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Abstract—This paper proposes a sequential coupling of a Hidden Markov Model

(HMM) recognizer for offline handwritten English sentences with a probabilistic

bottom-up chart parser using Stochastic Context-Free Grammars (SCFG)

extracted from a text corpus. Based on extensive experiments, we conclude that

syntax analysis helps to improve recognition rates significantly.

Index Terms—Optical character recognition, handwriting analysis, natural

language parsing and understanding.
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1 INTRODUCTION

IN the field of offline handwriting recognition, we observe a
tendency to address problems of increasing complexity. High
recognition rates have been published for the recognition of
isolated digits [25] or characters [29]. The recognition performance
achieved for isolated words [20] is already significantly lower. If
the task complexity increases further, as in the case of the
recognition of handwritten addresses [21] or bank checks [9], task
specific knowledge like the relation between zip code and city
name, or between courtesy amount and legal amount, becomes
essential. For general text recognition, task specific information can
be found in the linguistic domain. The successful application of
word n-gram language models supporting the recognition of
handwritten text lines has been reported in [22], [30]. However, the
effectiveness of n-gram language models is limited to short
distance relationships between words.

In this paper, we try to overcome these shortcomings with a
sequential coupling of a recognition system for handwritten
English sentences (see Fig. 1) and a syntax analysis module based
on Stochastic Context-Free Grammars (SCFGs). The goal of our
approach is to improve the performance of the recognition system
and to create additional linguistic information in the form of
grammatical word tags (e.g., noun, pronoun, verb form) as well as
parse trees. Parse trees represent the hierarchical structure of the
grammatical constituents of a sentence (e.g., noun phrases, verb
phrases, adjective phrase). Such extra information can be valuable
in various contexts, for example, semantic information retrieval or
text understanding. To the knowledge of the authors, it is the first
time that linguistic information in form of an SCFG has been
applied in the field of handwriting recognition. An early version of
the paper has been published in [36]. The current paper provides
more details and results are based on much larger experiments.

The rest of the paper is organized as follows: Section 2 reviews
related work. The methodology is described in Section 3, while
experiments and results are reported in Section 4. Conclusions are
drawn in the last section of this paper.

2 RELATED WORK

In the past, a number of different approaches involving syntax
analysis to improving recognition rates were proposed in the
domains of speech and Optical Character Recognition (OCR). In
the case of OCR, only a few publications investigate the use of
syntax analysis. The use of linear grammars is described in [12],
[28]. Sets of valid syntactic patterns are utilized in [4] and a word
lattice rescoring mechanism is proposed in [17]. In [11], a Context-
Free Grammar (CFG) is used to improve word recognition rates.
The use of syntactical knowledge is more widespread in the
domain of speech recognition. In earlier works [18], [19], CFG are
used. More recently, Stochastic Context-Free Grammars (SCFG) are
becoming more common [2], [6], [15], [27].

The highest performance improvements found in the literature
are reported in [11], [12], [15]. However, these works make use of
relatively small grammars explicitly written for specific tasks
which do not have to deal with the full amount of ambiguity
present in natural language.

References [3], [6], [27] are closely related to the topic and the
experimental setup of this paper. These works combine of a word
trigram language model and a broad coverage SCFG. Results are
based on 213 sentences from the DARPA ’93 HUB1 test setup and
performance improvements are reported against the baseline word
trigram language model. In [3], the word error rate is reduced from
13.7 percent to 13.0 percent, [6] measures a reduction of the word
error rate from 16.6 percent to 16.0 percent, and [27] reports a word
error rate reduction from 16.5 percent to 15.1 percent.

3 METHODOLOGY

We first explain the recognition of handwritten text and the
extraction of the grammar. Then, parsing of English sentences is
introduced before we describe the proposed combination scheme
for the recognizer and the parser.

3.1 Offline Recognition of Handwritten Sentences

The goal of handwritten text recognition is to find the most likely
sentence bWW ¼ ðw1 . . .wnÞ for a given feature vector sequence
X ¼ ðX1 . . .XmÞ, i.e., bWW ¼ argmaxWP ðW jXÞ. The application of
the Bayes’ rule leads to a decomposition of P ðW jXÞ into the optical
model P ðXjWÞ and a statistical language model P ðWÞ. The problem
can then be reformulated as one of finding the word sequence bWW
that maximizes a sentence score �ðWÞ:

bWW ¼ argmax
W

�ðWÞ; ð1Þ

�ðWÞ ¼ logP ðXjWÞ þ logP ðWÞ: ð2Þ

In our case, P ðXjW Þ is estimated by a recognizer based on the
Hidden Markov Model (HMM) technique [26] which is supported
by a word bigram language model to approximate P ðWÞ. The
word bigram language model is integrated in the recognition
process using the two parameters � and � commonly applied in
the domain of speech recognition (e.g., [24]). This leads to a
modified sentence score �ðWÞ1

�ðWÞ ¼ logPHMMðXjWÞ þ � logPBGðWÞ þ n�: ð3Þ

The two parameters � and � help to overcome deficiencies of the
likelihood valuesPHMMðXjWÞ from the HMMs and the probabilities
PBGðWÞ provided by the word bigram language model. In (3),
parameter�weights the influence of the language model against the
optical model and parameter � helps to control word insertion and
deletion rates. For large values of �, the recognizer will favor
candidate sentences containing many short words. Small or negative
values of � will have the opposite effect and lead to sentences
containing fewer and longer words. Optimal values of parameters �
and � are determined by experiment using a validation set.
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The handwritten sentence recognition system used in this paper
is an enhanced and optimized version of [22]. Recognition is
performed in three major steps: text line normalization, extraction
of feature vector sequences, and decoding. In the feature extraction
step, a sliding window is used to produce a sequence of feature
vectors (observations) from the normalized text line images. For each
image column, a feature vector containing nine geometrical features
is extracted, e.g., the number of foreground pixels in the window,
moments of the foreground pixels, etc. To model the 85 characters
considered in our application, continuous density HMMs with a
linear topology are used. The character set includes lower and
uppercase letters, digits, interpunctuation, and some special char-
acters found in the texts to be recognized. Compared to the original
system [22] the number of model states is optimized per character
[34] and Gaussian mixtures are used for the emission probabilities
instead of single Gaussians. The main recognition step consists in
Viterbi decoding [31] which is supported by a word bigram language
model. For language model smoothing, we use the Good-Turing
technique [8] together with Katz-backoff to lower order models [16].
In contrast to other works in the domain of handwriting recognition,
the integration of the word bigram language model is optimized as
described in [35]. The result of the recognition process described
above consists in a list of the n-best candidate sentences for a given
input sentence image (see Fig. 2).

3.2 Grammar Extraction

An SCFG is a five-tuple ðN;T ; P ; S; pð:ÞÞ, where N represent the set
of nonterminal symbols and T the set of terminal symbols, such
that N \ T ¼ ;. Nonterminal symbols typically represent syntac-
tical categories, i.e., word tags and sentence constituents. Terminal
symbols correspond to the words in the lexicon and S 2 N defines
the start symbol. All productions 2 P are written as A! �, where
A 2 N and � 2 ðN [ T Þþ. Productions of the form A! w with w 2
T are called lexical productions. The probability function pð:Þ maps
productions to the interval ð0; 1�, such that

P
� pðA! �Þ ¼ 1 for

each A 2 N .
In practice, SCFGs can be extracted from special text corpora

called treebanks which contain parse trees in the form of bracketed
sentences. Based on the bracketed notation, it is straightforward to
extract the corresponding productions using a simple push down
automaton. Production probabilities are then estimated from the
relative frequencies according to (4) below, where #ðA! �Þ
represents the number of times that production A! � is observed
in the treebank.

pðA! �Þ ¼ #ðA! �ÞP
� #ðA! �Þ : ð4Þ

In order to estimate the probabilities of the lexical productions
tagged, corpora can be used. From the tagged words ðA;wÞ, the
productions A! w are directly derived, where A represents the
grammatical word tag and w the word itself. The corresponding
probabilities are estimated using pðA! wÞ ¼ #ðA;wÞ=#ðAÞ,
where the number of occurrences of the tagged word ðA;�Þ is
measured by #ðA;wÞ, and #ðAÞ represents the number of times
the word tag A has been observed in the tagged Lancaster-Oslo/
Bergen corpus [13].

3.3 Parsing English Sentences

For the syntax analysis of the n-best candidate, sentences provided
by the handwriting recognition module, a bottom-up chart parsing
algorithm for SCFGs is used. This algorithm is detailed in [1] and
can be seen as an extension of the algorithms presented in [5], [10],
[32]. It is able to compute the probability of the input sequence W
as well as probability PSCFGðWÞ of its most probable parse, and to
find, with their probabilities, all parses of all subsequences of the
input sequence. It also deals, in a probabilistic way, with multiple
interpretations of sentences containing compound words.

Like most parsing algorithms, our parser is not only a
recognizer determining whether an input sequence is syntactically
correct or not, but also an analyzer, producing a compact
representation of all parses for all the subsequences of the input.
It is particularly easy to extract the most-probable parse tree from
the chart associated with the input sequence. The computation of
the most probable parse and its probability PSCFGðWÞ in the
bottom-up phase of the algorithm is very useful for our application
since it supports the reordering of the candidate sentences
provided by the recognizer as described in the following section.

3.4 The Combination Scheme

The proposed combination of the recognition score �ðWÞ defined
in (3) with the probability PSCFGðWÞ provided by the parser
introduced above is implemented through an additional weighted
component and results in an extended sentence score  ðWÞ
according to (5) below.

 ðWÞ ¼ logPHMMðXjWÞ þ � logPBGðWÞ þ n� þ � logPSCFGðWÞ:
ð5Þ

Parameter � will be called Parse Scale Factor (PSF) and weights
the influence of the parse probability on the extended sentence
score  ðWÞ. For � ¼ 0, the sentence probability provided by the
parser will not affect  ðW Þ at all. In this case, (5) and (3) will
become identical. If � > 0, the parse probability influences  ðWÞ
and a reordering of the n-best candidate sentences may take place
(see Fig. 3). Similarly to parameters � and �, which control the
integration of the word bigram language model in the decoding
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Fig. 1. An automatically extracted sentence from the IAM database.
Fig. 2. An example of an n-best list for the first five candidate sentences with
corresponding recognition scores �ðWÞ for the sentence shown in Fig. 1.

Fig. 3. The reordered n-best list showing the resulting sentence scores  ðWÞ for � ¼ 10, the recognition scores �ðWÞ, and the parse probabilities PSCFGðWÞ. The original
n-best list is the one shown in Fig. 2.



process, parameter � needs to be optimized experimentally on a
validation set.

In the logarithmic space, the proposed integration of PSCFGðWÞ
into  ðWÞ is equivalent to a linear combination of the effects of the
word bigram language model and the SCFG. This combination
scheme can also be interpreted as a mixture of experts. Instead of
using an optical expert providing PHMMðXjWÞ and just a single
language expert as in the case of (3), we now integrate two experts
which cover different aspects of the underlying language. The
value PBGðWÞ provided by the bigram language model is only
based on directly adjacent words while PSCFGðWÞ evaluates the
grammatical soundness of a complete sentence.

4 EXPERIMENTS AND RESULTS

The proposed combination scheme of the baseline recognizer with
the syntax analysis module is evaluated on a series of experiments.
We first introduce the handwritten samples and linguistic
resources involved in the experiments. Then, the experimental
setup is explained and the obtained results are presented.

4.1 Handwritten Data and Linguistic Resources

All handwritten material, namely, images of handwritten English
sentences are taken from the IAM database [23]. The database has
been collected at the University of Bern to build, train, and test offline
handwriting recognition systems for unconstrained English texts. Its
automatic segmentation into individual words described in [33] also
allows the extraction of text lines and complete sentences (see Fig. 1).
The database now contains more than 1,500 scanned pages of
handwritten text contributed by more than 600 different writers.

The text images provided with the IAM database are based on
texts from the Lancaster-Oslo/Bergen (LOB) corpus [14] which
contains 500 printed English texts of about 2,000 words each. To
derive lexica, statistical language models, and the SCFG needed for
syntax analysis we use the Tagged LOB (TLOB) [13] corpus and the
Lancaster Parsed Corpus (LPC) [7]. The TLOB is based on the LOB
corpus and contains its explicit segmentation into individual
words. It further provides a grammatical tag for each word. The
LPC is a treebank containing the parse trees of 11,827 sentences
selected from the LOB corpus.

4.2 Experimental Setup and System Optimization

Two different recognition tasks are defined. In the Multiwriter Task
(MWT) the recognizer is trained on handwritten texts from a large
set of known writers. For the Writer Independent Task (WIT), writing
styles are not known in advance, i.e., the writers represented in the
training set are not represented in either the validation or the test
set of this task. For the training of the recognizer 5,799 handwritten
text lines written by 448 different persons have been selected from
the IAM database. This training set supports both the MWT and
the WIT task at the same time. The validation sets are used to find
optimal values of system parameters while the system perfor-
mance is evaluated on the test sets (see Table 1). In our
experimental setup, we assume that each handwritten input is a
proper English sentence. Furthermore, we assume that all words
occurring in an input sentence are included in the vocabulary.

For the performance evaluation we use the sentence recognition
rate, the word recognition rate, and the word level accuracy. The
sentence recognition rate measures the percentage of correctly
recognized sentences where a sentence is considered to be correctly
recognized if and only if the recognition result matches its
transcription (ground truth) word by word. The different possible
types of errors are called substitutions ðSÞ, insertions ðIÞ, and
deletions ðDÞ where each misrecognized word leads to a substitu-
tion error. If the recognizer erroneously splits a single word into two
parts, an insertion error is generated. Missed spaces between two
consecutive words lead to deletion errors. The word recognition rate
measures the fraction of correctly recognized words and is defined
by ðN �D� SÞ=N , where N is the total number of words in the
transcription of a sentence. The word level accuracy ðN �D� S �
IÞ=N also takes insertion errors into account. It is therefore a more
appropriate measure of the quality of the recognition result.

After the initial training of the HMM-based recognition system
using and the Baum-Welch algorithm [26], the integration of the
word bigram language model and the Parse Scale Factor (PSF) �were
optimized on the validation sets, according to (5). For the tuning of
the PSF, an exhaustive search over the parameter space from � ¼ 0 to
� ¼ 20 was applied leading to � ¼ 10 for the WIT and � ¼ 13 for the
MWT. For grammatically incorrect sentences (i.e., the parser did not
find a parse tree for the given sentence), a fixed minimum parse
probability of 10�300 was assumed. This simple scheme resulted in
identical recognition rates on the validation data as another more
elaborate thresholding method which took into account the parse
probabilities for the n-best list of candidates sentences. The value of
the fixed minimum parse probability has been determined on the
validation sets. Please note that this minimum parse probability is
effectively working as a filter which always favors grammatically
correct sentences over grammatically incorrect solutions.

4.3 Test Set Results

The final results obtained on the test sets for the MWT and the WIT
are summarized in Table 2. Column “Baseline” contains the results
of the baseline recognizer and column “Parsing” holds the
corresponding results for the combined system including the syntax
analysis module. In the last column, the significance of the
improvement is reported which is computed using the correlated
Z-test. This test allows to compute the probability that the measured
improvements are not just produced by chance. The highest
significance of 99 percent is reached for the increase of the word
level accuracy from 74.7 percent to 75.6 percent (+0.9 percent) of the
MWT. Although these results are not very impressive at first glance,
they compare favorably with the best published results in the
domain of speech recognition for broad coverage grammars.

According to [22], the use of a word bigram language model
leads to a substantial improvement of the recognition rate. Hence,
it seems to be difficult to further boost the performance by means
of syntax analysis. To confirm this hypothesis, we also measured
the performance without language model and without syntax
analysis. In this case, a word level accuracy of 49.1 percent was
obtained on the WIT test set. Next, the SCFG-based syntax analysis
module was added (without bigram language model). This led to
an improvement from 49.1 percent to 54.4 percent. We therefore
conclude that the SCFG-based syntax analysis procedure proposed

820 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 5, MAY 2006

TABLE 1
The Definition of the Validation and Test Sets for the

Multiwriter Task (MWT) and the Writer Independent Task (WIT)

TABLE 2
Test Set Results for the Multiwriter (MWT)

and the Writer Independent Task (WIT)



in this paper has the potential of substantially increasing the
performance of a recognizer. However, this improvement becomes
smaller for already intensively optimized recognizers.

5 CONCLUSION

We have proposed a combination scheme for an HMM-based
offline handwritten sentence recognizer and a syntax analysis
module which includes parsing of English sentences using a broad
coverage SCFG. The main goals of the syntax analysis module are
to improve recognition performance by penalizing grammatically
unlikely candidate sentences and to provide additional linguistic
information which could be used in other contexts as semantic
information retrieval or text understanding.

After carefully optimizing both the baseline recognizer and the
proposed combination with the syntax analysis module, improve-
ments of the word level accuracy of around 1 percent (absolute)
were achieved. These results compare favorably with the results
published in the domain of speech recognition for the use of such
grammars. Since these results are achieved using a large broad
coverage grammar for written English, almost no constraints are
imposed on the handwritten texts to be recognized. Furthermore,
the proposed combination scheme requires only a loose coupling
of the recognizer and the syntax analysis module. It is therefore
simple to implement and to test.

Future research could include open vocabulary recognition and
comparison of recognition rates resulting from the use of different
grammars. Such grammars could either be extracted from
additional parsed corpora or they could be directly inferred from
large amounts of text.
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