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Abstract—This paper addresses the problem of rotation estimation directly from

images defined on the sphere and without correspondence. The method is

particularly useful for the alignment of large rotations and has potential impact on

3D shape alignment. The foundation of the method lies in the fact that the

spherical harmonic coefficients undergo a unitary mapping when the original

image is rotated. The correlation between two images is a function of rotations and

we show that it has an SO(3)-Fourier transform equal to the pointwise product of

spherical harmonic coefficients of the original images. The resolution of the

rotation space depends on the bandwidth we choose for the harmonic expansion

and the rotation estimate is found through a direct search in this 3D discretized

space. A refinement of the rotation estimate can be obtained from the

conservation of harmonic coefficients in the rotational shift theorem. A novel

decoupling of the shift theorem with respect to the Euler angles is presented and

exploited in an iterative scheme to refine the initial rotation estimates. Experiments

show the suitability of the method for large rotations and the dependence of the

method on bandwidth and the choice of the spherical harmonic coefficients.

Index Terms—Rotation estimation, signal processing, spherical imaging,

alignment, registration, global motion estimation.
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1 INTRODUCTION

IN this paper, we introduce a new aspect to the global estimation of
motion directly from intensity images without features and without
correspondence or optical flow. We study the case of three-
dimensional rotations on images defined on spheres, a domain
where any perspective projection can be mapped. Research in
localization or estimation of camera displacement has been
dominated by the detection and tracking of landmarks or salient
features in images. In the vast majority of discrete motion
approaches, the features are points. Only in the case of differential
motion, appearing in the image as optical flow, have direct
approaches been employed using spatiotemporal image derivatives
only. The latter approaches have been quite successful in the case of
affine or projective transformations in significant areas of images
and particularly in the production of mosaics. Though designed for
image velocities, their hierarchical implementations can also handle
larger motions.

Our motivation comes from two directions: The first one is
technological, namely, the availability of wide field of view
cameras which enable a persistence of image content. The second
motivation comes from biological findings that motion perception
and navigation are based on global matched filters implemented
by neurons of almost spherical receptive fields.

We represent images defined on the sphere with the spherical
harmonic expansion. We recall from group theory that the natural
group action on the sphere is a three-dimensional rotation and from
harmonic analysis that spherical harmonic coefficients obey a shift
theorem, analogous to the Fourier coefficients on the real line. This
shift theorem states that the rotation of an image corresponds to a
unitary mapping of its spherical harmonic coefficient vectors. This
unitary matrix depends on the unknown 3D rotation in a way that

does not allow the extraction of the unknown 3D rotation in closed
form. Moreover, such coefficients vectors are hardly preserved
because of appearing and disappearing content during camera
motion. It is rather plausible to use the correlation between the two
images in such a case. This correlation is a function of a three-
dimensional rotation. Functions defined on SO(3) have fast SO(3)-
Fourier transforms (called SOFT [13]) which are closely related to the
spherical harmonic expansions. We show that the SOFT of the
correlation can be computed with the pointwise multiplication of the
spherical harmonic coefficients of the two images. Recovering the
original correlation function is achieved with a fast inverse SOFT
transform and the actual rotation is obtained by a search in the space
of Euler angles. The accuracy of the estimated rotation depends on
the resolution of the rotation space, which is restricted by the
bandwidth, the number of spherical harmonic coefficients we keep
from the original images. When the rotation has been constrained to
lie in a small resolution-induced interval, we can apply a refinement
based on the shift theorem or even any algorithm suitable for small
rotations. We propose a refinement based on a novel decoupling of
the shift theorem and a two-step iteration. We present results for
large rotations up to 60 degrees about any axis and we study the
dependence of the method on the selection of spherical harmonic
coefficients.

Two approaches are the closest to ours: The computation of the
correlation function by [19], [14] does not make any use of the SO(3)
Fourier transform, but is recovered with conventional FFT’s in a way
described briefly in the correlation section below. The use of the shift
theorem in [3] makes use of spherical harmonic coefficients of a
particular order to obtain the Euler angles in closed form. We show
in the experiments that such a selection suffers from instabilities
because there is no guarantee that the particular frequencies contain
energy variation sufficient for rotation estimation. The dual problem
to rotation estimation, finding rotation invariant signatures, has
been a challenging problem in the matching of 3D-shapes starting
from the Extended Gaussian Image [9], [10] up to the recent
spherical harmonic methods in [11], [12]. Regarding techniques
without correspondences, it is basic knowledge that we can
compute affine invariants and that we can compute an affine
transformation from combinations of image moments [22]. Work
has been done on the computation of 3D-rotations from area-based
features [15], [24] but without a computational procedure for
rotation recovery. Direct estimation of motion from images has
recently gained interest in the problem of localization based on
reference views. Appearance-based localization [16] has been
shown to be successful by applying PCA to a large set of reference
views. Pajdla and Hlavac [26] studied the rotation just around the
optical axis of panoramic systems and constructed a rotation-
invariant representation.

Direct methods in establishing collineations directly from image
intensities or their derivatives have existed for a long time [2], [23],
[25], [21]. General differential motions of a calibrated camera are
estimated in [6]. The disadvantage of the existing direct methods is
that, in the case of larger motions, they rely on a series of iterations
involving a warping of the image at every step and, in principle,
they are iterative closest point (ICP) algorithms requiring an
initialization close to ground truth.

2 ROTATION ESTIMATION

If asked about the problem of estimating rotations between spherical
images, the outside observer may offer this expensive yet effective
algorithm: Compare the two images for every possible rotation and
the rotation under which the two images are the most similar is the
solution. Given black-box operators for image rotation and
comparison, we could construct a function to determine the strength
of each possible rotation hypothesis:

fðRÞ ¼ CðI1;�RI2Þ: ð1Þ
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I1 and I2 are the two spherical images under consideration, �R is

an operator which rotates an image, and C determines the

similarity between two images. In this setting, the rotation R

which identifies the global maximum of the function f is the

desired rotation. Of course, we must explicitly define the terms we

have introduced here: A spherical image will be considered a

function on the unit sphere parameterized with the spherical

coordinates � 2 ½0; �� (angle of colatitude) and � 2 ½0; 2�Þ (angle of

longitude). For utility, we define �ð�; �Þ to represent the unit vector

associated with the spherical point ð�; �Þ 2 SS2. We will use the

notation Ið�ð�; �ÞÞ and Ið�; �Þ interchangeably. The rotation R is

given as an element of the proper group of rotations SOð3Þ, which

we will parameterize with the ZY Z Euler angles �, �, and �. That

is to say, any rotation can be written as

Rð�; �; �Þ ¼ Rzð�ÞRyð�ÞRzð�Þ; �; � 2 ½0; 2�Þ; � 2 ½0; ��;

where Rz and Ry represent, respectively, rotations about the Z and

Y axes. The rotation of an image I is then simply a rotation of

image points by the operator �R: �RIð�Þ ¼ IðRT�Þ.
The critical step in our formulation is how we define the

similarity between two images. We choose to identify two images if

they are highly correlated. Equation (1) can be written concretely as1

fðRÞ ¼
Z
�2SS2

I1ð�ÞI2ðRT�Þd�: ð2Þ

Essentially, fðRÞ computes the relative likelihood of each rotation

in SOð3Þ. In principle, this approach does not deviate from

standard techniques applied to problems of pattern matching [4].

In such problems, the search is for a planar shift (translational

and/or rotational) which aligns a template pattern with a query

image, where the correct alignment is given as the location of

highest correlation. Such a formulation exploits general convolu-

tion principles which replace convolution with multiplication in

the Fourier spectrum. An analogous computational speedup can

be realized if we recognize that analyzing the spectral information

of images defined on planes or spheres is part of the same general

framework of harmonic analysis on homogeneous spaces. As we

will see in the following sections, the Fourier coefficients of our

correlation function fðRÞ in (2) can be obtained from the pointwise

multiplication of the Fourier coefficients of our two spherical

images I1 and I2.

2.1 The Spherical Fourier Transform

This treatment of spherical harmonics is based on [5], [1]. In

traditional Fourier analysis, periodic functions on the line (or,

equivalently, functions on the circle SS1) are expanded in a basis

spanned by the eigenfunctions of the Laplacian. Similarly, the

eigenfunctions of the spherical Laplacian provide a basis for fð�Þ 2
L2ðSS2Þ (here, L2ðSS2Þ denotes square-integrability, meaning the set

of functions f such that
R
jfð�Þj2d� is finite). These eigenfunctions

are the well-known spherical harmonics (Y l
m : SS2 7!CC), which form

an eigenspace of harmonic homogeneous polynomials of dimen-

sion 2lþ 1. Thus, the 2lþ 1 spherical harmonics for each l � 0 form

an orthonormal basis for any fð�Þ 2 L2ðSS2Þ. The ð2lþ 1Þ spherical

harmonics of degree l are given as

Y l
mð�; �Þ ¼ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl�mÞ!

4�ðlþmÞ!

s
P l
mðcos �Þeim�; m ¼ �l; . . . ; l;

where P l
m are the associated Legendre functions and the normal-

ization factor is chosen to satisfy the orthogonality relationZ
�2SS2

Y l
mð�ÞY l0

m0 ð�Þd� ¼ 	mm0	ll0 ; ð3Þ

where 	ab is the Kronecker delta function. Any function fð�Þ 2
L2ðSS2Þ can be expanded in a basis of spherical harmonics:

fð�Þ ¼
X
l2IN

Xl
m¼�l

f̂f lmY
l
mð�Þ where f̂flm ¼

Z
�2SS2

fð�ÞY l
mð�Þd�: ð4Þ

The f̂flm are the coefficients of the Spherical Fourier Transform
(SFT). Henceforth, we will use f̂fl and Y l to annotate vectors in
CC2lþ1 containing all coefficients of degree l.

2.2 Fourier Transform on the Rotation Group and
Correlation

As our likelihood function fðRÞ in (2) is defined on SOð3Þ and
because we are seeking a convolution-like property describing the
Fourier transform of fðRÞ, we need a Fourier transform on SOð3Þ
in addition to a spherical transform. Similarly to the process in the
previous section, we can develop a Fourier transform on the
rotation group SOð3Þ. When considering functions f 2 L2ðSOð3ÞÞ,
the Fourier transform can be described as a change of basis from
the group elements to the basis of irreducible matrix representa-
tions. The spherical harmonic functions Y l

m form a complete,
orthonormal set providing a basis for the representations of SO(3).
Furthermore, Schur’s First lemma from fundamental representa-
tion theory shows that they also supply a basis for the irreducible
representations of SOð3Þ:

�RY
lð�Þ ¼ UlðRÞY lð�Þ: ð5Þ

The matrix elements of Ul are given by [4]

Ul
mnðRð�; �; �ÞÞ ¼ e�im�P l

mnðcosð�ÞÞe�in� m; n ¼ �l; . . . ; l: ð6Þ

The Pl
mn are generalized associated Legendre polynomials which

can be calculated efficiently using recurrence relations. Such Euler
angle parameterization of the irreducible representations of SOð3Þ
leads to a useful expansion of functions f 2 L2ðSOð3ÞÞ:

fðRÞ ¼
X
l2IN

Xl
m¼�l

Xl
p¼�l

f̂f lmpU
l
mpðRÞ

where f̂flmp ¼
Z
R2SOð3Þ

fðRÞUl
mpðRÞdR:

ð7Þ

The f̂flmp, with m; p ¼ �l; . . . ; l are the ð2lþ 1Þ � ð2lþ 1Þ coefficients
of degree l of the SOð3Þ Fourier transform (SOFT).

As we are interested in relating two images separated by a
rotation in Fourier space, we must firmly understand the effect of
3D rotations in this space. Intuitively, we would expect a rotation
to manifest itself as a modulation of the Fourier coefficients, as is
the case in traditional Fourier analysis. This is, in fact, the observed
effect. As spherical functions are rotated by elements of the
rotation group SOð3Þ, the Fourier coefficients are “modulated” by
the irreducible representations of SOð3Þ:

fð�Þ7!fðRT�Þ()f̂fl 7!UlðRÞT f̂fl: ð8Þ

In effect, the Ul matrix representations of SOð3Þ are the spectral
analogue to 3D rotations. The unitarity of these representations
ensures that the rotation of a function does not alter the
distribution of spectral energy among degrees:

jjUlðRÞf̂fljj ¼ jjf̂fljj; 8R 2 SOð3Þ: ð9Þ
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1. If we choose to use normalized correlation to measure image

similarity, we can simply replace the images I1ð�Þ; I2ð�Þ
with I1ð�Þ � I1; I2ð�Þ � I2, and divide by the normalizing termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ðI1ð�Þ � I1Þ2

R
ðI2ð�Þ � I2Þ2

q
. Since we are considering the entire

signals for correlation, we can omit the dividing term. Here, I is

the image mean.



We may now return our attention to the problem of estimating
the rotation between two spherical images. Examining (2) more
closely, we have developed the necessary tools to treat both I1ð�Þ
and I2ðRT�Þ with their respective Spherical Fourier expansions.
Recently, [13], [19], [7] have explored the computation of such a
correlation in the spectral domain. In the following proposition, we
have replaced image labels I1 and I2 from (2) with the more
generic labels gð�Þ; hð�Þ 2 L2ðSS2Þ.
Proposition 1. If fðRÞ ¼

R
gð�ÞhðRT�Þd� such that g; h 2 L2ðSS2Þ;

fðRÞ 2 L2ðSOð3ÞÞ, then fðRÞ ¼
P

l ðĝglÞ
T
UlðRÞĥhl and the SOð3Þ

Fourier transform of fðRÞ is given by f̂flmp ¼ ĝglmĥhlp.
Proof. Expanding the integral

R
gð�ÞhðRT�Þd� with the Fourier

expansions of both gð�Þ (since gð�Þ is a real function, we can
replace it with its complex conjugate) and hðRT�Þ, we see
immediately

fðRÞ ¼
X
l

Xl
m¼�l

X
n

Xn
p¼�n

Xn
k¼�n

ĝglmĥh
n
pU

n
pkðRÞ

Z
�2SS2

Y n
k ð�ÞY l

mð�Þd�:

Given the orthogonality of the spherical harmonic functions (3),
the only nonzero terms in the summation appear when n ¼ l
and k ¼ m, so

fðRÞ ¼
X
l

Xl
m¼�l

Xl
p¼�l

ĝglmĥh
l
pU

l
pmðRÞ: ð10Þ

This completes the first step. The second statement requires the
SOð3Þ Fourier transform of fðRÞ. A direct application of the
SOFT (7) produces

f̂fnqr ¼
X
l

Xl
m¼�l

Xl
p¼�l

ĝglmĥh
l
p

Z
R2SOð3Þ

Ul
pmðRÞUn

qrðRÞdR:

The orthogonality of the matrices UlðRÞ (
R
Ul
mpðRÞUn

qrðRÞ
dR ¼ 	ln	mq	pr) yields nonzero terms in the summation only
when l ¼ n, m ¼ q, and p ¼ r, resulting in the reduced form

f̂flmp ¼ ĝglmĥhlp ð11Þ

and, thus, completing our proof. tu
As we had initially desired, the correlation of two spherical

functions reflects the similar properties of a generalized convolu-
tion: The SOð3Þ Fourier coefficients of the correlation of two
spherical functions can be obtained directly from the pointwise
multiplication of the individual SFT coefficients. In vector form, the
ð2lþ 1Þ � ð2lþ 1Þmatrix of SOFT coefficients f̂fl is equivalent to the
outer product of the coefficient vectors ĝgl and ĥhl. Given f̂fl, the
inverse SOFT retrieves the desired function fðRÞ with ð2Lþ 1Þ
samples in each of the three Euler angles, leaving us with accuracy
up to�ð 180

2Lþ1Þ
� in � and�ð 90

2Lþ1Þ
� in � (here, L is the bandwidth of the

spherical images, meaning the largest degree for which we retain
SFT coefficients).

To compute the SFT of a discrete spherical image, we can use a
fast OðL2log2LÞ algorithm developed by Driscoll and Healy [5],
where L is the bandwidth of the signal being transformed. A
similar separation-of-variables approach exists for a fast SOð3Þ
Fourier transform in OðL3log2LÞ [13].

To recap the developments in this section, we have described
an efficient method to estimate the rotation between two spherical
images. Recall that the correlation function fðRÞ in (2) computes
the relative likelihood of each 3D rotation and the maximum of this
grid indicates the rotation separating the two images. The values of
the function fðRÞ can be obtained by first taking (discrete)
Spherical Fourier transforms of the two images under considera-
tion and then taking (discrete) inverse SOð3Þ Fourier transform of
their product. A search through these function values will yield the
global maximum. While a direct computation of fðRÞ would have

a complexity of OðL3NÞ (where N , the number of spherical image
pixels, must be at least 4L2), our algorithm is dominated only by
the inverse SOð3Þ Fourier transform.

2.3 DFTs versus SOFT

An alternative to obtaining the correlation function fðRÞ in (2) via
an inverse SOFT is to generate the function samples using only
inverse discrete Fourier transforms. This approach has been
detailed in [19], [14] and we recap it here. In short, the unitarity
of the representations Ul allow for the decomposition of any
rotational modulation term:

R2R1 ¼ R¼)UlðR2ÞUlðR1Þ ¼ UlðRÞ: ð12Þ

Using the rotational decomposition Rð�; �; �Þ ¼ R2ð� þ �; �2 ; � þ
�
2ÞR1ð�þ �

2 ;
�
2 ; 0Þ along with (12), we can follow the approach of the

previous section to arrive at

fðRÞ ¼
X
l

Xl
m¼�l

Xl
p¼�l

Xl
k¼�l

ĝglmĥh
l
pP

l
pkð0ÞPl

kmð0Þeiðp�
0þk�0þm�0Þ; ð13Þ

where �0 ¼ � þ �
2 ; �

0 ¼ � þ �; �0 ¼ �þ �
2 . The Euler angles of rota-

tion all appear in exponentials due to the decomposition of
representations (12). The 3D FFT of fðRÞ is easily computed as

f̂fmpk ¼
X
l

ĝglmĥh
l
pP

l
pkð0ÞP l

kmð0Þ:

This result shows we can compute the discrete Fourier transform
of our likelihood grid fðRÞ as a combination of spherical Fourier
coefficients. The computational cost added by summing through
the degrees l is offset because the function samples can be
computed with inverse FFTs for all three Euler angles.

2.4 Rotation Estimation from Conservation Constraints

Although the correlation technique described in the previous
sections generates a likelihood measure for all possible rotation
hypotheses, it provides little flexibility for a refined solution. As
the Fourier transform is a global integral transform, achieving a
finer resolution in rotation space requires selecting a greater
bandwidth L for the SOFT and SFT transforms. An alternative
would be to estimate the parameters of rotation directly from the
spherical harmonic coefficients. Recall that the shift theorem (8)
constrains the relationship between the SFT coefficients of rotated
images. Another way of stating this result is with the following
equality: For the correct aligning rotation R,

kĝgl � UlðRÞT ĥhlk ¼ 0;8l 2 IN: ð14Þ

If we examine this statement further, we would see that the zero-
order coefficients are unaffected by rotations about the Z axis (i.e., if

gð�Þ ¼ �Rz
hð�Þ¼)ĝgl0 ¼ ĥhl0). For a full rotation (gð�Þ ¼ �Rð�;�;�Þhð�Þ),

the zero-order coefficients are not altered by the final rotation �:

ĝgl0 � UlðRð�; �; 0ÞÞT ĥhl
h i

0
¼ 0;8l 2 IN: ð15Þ

Since (15) is true for any 3D rotation Rð�; �; �Þ, the Euler angles �
and � can be estimated independently of � by minimizing the
residual error (this equation can be further decomposed by
expanding the representations using (12)). Subsequently, after
the SFT coefficients ĥhl have been derotated with the estimates for �
and �, the remaining angle � can be determined from the
following constraint, which holds for all rotations about the Z axis:

jĝglm � e�im�ĥhlmj ¼ 0; 8l 2 IN; jmj � l: ð16Þ

A natural question arises here. Minimizing the residual error
between coefficients will provide a faster convergence versus
searching throughout a global likelihood grid. Why can such a
minimization only be used as a refinement? The answer comes from

1172 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 7, JULY 2006



subtle distinctions in the assumptions made by the correlation and
minimization approaches, which we will denote the correlation and
conservation hypotheses, respectively. The premise of a minimization
is that, for the correct rotational alignment, the SFT coefficients of
two signals will be equal. This is much stronger than expecting them
to be highly correlated. In the ideal case of complete spherical images,
we may observe similar results. However, in practice, we expect the
spherical images to be corrupted: This can be caused by many factors,
including a limited field-of-view, a dynamic scene, and sensor noise.
To illustrate the potential differences between these approaches, we
have compared the possible effectiveness of a residual minimization
to that of a global likelihood evaluation in the following section.

3 EXPERIMENTS

In the previous sections, we presented two methods for rotation
estimation. The first, based on the correlation hypothesis,
generates a global likelihood grid for SOð3Þ. The second, based
on the conservation hypothesis, minimizes the residual error
between SFT coefficients. While both approaches can be
expected to perform equally well in an ideal setting, this may
not be the case when the camera’s imaging surface does not
cover the entire sphere. In practice, our system consists of a
Canon Powershot G2 digital camera fastened to a parabolic
mirror attachment from RemoteReality2 [20]. The mirror’s

field-of-view is 212�, so the camera captures slightly more than
a hemisphere of information. It is well-known that a central
catadioptric projection is equivalent to a spherical projection
followed by a projection onto the plane [8], so we are able to
map images from this system to a regular spherical grid. Fig. 1
shows a sample catadioptric image obtained from a parabolic
mirror and its corresponding projection onto the sphere. We will
proceed by comparing the validity of the correlation and
conservation hypotheses in the presence of signal alterations
caused by having only partial spherical images. Since the
portion of the sphere imaged by an omnidirectional sensor is
hemispherical, a rotation about the camera’s Y axis (orthogonal
to the optical axis) introduces new signal content. As the
magnitude of this rotation increases, the image overlap lessens
and the premise that we are dealing with two images identical
up to a 3D rotation is tested. We record the results from a
global likelihood grid obtained with a bandwidth of L ¼ 128.
Here, we perform the correlation three times by compensating
for the rotation estimate after each iteration. Fig. 2 shows the
results after the first and third iteration for each test. Even as
the rotation angle � becomes obscenely large, causing significant
signal alterations, the correlation estimate accurately determines
the rotation angle. It is interesting to note that, for all the tests,
the small estimation errors are underestimation errors for the
angle �. We perform a similar test to observe the accuracy of
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Fig. 1. Left: A parabolic catadioptric image. Middle: The corresponding spherical image on a uniformly sampled spherical grid. Right: The spherical image as it would

appear on the surface of the sphere.

Fig. 2. Left: A pair of simulated catadioptric images related by a rotation about the Y axis of 60�. Right: Correlation results in estimating the Euler angle � under large
rotations of a catadioptric sensor. Results for one and three iterations of the correlation search for five tests are shown. The ground-truth rotation about the Y axis ranges
from 15� to 75� in increments of 15�. Even up to 60�, the correlation method provides a successful initial estimate.

Fig. 3. Errors in correlation estimates for function bandwidths L ranging from 6 to 32. Three artificial omni-image pairs were generated (with 15:5�, 21:1�, and 26:7� of
rotation about the Y axis) in the same fashion as the test images used in Fig. 2. Each plot shows the distance of the observed peak location from the ground truth in the
estimated likelihood grid for a range of bandwidths. This error distance is measured in terms of bins (or samples) in the likelihood grid, where each bin represents 180�

2L
(e.g., for L ¼ 6, the bin centers are 15� apart).



this approach for a wide range of function bandwidths L. As
the results in Fig. 3 indicate, the correlation estimate is quite
accurate even when we retain few coefficients from the
spherical harmonic expansions, which is quite useful for time
critical applications.

To test the stability of the conservation hypotheses, we simulate
small rotations of a catadioptric sensor. In lieu of performing the
minimization, we searched in a large neighborhood of the ground-
truth solution to verify that the rotation minimizing the residual
error was indeed the ground-truth rotation. To control this
experiment, we consider a spherical function with a known
bandwidth. We can easily generate such a function from a linear
combination of spherical harmonics:

gð�Þ ¼ <
XL
l¼0

Xl
m¼�l

klmY
l
mð�Þ

" #
;where < x½ � ¼ the real part of x:

Here, klm is a random complex number. We fix the bandwidth to
L ¼ 15, which assures that there are no unaccounted natural
frequencies which may affect the computation. Since the minimiza-
tion proposed in Section 2.4 is overconstrained, we can choose
which SFT coefficients to use (ERR ¼

PL2

l¼L1
kĝgl � UlðRÞĥhlk2). We

performed this experiment for all L1 ¼ 1 . . . 15 and L2 ¼ L1 . . . 15. A
few representative samples from this set are shown in Fig. 4. From
the sample plots shown in the figure, it is clear that, as the angle of
rotation around the Y axis increases, the signal deterioration caused
by a limited field of view may cause instabilities in any approach
derived from the conservation hypotheses. These stability tests show
that a nonlinear minimization of the residual error because of its
efficiency in computation can be effective when the known rotation
is small, but a search through a global likelihood grid will be capable
even for extremely large rotations up to 60�.

3.1 Real Rotations

The physical camera rotation where we can most closely monitor
the ground truth is a rotation around the camera’s optical axis.
Here, we have taken a sequence of eight images where each
consecutive pair is separated by a rotation of approximately 45�

about the camera’s optical (Z) axis. The rotation estimates obtained
by generating a global likelihood grid are shown in Fig. 5. From
what was observed as the ground truth, our algorithm successfully
estimated the rotation angle around the optical axis as well as
correctly finding only a negligible rotation around the Y axis.

Fig. 6 displays the results of our correlation approach on images

obtained after arbitrary 3D rotations of a catadioptric sensor. In

these images, the scene depth in many directions is quite small

and, so, there is inevitably a translational component to the motion
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Fig. 4. Representative plots depicting the rotations minimizing the residual error in different ranges of SFT coefficients. The solid line on the diagonal marks the position of
the true rotation, while the dashed line marks the rotation minimizing the residual error. Due to signal corruption, � will be underestimated even for small rotations.

Fig. 5. (a) and (b) One of seven sequential pairs of images tested. The ground truth rotation was observed to lie at approximately 45� about the Z axis for each pair. (c) The

estimated rotation about the Z axis (�þ �). (d) The estimated rotation about the Y axis (�). Our algorithm correctly finds the rotation about the Z axis as well as finding only

a negligible rotation about the Y axis.

Fig. 6. On the diagonal are four original catadioptric images (A, B, C, D). Because
no ground-truth data is provided, we test our algorithm with visual alignment. To
the right of each original image is its warped version showing alignment (e.g., the
image marked A! C in the first row is image A rotated to align with image C after
estimation). To the bottom of each original are the same warped images, but only
showing the regions which are seen from both original catadioptric images. The
correlation grid appears to produce very accurate results even with large rotations
(e.g., the angle � was estimated at 46� between images B and C).



as well. In the presence of a small translational motion and a
hemispherical field of view, the global maximum of the correlation
grid successfully recovers the dominant rotational motion.

4 CONCLUSION

We proposed a novel scheme for computing large rotations from

spherical images without correspondences. The method has

applications in omnidirectional images and navigation as well as

to the alignment of 3D models. We also showed in [17] that it is

quite resistant to small translations of a camera. The magnitude of

the coefficient vector for a particular order can also be used as a

rotation invariant to decide whether we have been at the same

viewpoint or not. In our ongoing work [18], we are considering

two calibrated spherical views without correspondences but

satisfying the epipolar constraint. As opposed to a pure rotation,

the transformation from one image to the other is depth

dependent, thus allowing only the application of the epipolar

constraint. We build a Hough space of rotations and baseline

directions where each cell (motion hypothesis) receives a vote of all

possible matches fulfilling the epipolar constraints. This vote can

be written as a Radon integral and the challenge is how to compute

this integral in a fashion similar to the methodology of this paper.
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