scales are used in aforementioned algorithms, an
individual spatial scale is uniformly used everywhere, which
simply leads to the image-independentmultiscale smoothing.

Local scale control is inevitable for exploring the intrinsic
nature of an image for early vision [40]. Recently, Saha and
Udupa proposed a scale-based adaptive smoothing algo-
rithm where they explicitly consider the local scale control
based on their scale-based affinity theory [42]. In their
algorithm, however, the weight for a pixel is determined by
a pair-wise intensity difference measure based on a local
spatial scale. Since a single pixel may be corrupted by

impulse noise, the pair-wise intensity difference may fail to
distinguish impulse noise from a significant discontinuity.
Like other classical anisotropic diffusion algorithms [33],
the sole use of such a single discontinuity measure
inevitably causes their algorithm to suffer from the
termination problem. In our algorithm, the proposed
contextual discontinuity measure, inhomogeneity, derived
from their scale-based affinity theory [36], takes advantage
of the ensemble properties of coupled pixels, which is
insensitive to impulse noise. The contextual discontinuities
detected are viewed as a “road map” on local scales for a
given image and employed for control of the smoothing
speed and feature preservation via cooperating with the
local discontinuity measure. Here, we emphasize that the
simultaneous use of two discontinuity measures in our
algorithm leads to the robust performance and the image-
dependent multiscale smoothing, which effectively alleviates
the termination problem in adaptive smoothing.

Although local scale control yields favorite effects, an
algorithm for this purpose often suffers from a high
computational complexity. Due to its nature of locally
exhausted search, the automatic scale selection for detecting
inhomogeneity takes most of the time in our algorithm. In
our earlier studies in image segmentation [35], [43], we
found that a type of images, e.g., medical images, often have
similar statistical properties in spite of miscellaneous
contents contained in images. Before our algorithm is
applied to a large number of images of the same type, we
would first obtain inhomogeneity maps for only a couple of
images based on the algorithm in Section 2. Then, we
convert achieved inhomogeneity maps into a training set
based on their corresponding local structures. A supervised
learning algorithm is employed to encode the knowledge.
For other images of the same category, their inhomogeneity
maps are generated by the learner from image data instead.
Previous studies [39], [49] show that such an idea turns out
to be useful in determination of parameters for image
processing, which, we believe, is a feasible way to speed up
our algorithm in applications.

6 CONCLUSIONS

We have presented a novel adaptive smoothing algorithm,
where two different discontinuity measures are jointly used
for noise removal and feature preservation. Moreover, we
have shown that the proposed smoothing scheme provides
an alternative implementation of the anisotropic diffusion
proposed by Perona and Malik [16] and further leads to a
constrained anisotropic diffusion process controlled by both
contextual and local discontinuities. Simulation results
show its effectiveness and demonstrate its potential for real
world applications. In contrast to other adaptive smoothing
algorithms, our algorithm is relatively immune to the
termination problem thanks to the use of scale-based
intrinsic contextual discontinuity.

APPENDIX

Here, we derive the expression of the gradient change of a

blurred step edge along the time dimension.
According to the anisotropic diffusion equation in (19),

we have
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@ĤHx

@x|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
T2

:

ð26Þ

Given that the sigmoid function is differentiable, we rewrite
the spatial gradient change along the time dimension as
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In the last step, we apply the property of the sigmoid
function at the point of inflection, @2Ix=@x

2 ¼ 0. Similarly,
we have
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ĤHx

h2

@ĤHx

@x

�

¼ @IðtÞx

@x

@

@x

�
CðtÞ

x
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Assembling (28) and (29) in (27), we obtain
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@ĤHx

@x

�2

�ĤHx
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