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Error Analysis of Robust Optical Flow
Estimation by Least Median of Squares
Methods for the Varying lllumination Model

Yeon-Ho Kim and Avinash C. Kak

Abstract—The apparent pixel motion in an image sequence, called optical flow, is a useful primitive for automatic scene analysis and
various other applications of computer vision. In general, however, the optical flow estimation suffers from two significant problems: the
problem of illumination that varies with time and the problem of motion discontinuities induced by objects moving with respect to either
other objects or with respect to the background. Various integrated approaches for solving these two problems simultaneously have
been proposed. Of these, those that are based on the LMedS (Least Median of Squares) appear to be the most robust. The goal of this
paper is to carry out an error analysis of two different LMedS-based approaches, one based on the standard LMedS regression and the
other using a modification thereof as proposed by us recently. While it is to be expected that the estimation accuracy of any approach
would decrease with increasing levels of noise, for LMedS-like methods, it is not always clear as to how much of that decrease in
performance can be attributed to the fact that only a small number of randomly selected samples is used for forming temporary
solutions. To answer this question, our study here includes a baseline implementation in which all of the image data is used for forming
motion estimates. We then compare the estimation errors of the two LMedS-based methods with the baseline implementation. Our
error analysis demonstrates that, for the case of Gaussian noise, our modified LMedS approach yields better estimates at moderate
levels of noise, but is outperformed by the standard LMedS method as the level of noise increases. For the case of salt-and-pepper
noise, the modified LMedS method consistently performs better than the standard LMedS method.

Index Terms—Optical flow, robust estimation, varying illumination, least median of squares method, error analysis.
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INTRODUCTION

HE estimation of motion in a sequence of images is a basic
task in computer vision with many interesting applica-
tions, such as motion segmentation, extracting structure from
motion, video surveillance, image compression, robot navi-
gation, etc. Despite the increasing interest in motion features,
accurate motion estimation still remains challenging primar-
ily because intensity variations at a given pixel can also be
caused by temporal changes in illumination, besides, of
course, the relative motion between the camera and the scene.
Another difficulty is created by the fact that, if an object
surface is lacking in any visual detail, there will be no
measurable apparent motion between the camera and the
scene at the pixels corresponding to such surfaces. The
dependence of the accuracy of an optical flow measurement
on the local object surface detail and the needed spatial extent
of that detail is referred to as the aperture problem. This
problem was first stated by Stumpf in [1] and has been
generalized in different ways by others [2], [3], [4]. Unfortu-
nately, the larger the aperture, the more likely that there exist
unrelated or erroneous motions that would corrupt the
correct estimation of the motion in a given aperture.
There exist simple solutions to the problem of optical

flow estimation if one can ignore frame-to-frame variations
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in illumination. These solutions, usually referred to as the
differential optical flow estimation techniques, calculate
optical flow by minimizing the error of a constraint
equation that sets the time-derivative of image intensity to
zero. Such solutions are represented by the contributions of
Horn and Schunck [3] and Lucas and Kanade [5]. As these
methods are based on the assumption of constant illumina-
tion, they perform poorly when illumination varies from
frame to frame since now we cannot enforce the (dI/dt = 0)
constraint. Since the work of Horn and Schunck in [3] and
Lucas and Kanade in [5], there have been other research
contributions that have taken into account frame-to-frame
variations in illumination [6], [7], [8], [4].

Allalgorithms for optical flow calculation—whether ornot
they takeillumination variations into account—are alsobased
on the assumption that optical flow is locally smooth. This is
frequently referred to as the motion smoothness assumption.
In the formulation of optical flow, as originally presented by
Horn and Schunck, this assumption is tantamount to saying
that the optical flow field is continuous [3]. In general, this will
be the case when the scene consists of only one convex object
(whose surfaces are textured in some sense) and the relative
motion between the camera and the object is smooth. While
the enforcement of this assumption mitigates somewhat the
aperture problem, the assumption often cannot be satisfied by
real-world imagery. If included in an aperture are two objects
executing different motions, the smoothness assumption
could easily be violated and the estimated optical flow may be
wrong, especially at a motion boundary. Many methods
based on the concept of robust estimation have been proposed
to cope with this multiple motion problem [9], [2], [10].
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For obvious reasons, it would be desirable to solve these
two problems simultaneously—the problem caused by large
illumination variations and the problem caused by large
motion discontinuities—and there have been some studies in
the past to fulfill this need [11], [12], [13], [14], [15], [16]. The
proposed integrated approaches combine an illumination
model with a robust estimation technique. These approaches
can be classified into the following two groups.

One group consists of the global approaches that estimate
optical flow robustly by minimizing a regularization
function for all the pixels in an image. For instance, the
methods in [2], [11], [13] use an M-estimator instead of the
nonrobust quadratic estimator used previously by Horn and
Schunck [3].

The other group of robust estimation techniques is based
on the local approaches that employ robust estimation to
solve a set of overdetermined linear equations for pixels in a
local area of the image. Examples are the methods reported in
[9], [12], [10]. These algorithms use the least median of
squares (LMedS) method instead of the (more classical) least
sum of squares (LS) method to solve a regression problem.

All the LMedS-based optical flow estimation methods
cited above, including the one proposed by us [12], use a small
number n of randomly selected pixels in a local area of the
image to form a temporary solution for the motion estimates.
Subsequently, for a given local window, one of the s such
temporary solutions is selected on the basis of what residual
error it yields vis-a-vis all the other pixels in the local window.
(Note that each temporary solution comes from one sampling
taken from the pixels in the local window.) Both the numbers,
n and s, are kept small to reduce the overall computational
cost. Although the LMedS methods have the desired
asymptotic properties with respect to both n and s—
the estimation error decreases monotonically as both
increase—the accuracy achieved in any given implementa-
tion of LMedSwould obviously depend on actual values used
for nand s. Itis this dependence of the estimation accuracy on
n and s that is the focus of our error analysis. We also want to
understand how this dependency changes as the amount of
noise in an image sequence changes and also as the type of
that noise changes.

For the sake of completeness, we must mention a prior
error analysis report by Ong and Spann [10] where they
used Gaussian-noise corrupted image sequences to analyze
the accuracy of the standard LMedS method for motion
estimation. This study, however, did not investigate the
dependence of the estimation accuracy on the number of
pixels used for the formation of temporary solution and the
number of samplings in a local window.

Since the primary focus of our error-analysis is the
dependence of the motion estimation errors on the number
of pixels used for forming temporary solutions and on the
number of samplings used in a local window, we obviously
need a baseline approach that constructs a motion estimate
on the basis of all of the information in a local window. The
estimates achieved with any LMedS method could then be
compared with the results obtained with the baseline
method for different levels of noise. The baseline imple-
mentation presented in this paper uses all the pixels in the
local window to construct a set of all the possible temporary
solutions. A temporary solution for this implementation is
obtained using the LS method on a sufficient number of
overdetermined constraint equations in a subwindow in the
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local window. However, using all the pixels in the baseline
method increases its computational cost excessively. We
therefore employ a fast median calculation technique based
on Huang et al.’s algorithm [17]. This algorithm uses the
notion of a “running” window-to-window calculation of the
median. The basic idea here is to save computation time by
reusing the previous calculation(s) for overlapped data
when a local window moves to the next position.

We then compare the estimation errors of the two LMedS
methods—one based on the standard LMedS regression and
the other using a modification thereof as proposed by us
recently—with the baseline implementation. Our error
analysis demonstrates that, for the case of Gaussian noise,
our modified LMedS approach yields better estimates at
moderate levels of noise, but is outperformed by the standard
LMedS method as the level of noise increases. For the case of
salt-and-pepper noise, the modified LMedS method consis-
tently performs better than the standard LMedS method. This
conclusion is based on the error analysis using a real image
sequence for which the ground truth motion is given. Two
different types of image noise are used for this error analysis.
One is the detector noise that is always present to varying
degrees in recorded images; this type of noise is generally
modeled by a zero mean Gaussian process. The other type of
noise we incorporate in the images is data drop-out noise
(commonly referred to as the salt-and-pepper noise) that is
caused by errors in data transmission.

The rest of this paper is organized as follows: In Section 2,
we review separately the previously proposed robust
techniques to estimate optical flow in the presence of
illumination changes and in the presence of multiple
motions. In Section 3, we then briefly present previously
published integrated approaches; this review also mentions
our global and local integrated methods for dealing with
illumination changes and with motion boundaries. In
Section 4, for the aforementioned baseline implementation,
we present a nonstatistical LMedS technique that uses a
modified version of the previously proposed LMedS method
and a running calculation of the median. Section 5 presents
error analysis of the LMedS methods by comparing the
estimation errors for the synthetic and real image sequences
contaminated by Gaussian and salt-and-pepper noise. Sec-
tion 6 concludes the paper.

2 RoBusT OPTICAL FLOW ESTIMATION UNDER
VARYING ILLUMINATION

Following Horn and Schnuck’s method in [3], most
differential optical flow estimation methods are based on
the analytical formulation of the spatial and temporal
derivatives of the image intensity under the brightness
constancy assumption. The brightness constancy assump-
tion can be stated as the standard optical flow constraint
equation I,u+ I,v+ I; =0 where I is the image intensity
(which may be the output obtained after some low-pass or
band-pass filtering) at a point (z, y) in the image at time ¢,
and where (u,v), with u = limgtHO% and v = limétﬂo%, is
the optical flow vector that needs to be estimated. In and of
itself, this constraint equation is insufficient for the
estimation of the two variables v and v.

The gradient-based methods that have been proposed
over the years to solve for v and v in the optical flow
constraint equation can be distinguished on the basis of the
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additional constraints the authors have used for tackling the
aperture problem: 1) global approaches that use all the pixels
in the image and 2) local approaches that only use the local
information in the vicinity of where optical flow is to be
estimated. The global methods proposed in [2], [6], [3], [18]
assume that the motion field varies smoothly over the entire
image. This assumption then translates into the addition of
a global smoothness constraint to the constant brightness
equation. The parameters u and v can then be optimally
estimated by a regularization that uses both the constraint
equations—the original optical flow constraint equation
and the global smoothness constraint equation.

Global smoothing-based approaches do not work well
with real-world imagery mainly because they assume that
exactly the same degree of motion smoothing is needed
everywhere. In order to yield a stable solution, the global
approaches must incorporate sufficient smoothing to deal
with the worst-case motion discontinuities in an image
sequence by adjusting the parameters that define the weight
of the smoothness factor. Unfortunately, there exists no
clear analytical formulation to decide the value of smooth-
ness parameters and they must be tuned experimentally
depending on the spatial properties of image intensities.

For that reason, methods that use only local constraints
on motion are better suited to real images. Such methods
usually try to fit estimated optical flows to 2D parametric
models of motion [5], [18], [19]. While local methods using
parametric motion models possess the twin advantages of
relatively low computational cost (which is due to their
simplicity) and immunity to the problems caused by global
smoothing, they still require that the overdetermined
equations be independent. If the equations are not
sufficiently independent, the solution cannot be found
reliably. Due to this reason, the optical flow obtained by
local approaches is often sparse. This is a major short-
coming of the local methods.

The global and the local methods cited above are based on
the constant brightness assumption. To the extent this
assumption is violated, these methods fail to estimate the
correct optical flow field. When illumination is not constant,
spatially or temporally, the constant brightness assumption
will obviously be violated. Varying illumination will ob-
viously cause the image intensity at a pixel to change during
motion. When this happens, what we have is I,u+ I,v +
I; #0. This has prompted researchers to propose other
constraints that are derived from assumed (and simplified)
models of illumination change [20], [6], [21], [22] for solving
for u and v. For example, Gennert and Negahdaripour have
modeled temporal illumination changes as a combination of
multiplicative and additive effects [6]. This they have
accomplished by introducing a new optical flow constraint
equation: I,u + I,v 4+ I, = mI + ¢, where m is for the multi-
plicative illumination effects and c¢ for the additive ones.
Using this new constraint equation, they estimate the optical
flow iteratively using the basic differential framework
through the minimization of

B= / / (V7% + 1) + A([Val) + [90]) + (V]
Vel d dy,

where || Vul| is an L2-norm of the gradient of v and is defined
by ||Vul|| = u? + ug, where u, = lims, .o %%, and other norms

are defined in the same way. In [23], Negahdaripour and Yu
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obtain a set of linear equations by assuming that the values of
u, v, m, and ¢ are constant within small regions around each
point. The resulting ill-conditioned set of equations is solved
by using a least squares method.

With regard to the presence of multiple motions, the
problems caused by such motions obviously cannot be dealt
with by the local methods that use simplified parametric
motion models consisting of single motions—which is often
case in the publications that have used such models. When
multiple motions are present, it is not possible to assume that
the motion is globally smooth since there will exist motion
discontinuities at the boundaries between the different
objects. Motion estimation in such cases is best carried out
with robust estimators instead of those based on the least-
squares methods employed by, say, Horn and Schunck in [3]
and by Lucas and Kanade in [5]. The robustness of an
estimator—meaning the sensitivity to outliers—can be
quantified by the breakdown point that is the fraction of
outliers that can corrupt the estimator [24]. For example, the
breakdown point of least-squares methods—also referred to
as quadratic estimators in discussions related to robustness
—is zero because a single outlying data point can completely
mislead the estimator. Because of this sensitivity of the least-
squares-based estimators, one must take recourse to robust
techniques when multiple motions are present.

The optical flow estimation methods using the robust
estimation techniques can again be grouped as global
approaches and local approaches—this is the same char-
acterization we used earlier for the least squares-based
methods. An example of a robust approach that is global is
the work of Black and Anandan [2]; they have shown how a
maximum likelihood estimator (M-estimator) can be used for
this purpose. However, the breakdown point of the
M-estimator is relatively low, 1/(p+ 1), where p is the
number of parameters to be estimated [24]. An additional
issue related to the M-estimator is that it does not entirely
eliminate the global smoothing effect associated with the
global implementation of the least-squares approaches since
the optical flow in the region where the gradient of the
intensity is high “bleeds” into the region where the gradient
of the intensity is low, although the extent of this bleeding
depends on the weight of the smoothness term. Yet, another
shortcoming of the Black and Anandan method is that it has
many parameters that need to be tuned carefully; a challen-
ging task since there does not exist a clearly defined
relationship between the value of the parameters and the
performance of the algorithm.

In the category of the robust approaches that are local,
the most commonly used are the iterative reweighted least
squares (IRLS) method described in [25], [14], [15], [26],
the voting-based method described in [27], [28], and the
least median of squares (LMedS) method described in [9],
[10], [12].

The LMedS implementations are based on the work of
Rousseeuw and Leroy in [24]; these possess a breakdown
point of 50 percent which is at the upper limit in robust
statistics. It needs to be stated that the LMedS-based method
is superior to the IRLS method (IRLS requires a good initial
guess) and the voting-based method (which tends to be
computationally burdensome). LMedS-based estimation of
optical flow has been carried out by Ong and Spann [10] and
Bab-Hadiashar and Suter [9]. In their implementations, a
temporary solution that minimizes the median of the
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residual errors is first sought from a set of randomly sampled
pairs of pixels in a local area. Then, a final solution is
obtained using the weighted least-squares method with the
weights that are calculated from the temporary solution.
Though these LMedS-based implementations are very
robust and free from a need for parameter tuning, they are
slowed by the need to estimate the medians.

3 INTEGRATED METHODS—GLOBAL VERSUS
LocAL

Whereas the various methods reviewed in the previous
section seek to estimate the optical flow in the presence of
large illumination changes and when there exist motion
discontinuities, they do not solve the two problems
simultaneously. In other words, those methods cannot be
used when an image sequence, recorded under varying
frame-to-frame illumination, contains motion discontinu-
ities. If we use the work reported in [6] and [4] to model the
radiometric dependence of the motion transformation of an
object under varying illumination, the assumptions em-
bedded in the constraint equations (i.e.,, the “relaxed”
brightness constant constraint and the smoothness con-
straints) would nevertheless be violated at motion disconti-
nuities in a sequence of images. On the other hand, the
robust optical flow estimation techniques of [2], [10], while
able to cope with such motion discontinuities, would result
in inaccurate estimation of optical flow in the presence of
frame-to-frame illumination changes.

For obvious reasons, it would be desirable to solve these
two problems simultaneously. To fulfil this need, some
methods have indeed been proposed [11], [14], [15], [16]. But,
some of the suggested integrated approaches are limited to
specialized tasks such as image registration as in [14] or
changerecovery asin [11], whereas others use the simplifying
assumption that illumination changes by either a multi-
plicative or an additive factor, but not both [15], [16]. To
remedy this problem, we previously proposed two different
methods: A global integrated method in [13] and a local
integrated method in [12]. These combine a more complete
varying illumination model (in the sense that it deals with
both multiplicative and additive factor of illumination
changes) and the robust estimation framework that is
designed for the general motion estimation. In this section,
we present a more detailed comparison of our two methods.

3.1 A Global Integrated Method

To estimate optical flow robustly in the presence of both
illumination variations and motion discontinuities, a pre-
vious contribution from us in [13] integrated the Gennert
and Negahdaripour’s varying illumination model in [6] with
Black and Anandan’s robust estimation framework in [2].
This approach is global as it seeks to minimize the following
regularization function over all the pixels of the image

S

where L,u+ I, v+ 1, —ml—c is the error term for the
brightness constraint used, I,, I,, and I; the spatial and
temporal partial derivatives of the image, v and v the
motion parameters (i.e., optical flow), and m and c the
radiometric parameters for the multiplicative and additive

p(Lyu+ Ly + I —ml — c,04)
+As(p(Vu, 05) + p(Vv, 05))
FAnp(Vm,om) + Aep(Ve, 0.)

dx dy, (1)
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terms for modeling the varying illumination. This function
essentially tries to regularize the brightness constraint with
three smoothness constraints. The smoothness constraints
are with respect to the gradient of the parameters u, v, m,
and c. The relative weight of each smoothness constraint is
controlled by the respective A. The function p() applied
separately to each of the constraints is meant to deal with
the outliers at the motion boundaries. We use the
Lorentzian function for this purpose; it is defined as
p(z,0) =log(1+1 (§)2), where o controls the weight to be
given to the variable z. Using the same technique as in [2],
we can find the global minimum of the objective function £
by first choosing a large value for o, which creates a convex
approximation to £ and then decreasing the o values in
order to find a more accurate minimum. This process is
repeated until we converge to a solution.

As we demonstrated in [13], the above integrated
minimization yields results superior to what can be
obtained by separately applying the two minimizations
needed (one for dealing with motion discontinuities and the
other for illumination variations). Nonetheless, we are still
faced with the cumbersome task of a trial-and-error
determination of the As—an issue that is an unpleasant
but inherent drawback of any global method. More
recently, we have therefore focused our efforts on designing
local methods that we present next.

3.2 Local Integrated Methods

As we reviewed in Section 2, the most commonly used
method for the local optical flow estimation uses the least sum
of squares (LS) method. If we denote the parameters u, v, m,
and ¢ in the form of a vector = [uvm d’, then the
LS solution can be written as below:

0 = i
(x,y) = arg min Z

(zi,y1)€R(w,y)

r? (i, i, 0), (2)

where R(z,y) is the local region centered at (z,y), ¢ an index
for the pixels in the region, and r(x,y,0) the residual error
for the pixel at (z,y) as defined by the following equation:

r(z,y,0) = L(z,y) - u+ I(z,y)

v+ Li(z,y) — I(z,y) -m—c (3)
= [L(z,y) I(z,y) —I(z,y) —1]

. [uvmc]TJrIt(;E,y) (4)
=a’(z,y) -0+ b(z,y). (5)

Substituting (3) in (2), we get

0=argmin > (a"(zi,y) -0+ bwsy) (6)

(zi,y:)€R

A pseudoinverse solution to the above minimization is
given by 0 = (Ag . AR)_1 . Ag - (—Bg), where

Ap = [alTaQT aiT a?{;]T and
Br=[biby ... b ... by]".
In (7), af =a"(zi,y:) = [L(i,9:) Iy(xi,9i) —I(i,y:) —1]
and b; = b(z;,y;) = Li(x;,y;) and N is the total number of
pixels in R.
In [2] and [9], Black and Anandan and Bab-Hadiashar and
Suter represent the brightness constraint, I,u + I,v+ I; =0,

(7)
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(b) (©)

Fig. 1. (a) A frame of an image sequence, (b) pixels in a local window, and (c) constraint lines in the parameter space.

for the motion parameters u and v at each pixel with a line in
the (u,v) parameter space and visualize the LS solution as a
point with respect to those lines. Although they deal with
only the motion parameters, that is, they do not include the
radiometric parameters, their representations are good to
show the weakness of the LS method to the outliers in the
presence of multiple motions. We will now use this
representation to provide the reader with a basic insight into
the difference between the LS type solution as given by (7)
above and the LMedS solution that we will present shortly.

Fig. 1ais a frame of an image sequence taken of a scene in
which three vehicles are in motion at the same time. Image
pixels in asmall region of arbitrary size, outlined with a white
square in Fig. 1a, are shown with dots and circles in Fig. 1b.
The goal is to estimate the motion parameters at the center of
this region. Toward that end, we define a local window,
whose size can be varied under program control but is set
typically to5 x 5, centered in the outlined region, as shown in
the figure. Pixels inside this local window are shown with the
help of small circles and the pixels outside as black dots. The
central pixel where motion estimation will be carried out is
shown double-circled.

When a local window straddles the boundary that a
moving object forms with either the background or with other
moving objects, the optical flow at each pixel in the local
window will correspond either to the foreground moving
object or to the background, which may either be stationary or
another moving object. In the depiction in Fig. 1b, the pixels
that are shown with solid circles follow the motion of the
moving car and the pixels shown with dashed circles
correspond to the stationary background. Obviously, the
double-circled pixel at the center of the local window is also
following the motion of the car.

As described in [2], [9], the optical flow constraint at each
pixel in the local window can be represented by a straight line
in the (u,v) parameter space, as illustrated in Fig. 1c. These
straight lines correspond to (3) with  set to 0." The dotted
lines in Fig. 1c correspond to the constraints at the pixels
belonging to the background and the solid lines to the pixels
belonging to the moving car. The motion that satisfies two
constraint equations at two different pixels in the local
window can be represented as the intersection of the two
constraint lines in the parameter space. Therefore, as shown

1. Equation (3) will give rise to hyperplanes in the four-dimensional
space formed by the parameters u, v, m, and c. The straight lines shown in
Fig. 1c are with respect to just the parameters u and v. This is for
convenience in visualization. Actual calculations take place in the four-
dimensional space spanned by u, v, m, and c.

in Fig. 1c, the motion of the moving car is given by the
intersections of all the solid lines and the motion of the
background by the intersection of all the dotted lines in the
parameter space.

Now, using Fig. 1c, let’s picture what the LS method
accomplishes with respect to the two correct solution points
shown there. The error minimization that s carried out by the
LS method makes no distinction between the errors incurred
in satisfying the constraint equations at the solid circles, on
the one hand, and at the dotted circles, on the other. In other
words, the LS approach treats all the pixels in the local
window of Fig. 1b in exactly the same manner. This causes the
LS approach to yield a single solution that is some sort of a
compromise between the two correct solutions shown in
Fig. 1c. A possibility for the constraint lines depicted in Fig. 1c
could be the point marked with a black cross. On the other
hand, a robust motion estimation approach, as we will see in
the next section, will discriminate between the different
possible solutions in the parameter space and will return an
answer that is close to the dominant solution. For the
depiction in Fig. 1¢, the dominant solution would correspond
to the white cross.

3.2.1 The Standard LMedS Method

In this section, we will first briefly review the robust
alternatives to the least-squares-based local methods. In the
next section, we will mention the approach we presented in
[12] for an integrated local solution to the problem of
multiple motion estimation under varying illumination.

What may be referred to as the standard LMedS method
for estimating optical flows was proposed by Bab-Hadia-
shar and Suter and by Ong and Spann [9], [10]. Their work
was based on the algorithm proposed by Rousseeuw and
Leroy in [24] for a robust solution to the standard regression
problem in statistics. The method described in [9], [10] can
be described as follows.

The first step of the method consists of choosing p number
of pixels randomly from the local window surrounding the
pixel where a motion estimate needs to be carried out. The
value of p is the number of parameters to be estimated. This
number would be four for the local integrated approach in
which the parameters to be estimated at each pixel are u, v, m,
and c. A temporary solution is calculated from the p number
of linear independent equations for the chosen pixels. The
nextstep consists of calculating the residual error at each pixel
in the local window using the temporary solution for the
parameters. One then finds the median of the square of the
error values. This random sampling of the pixels and the
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Fig. 2. (a) A local window and (b) constraint lines in the parameter space
used for the standard LMedS method.

median calculation is repeated several times. Then, the set of
parameters that corresponds to the minimum of the medians
is chosen as the final LMedS solution.

The algorithm as described above would be computa-
tionally much too expensive if implemented directly.
Therefore, in what follows, we will first describe the
method in greater detail. This will also allow us to point
out how the algorithm can be implemented efficiently and
to also introduce the notation we need to present our own
work later in this section.

The standard LMedS method in [9], [10] consists of the

following minimization:
o

where k= {1,2,...,s} indexes each different p-pixel sam-
pling from the local window. The local window in this
minimization is denoted by R and r(z, y,0;) is the residual
error for the pixel at (z,y) with the temporary solution 8, as
defined in (3) in the previous section. The temporary solution
is obtained directly from the p number of linear independent
equations corresponding to the p number of pixels at the kth
sampling as the following equation: 6, = Ag' - (~Bs,),
where, in accordance with (7), S, is the set of p pixels for
the kth sampling and Ag, the p x p matrix for the Sj. For the
local integrated method, Ag, and Bg, can be defined as
follows for the estimation of motion and radiometric
parameters u, v, m, and ¢ (p = 4):

6= argmin{median (i, i, Ok =1,2,. ..
0 (zi,y)€R

T
Ag, = [0‘71;1 aZZ azﬁ ‘124} and Bg, = [bm bi2 bis bk,ydT, (9)

where af; = [L.(zi,4:) I,(zi,yi) —I(xi,y) —1] and by; =
Ii(z;,y;) for t = {1,2,3,4} at the kth random sampling.
Fig. 2 illustrates pictorially how a temporary solution is
obtained from the pixels in a local window. This figure, a
small variation on the earlier Fig. 1, uses large black dots to
show the randomly selected pixels in the local window. The
constraint lines corresponding to these pixels are shown
thick black lines in Fig. 2b. The intersection of these thick
lines corresponds to the temporary solution 6 for the
example depicted in the figure. The rest of Fig. 2 is the same
as Figs. 1b and 1c. The open solid circles correspond to the
on-car pixels and their constraint equations are depicted as
solid but thin lines in Fig. 2b. The dotted circles are pixels in
the background. Finally, the double-circled pixel in the
center is where we want to estimate the motion parameters.
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The temporary solution 0). allows us to calculate a set of
squared residuals r?(z, y, 0;.) for pixels at all the (z,)s in the
local window R. We next determine the median of squared
residuals. The median is denoted by M;, = median,, ,)epr”
(w5, 9, 0r). After repeating this calculation s times for
k=1{1,2,...,s}, we choose a set of parameters 6 correspond-
ing to the minimum median M among {M;, Mo, ..., M}
When the total number of pixels in the local window is N, the
minimization of our median would requires yC, computa-
tion (i.e., the number of all possible combinations of p linear
equations from all the pixels in the local window R).
Obviously, the computational cost of such a naive approach
would be too high to make this algorithm practical. What we
need is a smaller number of samplings—as opposed to all of
~C, samplings—but we would want this smaller number to
include at least one for which the solution to the constraint
equations is correct. When N is much larger than p, the
probability that s samplings would include the correct
solution is given by 1 — (1 — (1 — €)”)*, where € is the fraction
of outliers in the local window. This probability expression
helps us make a more intelligent decision about giving a value
to s. For example, if we wanted to include in our sampling set
the correct solution with a probability of, say, 95 percent for
p = 3 and € = 50, we would need to use s = 23.

The LMedS solution obtained from the above procedure
may be inaccurate when N is small. This is a problem
common to all statistical inferences that use the median. In
order to improve the LMedS solution for a given N in a
general statistical data analysis context, Rousseeuw and
Leroy have suggested that the median-based calculation be
used only to identify the data points that contribute to the
outliers in the residuals and, after such outliers are
removed, a LS-based approach be used to find the best
solution [24]. Identifying outliers obviously requires that we
first figure out what threshold to use on the residuals.

The outlier detection threshold on the residuals is
expressed by the standard deviation o of the residual
error r;. The value of ¢ is calculated in two steps. First, we
form an initial estimate ¢° using the minimum median M
obtained from the aforementioned procedure through the
following equation: ¢” = 1.4826(1 + 5/(N — p))Vv/a1, where
the factor 1/®7'(0.75) = 1.4826 is selected to guarantee
that median;|z|/®*(0.75) is a consistent estimator of o
when the z;s are distributed normally as G(0,0%) and ®(z)
is the standard normal cdf for z. The multiplication with
the correction factor 1+ 5/(N —p) is introduced empiri-
cally for more feasible estimations for the case of small N
[24]. The initial estimate ¢° is then used to determine an
initial weight w; for each pixel at (z,y) = (z,y);:

if |r; /0% < 2.5

1
Wi = {0 otherwise. (10)

The bound is chosen to be 2.5 based on the assumption
that there are few residuals larger than 2.5¢ for the normally
distributed data [24]. The final estimate for o, denoted 4, is
then calculated using the data in which outliers are rejected
by the initial weights as

| (&) ()

Q>

(11)



1424

The final weights for the pixels are computed by
substituting 0” by ¢ in (10). The LS-based solution to
the motion parameter vector @ can then be expressed as
0 = argming Zf\il w;r?.
3.2.2 The Modified LMedS Method

The standard LMedS algorithm described in the previous
section searches for a good approximate solution based on the
assumption that a majority (more than 50 percent) of pixels
represents a coherent motion correctly. To support this
assumption, the accuracy of the brightness constraint
equation is very important and it relies on the accuracy of
the spatial and temporal derivatives of the image intensity.
The partial image derivatives can be calculated accurately by
convolving the derivative of the 3D-Gaussian function with a
large number of images [9]. However, due to many practical
reasons, optical flow estimation using only two consecutive
image frames at a time is preferred. For an example, the most
popular method for calculating the image derivatives is by
using a simple discrete approximation at the center of a cube
formed by eight brightness difference measurements using
two consecutive image frames, as presented in [3].

When one uses the method in [3] for estimating image
derivatives, greater care needs to be exercised in choosing the
p pixels in each sampling from the local window for the
purpose of forming a temporary solution. If possible, one
should choose the pixels that are close together or have high
gradient magnitudes [10]. Obviously, if the observations
contain excessive noise and other artifacts, such as large
illumination changes, the intersections of the constraint
equations corresponding to the individual p-pixel samplings
will be scattered around the correct solution and the
probability of the temporary solution being correct will be
low. Toaddress this weakness of the standard LMedS method
when the image derivatives are noisy, we have proposed a
new approach to the construction of the temporary solution
that uses more pixels than the number of constraints that need
to be satisfied by the motion equations [12]. We will now
briefly review this work.

The modification we proposed in [12] consists of not
basing the temporary solution on p randomly selected
pixels—recall that, in standard LMedS, p is the number of
parameters to be estimated—but instead deriving the
temporary solution from a subwindow of the local window.
In our modification, the size of the subwindow is
sufficiently large so that the number of pixels it contains
exceeds the number of parameters to be estimated. The new
temporary solution uses all of the pixels in the subwindow
that is selected. It is now the position of the subwindow that
is random inside the local window, as opposed to the choice
of the individual pixels in the standard LMedS. We then
solve a set of overdetermined equations using the least
squares method for the temporary solution.

Our method can be better explained with the help of Fig. 3,
which, except for the depiction of a subwindow inside the
local window, is the same as the earlier Fig. 1 and Fig. 2. The
local window is outlined by a solid square and subwindow by
a dashed square. The double-circled pixel at the center of the
local window is where we want to estimate the motion
parameters. Instead of a random sampling of p pixels, we now
work with all the pixels in the subwindow while ensuring that
the subwindow size is chosen so that it contains more pixels
than the number p of motion parameters. The temporary
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(a) (b)

Fig. 3. (a) A local window and (b) constraint lines in the parameter space
used for the modified LMedS method.

solution formed from all the pixels in a subwindow is still
random, in the sense that the position of the subwindow is
now random inside the local window.

In Fig. 3a, the subwindow pixels are all shown with large
solid black dots. The constraint lines corresponding to these
pixels are shown as thick black lines in Fig. 3b. The LS solution
from the overdetermined equations corresponding to these
thick lines is denoted by a cross in Fig. 3b. As before, the solid
circles in the figure correspond to the on-car pixels. The
constraint equations for the on-car pixels that are not in the
subwindow are depicted as solid but thin lines in Fig. 3. The
dotted circles are pixels in the background.

As mentioned already, the temporary solution for a given
subwindow is obtained by the LS method using the over-
determined equations corresponding to the pixels in the
subwindow. Since we have more equations than unknowns,
we can write down the following pseudoinverse LS solution
for the temporary solution for the kth subwindow:
0, = [Agk CAg ] Agk - (—Bgs,), where S;, is the set of pixels
in the kth subwindow in the local window R and Ag, and By,
are defined as:

T
Ag, = [ail a£2 .. a{ . agq} and

YA

(12)

Bs, = [bra brs - brs - big]

where af; = [L(zi,y:) I(2i,y:) —1(xi,y) —1] and by; =

Ii(zi, ;) for i = {1,2,...,q} in the kth subwindow.

For each temporary solution, the residual error and the
median of the squared residual errors are calculated for all
the pixels in the local window R. The final solution 6 is then
obtained using the weighted LS method as described in the
previous section.

4 A BASELINE IMPLEMENTATION OF THE LMEDS
METHOD THAT USES ALL PIXELS

The main focus of this paper is the comparative error analysis
of the two LMedS methods presented in Sections 3.2.1 and
3.2.2. We also want the accuracy of the two methods to be
compared to some sort of a “gold standard.” Since both
methods use random samplings in a local window to form
motion estimates in the center of the window, our error
analysis must focus especially on any deleterious effects of
random sampling. As the reader will recall, the random
sampling in both methods is based on the assumption that the
probability of one of the samplings incorporating the correct
solutionis close to 1. While, as we showed in our discussion in
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Fig. 4. Local windows used for a baseline implementation of the LMedS
method.

Section 3.2.1, itis possible to theorize about this probability, in
practice, it is difficult to ensure that a chosen number of
samplings in a local window would satisfy the constraint on
the probability.

We therefore believe that a “gold standard” for studying
the error properties of LMedS-based approaches must
include all the pixels in a local window. This is exactly
what we have done with our baseline implementation of the
LMedS approach—it uses all the pixels in a local window to
form the motion estimates at the center of the window. As
one would expect, a naive LMedS implementation that uses
all pixels would be much too slow computationally to be of
much use. To speed things along in our baseline imple-
mentation of LMedS, we decided to use the “running
estimation” idea of Huang et al. in [17]. We will next
describe this implementation.

Fig. 4 illustrates pictorially how the running technique is
employed in our baseline implementation of the LMedS
method. Fig. 4a shows a 9 x 9 segment of an image frame
and a 5 x 5 local window in it that is outlined with a black
square. As before, for each such window we estimate the
motion at the central double-circled pixel. Note, in this
baseline implementation, the centers of the subwindows are
positioned at every pixel in the local window rather than at a
small number of randomly selected pixels in the previous
two LMedS methods. For each subwindow, a temporary

solution @ is calculated using the LS method with the
overdetermined constraint equations employing all the
pixels in the subwindow. With this temporary solution,
the squared residual error 72(z,y, ) is calculated for every
pixel (z,y) in the local window. The values of the
temporary solution and residual errors from each subwin-
dow are stored in the memory for later use. Fig. 4b shows
the local window moved to the next position with a
rightward shift of one pixel. The pixels denoted by the
dotted circles with a “—" sign represent those that belong to
the old local window but not to the new shifted one, the
pixels denoted by the solid circles with a “+” sign represent
those that do not belong to the old window but belong to
the new local window, and the pixels denoted by the sold
circles with a “x” sign represent those that are common to
both local windows. An important observation to be made
here is that the old-window temporary solutions and
residual errors at the common pixels can be reused in the
new window. For example, the temporary solution for the
pixel enclosed by a small square in Fig. 4b is the same as
that for the pixel enclosed by a small square in Fig. 4a and
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the residual errors with this temporary solution for the
common pixels in the new window are the same as the
values that are calculated in the old window.

In order to present the running median algorithm, we must
now use a two-dimensional index for the temporary solutions
derived from the subwindows within a local window. But,
that entails that we must also use double indices for
designating the coefficient matrices A and B that are derived
from the constraint equations in each subwindow.

Consider a subwindow that is centered at the offset (m,n)
with respect to the local-window whose central pixel is at
(z,y). We will denote the temporary solution for this
subwindow by 0, .,y (, y). For example, for the pixel enclosed
by a small square that is at the center of the subwindow
enclosed by a large dashed square in Fig. 4a, m = 0 and n =
—1 and the temporary solution for this pixel can be
represented by 0y _1)(z,y) for the local window centered at
(z,y). The temporary solution is obtained by the LS method
with the overdetermined constraint equations using the
pixelsin the subwindow centered at (z + m, y + n) as follows:

P2 T “Lor

O (0) = (45, As,) A%, - (Bs). (3)

where 5, ,,) is the set of pixels in the subwindow centered

at (z +m,y + n) in the local window R centered at (z,y).
In (13),

T
— | 4T T T
AS(m.n) - |:a’(m,n),1 ce a(m,n),i s a’(m,n)yi|
and
T
BS(m,n) = [b(m.,n)J e b(m,n),i cee b(m,n),q] )
where
a(Tm,n,)J; = aT(Iivyi) = [Lo(@i yi) Ly(zi, i) — L@ yi) — 1],
and () = b(zi,y;) = I(2i,y:) for i ={1,2,...,¢} in the

subwindow centered at (z + m,y + n) in the local window
centered at (z,y). Note that ¢ is the total number of pixels in
a subwindow. The residual error with the temporary
solution 6, ) for the pixel at (z;,y;) in the local window
R centered at (x,y) may now be expressed by the form

T(l'b yi) ' é(m,n) (.277 y) + b(xb yz) (14)

If the old local window is centered at (z,y) and the new
local window is centered at (z + k,y+ 1), the temporary
solution and the residual errors for the common pixels in
the new local window can be obtained from the pre-
calculated values in the old local window as follows:

(1‘77y7a (m,n) (:L' y))

é(mﬂ) (I + kv y+ l) = é(m#»kﬂ#»l) (1:7 y)7 (15)

T2 (irh Yi, é(m,n) (:1: + kv Y+ l)) = T2 (xiv Yis é(m+k,n+l)(x7 y))7
(16)

where (z;,y;) are the pixel coordinate for a common pixel.

For the implementation of the running-median-based
algorithm, an image frame is covered by scanning it with a
local window in the following manner. A local window first
moves from left to right. When it hits the right edge of the
image frame, it moves down. Subsequently, it moves from
right to left, etc. This implies three different types of shifts for
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the local window—shift to the right, shift downward, and
shift to the left. For these three types of shifts, the values of
(k,1)in (15) and (16) are (1,0), (0,1),and (—1, 0), respectively.

At every shift of the local windows as described above, a
median of the squared residual errors is calculated for each
subwindow in the local window. Since the residual errors for
the common pixels in the new local window are the same as
the precalculated values in the old local window, for the
median calculation in the new local window, we just need to
update the set of squared residual errors that was used in the
old local window. This updating is done by adding the newly
calculated squared residual errors for the newly added pixels
to, and removing the values for the expired pixels from, the
set of squared residual errors that was used in the old local
window. When the old local window is centered at (z, y) and
the new local window is centered at (x + &,y + ), the median
of the squared residual errors for the subwindow centered at
the offset (m,n) with respect to the center of the new local
window can be formally stated as follows:

]\/[(m.n) (CIZ’ + kJ, y+ l)

= median TQ(mi: Yis a(m.n) (‘T + k7 y+ l))

(i,yi) € R(z+k.y+1)
= median{{r* (i, Yi, Omrnst) (T v)| (i, vi) € R(z,y)}
— (@0, Y3 Om sk (2, 9)) [ (w1, 4:) € R (2, 9)}
+ {7 (@, Yis Oy (@ + Ky y + D) (1, 1)
ER (z+ky+1)}},

(17)

(18)

where R(z,y) is a set of pixels in the old local window
centered at (x,y), R (z,y) is a set of expired pixels in the
old local window, R (z + k,y +1) is a set of newly added
pixels in the new local window.

The medians of the residual errors needed for each of the
local windows are calculated most efficiently with the
histogram-based method proposed by Huang et al. in [17].
Since this method uses integer data, we must first quantize
the residual errors in each local window. We will now
present a residual error normalization procedure that
results in good normalization of the range of the residual
errors. Ordinarily, as our following discussion illustrates,
the residual error at a pixel is directly proportional to the
magnitude of the image gradients at that pixel. So, a
convenient normalization consists of dividing out the
residuals by the size of the gradients.

As we described in Section 3, the optical flow constraint
equation can be represented by a line in the (u, v) parameter
space. It is interesting to geometrically examine a temporary
solution obtained from one subwindow vis-a-vis the
residual errors corresponding to this solution at all the
pixels in the local window. Consider the case presented in
Fig. 5 where the line depicts the constraint equation for
some pixel P at (z,y) for the temporary solution (a, 0) that
was obtained for the first subwindow at the upper left
corner of a local window. We now investigate the relation-
ship between the residual error given by the value of
L(z,y)a+ I,(z,y)0 + Li(z,y) at P and the distance d from
(4,7) to the line as shown in Fig. 5. The distance d in Fig. 5
can be easily calculated as follows:
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L utly v+l =0

(u,v)
Fig. 5. Distance from a temporary solution to a constraint line in the two-
dimensional parameter space.

Iy, 1, _ "
d=|flcos® = |n-7] = M(u—u,v—v)
JI2+I2
T (19)
_ | LuA Iyo+ 1|

N R

where 7 is a vector from (4, 9) to any arbitrary point on the
line, @ = (I, I,) is a vector that is perpendicular to the line,
7 is a unit vector having the same direction of 77, and 6 is the
angle between the vector @ and 7. Now, the squared
residual error E can be represented as follows:

E? = (La+ 1o+ 1,)* = (I + 1) - . (20)
As we can see in (20), the magnitude of the squared residual
errors is proportional to the magnitude of the sum of the
squared image gradients, I? +I2, for a given value of the
distance d. This dependency of the residual error on the
image gradient is not desirable for a histogram-based
method for median calculation because the data range will
vary as the local window shifts in an image frame.
Therefore, we employ the distance d that does not depend
on the image gradient as the other type of the residual error
and call it as the normalized residual error.

To show the advantages of normalizing the residual
errors in the manner indicated, we show in Figs. 6¢ and 6d
the histograms of the residual errors, the former unnorma-
lized and the latter normalized, for the case of the local
window shown with a white box in the upper left quadrant
of the image of Fig. 6a. This local window corresponds to
the case of low image intensity gradients. As the reader can
see, the histogram is highly lop-sided for the nonnorma-
lized residual errors, but reasonably uniform for the
normalized residual errors. Fig. 6b shows the constraint
equations for all of the pixels in the local window, the
ground-truth values for the motion parameters are shown
with a white cross in the figure. Figs. 7a, 7b, 7c, and 7d show
the same for the case of local window at the lower right
corner of the image frame. This example corresponds to the
case of high local image gradients. We show this second
example to illustrate that the histograms of the nonnorma-
lized residual errors can vary considerably from local
window to local window and their wide variation precludes
any simple approach to quantization. Hence, we must
resort to error normalization.

5 ERROR ANALYSIS

As mentioned at the outset, the main goal of this paper is to
carry out a comparative error analysis of the following two
LMedS optical-flow estimation methods that incorporate a
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Fig. 6. (a) An image frame and a local window, (b) constraint lines in
(d) histogram of normalized residual errors.
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Fig. 7. (a) An image frame and a local window, (b) constraint lines in a parameter space, (c) histogram of unnormalized residual errors, and

(d) histogram of normalized residual errors.

model for varying illumination: 1) a method that uses the
standard LMedS regression as presented by Rousseeuw and
Leroy in [24] and 2) its modified version as presented by us
in [12]. The goal of this paper is to also compare these two
methods with the gold-standard implementation described
in Section 4.

Generally, performance characterization of a computer
vision algorithm has to do with the accuracy of the output vis-
a-vis random variations and imperfections in the input [29].
In most performance characterization studies, two types of
random perturbations are introduced into the input: small
perturbations that affect all data units and large perturba-
tions that affect only a small fraction of the data units [29].

Following this established practice, the performance
characterization study in this paper also injects two forms
of noise into the video sequences used for motion
estimation: We add small random fluctuations to all of the
recorded images in a video sequence in order to simulate
the discrete nature of the noise in the photocell detectors of
a camera. This type of noise is generally modeled by a zero
mean Gaussian process and quantified by different var-
iances. The other type of noise we inject into input data
consists of drop-out noise, also commonly referred to as the
salt-and-pepper noise. This type of noise, caused by errors
in data transmission, corrupts the pixels by changing their
values to either the maximum possible value or to the zero
value, thus giving the image a “salt and pepper” appear-
ance. The rest of the pixels remain unaffected by this type of
noise. This type of noise is usually quantified by the density
of the pixels which are corrupted.

A performance characterization of the sort we present here
must of necessity calculate errors between the ground-truth
values, on the one hand, and the estimated values, on the
other, for the motion vectors. What makes our task

particularly difficult is that our ground-truth data must be
for the case when motion is recorded under varying
illumination. There do exist publically available ground-
truthed image sequences for motion-estimation experiments,
but unfortunately they do not come with illumination
variations. For example, there is the constant-illumination
ground-truthed image sequence made available by Otte and
Nagel that was recorded by a camera mounted on a robot arm
moving with a precalculated trajectory [30]. The scene for this
data consisted of polyhedral objects. The ground-truth value
for the motion vectors is calculated from the known trajectory
of the camera. Another ground-truthed image sequence, also
for polyhedral objects and also for the case of constant
illumination, has been made available by McCanne etal. [31].
The ground truth information, in this case, is obtained by first
manually assigning motion vectors to the corners of poly-
hedral objects and then estimating the rest of the motion
vectors assuming a projective linear motion model for the
pixels inside each polyhedral face.

We believe we have four options for generating the sort
of ground-truthed data we need for our error analysis:

1. Use a synthetic image sequence with artificial
illumination variation.

Use an existing publically available image sequence
taken under constant illumination and then inject
artificial illumination variation into it.

Use a graphics package such as OpenGL to create a
synthetic video clip with multiple motions and
frame-to-frame illumination variations.

Record a new image sequence with real illumination
variations and make that publically available.

2.

The experimental results we report in this section use all
four of these approaches for error evaluation, giving us a
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Fig. 8. (a) The first image frame of the random-dot sequence (b) its ground-truth motion, (c) the first image frame of the modified Otte sequence, and

(d) its ground-truth motion.
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Fig. 9. (a) Camera and Lighting setup for the nine-frame OpenGL-generated sequence, (b) the first frame of this sequence, and (c) its ground-truth

motion.

good mix between synthetic data and real data. Here, is a
summary of the data sets used:

1. A synthetic two-frame random-dot image sequence
including illumination variation.

2. A modified version of the real “Otte” image
sequence [30]. The modification consists of injecting
an artificial illumination variation into the data. This
sequence also consists of two frames.

3. A nine-frame video sequence generated using
OpenGL. The use of OpenGL allows us into incorpo-
rate arbitrary object motions and illumination varia-
tions into the sequence.

4. A two-frame real image sequence with real illumi-
nation variations that was ground-truthed for the
results shown here.

With regard to the synthetic random-dot images, the first
image is shown in Fig. 8a. The second image frame for this
image sequence is created by translating the pixels on a
centered square of the first image frame by one pixel to the
right and by one pixel down and translating the back-
ground pixels by one pixel to the left and by one pixel up.
For the artificial illumination variation, the intensity of
pixels in the second image frame is multiplied by a factor
that varies linearly from the center of the image to the
corner of the image radially (1.25 at the center and 0.75 at
the corner), an offset (of 10) is then added to the result.
Fig. 8b shows the ground-truth optical flow at the sampled
pixels of the image sequence.

For the second data set for our error analysis, the first
frame of the modified “Otte” sequence is shown in Fig. 8c.
Instead of using the original “Otte” sequence used in [30],
we reduced the size of the original images to half and then

we also injected the artificial illumination variation that is
the same as used in the random-dot image sequence. The
ground-truth optical flow for this sequence is shown in Fig.
8d.

As mentioned already, our third data set for error analysis
uses nine ground-truthed frames generated by the OpenGL-
based modeling software. This data includes a much more
complicated illumination variation than is the case with the
first two data sets. Fig. 9 a shows a 3D view of the synthetic
scene used for OpenGL. It consists of two boxes sitting on top
of a textured surface. Overlaid on the scene are the camera
position (but note that the camera is allowed to move frame-
to-frame) and the positions of the eight light sources used for
creating illumination variations. The light sources can be
turned on or off individually on a frame-to-frame basis and,
when a light source is on, its intensity can be varied
continuously. Fig. 9b is the first image frame of the synthetic
video sequence. The ground-truth optical flow for
the synthetic image sequence can be calculated from the
known 3D points corresponding to all the image pixels and
projecting the 3D motion of the points on to the
2D image plane. Fig. 9c is the ground-truth optical flow for
the first image frame of the sequence. Table 1 shows the
3D coordinates of the centers of the two boxes and the optical
center of the camera with respect to the base coordinate frame
shown in Fig. 9a and the on-off sequence for each of the eight
light sources. The two boxes move laterally along the “X” axis
and the camera moves up and down along the “Y” axis or
back and forth along the “Z” axis. Until the sixth image frame
(frame number 5), all the lights are turned on, but their
intensity varies frame to frame, as shown in the table. After
the sixth frame, one of the lights sources is turned off for each
of the remaining frames.
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TABLE 1

Position of the Boxes and the Camera for the Nine-Frame OpenGL-Generated Sequence,

the On-Off Pattern of the lllumination Sources, and the Intensity of the On Sources

frame left box right box camera Intensity
number X y z X y z X y z L1 L2 L3 L4 L5 L6 L7 L8 of lights
0 -20.0 0.0 -30.0 20.0 0.0 -30.0 0.0 65.0 36.0 ON ON ON ON ON ON ON ON 0.015

1 -20.2 0.0 -30.0 20.2 0.0 -30.0 0.0 65.0 355 ON ON ON ON ON ON ON ON 0.020

2 -20.4 0.0 -30.0 20.4 0.0 -30.0 0.0 65.0 35.0 ON ON ON ON ON ON ON ON 0.025

3 -20.6 0.0 -30.0 20.6 0.0 -30.0 0.0 65.0 355 ON ON ON ON ON ON ON ON 0.030

4 -20.8 0.0 -30.0 20.8 0.0 -30.0 0.0 65.5 36.0 ON ON ON ON ON ON ON ON 0.035

5 -21.0 0.0 -30.0 21.0 0.0 -30.0 0.0 66.0 36.0 ON ON ON ON ON ON ON ON 0.040

6 2212 0.0 -30.0 212 0.0 -30.0 0.0 65.5 36.0 ON ON OFF ON ON ON ON ON 0.040

7 214 0.0 -30.0 21.4 0.0 -30.0 0.5 65.0 36.0 ON ON ON OFF ON ON ON ON 0.040

8 -21.6 0.0 -30.0 21.6 0.0 -30.0 1.0 65.0 36.0 ON ON ON ON OFF ON ON ON 0.040
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For the final data set for our error analysis, a real image
sequence was recorded using a setup shown schematically in
Fig. 10a. There are two light sources A and B of different
output spectra in the setup. Light source A, consisting of
multiple fluorescent lamps mounted in the ceiling, was used
for recording the firstimage of an image pair, and light source
B, an incandescent lamp, was added to the light source A for
the second image. Since the two light sources were not
physically colocated they obviously produced different
shadow patterns in the scene. With regard to the motions in
the scene, the objects P and Q were shifted laterally to the left
and to the right, respectively. Using our software tool based
on the same rationale that was presented in [31], we
calculated the ground truth motion data from the two image
frames. The first frame of the two images thus recorded is
shown in Fig. 10b. Shown in Fig. 10c is a pictorial depiction of
the ground-truth velocities. The horizontal components of
these velocities at each of the pixels are shown in Fig. 10d.

Optical flow was estimated from all four data sets using
the algorithms listed in Table 2. For methods that use
regularization parameters, we used two versions, with the
parameters all set to 1 and with the parameters estimated
optimally in the manner indicated earlier. The method
names are starred for the versions when the regularization
parameters were estimated optimally. The table also shows
where a method is based on obtaining a global solution or
local solution, and whether or not a method is designed to
accommodate varying illumination.

This is how we have organized the presentation of the error
evaluation results:*First, we will show optical flow estimation
errors qualitatively, but only for the random-dot synthetic
space. Next, we will describe how we measure the optical-
flow estimation error quantitatively. Subsequently, we will
present comparative results for each of the four data sets.

Fig. 11 shows the qualitative optical flow results for the
random-dot image sequence. From this figure, we can
obviously see that the methods that are designed to work
with only constant illumination produce poor estimates of
optical flow. We can also see that our global (RVL-G, RVL-G¥)
and local integrated methods (RVL-L1, RVL-L2) that solve
both the varying illumination and the motion discontinuity
problems simultaneously provide accurate optical flow
results especially at the motion boundaries. Additionally, it

2. Space considerations and desire to impart maximum possible
information have dictated this organization of the experimental results.

can also be seen that the global methods perform poorly when
the regularization parameters are not optimized (see Fig. 11c
and Fig. 11e).

For quantitative error analysis, following [32] we calcu-
lated the angular error at each pixel by measuring the angle
between the 3D normalized versions of the correct optical
flow vector and the estimated optical flow vector. For this, the
normalized 3D vector is defined as ¥ = m (u,v,1)" and
the angular error as E = arccos(tg, U ), where the normalized
3D vector v, corresponds to the correct velocity and v, to the
estimated velocity.

Table 3 shows the average angular error and its variance
obtained with the different methods when applied to the
random-dot sequence for three different cases: no noise,
Gaussian noise at three different levels, and salt-and-pepper
noise, again at three different levels. The dependence of the

(© (d)

Fig. 10. (a) Camera and lighting setup for the real image sequence,
(b) the first frame and (c), (d) the ground-truth motion.
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TABLE 2
Methods Used for Error Analysis
Global Constant
Methods Abbrev. vs. Local vs. Varying
Method 111. model
Horn & Schunck [3] with HS Global Constant
untuned parameter (set to 1)
Horn & Schunck [3] with HS* Global Constant
optimal parameter
Black & Anandan [2] with BA Global Constant
untuned parameter (set to 1)
Black & Anandan [2] with BA* Global Constant
optimal parameter
Gennert & Negahdaripour [6] with GN Global Varying
untuned parameters (set to 1’s)
Gennert & Negahdaripour [6] with GN* Global Varying
optimal parameters
Our global integrated method [13] RVL-G Global Varying
with untuned parameters (set to 1’s)
Our global integrated method [13] RVL-G* Global Varying
with optimal parameters
Lucas & Kanade [5] LK Local Constant
The standard LMedS [24], [10], [9] SLMS Local Constant
The modified LMedS [12] MLMS Local Constant
Negahdaripour & Yu [23] NY Local Varying
Our integrated method based RVL-L1 Local Varying
on the standard LMedS [12]
Our integrated method based RVL-L2 Local Varying
on the modified LMedS [12]

average angular error on the noise level is also shown
graphically in Fig. 12 for each of the different methods.
From the results shown, it is obvious that the methods that
use the constant illumination model produce large errors.
On the other hand, our integrated global method (RVL-G*)
shows superior results overall. However, note at the same
time the poor results produced by our method RVL-G that
uses untuned values for the regularization parameters.
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When noise levels are low, our integrated local method
based on the modified LMedS technique (RVL-L2) produces
accuracies comparable to those obtained with the global
integrated method with optimal parameters (RVL-G*). It is
also interesting to note that, in the presence of noise, our
global integrated method outperforms the other methods
for the case of Gaussian noise and our local integrated
method does the same for the case of salt-and-pepper noise.

Table 4 and Fig. 13 show the results obtained for the
modified Otte sequence that, as mentioned previously,
consists of more realistic images. The overall conclusions to
be drawn from this table and the figure are essentially the
same as for Table 3 and Fig. 12.

We will now demonstrate results, very similar to those
already shown, with the help of the nine-frame OpenGL
generated (and ground-truthed) sequence of images taken
under varying illumination. Figs. 14a, 14b, and 14c show the
average angular error for each image frame of this sequence
with no noise, with Gaussian noise, and with salt-and-
pepper noise, respectively. For the Gaussian noise, we used
4 for the variance, and for the salt-and-pepper noise, a
density of 0.01. For the results shown, the regularization
parameters for the global methods are tuned only for the
first image frame and then kept the same for the remaining
frames. As can be seen in Fig. 14a, the errors produced by
the methods that use the constant illumination model are
much larger than those of the methods based on the varying
illumination model for all the image frames. The global and
local integrated methods, RVL-G, RVL-L1, and RVL-L2,
again outperform the other methods. However, the global
method RVL-G performs worse than the local methods
RVL-L1 and RVL-L2 after the first frame because of the
sensitivity of the regularization parameters. Fig. 14b shows
that the performance of all the integrated methods
deteriorated at almost the same level of noise for the case
of Gaussian noise. Also, Fig. 14c demonstrates the superior
robustness of RVL-L1 and RVL-L2 to the salt-and-pepper
noise for all the image frames. It is interesting to note that
RVL-L1 is not as robust as RVL-L2.
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TABLE 3
Average Angular Errors and Variances for the Random-Dot Sequence
Ave. angular Ave. angular error / variance with Ave. angular error / variance with
Method error / variance different variances of Gaussian noise different densities of salt-and-pepper noise
without noise 2 4 8 0.005 0.01 0.02
HS* 21.26/18.19 23.07/17.86 24.82/17.75 28.04/17.20 27.17/18.62 31.98/19.17 38.89/19.01
BA* 31.37/33.95 33.24/32.57 35.02/34.15 36.08/34.60 34.60/30.54 34.31/30.25 34.52/26.73
GN 52.07/ 0.93 52.09/ 0.93 52.13/ 0.95 52.20/ 1.05 52.06/ 8.56 51.92/11.33 52.28/15.38
GN* 5.43/7.62 16.90/ 8.96 24.02/10.03 32.11/10.92 10.96/13.08 16.08/16.03 24.94/19.33
RVL-G 48.43/ 3.78 50.67/ 2.62 52.25/ 1.57 54.03/ 1.62 52.19/ 2.56 53.97/ 1.86 54.71/ 1.38
RVL-G* 2.27/ 8.09 2.79/ 8.38 3.36/ 8.07 4.47/ 9.57 4.64/13.65 7.45/17.55 12.83/23.07
LK 26.69/25.91 26.89/24.78 27.71/23.88 29.93/21.81 37.67/20.14 | 42.63/16.69 | 48.13/10.88
SLMS 20.87/22.46 21.23/21.31 22.52/20.60 25.24/18.81 36.52/21.91 41.01/19.86 47.16/16.51
MLMS 27.41/26.15 27.53/25.02 28.34/24.18 30.37/22.10 34.53/21.60 38.84/19.18 44.04/14.97
NY 6.64/10.95 10.85/10.94 15.13/10.58 22.01/10.26 40.85/22.57 49.15/17.35 56.44/13.19
RVL-L1 6.64/10.99 10.81/10.97 15.04/10.62 21.90/10.29 25.44/23.82 32.01/24.79 39.30/25.46
RVL-L2 4.18/ 8.73 9.18/9.18 13.93/ 8.73 21.61/ 9.64 4.39/9.34 4,61/ 9.47 6.64/12.33
= HS 60 —a—HS
8 —e—BA 5 —e—BA
5 ~a-GN 5 -4 GN
5 —a— GN* 5 40 —a— GN*
5 --¢--RVL-G _é;ﬂ ¢ RVL-G
g —+—RVL-G* g —+—RVL-G*
% —&-LK g 20 —==ILK
g -6~ SLMS s -0 SLMS
g —e—MLMS 2 —o-MLMS
< A NY < 0 ——NY
~-¢--RVL-L1 ~-¢--RVL-L1
0 2 4 6 8 —o— RVL-L2 0 0.005 0.01 0.015 0.02 ——RVL-L2

Variance of Gaussian noise

(@)

Density of salt-and-pepper noise

(b)

Fig. 12. Average angular errors for the random-dot sequence with (a) Gaussian noise and (b) salt-and-pepper noise.

TABLE 4
Average Angular Errors and Variances for the Modified Otte Sequence

Ave. angular Ave. angular error / variance with Ave. angular error / variance with
Method error / variance different variances of Gaussian noise different densities of salt-and-pepper noise

without noise 8 12 16 0.005 0.01 0.02
HS* 15.46/12.48 15.75/12.20 15.90/12.11 16.09/12.01 16.57/12.21 17.99/12.55 19.82/12.98
BA* 14.12/ 7.19 14.21/ 7.05 14.23/ 6.91 14.52/ 6.75 15.13/ 6.78 14.64/ 6.90 14.84/ 6.65
GN 17.13/ 9.76 18.36/ 9.97 18.87/10.11 19.24/10.27 20.74/12.38 22.97/13.61 25.62/15.12
GN* 14.56/ 7.63 17.32/ 9.30 18.22/ 9.89 18.78/10.36 16.47/ 9.72 18.39/11.32 21.08/13.40
RVL-G 11.30/ 6.05 11.26/ 5.28 11.30/ 5.36 11.48/ 5.47 11.24/ 6.25 11.29/ 6.57 11.39/ 6.57
RVL-G* 10.80/ 6.94 10.00/ 6.05 10.09/ 6.13 10.26/ 6.23 10.92/ 7.19 11.07/ 7.94 11.08/ 8.27
LK 19.30/17.51 16.17/14.07 15.96/13.59 15.84/13.20 18.42/14.31 18.78/13.17 19.39/12.77
SLMS 20.01/18.41 16.58/14.46 16.23/13.98 16.11/13.74 20.61/16.96 | 20.62/16.20 20.70/14.64
MLMS 19.52/17.64 16.41/14.24 16.16/13.77 16.01/13.34 18.29/14.50 18.07/13.39 18.34/13.00
NY 10.45/ 7.02 10.48/ 6.03 10.76/ 6.13 11.04/ 6.23 13.32/9.11 15.04/ 9.60 16.06/ 9.96
RVL-L1 10.34/ 6.66 10.44/ 5.83 10.76/ 6.01 11.07/ 6.17 12.49/ 8.56 14.41/ 9.83 16.41/11.13
RVL-L2 10.03/ 6.51 10.23/ 5.61 10.62/ 5.95 11.04/ 6.24 10.23/ 6.91 10.54/ 7.45 11.09/ 8.27

Since it is obvious from the results already shown that the
local integrated methods are substantially superior to the
other methods, we will focus exclusively on such methods for
the next data set, which consists of the real ground-truthed
image sequence with real illumination variations. Fig. 10,
shown previously, illustrated the experimental setup used
for recording the data for this image sequence. That also
brings us to the main goal of this paper as stated in the
opening paragraph of this section: It is to carry out a

comparative error analysis of the two LMedS-based optical-
flow estimation methods RVL-L1 and RVL-L2 and to further
compare these two methods with the gold standard we
described in Section 4. We will refer to the gold standard
method by the abbreviation “Base” (for “baseline”).

Table 5 shows the average angular error for the real data
with the RVL-L1, RVL-L2, and the gold-standard Base
methods for three cases of Gaussian noise and for three
cases of salt-and-pepper noise. We show the results
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Fig. 13. Average angular errors for the modified Otte sequence with
(a) Gaussian noise and (b) salt-and-pepper noise.

separately for two different versions of the RVL-L1 and
RVL-L2 algorithms: When only five random samplings are
used for forming temporary solutions and when 25 random
samplings are used. For better visualization, the same
results are shown graphically in Figs. 15a and 15b. The
number of random samplings used for RVL-L1 and RVL-L2
are shown parenthesized after the labels. Just to point out
how much better the median-based approaches are com-
pared to the least-squares-based approaches, the last row of
Table 5 and one of the curves in Fig. 15a corresponds to the
case when the motion vectors were estimated using the
approach of Negahdaripour and Yu in [23]. These results
are labeled “NY” in both the table and the figure.

Table 5 includes two rows of results for the baseline
method “BASE.” The row actually labeled BASE in the first
column is for the case when we normalize the residual
errors in order to speed up the calculation of the running
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Fig. 14. Average angular error versus image frames for Synthetic-boxes
sequence (a) without noise (b) with Gaussian noise, and (c) with salt-
and-pepper noise.

median from one local window to another in the baseline
method. The second baseline-method row, labeled “BASE’”
is for the case when no such normalization is carried out.
Therefore, the second row of numbers is produced with a
slower implementation of the baseline method. As the reader
can see, our normalization of the residual errors in order to

TABLE 5
Average Angular Errors and Variances for Boxes Sequence
Ave. angular Ave. angular error / variance with Ave. angular error / variance with
Method error / variance different variances of Gaussian noise different densities of salt-and-pepper noise
without noise 4 8 12 0.005 0.01 0.02
RVL-L1(5) 6.02/ 8.24 6.42/ 835 6.83/ 8.64 7.17/ 8.87 9.52/10.65 11.63/11.66 14.53/13.33
RVL-L1(25) 6.04/ 8.25 6.47/ 8.36 6.91/ 8.70 7.28/ 8.96 9.30/10.58 11.45/11.66 14.62/13.46
RVL-L2(5) 4.50/ 6.31 5.46/ 7.48 6.32/ 8.66 6.94/ 9.21 4.83/ 7.00 5.19/ 7.66 7.05/10.05
RVL-L2(25) 4.33/ 5.92 5.35/7.40 6.40/ 8.93 7.14/ 9.82 4.37/ 6.10 4.46/ 6.20 4.81/ 6.78
BASE 4.30/ 5.85 5.35/1.47 6.43/ 9.01 7.16/ 9.88 431/ 5.95 4.38/ 6.10 4.52/ 6.16
BASE’ 4.33/ 5.95 5.36/ 7.46 6.43/ 9.02 7.17/ 9.89 431/ 5.94 4.39/ 6.09 4.53/ 6.18
NY 6.00/ 8.28 6.38/ 8.38 6.76/ 8.64 7.09/ 8.86 10.06/10.96 12.36/12.04 15.32/13.84
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Fig. 15. Average angular errors for Boxes sequence with (a) Gaussian noise and (b) salt-and-pepper noise.
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Fig. 16. Optical flow results of (a), (€) “RVL-L1” method based on the standard LMedS, (b), (f) “RVL-L2” method based on the modified LMedS,
(c), (g) baseline implementation, and (d), (h) “NY” method based on the LS for Boxes sequence perturbed by Gaussian noise with variances of 4, and

salt-and-pepper noise with density of 0.005, respectively.

achieve a higher speed does not degrade the accuracy of the
baseline method. For all of the motion estimation methods
used in the comparisons shown in Table 5 and Fig. 15, we
used 13 x 13 local windows and 5 x 5 subwindows.

As we see in Table 5 and Fig. 15a, the average angular
error for the modified LMedS method is much smaller than
that produced by the standard LMedS method at low levels
of noise. This superior accuracy of the modified LMedS
method can be verified visually at the motion boundaries in
Figs. 16a, 16b, 16c, and 16d. (The darker color in this figure
represent motions to the left, brighter colors motion to the
right, and the gray color zero motion.) This tells us that the
temporary solutions of the modified LMedS method, each
obtained by a least-squares solution from all the pixels in a
subwindow, are much more reliable than those of the
standard LMedS method in which a temporary solution is
obtained directly from the constraint equations using only
as many pixels as the number of unknowns to be solved for.

An interesting difference between the performance of the
standard LMedS and the modified LMedS takes place as the
level of noise increases. By its very nature, the standard
LMedS seeks that solution that is in the “middle” of the
intersections of the constraint lines corresponding to all those
pixels that are considered to be inliers. On the other hand, the
modified LMedS method seeks that solution which corre-
sponds to the dominant motion in the local window. But,

whennoise is high, it may not be easy to discern the dominant
motion. This effect is visible in Fig. 15a and Figs. 16a, 16b, 16c,
and 16d, where we see that the modified LMedS outperforms
the standard LMedS when the image noise is moderate.
However, as the level of noise increases, there is a reversal in
the performance of the two.

Fig. 15a also shows the average angular errors of the two
LMedS methods with different number of samplings. In this
figure, we can see there is no significant difference between
the two. From this, we can say thatif noise affects all theimage
pixels randomly then selecting good temporary solutions
does not much depend on the number of samplings. For the
same reason, Fig. 15a shows no significant difference between
the average angular errors for the baseline implementation
and that of the modified LMedS method.

With regard to the results shown for the salt-and-pepper
noise in Table 5 and Fig. 15b, the superiority of the modified
LMedS method over the standard LMedS method is now
much more evident than was the case with Gaussian noise.
The average angular error for the modified LMedS method is
now much smaller than that for the standard LMedS method
atallnoise levels. Figs. 16e, 16f, 16g, and 16h visually show the
superior accuracy of the modified LMedS method, especially
so at the motion boundaries. From this, we can conclude that
the temporary solutions of the modified LMedS method are
even more robust to salt-and-pepper noise than they are to
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Gaussian noise. This can be explained as follows: Since the
salt-and-pepper noise does not affect all the pixels in the
image, the probability of having a good temporary solution
from the randomly sampled set of pixels is now higher.
However, as the number of pixels affected by the noise
increases, the temporary solutions solved by the modified
LMedS method are also affected and the average angular
error of this method increases faster than that of the baseline
implementation as shown in Fig. 15b.

Again, with reference to the results on the real data shown
in Table 5 and Fig. 15b, we will now comment on the
performance of the different methods with regard to the
number of samplings for the case of salt-and-pepper noise. As
shown in Fig. 15b, with this type of noise, the performance of
the modified LMedS method deteriorates faster with increas-
ing noise when the number of samplings is five vis-vis when it
is 25. On the other hand, the standard LMedS shows
substantially the same performance at both sampling rates.
This shows us again that the temporary solutions of the
modified LMedS method are much more reliable than those
of the standard LMedS method and, therefore, the probability
of having a good temporary solution of the modified LMedS
method increases as the number of samplings increases. For
the same reason, the average angular error of the baseline
implementation is smaller than that of the modified LMedS
method at large levels of noise.

6 CONCLUDING REMARKS

Our comparative study demonstrates the general superiority
of thelocal integrated methods based on the modified LMedS
regression technique over the other global or local methods.
When comparing the LMedS-based approaches, the super-
iority of the modified LMedS-based method is particularly
noticeably at low and intermediate levels of noise for the case
of Gaussian noise and at all levels of noise for the case of salt-
and-pepper noise. This tells us that the temporary solutions of
the modified LMedS method are much more reliable than
those of the standard LMedS method. The standard LMedS
method was based on the standard LMedS regression as
proposed by Rousseeuw and Leroy in [24].

We demonstrated this claim with the help of four ground-
truthed data sets, synthetic and real, containing illumination
variations that are artificial and real. One of our evaluation
data sets was a nine-frame ground-truthed image sequence
generated with OpenGL. Our real data set consisted of a
two-frame ground-truthed sequence with real illumination
variations.

In keeping with “best practice” in performance evalua-
tion in computer vision, our error evaluation study
incorporated two different types of noise, additive Gaussian,
and salt-and-pepper. And, in keeping with the approaches
used by others for analyzing the accuracy of motion
estimation methods, our quantitative evaluation calculated
the average angular errors associated with the estimated
motion vectors. The error was calculated as a function of the
noise variance for the Gaussian case and as a function of the
drop-out rate for the salt-and-pepper case.

Our contribution in this paper also includes a gold-
standard implementation of the LMedS-based motion esti-
mation that others should find useful for studying the
performance of their own LMedS-based approaches. The
gold-standard implementation is not meant for real-time
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motion estimation by any stretch of imagination; its sole aim
is to provide an implementation that uses all the data for
forming temporary solutions and that therefore is guaranteed
to have no errors on account of the random sampling effects.
The gold-standard implementation of Section 4 is only for
carrying out studies in the error performance of LMedS-
based approaches.
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