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René Donner, Michael Reiter, Georg Langs,
Philipp Peloschek, and

Horst Bischof

Abstract—A fast AAM search algorithm based on canonical correlation analysis

(CCA-AAM) is introduced. It efficiently models the dependency between texture

residuals and model parameters during search. Experiments show that CCA-

AAMs, while requiring similar implementation effort, consistently outperform

standard search with regard to convergence speed by a factor of four.

Index Terms—Image processing and computer vision, active appearance

models, statistical image models, subspace methods, medical imaging.
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1 INTRODUCTION

ACTIVE appearance models (AAMs) [7] learn characteristics of objects
during a training phase by building a compact statistical model
representing shape and texture variation of the object. The use of
this a priori knowledge enables the AAM search to yield good
results even on difficult and noisy data. AAMs have been
employed in various domains like face modeling [11], studying
human behavior [17], and medical imaging tasks, like segmenta-
tion of cardiac MRIs [21] or the diaphragm in CT data [1], and
registration in functional heart imaging [25]. In [24], an extensive
overview of existing applications is given.

1.1 AAM Search

The goal of the AAM search is to find the model parameters that
generate a synthetic image as close as possible to a given input
image and to use the resulting AAM parameters for interpretation
[7]. Matching the model and target image is treated as an
optimization problem, i.e., the problem of minimizing the texture
residual with regard to model parameters. Provided that the model
is roughly aligned with the target image, the relation of texture
residuals and parameter updates can be modeled a priori (by
offline training) within a certain class of objects [7].

In the original AAM search approach proposed by Cootes et al.
[5], the mapping from error images to AAM parameters is modelled
by a linear regression approach (linear least-squares estimates). In
the later proposed optimization approach [7], the regression
estimates were replaced by a simplified Gauss-Newton procedure,
where the Jacobian matrix is evaluated only once (offline) by

numerical differentiation from training data. Throughout this
paper, we will refer to this as standard approach. Both approaches
are similar in the sense that they assume that the error surface can be
approximated reasonably well by a quadratic function. The main
advantage of the latter approach [7] is that, during training, not all
difference images have to be stored in memory.

Various approaches to increase convergence speed and AAM
search result accuracy have been proposed. A review of various
search techniques is given in [4]. ShapeAAMs [6] update only pose
and shape parameters during search, while gray-level parameters
are computed directly from the sample. They converge faster but
the failure rate increases. Direct appearance models (DAMs) [15]
predict shape parameters directly from texture. The convergence
speed of AAMs for tracking applications is investigated in [10].

These modifications of the original approach improve the
convergence speed and the quality of the results by either reducing
the number of parameters that are to be optimized in a sensible
way (DAMs and ShapeAAMs), by saving computation time by
reducing the synthesizing steps necessary for the error function
calculation (AAM tracking), or by reducing noise in the regression
training images (DAMs). However, the basic parameter updating
scheme during search is based on the standard approach [7] for all
of these methods. They represent heuristic approaches to AAM
fitting, which trade accuracy for efficiency by assuming a constant
Jacobian during search.

An alternative is to perform analytic gradient descent. To avoid
the resulting inefficiency during search, in [19], an inverse
compositional approach (ICIA) was proposed. It treats shape and
appearance variation independently and is based on a variant of the
Lucas-Kanade image alignment algorithm [18], which performs a
Gauss-Newton optimization. The texture warp is composed of
incremental warps and, thus, the assumption that the Jacobian used
for parameter prediction stays constant becomes valid. In [12], an
extension to this approach (simultaneous ICA) was proposed for
combined AAMs. The analytical calculation of the Jacobian is based
on the mean and partial derivatives of the AAM parameters.

The approach presented in this paper utilizes training images,
allowing CCA to extract additional regression-relevant information
which may be discarded by the purely generative PCA-based model.

1.2 A Fast CCA-Based Search

In this paper, we present an AAM search algorithm based on
canonical correlation analysis (CCA) [14]. CCA is a statistical method
for factor analysis in two signal spaces. It determines linear
combinations of variables (canonical variates) in each of the two
signals, which are pairwise maximally correlated. The directions of
maximum correlation (canonical factors) capture relevant signal
components, constituting the functional relation of the two signals.

There exist a number of related regression techniques, such as
Partial Least Squares [13], Reduced Rank Wiener Filtering (see, for
example, [9]. CCA, in particular, has some very attractive proper-
ties (for example, it is invariant with regard to affine transforma-
tions—and, thus, scaling—of the input variables) and cannot only
be used for regression purposes, but whenever we need to
establish a relation between two sets of measurements (e.g.,
finding corresponding points in stereo images [2]). In signal
processing, CCA is used for optimal reduced-rank filtering [16],
where the goal is data reduction, robustness against noise, and
high computational efficiency. It has also been successfully applied
to pattern classification [23], appearance-based 3D pose estimation
[20], and stereo vision [2].

Our approach follows the original AAM training procedures
proposed by Cootes et al. [5], [7]. Essentially, we use a linear
regression model of the texture residual vector r 2 IRp and
corresponding AAM parameter displacements �p 2 IRq (p is the
size of the synthetic image and q is the number of parameters used
in the model). In our approach, however, we use reduced-rank
estimates obtained by CCA, instead of standard linear least-
squares regression estimates.
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The motivation of CCA is twofold. First, in the standard
approach, the regression matrix consisting of a large number
(p� q) of parameters has to be estimated from a limited number of
(noisy) training images. The rank constraint therefore leads to
more reliable regression parameter estimates [3], [8]. Second, we
assume that the true regression matrix is of lower rank than
minðp; qÞ because the texture residuals contain regression-irrele-
vant components, including noise and uncorrelated (higher order)
components, which cannot be captured by the linear model.

We will show experimentally on different types of data that,
indeed, CCA provides more accurate parameter updates that lead
to faster convergence of the AAM search.

1.3 Paper Structure

In Section 2, AAMs, their standard training approach, and CCA are
presented. The proposed CCA-based search algorithm is explained
in detail in Section 3. In Section 4, results are shown and
conclusions are drawn in Section 5.

2 METHODS

2.1 Active Appearance Models

The concept of active appearance models as described in [7] is
based on the idea of combining both shape and texture information
of the objects to be modeled. First, the shape vectors xi ¼
ðxi1; . . . ; xin; y

i
1; . . . ; yinÞ

T ; i ¼ 1 . . .N of the N training images are
aligned using Procrustes analysis. The images are warped to the
mean shape x and normalized, yielding the texture vectors gi. By
applying principal component analysis to the normalized data,
linear models are obtained for both shape, x ¼ xþPsbs, and
texture, g ¼ gþPgbg, where x; g are the mean vectors, Ps;Pg are
sets of orthogonal modes of variation (the eigenvectors resulting
from PCA), and bs;bg are sets of model parameters.

A given object can thus be described by bs and bg. As Ps;Pg

may still be correlated, PCA is applied once more using the
following concatenated vector:

b ¼ Wsbs
bg

� �
¼ WsP

T
s ðx� xÞ

PT
g ðg� gÞ

� �
;

where Ws is a diagonal scaling matrix derived from the value ranges
of the eigenvalues of the shape and texture eigenspaces. This yields
the final combined linear model b¼ Pcc, where Pc¼ðPT

cs;P
T
cgÞ

T .
Shape free images and the corresponding shapes defining the

deformation of the texture can be expressed directly using c by
x ¼ xþPsW

�1
s Pcsc and g ¼ gþPgPcgc. To enable the model to

deal with rotation, scaling, and translation the additional model
parameters t, capturing scaling and rotation and u, modelling
image contrast and brightness, are introduced. The resulting AAM
model represents shape and texture variation of image content
utilizing a single parameter vector p ¼ ðcT jtT juT Þ 2 IRq .

2.2 Standard AAM Search Approach

Provided we have a trained AAM where model parameters p
generate synthetic images ImodelðpÞ, the standard search for an
optimal match minimizes the difference between a given image
Iimage and the reconstructed image ImodelðpÞ. The search for the
model parameters p can be guided by using knowledge about how
the difference images correlate with the parameter displacements.
This knowledge is obtained during training.

During each search step, the current image residual between
the model texture gmðpÞ and the sampled image patch gsðpÞ
(warped to the mean shape) is computed using

rðpÞ ¼ gsðpÞ � gmðpÞ: ð1Þ

The search procedure aims at minimizing the sum of square
(pixel) error

1

2
rðpÞT rðpÞ: ð2Þ

Following the standard Gauss-Newton optimization method
one approximates (linearizes) (1) using the first-order Taylor
expansion

rðpþ �pÞ � rðpÞ þ @r

@p
�p;

with the ijth element of matrix @r
@p being @ri

@pj
.

Building the derivative of (2) with regard to p and setting it to
zero gives

�p ¼ �R rðpÞ; ð3Þ

where

R ¼ @r

@p

T @r

@p

� ��1
@r

@p

T

¼ @r

@p

� �y
;

with y denoting the pseudoinverse and R has size q � k. Instead of
recalculating @r

@p at every step, it is computed once during training
using numeric differentiation.

During training, each parameter is displaced from its optimal
value in h steps from -1 to +1 standard deviations, and a weighted
average of the resulting difference images over the training set is
built:

dri
dpj
¼
X
h

!ð�pjhÞ
ðriðpþ �pjhÞ � riðpÞÞ

�pjh
:

During the actual search, each iteration updates the model
parameters using pnextðsÞ ¼ pcurrent þ s�ppredicted, with �ppredicted ¼
�R rcurrent and s being a scaling factor sequentially chosen from
ssteps ¼ h1; 0:5; 1:5; 0:25; 0:1; 2; 0:025; 0:01i, as proposed in [7]. At
each of these scaling steps, the image patch is compared to the
syntetisized image Imodel, which is computationally expensive.

Let EðpcurrentÞ ¼ jrðpcurrentÞj2 ¼ jgs � gmj2 be the error of the
current model. An iteration is declared successful for the first step
s to produce an error EðpnextðsÞÞ < EðpcurrentÞ. pcurrent is then set to
pnextðsÞ and the search continues with the next iteration. If no
pnextðsÞ better than pcurrent can be found, convergence is declared
and pcurrent is the best estimate for the model parameters. As will
be shown in Section 4, our approach eliminates the need for using
different step sizes, as the parameter predictions are more accurate.

2.3 Canonical Correlation Analysis and Linear
Regression

Canonical Correlation Analysis is a very powerful tool that is
especially well suited for relating two sets of measurements
(signals). Like principal components analysis (PCA), CCA also
reduces the dimensionality of the original signals, since only a
few factor-pairs are normally needed to represent the relevant
information; unlike PCA, however, CCA takes into account the
relationship between two signal spaces (in the correlation sense),
which makes them better suited for regression tasks than PCA.

Given two zero-mean random variables x 2 IRp and y 2 IRq ,
CCA finds pairs of directions wx and wy that maximize the
correlation between the projections x ¼ wT

xx and y ¼ wT
y y (in the

context of CCA, the projections x and y are also referred to as
canonical variates). More formally, the directions can be found as
maxima of the function

� ¼ E½xy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x2�E½y2�

p ¼ E½wT
xxyTwy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½wT
xxxTwx�E½wT

y yyTwy�
q ;

� ¼ wT
xCxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
xCxxwxwT

y Cyywy

q ;

whereby Cxx 2 IRp�p and Cyy 2 IRq�q are the within-set covariance

matrices of x and y, respectively, while Cxy 2 IRp�q denotes their
between-set covariance matrix. A number of at most k ¼ minðp; qÞ
factor pairs hwi

x;w
i
yi; i ¼ 1; . . . ; k can be obtained by successively
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solving wi ¼ ðwiT
x ;w

iT
y Þ

T ¼ arg maxðwi
x;w

i
yÞf�g subject to �ðwj

x;w
i
yÞ ¼

�ðwi
x;w

j
yÞ ¼ 0 for j ¼ 1; . . . ; i� 1. The factor pairs wi can be

obtained as solutions (i.e., eigenvectors) of a generalized eigenpro-

blem (for details, see, e.g., [20]). The extremum values �ðwiÞ, which

are referred to as canonical correlations, are obtained as the

corresponding eigenvalues.
Alternatively, wi can be obtained by Singular Value Decom-

position (SVD) of the cross-correlation matrix of prewhitened input

data. Let A ¼ C�
1
2

xxCxyC
�1

2
yy and A ¼ UDVT be the SVD of A, where

U ¼ ðu1; . . . ;upÞ and V ¼ ðv1; . . . ;vqÞ are orthogonal matrices and

D is a diagonal matrix with singular values. The canonical factors

can be obtained as wi
x ¼ C�

1
2

xxui and wi
y ¼ C�

1
2

yyvi. It is instructive to

compare CCA to the full-rank solution of standard multivariate

linear regression (MLR), where the regression parameters W are

given by the Wiener filter: W ¼ E½xxT ��1E½xyT � ¼ C�1
xxCxy. In

contrast to MLR, the CCA solution is computed using only the

leading singular vectors of the cross-correlation matrix of pre-

whitened variables x;y which are made explicit by SVD. Thus,

CCA can be used to compute a (reduced) rank-n regression

parameter matrix by using only n < k factor pairs.
Thereby, in contrast to standard multivariate regression, CCA

takes advantage of the correlations between the response variables

to improve predictive accuracy [3]. Note also that, in contrast to the

Wiener filter, the additional prewhitening of y makes CCA

invariant with regard to scaling of x;y.
Analogously to standard multivariate regression, CCA can also

directly be formulated as a linear least squares problem. An

iterative (online) CCA algorithm based on the such a formulation is

described in [2].

3 A FAST AAM SEARCH BASED ON CCA

In the standard AAM search algorithm, a linear function (see (3)) is

used to map texture residuals (difference images) rðpÞ 2 IRp to

corresponding parameter displacements �p 2 IRq (approximating

rðpÞ by a first-order Taylor series expansion). In our algorithm, we

extract linear features of rðpÞ by CCA of rðpÞ and p.

3.1 CCA-AAM Training

During training, instead of computing R by numeric differ-
entiation, we create training data for CCA. More precisely, the
training data is generated as follows: Given the original
training images that were used to build the AAM, for each
training image, we generate a set of synthetic images by
perturbing the optimal AAM match, i.e., r popt þ �p

� �
, where the

optimum parameter vector popt is obtained by mapping the
training image texture and shape into the model eigenspace
and the components of �p are randomly drawn from uniform
distributions from -1 to +1 standard deviation. An overall
number of m residual vectors with m corresponding parameter
displacement vectors is obtained. We denote the set of random
displacement vectors by P 2 IRq�m and the set of corresponding
texture residuals by G 2 IRp�m.

Applying CCA to these two data sets yields empirical canonical

factors pairs Wg ¼ ðw1
g; . . . ;wk�

g Þ and Wp ¼ ðw1
p; . . . ;wk�

p Þ, respec-

tively, where i ¼ 1k� � k.
These are the (derived) linear combinations which are best

predicted by r. By discarding directions with low canonical

correlation, i.e., those variates which are poorly predicted by r,

we expect to improve overall predictive accuracy and robust-

ness against noise [3] (see also Section 1). The optimal number

of factors k� is estimated from a separate validation set. After

employing CCA, we perform regression on the leading

canonical projections Gproj ¼WT
g G and P. These projections

are then used to compute the p� k� transformation matrix

l ¼ PG
y
proj, where G

y
proj ¼ ðGT

projGprojÞ�1GT
proj.

3.2 CCA-AAM Search

During search, a new displacement prediction has to be obtained at
each iteration. Instead of using (3), the prediction �ppredicted can be
obtained as �ppredicted ¼ lrproj, where rproj ¼WT

g rcurrent.
As Rcca ¼ lWT

g can be precomputed during training, the final
formulation of the prediction function is

�ppredictedðrcurrentÞ ¼ Rccarcurrent; ð4Þ

allowing for an AAM search utilizing the correlations between
parameter displacement and image difference as captured by
CCA. The computation of these predictions is as fast as for the
standard approach, therefore, one step of an iteration of CCA
search is as fast as one step using (3). For practical application,
incremental PCA can be used to lower memory requirements. An
appealing side-effect is that overfitting is avoided, which would
otherwise be accomplished using regularization techniques for
CCA [20]. The outlined approach can also be applied to other kinds
of image features (e.g., gradient images or edges).

4 EXPERIMENTS

4.1 Setup

Experiments were conducted on 36 face images [22] and 36 meta-
carpal bone images manually annotated by a medical expert (Fig. 1).
The algorithm was evaluated using 4-fold cross validation. Follow-
ing the standard AAM training scheme, a set of difference images
and corresponding parameter displacements were obtained by
randomly perturbing the AAM modes in the interval -1 to +1
standard deviation. While the calculation of R (cf. (3)) by numerical
differentiation requires separate variation of each AAM mode,
CCA-AAM training allows simultaneous variation of all modes.

To compare search performance in both cases, AAM search was
performed on the test data using varying lengths of ssteps. Scaling
factors available during search are chosen by using the first
y elements of ssteps. As a performance measure, we use the total
number of steps accumulated over all iterations (cf. Section 2.2).

Searches were initialized using equal initialization (randomly
generated by translations of up to 10 pixels and mean shape and
texture) for both approaches. The data for each of the result bars
plotted was provided by 180 search results.

4.2 Faster Training

CCA-AAM training needs fewer synthetic difference images.
Using 24 modes for face data and 18 for bone data, 6,480 synthetic
face images and 4,860 synthetic bone images were generated for
standard training. For CCA training, no improvement could be
observed when using more than 200 synthetic difference images.
Thus, although the computation of the CCA is expensive, training
is still considerably faster than standard training. For a Matlab
implementation on a PowerMac G5 1.8GHz, a speed-up factor of
4.9 and 3.5 was achieved.

4.3 Faster Convergence with Equal Accuracy

In Fig. 2, the mean landmark error (point to point distance) over
the corresponding number of overall search steps until conver-
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Fig. 1. Types of data used for evaluation. (a) Face images and (b) hand x-rays of

metacarpal bones.



gence is depicted. Error bars are one standard deviation. The eight
results plotted correspond to y ranging from 1 to 8 as stated above.

In contrast to full rank of 24 (faces) and 18 (bones), CCA
employed ranks of 10 and 9, respectively. It can be observed that
the CCA convergence speed with almost equal final accuracy is
considerably better than the one of the standard approach. The
time for an iteration is dominated by the warping in each of the
texture comparison steps. The calculation of the parameter
prediction ((4) or (3), respectively) amounts for only 9 percent of
the calculation time for a single step. We thus utilize the necessary
number of steps as the distinctive measure of convergence speed.

Already with ssteps ¼ h1i, i.e., no scaling of �p, the CCA
approach yields its best result in 3.07 steps for the faces data and
3.16 steps for the metacarpals, respectively. The standard approach
needs at least ssteps ¼ h1; 0:5i to perform equally well, requiring
12.23 and 12.11 steps. The CCA approach is thus 3.98 and 3.83
times faster. The mean texture errors in Fig. 3 show a similar
picture. Again, the CCA approach yields its best results already at
y ¼ 1. The standard approach is dependent on the availability of
further scaling factors (ssteps ¼ h1; 0:5i) to equal this performance.
The results are summarized in Table 1.

4.4 Influence of Rank Reduction

In a separate experiment, the influence of rank reduction by CCA
was investigated. In Fig. 4, the dependency of the mean landmark
errors after search convergence is depicted for rank k set to
1; 4; . . . ; 24 for the face data set. It can be seen that, for k ¼ 7, the

search yields the lowest landmark errors, and, for k ¼ 13, the
lowest texture errors. The number of necessary steps is lower than
for full rank in both cases.

5 CONCLUSION

CCA-AAMs introduce a search algorithm based on canonical
correlation analysis (CCA). CCA efficiently models the dependencies
between image residuals and parameter correction. Taking
advantage of the correlations between these two signal spaces,
CCA makes sensible rank reduction possible. It accounts for noise
in the training data and thereby yields significant improvements of
the AAM search performance in comparison to the standard search
approach. After computing CCA, linear regression is performed on
a small number of linear features which leads to a more accurate
parameter prediction during search, eliminating the need for the
expensive variable step size search scheme employed in the
standard approach.

Empirical evaluation on two data sets shows that the CCA-AAM
search approach is up to four times faster than the standard
approach. As fewer training samples are needed, training is up to
five times faster. Our approach can be adopted in most of the existing
extensions of the original AAM search approach based on linear
regression.

Future research will focus on the use of nonlinear CCA (Kernel

CCA) and the application of CCA to obtain more compact and

more descriptive active appearance models.
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Fig. 2. Comparison of landmark errors. The eight bars correspond to y, i.e., the length of ssteps, ranging from 1 to 8, from left to right. Note how the CCA yields better

(bones) or equal (faces) results faster (at � 3 steps) than the standard approach (at � 12 steps). (a) Faces and (b) metacarpal bones.

Fig. 3. Comparison of texture errors. The eight bars correspond to y (length of ssteps), ranging from 1 to 8, from left to right. Again, the CCA approach yields its best results

already at y ¼ 1 at � 3 steps while the standard approach needs � 12 steps for equal error levels. (a) Faces and (b) metacarpal bones.
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TABLE 1
Result Summary

Mean landmark and texture errors and the corresponding number of search steps
for both data sets.

Fig. 4. Influence of CCA regression rank. Mean landmark error against the number
of steps for different choices of k (number of factors for CCA regression) for the
face data set.
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