
1

Building Models of Animals from Video
Deva Ramanan, D.A. Forsyth, Kobus Barnard

Abstract— This paper argues that tracking, object detection,
and model-building are all similar activities. We describe a fully
automatic system that builds 2D articulated models known as
pictorial structures from videos of animals. The learned model
can be used to detect the animal in the original video – in this
sense, the system can be viewed as generalized tracker (one that
is capable of modeling objects while tracking them). The learned
model can be matched to a visual library; here, the system
can be viewed as a video recognition algorithm. The learned
model can also be used to detect the animal in novel images –
in this case, the system can be seen as a method for learning
models for object recognition. We find that we can significantly
improve the pictorial structures by augmenting them with a
discriminative texture model learned from a texture library.
We develop a novel texture descriptor that outperforms the
state-of-the-art for animal textures. We demonstrate the entire
system on real video sequences of three different animals. We
show that we can automatically track and identify the given
animal. We use the learned models to recognize animals from
two datasets; images taken by professional photographers from
the Corel collection, and assorted images from the web returned
by Google. We demonstrate quite good performance on both
datasets. Comparing our results with simple baselines, we show
that for the Google set, we can detect, localize, and recover
part articulations from a collection demonstrably hard for object
recognition.

Index Terms— tracking, video analysis, object recognition,
texture, shape

I. INTRODUCTION

W e argue that tracking, detection, and model building
are all similar activities. Suppose we are given a video

sequence and told a single unknown deformable animal is
present. If we could automatically build a visual model of
the animal, we could perform a number of helpful tasks (see
Figure 1). We could use the model to find the animal in the
original video (so that we can track it). By looking up the
visual model in a library, we can also identify the animal
video. Finally, we can use the model to detect the animal in
other images.

One contribution of this work is the introduction of a system
that learns 2D deformable models from video. Deformable
models are attractive because they can encode part articula-
tions; for example, it is valuable know where the head, neck,
body and legs of a giraffe are. Deformable models have a
long-standing history in the vision community beginning with
pictorial structures [1] and deformable templates [2], and also
include the more recent active appearance models [3] and
constellation models [4].

D. Ramanan is with the Toyota Technological Institute, Chicago, IL 60637.
D.A. Forsyth is with the Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL 61801. K. Barnard is with the Computer
Science Department, University of Arizona, Tuscon, AZ, 85721.

E-mail: ramanan@tti-c.org, daf@cs.uiuc.edu, kobus@cs.arizona.edu.

Fig. 1. An overview of this paper. Given a video sequence with a single
animal, we cluster candidate segments (Section V) to build a visual model of
the animal (Section VI). We then use the model to track the animal in the
original video (Section VII), identify the animal (Section IX), and detect the
animal in new images (Section X).

II. RELATED WORK: BUILDING MODELS FOR OBJECT
DETECTION

Learning articulated models from images is difficult because
we must solve the correspondence problem. To build a good
shape model for a giraffe, we first need to know where the
head and legs are in each image, and so we need good part
detectors. But to learn good part detectors, we need a shape
model that describes what image regions correspond with each
other. This interdependency makes this problem hard.

One option is to ignore the articulation, and just build
a “bag of features” model that lacks any explicit spatial
component [5, 6]. Such models maybe useful for detection,
but appear difficult to apply for localization and articulated
pose recovery.

Given that one wants to build models with explicit kine-
matics, one can solve the correspondence problem by hand-
labeling part locations in training images. This has been the
most common approach for building articulated models [2,
3, 7–9]. This approach will not scale when building systems
designed to recognize hundreds or thousands of objects.

Unsupervised learning of deformable models dates back at
least to Weber et al. and Fergus et al. [10, 11]. The learning
was done in an Expectation Maximization (EM) framework,
where labels for parts were the hidden variables marginalized
out. Since EM is an algorithm susceptible to local maxima,
care is required in collecting a set of training images with
relatively little clutter in the background.

We demonstrate that video addresses this correspondence
problem; motion constraints help determine what image re-
gions move where [12]. We develop an automatic method for
building articulated models (pictorial structures, in our case)
by searching for possible animal limbs that look consistent
over time and that move smoothly from frame to frame. Pawan
et al. [13] describe an algorithm for refining models built from
video using EM. Such an approach is sensitive to initialization,
and the system described here can be seen as a method for

2

initialization.
However, a pictorial structure learned from a particular

video is overly tuned to the specific animal captured in the
video. We want to use the model to find all instances of
that animal (from other images and videos). To do this, we
augment the model with a discriminative texture model built
from a texture library. Our model is capable of recognizing
giraffe textures (which are notoriously difficult because they
have structure at two spatial scales — see [5, 6] and Fig.15).
We compare our model with various texture descriptors in
Sec.VIII and show that it outperforms the current state-of-the-
art for animal recognition. Texture descriptors that assume a
known segmentation (or that an image consists of a single
texture) tend to perform poorly on real images; our model is
trained and tested on natural textures observed in images of
real scenes.

III. RELATED WORK: TRACKING

It will be useful to describe our algorithm in terms of an
articulated tracker. Most of the relevant work has focused on
human kinematic tracking. Space does not allow a full review,
so we refer the reader to [14]. Most tracking approaches can
be loosely cast in the framework of hidden Markov models
(HMM), where the object pose (Xt) is the hidden variable
to be estimated, and the observations are images (Imt) of
a video sequence. Standard Markov assumptions allow us to
decompose the joint into

Pr(X1:T , Im1:T) =
∏

t

Pr(Xt|Xt−1) Pr(Imt|Xt),

where we use the shorthand X1:T = {X1, . . . , XT }. Tracking
corresponds to inference on this probability model; typically
one searches for the maximum a posteriori (MAP) sequence
of poses given an image sequence.

We will assume the dynamic model Pr(Xt|Xt−1) is weak
because articulated objects (such as animals and people)
can move in unpredictable ways. The likelihood model
Pr(Imt|Xt) usually involves evaluating (a possibly deform-
ing) template at different image locations. Most of the lit-
erature has focused on mechanisms of inference, which are
typically variants of dynamic programming [8, 15, 16], kalman
filtering [17–19] or particle filtering [20–22]. One uses the
pose in the current frame and a dynamic model to predict
the next pose; these predictions are then refined using image
data. In particular, particle filtering uses multiple predictions
— obtained by running samples of the prior through a model
of the dynamics — which are reweighted by comparing them
with the local image data (the likelihood).

A pre-process (such as background subtraction) oftentimes
identifies the image regions of interest, and those are the ob-
servations fed into a probabilistic model. In the radar tracking
literature, this pre-process is known as data-association [23].
We argue that the dominant difficulty in making any video
tracking algorithm succeed lies in data-association – identify-
ing those image regions that consist of the object to be tracked.

Particle filters use the dynamic model Pr(Xt|Xt−1) to
perform data association; (multiple) motion predictions tell

P21P

2Im

C

PT

TIm1Im

P21P

2Im

PT

TIm1Im

C

1P

C

P 2 TP

(a) (b) (c)
Fig. 2. In (a), we display the graphical model corresponding to model
based tracking. Object position Pt follows a Markovian model, while image
likelihoods are defined by a model template C. Since C is given a priori,
the template must be invariant to clothing; a common approach is to use an
edge template. By treating C as a random variable (b), we build a template
specific to the particular person in a video as we track his/her position Pt.
We show an undirected model in (c) that is equivalent to (b).

us where to look in an image. This approach, though com-
putationally efficient, is susceptible to drift when tracking
with a weak dynamic model in a cluttered background. The
alternative is to do data association using the likelihood model
Pr(Imt|Xt), but this requires a template that produces a low
likelihood for background regions. Indirect methods of doing
this include background subtraction, but again, this is only
valid in restricted situations. Alternatively, one could build a
template that directly identifies images regions of interest.

Most template-based trackers use an edge template, using
such metrics as chamfer distance or correlation to evaluate the
likelihood for a given pose. For simplicity, let us assume object
state consists solely of pose Pt, the template is represented by
an image patch C, and the likelihood is measured by SSD
(though we will look at alternate encodings of appearance). In
this case, we can write the likelihood as:

Pr(Imt|Pt, C) ∝ exp−||Imt(Pt)−C)||2 (1)

where we have ignored constants for simplicity. If we
condition on C (assume the appearance template is given), our
model reduces to a standard HMM (see Figure 2). Algorithms
that track people by template matching follow this approach
[8, 22, 24–26]. Since these templates are built a priori, they
are detuned because they must generalize across all possible
people wearing all possible clothes. Such templates must
necessarily be based on generic features (such as edges) and
so are easily confused by background clutter. This makes them
poor at data association.

By treating the template C as an unknown quantity, we want
to build a template tuned to a specific object in a video. A
template that encodes the red color of a person’s shirt can
perform data association since it can quickly ignore those
pixels which are not red. Under this model, the focus on
tracking becomes not so much identifying where an object
is, but learning what it looks like.

This view of tracking as model-building dates back at
least to the layered sprite model of Jojic and Frey [27],
and the morphable models of Brand [28] and Torresani et
al. [29]. These approaches also build a model of an object

3

while simultaneously tracking it. The work of [27] does not
deal with articulated objects, although extensions are proposed
in [13]. Morphable models can track deforming objects in 3D,
but current implementations require manual initialization and
sequences where point features can be reliably tracked.

IV. OUR APPROACH

To construct an algorithm that builds models from videos,
we look to the object detection community for inspiration.
Many authors have developed algorithms that build object
models from image collections [5, 6, 11, 30, 31]. Say we want
to use one of these algorithms to learn a model of a zebra. We
assemble a set of positive example images containing zebras,
and a set of negative example images not containing zebras.
This form of input is often called semi-supervised data because
we are labeling which images contain a zebra, but for a given
zebra image, we do not label which image regions are zebra
and which are background. The task of the learning algorithm
is to “finish” the partial labeling; learn a zebra model that
labels zebra image regions. Most algorithms do this by variants
of clustering or EM; basically one looks for image regions that
consistently appear in the positive set, but not in the negative
set. Presumably the algorithm will find striped image patches
in the positive set, and so learn a corresponding zebra texture
model.

We can apply the same learning algorithms to frames from
a video sequence of a zebra. We treat the frames as images
from the positive set. Unfortunately, we do not have a negative
set with which to compare. But we have an alternate source
of information; smoothness of motion. We know that a zebra
region must appear consistently in most frames of a zebra
video, and that those zebra regions must move smoothly from
one frame to the next. In essence, we can use the temporal
coherence in a video sequence to provide supervisory signals.

Assume we are given a video sequence of single animal.
This paper presents an algorithm that automatically builds a
visual model of the animal. Section V describes a clustering
method that constructs rough spatio-temporal tracks of body
segments over a sequence. In Section VI, we use the tracks to
learn a pictorial structure [1, 7].

Once we learn the model, there are several neat applications.
We use it to find the animal in the original video (so that
we can track it better; Section VII). By looking up the
visual model in a library, we can also identify the animal
(Section IX). Finally, we can use the model to detect the
animal in other images (Section X).

We significantly improve the quality of the visual model
by augmenting it with a animal texture model learned from a
library of textures. Examining various texture descriptors, we
find they do not characterize animal textures well. We develop
a novel texture representation in Section VIII that outperforms
the state-of-the-art.

V. BUILDING A SPATIO-TEMPORAL TRACK

Say we are given a video with a single animal, and we
want to build a spatio-temporal track of how its body parts

+1 0−1 0 +1−1+2−1 −1 +
bar

=
left edge right edge

Fig. 3. One can create a rectangle detector by convolving an image with a bar
template and keeping locally maximal responses. A standard bar template can
be written as the summation of a left and right edge template. The resulting
detector suffers from many false positives, since either a strong left or right
edge will trigger a detection. A better strategy is to require both edges to be
strong; such a response can be created by computing the minimum of the
edge responses as opposed to the summation.

deform over time. If we assume the animal is made up of
body segments, we can:

1) Detect candidate segments with a detuned segment de-
tector

2) Cluster the resulting segments to identify body segments
that look similar across time

3) Prune segments that move too fast in some frames.

A. Detecting Segments

We model segments as cylinders that project to rectangles
in an image. One might construct a rectangle detector using a
Haar-like template of a light bar flanked by a dark background
(Figure 3). To ensure a zero DC response, one would weight
values in white by 2 and values in black by -1. To use
the template as a detector, one convolves it with an image
and defines locally maximal responses above a threshold as
detections. This convolution can be performed efficiently using
integral images [32]. We observe that a bar template can
be decomposed into a left and right edge template fbar =
fleft + fright. By the linearity of convolution (denoted *), we
can write the response as

im ∗ fbar = im ∗ fleft + im ∗ fright.

In practice, using this template results in many false positives
since either a single left or right edge triggers the detector.
We found taking a minimum of a left and right edge detector
resulted in response function that (when non-maximum sup-
pressed) produced more reliable detections

min(im ∗ fleft, im ∗ fright)

With judicious bookkeeping, we can use the same edge
templates to find dark bars on light backgrounds. We explicitly
searched over 15 template orientations and 25 scales (5 lengths
crossed with 5 widths).

It turns out to be hard to build accurate low-level segment
detectors. Figure 4-(a) shows three frames from a video of a
zebra in which the detectors often fire on the animal body,
but also fire on clutter in the background. We would like to
pick out the true animal body parts from the set of candidate
detections. Unfortunately, we do not know what the animal
segments should look like (since we are not told a zebra
is present). But we know that animal segments should be
consistent in appearance over time; if the head is striped in
the first frame, it should be striped in the final frame. We
find collections of segments that look similar to each other by
clustering the entire set of detected segments.

4

(a)

valid tracks prune tracks

(b) (c) (d)

cluster

Fig. 4. Obtaining spatio-temporal tracks by clustering. We first search for candidate segments using local detectors (we show 3 sample frames in (a)). We
cluster the image patches together in (b). From each cluster we extract a valid sequence obeying our motion model in (c). We prune away the short sequences
to retain the final spatio-temporal tracks in (d).

B. Clustering Segments

Since we do not know the number of segments in our
model (or for that matter, the number of segment-like things
in the background), we do not know the number of clusters
a priori. Hence, clustering segments with parametric methods
like Gaussian mixture models or k-means is difficult. We opted
for the mean shift procedure [33], a non-parametric density
estimation technique.

We create a feature vector for each candidate segment,
consisting of a normalized color histogram in the Lab color
space, appended with shape information (in our case, simply
the length and width of the candidate patch). Note that this
feature vector is to be used for clustering, for which it is
sufficient. The representation of appearance is not limited to
this feature vector.

The color histogram is represented with projections onto
the L, a, and b axis, using 10 bins for each projection. Hence
our feature vector is 10 + 10 + 10 + 2 = 32 dimensional.
We scale the histogram and scale dimensions so as to obtain
a meaningful L2 distance for this space. Further cues — for
example, image texture — might be added by extending the
feature vector, but appear unnecessary for clustering.

Identifying segments with a coherent appearance across time
involves finding points in this feature space that are (a) close
and (b) from different frames. This is difficult to do; we drop
requirement (b), which can be imposed on clusters post hoc,
and concentrate on (a). The mean shift procedure is an iterative
scheme where we find the mean position of all feature points
within a hypersphere of radius h, recenter the hypersphere
around the new mean, and repeat until convergence. We
initialize this procedure at each original feature point, and
regard the resulting points of convergence as cluster centers.
For example, for the zebra sequence in Figure 4, starting from
each original segment patch yields five points of convergence
(denoted by the centers of the five clusters in (b)).

Sometimes, illumination changes will force a single animal
part to appear in two or more clusters. As a post-processing
step we greedily merge clusters which contain members within
h of each other (starting with the two closest clusters). We
account for over-merging of clusters by extracting multiple
valid sequences from each cluster during step (c) (for each
cluster during the third step in Figure 4, explained further
in the following section, we keep extracting sequences of
sufficient length until none are left). Hence for a single arm
appearance cluster, we might discover two valid tracks of a
left and right arm.

C. Enforcing a motion model

As Figure 4 indicates, not every coherent patch is associated
with a moving figure. The second column of clusters in 4-(b)
are background regions. However, at this point cluster ele-
ments are neither constrained to move with bounded velocity
nor required to form a sequence — there might be several
elements from the same frame.

We now find the most likely sequence of candidates for
each cluster that obeys the velocity constraints. By fitting an
appearance model to each cluster (typically a Gaussian, with
mean at the cluster mean and standard deviation computed
from the cluster), we can formulate this optimization as a
straightforward dynamic programming problem. Let Pt be the
position of a segment in the tth frame. We assume these have
a Markovian behavior; i.e. Pr(Pt|P1:t−1) = Pr(Pt|Pt−1).
The reward for a given candidate is its likelihood under the
Gaussian appearance model, and the temporal rewards are ‘0’
for links violating our velocity bounds and ‘1’ otherwise.
We add a dummy candidate to each frame to represent a
“no match” state with a fixed charge. By applying dynamic
programming, we obtain a sequence of segments, at most one
per frame, where the segments are within a fixed velocity

5

occlusion missed
detection

Fig. 5. We show spatio-temporal tracks obtained from a video of a giraffe. The number of parts and the spatio-temporal tracks were obtained automatically
using the algorithm from Figure 4. Note that because we allow “no-match” states in our tracks, we can recover from occlusions, but also suffer from missed
detections. We later correct the missed detections by re-tracking using a model learned from the spatio-temporal tracks (Figure 12).

bound of one another and where all lie close to the cluster
center in appearance.

As Figure 4-(c) demonstrates, this results in a somewhat
smaller set of segments associated with each cluster, particu-
larly the second column of background clusters. The camera in
our zebra video is panning with the animal, so the background
is constantly changing. Since there is no single background
patch that stays in view for the duration of sequence, the
background clusters in Figure 4-(b) are made of patches from
different parts of the background. Temporal links between dis-
parate patches violate our velocity model. Hence, the temporal
smoothness enforced by the dynamic programming tends to
reduce the size of the background clusters.

We now discard those tracks which are not long enough. In
Figure 4-(c), this prunes away the second two clusters. Note
we could impose other tests of validity beyond the length of
a track; we might require that a segment move at some point,
and so we would prune away a track which is completely
still. Alternatively, if we are given two different videos of the
same animal, we might prune away those clusters which do
not appear in both.

The segments belonging to the remaining three clusters are
shown in Figure 4-(d). Our algorithm “discovers” the number
of parts (three, in this case) automatically. The initial number
of clusters is given by the mean shift algorithm, while the
subsequent dynamic progamming and pruning throws away
the bad clusters. Each of the remaining clusters (which we
interpret as a body part) tends to look coherent over time,
moves smoothly over time, and is consistently detected in
many frames. For example, our algorithm automatically learns
a six-part model for a giraffe (Figure 5). We now can learn
a visual model from the spatio-temporal tracks (Section VI).
But first, it is useful to cast our clustering procedure in light
of our constant appearance model developed in Section III.

D. Approximate Inference

The segment finding procedure for the discussed above is,
in fact, an approximate inference procedure for the graphical
model shown in Figure 6. Recall our original blob model from
Figure 2 (shown again in Figure 6-(a)); this model captured the
fact that we want to track a segment while building a model
of its appearance. The algorithm described in this section is a
loopy inference procedure for our blob model (see also [34–
36]). We pass max product messages asynchronously, and
visualize our message schedule with the embedded trees shown
in Figure 6.

1P

C

P 2 TP

1P

C

P 2 TP

1P

C

P 2 TP 1P

C

P 2 TP

[]xi
y i

valid tracks
(c)(b)(a)

clusteringoriginal model

Fig. 6. Approximate inference on our blob tracking model from Figure 2.
The original model (a) encodes the fact that we want to track a segment
while simultaneously building a model of its appearance. An alternative
interpretation is that we want to cluster, or learn a coherent appearance,
while simultaneously enforcing that all the patches from a cluster obey a
motion model. We can do the latter (approximately) by dropping the motion
constraint. We naively cluster, looking for collections of coherent segments
(b). In this case, we find multiple coherent appearances (corresponding to
the zebra head and body). We instantiate the model multiple times, for each
cluster. Given the learned appearance, we do dynamic programming to extract
a sequence of valid tracks where all the segments look similar to the learned
model (c).

In the first subtree, we want to infer a posterior over C
given the image patches from a sequence. We show in [14]
that the mean shift clustering procedure finds modes in the
posterior of C. We interpret each mode, or cluster, as a unique
segment. We instantiate multiple copies of the model Figure 6-
(b), one for each cluster. We can partly justify this procedure
by our aggressive post-clustering merging of clusters; any left-
over clusters which remain separate are likely to be different
segments, and not multiple appearance modes of a single
segment.

We now can treat C as an observed quantity, for each
instantiation of Figure 6-(c). Inferring Pt from such a model is
straightforward; this is just our dynamic programming solution
to find the most likely sequence of candidates given a known
appearance. Note our initial claim of segment configurations
Pt being Markovian is only true when we condition on C.
Finally, we disregard those instantiations we deem invalid (i.e.,
not existing for enough frames).

VI. LEARNING A PICTORIAL STRUCTURE

We use the spatio-temporal tracks (obtained by clustering)
to build a visual model called a pictorial structure. A pictorial
structure model is a parts-based model of an object consisting
of two terms; a geometric term that relates the spatial arrange-

6

P N

P H PB

B
H

BB
B

fL rL

N

fL/H

uN

lN

B
lB

uB

Fig. 7. We show the pictorial structures learned from videos of a zebra left, tiger center, and giraffe right. We visualize the zebra pictorial structure as a
graphical model (above on left). This model is parameterized by probability distributions capturing geometric arrangement of parts Pr(P i|P j) and local part
appearances Pr(Im(P i)|P i) (the vertical arrows into the shaded nodes). These distributions and the tree structure of the graph are automatically learned
from the video. We manually attach a semantic description to each limb as Head, upper/lower Neck, upper/lower Body, or front/rear Leg. Labeling the tiger
model is tricky; many limbs swim around the animal Body, and one flips between the Head and front Leg. We use these labels to help evaluate localization
performance in our results; they are not part of the shape model. Obtaining a set of canonical labels appears difficult.

ment of parts, and an appearance term that describes the local
appearance of each part [1, 7, 8].

Pr(P 1 . . . PN |Im) ∝
∏

(i,j)∈E

Pr(P i|P j)
N∏

i=1

Pr(Im(P i)|P i).

(2)
Pr(P i|P j) are geometric terms that capture the spatial ar-

rangement of part i with respect to part j, and Pr(Im(P i)|P i)
captures the local appearance of the image at part i. Here, we
extend part configuration P i to include both position (x, y)
and orientation θ. The position of each non-root segment P i

is represented with respect to the coordinate system of its
parent P j . E is a set of edges that capture the dependency
structure of the model. A model is fully specified when the
edge structure and the probability distributions along each
edge are known. If E is a tree, one can efficiently match
these models to an image using Dynamic Programming (DP).
Felzenszwalb and Huttenlocher [7] describe efficient DP-
based techniques for computing the MAP estimate and for
sampling from the posterior in Equation 2. One can also use
the (unnormalized) posterior as an animal detector by only
accepting those maximal configurations above a threshold.

Learning by maximum likelihood: Standard methods learn
pictorial structures by maximum likelihood estimation (MLE)
given images where parts are labeled [7, 37]. Theoretically,
one could learn pictorial structures from unlabeled data using
EM, where labels are hidden variables marginalized over. This
approach is taken in [11], where the learned models are called
constellation models. To avoid local maxima issues with EM,
those models must be learned from uncluttered images and
with finely tuned part detectors. In our case, we learn pictorial
structures by direct MLE without any manual intervention; we
use the coherence in a video to provide the labeling. Note we
do not need precise labels, but rather correspondence between
parts over time – this is provided by the cluster membership.

Learning E: Typical methods for learning the spatial struc-
ture E will not work in our case; we briefly describe the
approach from [7, 8, 12] here. Consider a fully connected bi-
directional graph where each vertex represents a segment Ph,
Pn, and P b (the precise segment labels are not needed so long
as their correspondence between frames is known). Directed
edges in this graph are weighted by the entropy of Pr(P i|P j).

Minimum Entropy Edges

Minimum Distance Edges

Fig. 8. On the top, we show the edge structure E learned by a minimum
entropy spanning tree (this are the edges that maximize the likelihood of the
observed spatio-temporal tracks). This can create links between two far away
segments (the giraffe’s head and leg) because of noisy entropy estimates. A
better strategy is to link the parts that tend to lie near each other (bottom).

To learn the tree structure that maximizes the likelihood of the
observations, [7, 8, 12] finds the minimum-entropy spanning
tree. This tends to result in poor models. Often two far away
limbs will be directly linked in the learned spatial model. This
is because the position P i of the detected limbs are quite noisy
(due to the detuned limb detector), in turn producing noisy
entropy estimates (see Figure 8). To enforce the natural prior
that two limbs that tend to appear near each other should be
spatially linked together, we replace the entropy term with the
mean distance between those two limbs (and then compute the
minimum spanning tree). We root this tree at the most “stable”
limb (the limb detected most often in the original video). This
produces the tree spatial models in Figure 8.

Pr(P i|P j): We fit the geometric terms Pr(P i|P j) by stan-
dard Gaussian MLE assuming diagonal covariance matrices.
For example, assume one has a collection of zebra images
where Head, Neck, and Body segments are labeled. The sample
mean and standard deviation of head positions relative to the
neck would define the MLE estimate of Pr(PH |PN). In our
case, we use the cluster membership to provide the labels. Be-
cause we are using gaussian potentials to represent articulated
joints, we expect the variance in the (x, y) dimension to be

7

small (since body parts must stay connected) and the variance
in θ to be large (since body parts can rotate to a large degree).

Pr(Im(P i)): One could also fit the appearance terms
Pr(Im(P i)) by MLE; however, we found this yields a poor
detector since we have ignored the background. We learn a
discriminative part appearance model by learning a animal
texture classifier from the video. We use the spatio-temporal
tracks to segment the video into animal (foreground) and
background pixels. We fit a 5-component Gaussian mixture
model in RGB space for the foreground/background, as in
[38].1 We use our pictorial structure to find an animal in a
image using the procedure in Figure 9. Given an image, we
first use our texture model to label the animal pixels. We
evaluate the part likelihood Pr(Im(P i)) by convolving the
label mask with rectangle templates looking for light bars on
dark backgrounds (as in Section V-A); we want parts to lie on
animal pixels and not the background. An alternative would
have been to learn a separate texture model for each animal
limb (this is done for people in [39]); we found this was not
necessary for animals with homogeneous texture.

Note our RGB-based texture classifier is specific to the
video it is trained on. Hence they are limited in their use;
we can use them to find animals in the original videos (so
that we can track them, as in Section VII). However, if we
want to find animals in new images, we need to build more
sophisticated texture models (Section VIII).

VII. TRACKING BY FINDING

Given the learned pictorial structure, we can use it to
track the animal in the original video. For each frame, we
find the best-matching body pose (by dynamic programming),
or obtain a distribution over body poses (by sampling); see
Figure 9. Because we are tracking by detection, our tracker
is quite robust. It can recover from errors and occlusion
because it automatically re-initializes itself in every frame. We
show results for three sequences depicting different moving
animals in Figures 10, 11, and 12.2 The tracks were not hand
initialized, and the same program was used in each case.
The program automatically learns a pictorial structure and
then identifies instances in each frame. In each sequence, the
animal’s body deforms considerably, the zebra because it is
moving very fast, the giraffe and the tiger because giraffes
and tigers deform a lot when they move. Nonetheless, the
program is able to build an appearance model that is clearly
sufficient to capture the essence of the moving animal, but
lacks some details. In particular, legs are narrow, fast, and hard
to detect; consequently, the learned pictorial structures fails to
model them. Furthermore, the temporal correspondences for
the segments — which are indicated by colored outlines in
the figures — are largely correct. Finally, the tracker has been
able to identify the main pool of pixels corresponding to the
animal in each frame.

Following [40], we evaluate our tracker using detection rates
(Figure 13) obtained from the original video. Our algorithm

1Technically speaking, we learn generative models for the foreground and
background. They are “discriminative” in the sense they are used to classify
pixels.

2Videos are available online at the first author’s webpage.

100
100

100 92

84
94

56
50

52

34

100

100

100
100 96

53

54

100

84
84 52 99

62
55

92

92

99

99

% Correct Part Localizations

Clustered Edge Detections

Pictorial Structure Detections

Fig. 13. We evaluate our trackers using detection rates for the original videos.
Our algorithm builds representations of animals as a collection of parts. We
overlay the percentage of frames where parts are correctly localized. We define
a part to be correctly localized when it overlaps a pixel region with the correct
semantic label from Figure 7. On the top, we show results from the original
spatio temporal tracks obtained by clustering edge detections. After learning
a pictorial structure from the tracks, we use the model to re-detect the animal.
This results in significantly better performance, as shown on the bottom.

builds a representation of each animal as a collection of parts.
We define a correct localization to occur when the majority of
pixels covered by an estimated part have the correct semantic
label from Figure 7. The quality of the track using the pictorial
structure is quite good, and is much better than the original
spatio-temporal track. This suggests that tracking is easier with
a better model. One can envision iterating this procedure (in a
manner quite similar to EM) by refitting a pictorial structure
model to the newly tracked segments, and then tracking given
the pictorial structure model. We performed only one iteration.

Our tracker is successful largely because of the quality
of the foreground masks produced by the learned animal
classifiers (Figure 9). These classifiers do not generalize well
to novel images (with say, different illumination conditions);
we build robust animal texture classifiers in Section VIII.

VIII. BUILDING A TEXTURE MODEL

Comparing texture descriptors for detecting animal patches
Descriptor All Zebras Tigers Giraffe

Patches 8.2 8.93 5.56 5.97
Textons 11.1 31.3 12.7 12.5

SIFT 13.6 40.0 19.1 21.9

TABLE I. We count how often we can correctly identify an animal
based on texture from a single patch from Figure 14. We report percentage
of correct detections in cross validation experiments for a 1-NN classifier
using 1500 prototypes per class. For the full (38 class) multi-class problem
‘All’, we perform quite poorly. Many animal classes (such as elephants and
rhinoceroses) are hard to discriminate using texture alone. When scoring
correct detections solely on zebra, tiger, and giraffe test patches, we do much
better, indicating those animals have distinctive texture. Looking at various
patch representations (normalized patch pixel values, histograms of textons,
and a SIFT descriptor), we find SIFT performs the best. We adopt it as our
texture descriptor, and examine its behavior further in Figure 15.

To both identify a pictorial structure (Section IX) and
detect it in new images (Section X), we need a good animal
texture descriptor. We want a descriptor capable of producing
foreground masks like those of Figure 9, but for novel images.

8

pixels
classify

programming

sample1 sample2

+...=+

dynamic
MAP

Posterior

captured
joint

joint not
modelled

Fig. 9. Detecting a pictorial structure Pr(P head, P neck, . . . |Im). Given the image on the left, we first classify foreground pixels using a color model
learned from the spatio-temporal tracks. We use dynamic programming to find an arrangement of limbs that lie on foreground pixels and that look like the
shape prior; this yields the MAP estimate on the right. We also can use a foreground mask and shape prior to generate sample body poses from the posterior
Pr(P head, P neck, . . . |Im) (using the method of [7]). We superimpose the samples to yield the final posterior map on the bottom. The posterior models
the front leg joint better than the MAP estimate; this suggests we can use uncertainty in how we match a model to compensate for its inadequacies.

Fig. 10. Tracking results for the zebra video. In the top row, we show the spatio-temporal tracks obtained by clustering together segments that obeyed
our motion model. Correspondence over time (denoted by the colors) are given by cluster membership. Given those segments, we learn the zebra pictorial
structure model shown in Figure 7. Given the learned model, we can re-track by computing MAP estimates for each frame in the video (middle). We can also
visualize the entire posterior using the sampling method from Figure 9 (bottom). Note that the tracks tend to get significantly better as we build an improved
visual model of the zebra; we quantify this in Figure 13.

Specifically, it must be able to segment out an animal from
cluttered backgrounds (typically of foliage). Descriptors devel-
oped for standard vision datasets (such as CUReT [41]) may
not be appropriate for segmentation since they classify entire
images of homogeneous texture. Giraffe textures in particular
are notorious for being difficult to capture (e.g. [5, 6]; see
Figure 15).

A. Texture library

To evaluate descriptors on small image patches, we create a
texture library. We use the Hemera Photo-Object[42] database
of image clip art; these annotated images have associated fore-
ground masks. We use all the images in the “animals” category,
throwing away those animals with less than 3 example images.
This leaves us with about 500 images spanning 38 animals. We
assemble a texture library by randomly sampling 1500 17X17
patches from each animal class (Figure 14).

B. Descriptor Evaluation

We use the library to compare 3 different patch descriptors;
histograms of textons [43], intensity-normalized patch pixel
values [44], and the SIFT descriptor [45]. Textons are quan-
tized filter bank outputs that capture small scale phenomena
(such as t-junctions, corners, bars, etc.). They are typically
binned into a histogram over some spatial neighborhood. The
SIFT patch descriptor is a 128 dimensional descriptor of
gradients binned together according to their orientation and
location; it is designed to be robust to small changes in pixel
intensity and position. Note we use the raw descriptor on
a 17X17 patch, without normalizing for scale or dominant
orientation (as in[45]).

We evaluate our texture model by 3-fold cross-validation.
We tried a variety of classifiers, such as K-way logistic
regression, SVMs, and K-Nearest Neighbors (NN). This clas-
sification problem is difficult because of the large number

9

Fig. 11. Tracking results for the tiger video, using the same conventions as Figure 10. Note the tracks tend to get significantly better as we build an improved
visual model (we quantify this in Figure 13).

Fig. 12. Tracking results for the giraffe video, using the same conventions as Figure 10. Note the tracks tend to get significantly better as we build an
improved visual model (we quantify this in Figure 13).

zebra

giraffe

tiger

Fig. 14. Our library of animal textures built from Hemera. We show a subset of 100 17X17 patches for each of our 38 animals; we mark the giraffe, tiger,
and zebra rows in yellow. Our recognition task requires texture classification and segmentation (we need to separate the animal from its background). This
means we need to evaluate textures on a local image patch. We use this library to evaluate patch descriptors in Table I.

10

Fig. 15. Given a query image left, we replace each 17X17 patch with its
closest match from a patch in our texture library. This means we need a good
animal texture descriptor; one that captures the long thin stripes that lie within
big blobs typical in a giraffe. Standard approaches use histograms of textons
(quantized filter bank outputs) [5, 6, 43, 44]. We show a texton map on the
middle left, where each color maps to an individual texton. The big blobs
that distinguish the giraffe from the background are only apparent from the
long-scale spatial arrangement of textons. Looking at histograms of textons
over small neighborhoods looses this spatial arrangement. Hence classifying
giraffe patches based on texton histograms is a poor approach, as seen in the
middle right (and as acknowledged by [5, 6]). Rather, if we classify patches
using a descriptor capturing spatial arrangement of pixels (e.g. SIFT), we are
better at detecting giraffe patches (right).

of classes (almost 40); training an all-pairs SVM classifier
took exorbitantly long. When training a SVM on 2 animal
classes, we did not observe any sparsity. This suggests that the
decision boundary is curvy (and so we need all sample points
as support vectors). K-NN performed the best, with K = 1.
Hence we evaluate patch descriptors using 1-NN classification
(again using 3-fold cross-validation) in Table I.

There are three conclusions we can draw: (1) Classifying
small patches seems much harder than classifying entire
images of homogeneous texture. Our results are worse than
those reported for texture databases like CUReT [6, 43, 44].
(2) There is a large variance in performance depending on the
animal class. Discriminating between elephants and rhinoceros
is hard because of their similar hides, but highly textured ani-
mals such as zebras, tigers, and giraffes stand out. Finally, (3)
SIFT seems much better suited for detecting animal textures
from small patches. We look at the ability of SIFT to segment
out animals from real images in Section VIII-C.

C. Why are giraffes hard?

Segmenting giraffes present particular difficulties for texton
based descriptions (e.g. [5, 6]; Figure 15). The texture is
characterized by phenomena at two scales (long thin stripes
that lie in between big blobs). If we calculate textons over a
large scale, we miss the thin stripes. If we calculate textons
on a small scale, the long scale spatial structure of the textons
defines the big blobs (Figure 15). This spatial structure is lost
when we construct a histogram of local neighborhoods from
the texton map. This suggests that we should not think of a
giraffe texture as an unordered collection of textons, but rather
simply a patch, or a collection of spatially ordered pixels. A
robust patch descriptor such as SIFT is a natural choice (other
descriptors such as [46] may also prove useful).

Our results are surprising because SIFT was not designed
to represent texture (as noted in [45]); however we find it
can represent texture given we store enough examples. The
drawback to our nearest neighbor approach is time required

Fig. 18. The top 4 matches (the top match on the left) in the Hemera
collection for the shape model learned from the giraffe video. Note our
shape model captures the articulated variation in pose, resulting in accurate
detections and reasonable false positives.

to classify a new patch; we must compare it against 1500
prototypes from 38 classes. Obtaining a simpler parametric
representation of animal texture remains future work.

We now can use our texture models to identify the animal
in a video (Section IX) and detect the animal in new images
(Section X).

IX. IDENTIFYING THE ANIMAL

We use our patch-based texture model from Section VIII
to identify the animal in a video. We assume that the animal
in a given video is one of the 38 animals in Hemera. We
scale the Hemera images and video clips to be similar sizes,
and assume the animals are present similar scales. We use a
two-part matching procedure, shown in Figure 16.

Texture cue: We match the texture models built from
Hemera to the video. We use the animal tracks (Section VII) to
segment the video into animal/non-animal pixels. We extract
the set of all 17X17 animal patches from the video, and clas-
sify each as one of the 38 animals. We do 1-NN classification
on each patch, finding the closest match from our library of
animal textures (by matching SIFT descriptors). We can obtain
a texture posterior for animal labels given a video by counting
the number of times the classifier voted for the ith animal
class. Looking at Figure 17, we see that matching solely based
on texture is not enough to get the correct animal label; the
giraffe video matches best with a ‘leopard’ texture.

Shape cue: We add a shape cue by matching the shape
model built from the video to Hemera. For each image in
the Hemera collection, we use dynamic programming to find
a configuration of limbs that occupies the foreground mask
and that is arranged according to the shape prior learned from
the video. We show 4 matches for our giraffe shape model
in Figure 18; note the model matches quite well to giraffe
images in Hemera. For each animal class, we take the best
shape match score obtained over all images in that class. We
normalize the scores to obtain a shape posterior over animal
labels in Figure 17. Using shape, we label the giraffe video as
‘giraffe’, but both the zebra and tiger video are mislabeled.

We compute a final posterior by adding the (log) texture
and shape posteriors (weighting shape by 1

2) in the bottom
row of Figure 17. Selecting the best class, we identify the
correct animal label for each of our videos.

11

Fig. 16. We identify animals in videos by matching to labeled image collections. Given an animal video (left), we obtain spatio-temporal tracks of limbs
by clustering (Section V). We use the tracks to learn a spatial model (Section VI) and segment the video into animal/non-animal pixels (Section VII). On the
right, we build a texture model for various animals from the Hemera collection of labeled and segmented images. We link our models by matching the shape
model built from video to the foreground mask of the Hemera images and matching the texture model built from Hemera to the segmented video (Section IX).
This automatic matching identifies the animal in the video. We use the combined shape and texture model for recognition in Figure 19.

h
o
rs
e

ti
g
e
r

e
le
p
h
a
n
t

c
a
lf

c
o
w

lio
n

d
o
n
k
e
y

rh
in
o
c
e
ro
s

b
e
a
r

g
o
a
t

le
m
u
r

s
h
e
e
p

to
a
d

c
a
tt
le

s
te
g
o
s
a
u
ru
s

liz
a
rd

tu
rt
le

le
o
p
a
rd

b
u
ff
a
lo

g
ir
a
ff
e

d
e
e
r

s
n
a
k
e

b
o
a
r

e
lk

c
h
ic
k

a
p
a
to
s
a
u
ru
s

fr
o
g

b
is
o
n

tr
ic
e
ra
to
p
s

s
a
la
m
a
n
d
e
r

p
ig

fa
w
n

b
a
b
o
o
n

tr
e
x

o
ra
n
g
u
ta
n

ib
e
x

c
ro
c
o
d
ile

z
e
b
ra

c
a
tt
le

c
o
w

h
o
rs
e

e
lk

c
a
lf

rh
in
o
c
e
ro
s

g
o
a
t

s
te
g
o
s
a
u
ru
s

d
o
n
k
e
y

le
m
u
r

le
o
p
a
rd

lio
n

tu
rt
le

s
n
a
k
e

tr
ic
e
ra
to
p
s

to
a
d

ib
e
x

b
a
b
o
o
n

liz
a
rd

s
h
e
e
p

b
e
a
r

b
o
a
r

s
a
la
m
a
n
d
e
r

o
ra
n
g
u
ta
n

fr
o
g

fa
w
n

b
u
ff
a
lo

p
ig

d
e
e
r

b
is
o
n

c
h
ic
k

g
ir
a
ff
e

tr
e
x

e
le
p
h
a
n
t

a
p
a
to
s
a
u
ru
s

c
ro
c
o
d
ile

0
0
.0
8

0
.1
7

z
e
b
ra

h
o
rs
e

ti
g
e
r

e
le
p
h
a
n
t

c
a
lf

c
o
w

lio
n

d
o
n
k
e
y

rh
in
o
c
e
ro
s

liz
a
rd

 Texture
 Shape
T & S

texture

texture + shape

shape

0
0
.0
9

0
.1
9

tig
e
r

ze
b
ra

ca
tt
le

co
w

h
o
rs
e

e
lk

ca
lf

rh
in
o
ce

ro
s

g
o
a
t

st
e
g
o
sa

u
ru
s

texture

texture + shape

shape

liz
a
rd

tr
e
x

a
p
a
to
s
a
u
ru
s

le
m
u
r

g
o
a
t

s
a
la
m
a
n
d
e
r

d
o
n
k
e
y

o
ra
n
g
u
ta
n

b
a
b
o
o
n

c
o
w

tr
ic
e
ra
to
p
s

fr
o
g

s
n
a
k
e

d
e
e
r

c
a
lf

c
h
ic
k

s
h
e
e
p

rh
in
o
c
e
ro
s

c
ro
c
o
d
ile

ti
g
e
r

le
o
p
a
rd

tu
rt
le

s
te
g
o
s
a
u
ru
s

to
a
d

e
lk

h
o
rs
e

b
o
a
r

ib
e
x

c
a
tt
le

fa
w
n

p
ig

b
e
a
r

e
le
p
h
a
n
t

lio
n

b
u
ff
a
lo

z
e
b
ra

b
is
o
n

0
0
.2
1

0
.4
2

g
ir
a
ff
e

liz
a
rd

tr
e
x

a
p
a
to
s
a
u
ru
s

le
m
u
r

g
o
a
t

s
a
la
m
a
n
d
e
r

d
o
n
k
e
y

o
ra
n
g
u
ta
n

le
o
p
a
rd

texture

shape

texture + shape

ze
b

ra

ti
g

e
r

g
ir

a
ff

e

Posterior of zebra video Posterior of tiger video Posterior of giraffe video

Fig. 17. We identify the animals in our videos by linking the shape models built from video to the texture models built from the labeled Hemera image
collection. We show posteriors of animal class labels given the zebra (left), tiger (middle), and giraffe (right) videos. In the top row, we show posteriors of
the ten best labels based on a texture cue, shape cue, and the combination of the two. We mark the MAP class estimate for each cue. Matching texture models
built from Hemera to the segmented videos, we mislabel the giraffe video as ‘leopard’. By matching shape models built from videos to Hemera images, we
match the giraffe correctly, but incorrectly label the zebra and tiger videos. Combining the two cues, we match all the videos to the correct animal label. We
show posteriors for the final combined cue over the entire set of labels in the bottom row. Note the graphs are not scaled equally.

Alternatives: One might attempt to the label the videos
by directly matching the pictorial structure models built from
the videos (Section VI) to Hemera. We found that the shape
prior performs well, but the simplistic RGB models for part
appearance produce poor matches in Hemera. Video is a good
domain to learn shape (because motion constraints establish
correspondence) but a poor domain to learn appearance (be-
cause we see only a single instance). It is hard to build a
good giraffe texture model by looking at a single giraffe.
On the other hand, image collections are convenient for
learning appearance (because we see many instances) but not
shape (because correspondence is unknown). Our matching

procedure builds a shape and texture model separately, using
the domain that is well-suited for each.

X. FINDING ANIMALS IN NEW IMAGES

We use our patch-based texture model from Section VIII and
the correspondence obtained from Section IX to build a system
for finding animals in new images. We follow the approach
outlined in Figure 19.

Given a query image, we first obtain a “foreground” mask
using the texture library built in Section VIII. We replace each
17X17 image patch with the closest match from our library,
using a SIFT descriptor. We append the Hemera animal texture

12

Fig. 19. Our model recognition algorithm, as described in Section X. Assume
we wish to detect/localize a giraffe in a query image (left). We replace each
image patch with its closest match from our library of Hemera animal and
background textures (NN or nearest neighbor classification). We construct a
binary label image with ‘1’s for those patches replaced with a giraffe patch
(center). We use dynamic programming (DP) to find a configuration of limbs
that are likely under the shape model (learned from the video) and that lie on
top of giraffe pixels in the label image (constructed from the image texture
library). We show MAP limb configurations on the right.

library with a ‘background’ texture class of 20000 patches
extracted from random Corel images (not in our test pool
and not containing animals). We then construct a binary label
image with a ‘1’ if a patch was replaced with a given animal
patch. We interpret this binary image as a foreground mask
for that animal label, and use DP to find rectangles in the
foreground arranged according to the shape model learned
from video (Section VI). For the ‘zebra’,‘tiger’, and ‘giraffe’
animal labels, we know the correct shape model to use because
we have automatically linked them (Section IX). Hence our
final animal detection system is completely automatic.

In practice, it is too expensive to classify every patch in a
query image. Fortunately, the SIFT descriptor is designed to be
somewhat translation invariant; off-by-one pixel errors should
not affect it. This suggests we sample patches from the image,
and match them to our texture library; we match 5000 patches
per image, which takes about 2 minutes in our implementation.
Speeding up the matching using approximate nearest neighbor
techniques [47] or building a parametric texture model may
allow us to classify more patches from an image.

A. Evaluation

We tested our models on two datasets; images from the
Corel collection and various animal images returned from
Google. We scale images to be roughly the same dimension
as our video clips. Our Corel set contained 304 images; 50
zebras, 120 tigers, 34 giraffes, and 100 random images from
Corel. Note these random images are different from the set
used to learn a background patch library. The second collection
of 1418 images was constructed by assembling a random
subset of animal images returned by Google. It contains
315 zebras, 70 tigers, 472 giraffes, and 561 images of other
animals (‘leopard’, ‘koala’, ‘beaver’, ‘cow’, ‘deer’, ‘elephant’,
‘monkey’,‘antelope’, ‘parrot’, and ‘polar bear’).

Detection. We show precision-recall (PR) curves in Fig-
ure 20. For the Shape detector, we build an animal detector
using only the video and not Hemera. We build a crude texture
library using positive and negative patches inside and outside
the spatio-temporal tracks. Given a new image, we construct
a binary label image by replacing patches with their closest
match from this limited texture library. We then use DP to

find the MAP configuration of limbs from the binary label
image. For the Texture detector, we build a detector using only
Hemera and not the video. We compute a binary label image
using the entire patch library (Hemera animal patches plus
background patches). Our final detector is a threshold on the
sum of animal pixels (as in [5, 6]). For the S & T detector, we
construct a binary label image using the entire patch library,
and then use DP to find the MAP limb configuration. We
compare our detectors with 2 baselines; a 1-NN classifier
trained on color histograms and random guessing. We tried
a variety of other classifiers as baselines (such as logistic
regression and SVMs) but 1-NN performed the best.

Difficulty of datasets. Recognition is still relatively poorly
understood, meaning that reports of absurdly high recognition
rates can usually be ascribed to simplicity of the test set.
Careful experimentation requires determining how difficult a
dataset is; to do so, one should assess how simple baselines
perform on that dataset [48–51]. This is often informative:
for example, it is known that variations in reported per-
formance between different face recognition algorithms are
almost entirely explained by variations in the performance
of the baseline on the dataset [48]. In almost all cases, our
shape and texture animal models outperform the baselines of
random guessing and color histogram classification. The one
notable exception is our tiger detector on the Corel data, for
which a color histogram outperforms all our methods. This can
be ascribed to the insufficiently well known fact that Corel
backgrounds are strongly correlated with Corel foregrounds
(so that a Corel CD number can be predicted using simple
color histogram features [51]). In the Google set, our baselines
do worse, but our detectors do better. This negative correlation
seems to stem from the fact that Google images have varied
backgrounds, unlike Corel (see Figure 22 versus Figure 23).
Such backgrounds hurts our global histogram baseline but may
help our animal detector (since the animal might be easier to
segment). Comparing to detection results reported in [5, 6], we
obtain better performance on a demonstrably harder dataset.

Importance of shape. In almost all cases, adding shape
greatly improves detection accuracy. An exception is detecting
tigers in the Google set (Figure 20). We believe this is the
case because of severe changes in scale; many tiger pictures
are head shots, for which our shape model is not a good match
(this also confuses our texture model, resulting in the lower
overall performance). However, for low recall rates, shape is
still useful in yielding high precision. The top few matches
for the tiger detector will be tigers only if we use shape as a
cue. Our results for shape are particularly impressive given the
quality of our texture detector baseline. It has been shown that
feature matching with SIFT features [50] produces quite good
performance on established object recognition datasets [11].
Such a scheme is equivalent to our texture baseline, which we
demonstrate is outperformed by our shape and texture detector.

Location and kinematic recovery. Looking at the best
matches to our detectors (Figure 22 and Figure 23), we see
that we reliably localize the detected animal and quite often
we recover the correct configuration of limbs. We quantify this
by manually evaluating the recovered configurations in Table

13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

 S&T
 Texture
 Shape
Color
Random

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

Google zebras

Corel zebras

Google tigers

Corel tigers Corel giraffes

Google giraffes

Fig. 20. Precision recall curves for zebra, tiger, and giraffe detectors run on a set of 304 Corel images (top) and 1418 images returned by Google (bottom).
The ‘Shape’ detectors are built using shape models and crude texture models learned from the video. The ‘Texture’ detectors are built using texture models
trained on the image collection. The S & T detectors use texture models from the image collection and shape models from the video (where the linking
was automatic, as described in Section IX). We compare with 2 baselines; a 1-NN classifier trained on color histograms and random guessing. For the tiger
detector run on Corel, the color histogram does quite well, suggesting we should look at the Corel dataset with suspicion. We show that, in general, shape
improves detection performance. Comparing our zebra and giraffe detection results to [5, 6], we show better performance on a demonstrably harder dataset.

Percentage of correct localizations
Dataset Zebra Tiger Giraffe

Corel 84.9 92.0 76.9
Google 94.0 94.0 68.0

(a)
Percentage of correctly estimated kinematics

Dataset Zebra Tiger Giraffe
Corel 24.2 28.0 38.4

Google 30.0 34.0 46.0
(b)

TABLE II. Results for localization (a) and kinematic recovery (b). We
define a correct localization to occur when a majority of the pixels within the
estimated limbs are true animal pixels (we have a greater than 50% chance
of hitting the animal if we shoot at the estimated limbs). We also show the
percentage of animal images where the correct kinematics are recovered. By
hand, we mark a configuration to be correct if a majority of the estimated
limbs overlap a pixel region matching the semantic labeling from Figure 7.
The kinematic results for the giraffe are impressive given the large number of
different semantic labels; correct configurations tend to align the upper neck,
the lower neck, the upper body, the lower body, the front leg, and the rear
leg. Our animal detector localizes the animal quite well and often recovers
reasonable configurations.

II. We define a correct localization to occur when a majority
of the pixels covered by the estimated limbs are animal pixels
(if we shoot at the estimated limbs, we’ll most likely hit the
animal). We define a kinematic recovery as correct when a
majority of the limbs overlap a pixel region with the correct
semantic label from Figure 7. The pose results for the giraffe
are impressive given the large number of different semantic
labels; correct configurations tend to align the upper neck, the
lower neck, the upper body, the lower body, the front leg, and
the rear leg. In general, we correctly localize the animal, and
often we recover a reasonable estimate of its configuration,
although we suffer from scale issues (see Figure 23).

Counting. We detect multiple instances of the same animal
in a single image by finding the MAP animal configuration,

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1
0
1
2
M

0 500 1000
0

0.5

1

Fig. 21. Counting results for the zebra (left), tiger (middle left), and giraffe
(middle right) models. We plot results for Corel. We show fraction of images
with ‘i’ animals that were correctly classified as a function of our detector
threshold (where i ∈ {0, 1, 2, many} and many is 3 or more). We see that
20% percent of tiger images can be correctly classified as having 1 tiger.
However, since animals often appear in herds and overlap, counting them in
general is a difficult problem. We show an example of a difficult image on
the right. Depending upon how one scores partial occlusions and multiple
scales, there could be two to four giraffes present. Counting appears to be a
quite difficult object recognition task [52].

masking away those pixels covered by the estimated limbs,
and repeating. We are able to successfully classify 20% of
the tiger pictures from our Corel set that contain one tiger
as having one tiger. In general, we do quite poor at counting
because animals often occur together in herds; this confuses
our greedy counting procedure, which would work better
on well separated animals in an image. Counting remains
a challenging problem for object recognition; relatively few
systems have demonstrated results [52].

Another important application of accurate localization is
the ability to apply mutual exclusion. Since our tiger detector
often becomes confused by zebras, we would expect much
better performance if upon finding a zebra with our zebra
detector, we masked away those pixels before applying the
tiger detector. This strategy will only work with reasonably
accurate localization.

14

Fig. 22. Results for our zebra (top row), tiger (middle row), and giraffe (bottom row) models using shape and texture on a test pool of 304 Corel
animal images. We show the top scoring detections for each detector. Even though this dataset is relatively easy for detection (by evidence of good baseline
performance), we can still evaluate localization and kinematic recovery results. We localize the animal quite well, and often recover reasonable kinematic
estimates (though sometimes we have trouble determining which direction an animal is facing).

XI. DISCUSSION

One contribution of this work is a novel (but simple)
representation of texture; rather than using a histogram of
textons, we represent texture with a patch of pixels. We
demonstrate that this representation outperforms the state-of-
the-art for our task of detecting animals.

Limitations: Pictorial structure models seem to be aspect-
dependent; if we learn a model from a video of giraffe walking
sideways, we may not be able to use that model to find a
giraffe walking towards a camera. One line of attack might be
a mixture of pictorial structures, where each encodes a single
aspect. Our clustering method of building spatio-temporal
tracks also seems limited to videos with single animals and
relatively little background clutter (the same restrictions im-
posed on other unsupervised model-building algorithms [10,
11]). Possible methods of removing such restrictions would be
to use a stronger model of the background (e.g., background
subtraction techniques) and to use a spatial prior (perhaps of
4-legged animals) in the clustering procedure (as in [53]).

Broadly speaking, we introduce (and rigorously evaluate)
an unsupervised system for learning articulated models using
video. Video is useful because both motion and appearance
consistency are strong cues for learning. Such cues allow
us to learn fairly complex pictorial structures with internal
kinematics. These models allow us to automatically track a

deforming animal in a video and identify the animal from
an image library. One would also hope to use the models
to find animals in new images. This turns out to be hard
because of a fundamental limitation of video; only a single
object instance is observed, and so the learned appearance
is too specific. We show a useful strategy of combining
models learned from video and image collections (where
multiple instances are observed). These learned models appear
promising for recognition tasks beyond detection, such as
localization, kinematic recovery, and (possibly) counting.

REFERENCES

[1] M. A. Fischler and R. A. Elschlager, “The representation and matching
of pictorial structures,” IEEE Transactions on Computer, vol. 1, no. 22,
pp. 67–92, January 1973.

[2] U. Grenander, Y. Chow, and D. Keenan, Hands: a pattern theoretic study
of biological shapes. Springer-Verlag, 1991.

[3] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” in
European Conference on Computer Vision, 1998.

[4] M. Burl, M.Weber, and P. Perona, “A probabilistic approach to object
recognition using local photometry and global geometry,” in ECCV,
1998, pp. 628–641.

[5] C. Schmid, “Constructing models for content-based image retrieval,” in
Proc CVPR, 2001.

[6] S. Lazebnik, C. Schmid, and J. Ponce, “Affine-invariant local descriptors
and neighborhood statistics for texture recognition,” in ICCV, 2003.

[7] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object
recognition,” Int. J. Computer Vision, vol. 61, no. 1, January 2005.

[8] S. Ioffe and D. A. Forsyth, “Human tracking with mixtures of trees,” in
ICCV, 2001.

15

Fig. 23. Results for our zebra (top row), tiger (middle row), and giraffe (bottom row) models using shape and texture on a test pool of 1418 animal
images obtained from Google. We show the top scoring detections for each detector. Our tiger model mistakenly fires on a Google zebra due to the similar
texture. The quasi-correct zebra configurations suggest our shape model might perform better if we searched over scale. The giraffe configurations tend to
be quite good. The Google results are impressive given the poor performance of our baselines; we are detecting, localizing, and often recovering reasonable
pose estimates for objects in a dataset demonstrably hard for object recognition.

[9] T. Leung, M. Burl, and P. Perona, “Finding faces in cluttered scenes
using random labelled graph matching,” in Int. Conf. on Computer
Vision, 1995.

[10] M. Weber, M. Welling, and P. Perona, “Unsupervised learning of
models for recognition,” in ECCV (1), 2000, pp. 18–32. [Online].
Available: citeseer.nj.nec.com/weber00unsupervised.html

[11] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” in CVPR, 2003.

[12] D. Ramanan and D. A. Forsyth, “Using temporal coherence to build
models of animals,” in ICCV, 2003.

[13] M. Kumar, P. Torr, and A. Zisserman, “Learning layered pictorial
structures from video,” in Indian Conference on Vision, Graphics and
Image Processing, 2004.

[14] D. Ramanan, “Tracking people and recognizing their activities,” Ph.D.
dissertation, U.C. Berkeley, 2005.

[15] D. Hogg, “Model based vision: a program to see a walking person,”
Image and Vision Computing, vol. 1, no. 1, pp. 5–20, 1983.

[16] J. O’Rourke and N. Badler, “Model-based image analysis of human
motion using constraint propagation,” IEEE T. Pattern Analysis and
Machine Intelligence, vol. 2, pp. 522–546, 1980.

[17] C. Bregler and J. Malik, “Tracking people with twists and exponential
maps,” in IEEE Conf. on Computer Vision and Pattern Recognition,
1998, pp. 8–15.

[18] D. Gavrila and L. Davis, “3d model-based tracking of humans in action:
a multi-view approach,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 1996, pp. 73–80.

[19] K. Rohr, “Incremental recognition of pedestrians from image sequences,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 1993, pp.
9–13.

[20] H. Sidenbladh, M. J. Black, and D. J. Fleet, “Stochastic tracking of
3d human figures using 2d image motion,” in European Conference on
Computer Vision, 2000.

[21] A. Blake and M. Isard, “Condensation - conditional density propagation

for visual tracking,” Int. J. Computer Vision, vol. 29, no. 1, pp. 5–28,
1998.

[22] K. Toyama and A. Blake, “Probabilistic tracking with exemplars in a
metric space,” Int. J. Computer Vision, vol. 48, no. 1, pp. 9–19, 2002.

[23] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Artech House, 1999.

[24] G. Mori and J. Malik, “Estimating human body configurations using
shape context matching,” in ECCV, 2002.

[25] J. Sullivan and S. Carlsson, “Recognizing and tracking human action,”
in European Conference on Computer Vision, 2002.

[26] D. M. Gavrila, “Pedestrian detection from a moving vehicle,” in Euro-
pean Conference on Computer Vision, 2000, pp. 37–49.

[27] N. Jojic and B. Frey, “Learning flexible sprites in video layers,” in CVPR,
2001.

[28] M. Brand, “Morphable 3d models from video,” in CVPR, 2001.
[29] L. Torresani, D. Yang, G. Alexander, and C. Bregler, “Tracking and

modeling non-rigid objects with rank constraints,” in CVPR, 2001.
[30] M. Weber, M. Welling, and P. Perona, “Unsupervised learning of models

for recognition,” in ECCV (1), 2000, pp. 18–32.
[31] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth, “Object recogni-

tion as machine translation,” in Proc. European Conference on Computer
Vision, 2002, pp. IV: 97–112.

[32] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001.

[33] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward fea-
ture space analysis,” IEEE T. Pattern Analysis and Machine Intelligence,
vol. 24, no. 5, pp. 603–619, 2002.

[34] D. Ramanan and D. A. Forsyth, “Finding and tracking people from the
bottom up,” in Proc CVPR, 2003.

[35] J. Coughlan and S. Ferreira, “Finding deformable shapes using loopy
belief propogation,” in Proc ECCV, 2002.

[36] M.Wainwright, T. Jaakola, and A.Willsky, “Tree-based reparameteriza-
tion for approximate inference on loopy graphs,” in NIPS, 2001.

16

[37] S. Ioffe and D. Forsyth, “Finding people by sampling,” in Int. Conf. on
Computer Vision, 1999, pp. 1092–1097.

[38] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut - interactive fore-
ground extraction using iterated graph cuts,” Proc. ACM Siggraph, 2004.

[39] D. Ramanan, D. Forsyth, and A. Zisserman, “Strike a pose: Tracking
people by finding stylized poses,” in CVPR, June 2005.

[40] Y. Song, X. Feng, and P. Perona, “Towards detection of human motion,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 2000, pp.
810–17.

[41] K. Dana, S. Nayar, B. van Ginneken, and J. Koenderink, “Reflectance
and texture of real-world surfaces,” in IEEE Conf. on Computer Vision
and Pattern Recognition, 1997, pp. 151–157.

[42] Hemera Photo Objects, Hemera Technologies, Inc,
http://www.hemera.com.

[43] T. Leung and J. Malik, “Representing and recognizing the visual ap-
pearance of materials using three-dimensional textons,” Int. J. Computer
Vision, vol. 43, no. 1, pp. 29–44, 2001.

[44] M. Varma and A. Zisserman, “Texture classification: Are filter banks
necessary?” in CVPR, 2003.

[45] D. Lowe, “Object recognition from local scale-invariant features,” in
ICCV, 1999.

[46] A. Berg and J. Malik, “Geometric blur for template matching,” in CVPR,
2001.

[47] P. Indyk and R. Motwani, “Approximate nearest neighbor - towards
removing the curse of dimensionality,” in 30th Symposium on Theory of
Computing, 1998.

[48] P. Phillips and E. Newton, “Meta-analysis of face recognition algo-
rithms,” in Proceeedings of the Int. Conf. on Automatic Face and Gesture
Recognition, 2002.

[49] M. E. Nilsback and B. Caputo, “Cue integration through discriminative
accumulation,” in CVPR, 2004.

[50] G. Dorko and C. Schmid, “Object class recognition using discriminative
local features,” iEEE PAMI, under preparation.

[51] O. Chapelle, P. Haffner, and V. Vapnik, “Support vector machines for
histogram-based image classification,” IEEE Neural Networks, vol. 10,
no. 5, pp. 1055–1064, 1999.

[52] S. Ioffe and D. Forsyth, “Probabilistic methods for finding people,” Int.
J. Computer Vision, 2001.

[53] D. Ramanan and D. A. Forsyth, “Finding and tracking people from the
bottom up,” in CVPR, 2003.

