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Mumford and Shah functional: VLSI analysis

and implementation

Maurizio Martina, Member IEEE, Guido Masera, Member IEEE

Abstract

This paper describes the analysis of the Mumford and Shah functional from the implementation

point of view. Our goal is to show results in terms of complexity for real time applications, such as

motion estimation based on segmentation techniques, of the Mumford and Shah functional. Moreover

the sensitivity to finite precision representation is addressed, a fast VLSI architecture is described and

results obtained for its complete implementation on a 0.13 µm standard cells technology are presented.

Index Terms

Image Segmentation, Mumford and Shah, Performance Evaluation, VLSI implementation

I. INTRODUCTION

Recently the use of the Mumford and Shah functional [1] has been investigated in different

applications [2], [3], [4]. In [4] a novel interpretation of the optic flow has led to an extension

of the Mumford and Shah functional to motion segmentation. This approach named Motion

Competition is intended to join motion estimation and segmentation to derive a variational

approach for the segmentation of the image domain into regions of homogeneous motion.

In terms of implementation several iterative algorithms can be found in the literature, e.g. [3],

[5], [6], [7], [8], [9] and [10]. However the computational complexity behind the Mumford and

Shah model has not been stressed yet. The multigrid approach is an interesting technique to

speed-up iterative methods for solving elliptic problems: the basic idea is to find first a solution

to the problem, solving it on a coarse mesh and then to refine the original problem on a fine
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mesh. This approach has been successfully employed for the Mumford and Shah functional

in [7] proving noteworthy speed-up in terms of iterations reduction. Its main drawback is the

amount of memory required to store coarse solutions that will be employed during the solution

of finer grids. Moreover to move from a coarser grid to a finer one and vice-versa, restriction

and expansion operators are required.

Other solutions are based on the Steepest Descent (e.g. [3] and [9]) to reduce the number

of iterations. Besides the Preconditioned Conjugate Gradient (PCG) method is a very effective

technique for solving sparse linear equations systems as Ax = b. It is based on preconditioning

the so called A-orthogonality that improves the converge to the solution employing A-orthogonal

search directions d(i) (dT
(i)Ad(j) = 0). Its use to speed-up the Mumford and Shah functional

implementation has been addressed [10], showing interesting results. The main drawback of

the PCG method is its sensitivity to finite precision representation. In fact working with high

precision floating point tools (e.g Matlab) this phenomenon is very limited. On the contrary

we are interested in fixed point implementations that could tackle PCG method effectiveness.

A simple numerical iterative solution based on non-linear Gauss-Seidel method can be em-

ployed [5] to reduce the number of iterations: the computational complexity is still proportional

to the number of iterations k and to the image size r× c, where r is the number of rows and c

is the number of columns. Running a C model on a 3.06 GHz Intel Xeon with 2 GB of RAM it

can be observed that for 255 gray levels images, 270-280 ms are required on a QCIF (176 × 144

pixels) frame and 1120-1130 ms on a CIF (352 × 288 pixels) frame. The power consumption

[11], with a supply voltage of 1.5 V is estimated in 60-70W that means more than 30 µJ per

sample per iteration: even with a modern processor, the computational complexity to perform

real time segmentation is too inadequate for a general purpose CPU.

The contribution of this work is twofold: first to focus on the computational complexity

of solving the Mumford and Shah functional, giving results on execution time and on finite

precision representation effects. Second to propose a fast hardware implementation suitable for

new motion estimation techniques, as Motion Competition, with high frame rate video sequences.

The proposed architecture key points are: 1) a fully parallel data–path with two hardware dividers;

2) an improved diagonal scanning order to effectively feed the data–path pipeline. The complete

VLSI flow performed for the proposed architecture includes the generation of actual post place

and route figures in terms of complexity, area, clock frequency and power consumption.
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II. THEORETICAL FRAMEWORK

The Mumford and Shah approach is based on a mathematical model that considers the

segmentation problem as a partition of the image domain Ω ⊂ R2 in open subsets Ωi. Given an

image, whose intensity function is defined as g : Ω → R, the Mumford and Shah functional [1]

aims to find a smooth approximation u of g in each sub-domain Ωi:

E(u,K) =

∫

Ω

(u− g)2dx + α

∫

Ω\K
|∇u|2 dx + β ‖ K ‖ (1)

where K is the set of Ωi boundaries and ‖ K ‖ denotes K set length, α is a parameter related

to the scale [9], β is a parameter related to the contrast [9], x = (x1, x2), dx is the Lebesgue

measure in the plane and |∇u|2 =
∣∣∣ ∂u
∂x1

+ ∂u
∂x2

∣∣∣
2

. In [12] Ambrosio and Tortorelli demonstrated

that the functional described in equation 1 can be approximated, in the Γ-convergence sense by

Eε(u, z) =

∫

Ω

(u− g)2 + αz2 |∇u|2 + βΦ(ε, z)dx (2)

with Φ(ε, z) = ε |∇z|2 + (1−z)2

4ε
, where the function z yields an approximate description of the

set of curves K and |∇z|2 =
∣∣∣ ∂z
∂x1

+ ∂z
∂x2

∣∣∣
2

. Thus the solution obtained minimizing Eε(u, z) tends

to the solution obtained minimizing E(u,K) as ε → 0. As equation 2 is an elliptic problem its

minimizers satisfy the Euler-Lagrange differential equation both for u and z. So that we need

to: 1) develop u and z Euler-Lagrange equations; 2) discretize g, u and z on a uniform grid of

N×N nodes with mesh size h - thus they become arrays gi,j, ui,j, zi,j . Together they correspond

to a nonlinear system of equations for the 2N2 unknown values ui,j, zi,j . Employing an iterative

algorithm as the nonlinear Gauss-Seidel method [5] we obtain

ui,j =
ũi,j/h

2 + gi,j/α
1/α + z̃i,j/h

2 , zi,j =
4ẑi,j + h2/ε2

16 + ûi,j + h2/ε2 (3)

where ũi,j = z2
i+1,jui+1,j + z2

i−1,jui−1,j + z2
i,j+1ui,j+1 + z2

i,j−1ui,j−1, z̃i,j = z2
i+1,j + z2

i−1,j + z2
i,j+1 +

z2
i,j−1, ẑi,j = zi+1,j + zi−1,j + zi,j+1 + zi,j−1 and ûi,j = 4α |∇u|2i,j /βε. From equation 3 it can be

observed that noteworthy computational complexity is required to compute ui,j and zi,j . For a

complete formal derivation of equation 3 refer to [5].

III. PARAMETERS, ITERATIONS AND FINITE PRECISION EFFECTS

A. Parameters range choice

Obtaining optimal values for α, β and ε is not straightforward, however different approaches

can be found in the literature [3], [9], [13] and this selection task is not a goal of this work.
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Nevertheless selecting α, β and ε as powers of 2 would lead to strongly reduce the computational

complexity [14]. In this paper we will discuss the ranges suggested in [14], namely ε ∈
[1/32, 1/2], β ∈ [1/256, 1/2] and α ∈ [1, 64] with the image values in the range [0, 1]. Figure

1 shows the results obtained varying α as a power of 2 in [1, 64] with h = 1, ε = 1/16 and

β = 1/256 on the image “foreman”: a wide spectrum of images from smoother to sharper are

covered. Figure 2 shows the mean error obtained varying ε and β as powers of 2 in the ranges

[1/32, 1/2] and [1/256, 1/2] respectively, with α = 8 for the same image: it can be noticed

that the error is rather limited; moreover a similar behavior has been observed for several other

images and parameters choices, thus the performed analysis shows that the choice of α, β and

ε as powers of 2 results in acceptable approximations of the Mumford and Shah functional.

The solution of equations 2 with the non linear Gauss-Seidel method implies certain initial

conditions (i.e. the values at iteration 0), that can be chosen, according to [5], as u
(0)
i,j = gi,j

and z
(0)
i,j = 1. Moreover a proper number of iterations is required to obtain good results. From

the direct implementation of equation 3 on some QCIF and CIF images, with h = 1, α = 8,

β = 1/256 and ε = 1/16, we can observe that: after approximately 20 iterations the increase

of accuracy on u and z (from the kth to the k + 1th iteration) tends to saturate in terms of

Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). In figure 3 this behavior

is shown for different images (“Foreman”, “Mobile”, “Tempete” and “Paris”) together with the

mean value (dashed curves). The solid curves, representing the PSNR obtained from the mean

MSE, better show the saturation phenomenon.

In the following we will fix the Mumford and Shah functional parameters as h = 1, α = 8,

β = 1/256, ε = 1/16 and the maximum number of iterations to 20: with this set of values we

will concentrate on the Mumford and Shah functional (equation 3) sensitivity to finite precision

effects.

B. Finite precision effects

Since gi,j , ui,j and zi,j are in the range [0, 1], and α ≥ 1, the following inequalities hold true

for the numerator (Nu) and the denominator (Du) of ui,j in equation 3: 0 ≤ Nu ≤ 4+1/α and

1/α ≤ Du ≤ 4+1/α, so that, 3 bits are needed for the integer part of Nu and Du. Analogously

we have: 1/ε2 ≤ Nz ≤ 16 + 1/ε2 and 16 + 1/ε2 ≤ Dz ≤ 16 + 2α/βε, where Nz and Dz are

the numerator and the denominator of zi,j in equation 3. Since α ≥ 1, 0 ≤ β ≤ 1 and 0 ≤ ε ≤ 1
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(a) u with α = 1 (b) u with α = 64 (c) z with α = 1

(d) z with α = 2 (e) z with α = 4 (f) z with α = 8

(g) z with α = 16 (h) u with α = 32 (j) z with α = 64

Fig. 1. Mumford and Shah results on the QCIF image “Foreman” with α ∈ [1, 64]
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(b) β and ε error analysis on z

Fig. 2. Error analysis on β and ε
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Fig. 3. u and z accuracy increase and the mean PSNR Vs number of iterations for the QCIF image “Foreman”, the CIF images

“Mobile”, “Tempete”,“Paris”

the number of bits for correctly representing the integer part of Nz and Dz would be rather

higher than the number obtained for the integer part of Nu and Du. In particular with the worst

contributions of α, β and ε, around 20 bits for the integer part of Dz are needed. To reduce this

number we rewrite equation 3 (zi,j) with h = 1 as

zi,j =
1
α

+ 4 ε2

α
ẑi,j

1
α

+ 16 ε2

α
+ 4 ε

β
|∇u|2i,j

(4)

Now we have: 1/α ≤ Nz ≤ 16ε2/α + 1/α and 1/α + 16ε2/α ≤ Dz ≤ 1/α + 16ε2/α + 2ε/β.

With the range considered for α, β and ε, Nz and Dz need at least 3 and 9 bits respectively for

the integer part. Although different choices of parameters could also be of interest, in the rest

of the paper analysis and synthesis results will be limited to the case h = 1, α = 8, β = 1/256

and ε = 1/16: the Matlab implementation of the Mumford and Shah functional in this case

will be assumed as the reference model and used as a comparison term while investigating the

finite precision effects of ui,j and zi,j calculation.

In figure 4 (a, b) mean values for MSE and PSNR versus the number of bits devoted to

the fractional part representation (m) over different images are shown. After 16 bits for the

fractional part the difference between the floating point reference model and the finite precision

implementation is negligible. Moreover after m = 18− 20 bits, the values for the PSNR might

not be completely reliable due to the joint effect of finite precision and algorithm iterations.

August 4, 2005 DRAFT



6

8 10 12 14 16 18 20 22
0 0

0.01
1

0.02

2

0.03

3

4

0.04

5

0.05

6

0.06

7

0.07

x 10
−4

0.08

0.09

Z

number of bit

UM
S

E
 U

M
S

E
 Z

(a) u and z MSE Vs m

8 10 12 14 16 18 20 22

40

70

60

80

80

90

100

100

110

120

120

140

130

160

180

140

150

160

170

180

U

number of bit

Z

P
S

N
R

 [d
B

] U

P
S

N
R

 [d
B

] Z

(b) u and z PSNR Vs m

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−5

0

0.005

0.01

0.015

0.02

0.025

0.03

u
floating−point

−u
fixed−point

pd
f

14 bits
16 bits
18 bits

mean = 1.6169e−08
var = 2.8872e−12

mean = −2.9939e−08
var = 2.0795e−011

mean = 1.3202e−07
var = 3.3002e−10

(c) u error distribution with m = 14, 16, 18

−4 −3 −2 −1 0 1 2 3 4

x 10
−4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

z
floating−point

−z
fixed−point

pd
f

14 bits
16 bits
18 bits

mean = −5.1001e−08
var = 1.476e−10

mean = −1.0302e−07
var = 4.1e−10

mean = −2.433e−07
var = 6.5702e−09

(d) z error distribution with m = 14, 16, 18

Fig. 4. mean u and z difference between the floating point reference model and finite precision C model Vs number of bits

for the fractional part (m) (a), (b). Error distribution on u and z with m = 14, 16, 18 (c), (d) for the QCIF image “foreman”

Furthermore in figure 4 (c, d) the error distributions on u and z for m = 14, 16, 18 are shown.

These results have been obtained calculating the difference between the floating point results and

the fixed point ones, and represent the error distribution (pdf). The frame used is “foreman” and

the parameters values are h = 1, α = 8, β = 1/256 and ε = 1/16. It is worth noticing that similar

results have been obtained for different choices of parameter values in the aforementioned ranges.

From the results shown in figure 4 we can conclude that a hardware dedicated implementation,

employing m ≥ 16 would be able to achieve very good performance.
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(b) Data–path block scheme

Fig. 5. Proposed architecture block scheme (a) and detail of the the data–path (b)

IV. IMPLEMENTATION ISSUES

In [14] software implementations on modern microprocessors of the Mumford and Shah func-

tional are addressed, showing that high frame rate sequences cannot be processed in real–time;

in fact to perform 20 iterations on a QCIF frame 4 s and 12.5 s on the high performance Texas

Instruments TMS320C6711 and on the StrongARM SA-1100 respectively. Thus in a system

where real time processing is needed, as the video scenario, a dedicated VLSI implementation

would be required. From the analysis performed in section III it can be observed that it is difficult

to fix the values of the Mumford and Shah functional parameters, the number of iterations and

the number of bits m devoted to the representation of the fractional part of the data. To obtain

a highly reusable architecture a parametric VHDL model has been developed, focusing on high

performance in terms of number of sustained frame, while granting high quality of the resulting

u and z.

In the literature the implementation of the Gauss-Seidel method for the solution of equations

systems has already been addressed. However solutions proposed in the literature can not be

straightforwardly adapted to the case of the Mumford and Shah functional. In fact many works

describe the implementation of the Gauss-Seidel method with particular emphasis on serial and

shared memory parallel computing [15], [16] or on systolic solutions [17]. As pointed out in [18]

there is a strong data dependency between the pixels produced with the Gauss-Seidel algorithm.

In the following we will refer to the neighbors of the considered pixel as north, south, east and
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Fig. 6. Pixel scanning order

west: xi−1,j = xN , xi+1,j = xS , xi,j+1 = xE and xi,j−1 = xW where x can be either u or z.

The proposed architecture, depicted in figure 5 (a), is composed by: a) three buffers to store

respectively the original image g, the approximation u and the edges z; b) two address generation

units devoted to manage the correct scanning order to elaborate the samples; c) a complex data–

path to implement equations 3 and 4; d) a simple memory interface unit to load all the data

required to perform the operations described by equations 3 and 4.

A. Address unit

As it can be observed from equations 3 and 4 ui,j (and zi,j) depends on north, south, east

and west values. Thus scanning the image by rows and columns (or vice-versa by columns and

rows) to evaluate the new value of ui,j+1 the computation of ui,j and zi,j must be completed.

In fact for ui,j+1 the pixels ui,j and zi,j act as uW and zW respectively. Instead of scanning the

image row-wise and column-wise (or vice-versa) a “diagonal” scanning order can be employed

(figure 6 (a)): a high latency for generating the first values is required, while for the following

pixels the latency decreases as the pipeline is filled. Moreover the algorithm iterative nature can

be exploited to pipeline also on the iterations [18]. This improved diagonal scanning order is

shown in figure 6 (b) where i and j represent rows and columns directions and k represents

the iteration step; the number associated to each pixel represents the order used to process the
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Fig. 7. Address generation unit

different values. This scanning order leads to the generation of the addresses depicted in figure

7 on the left; they can be generated resorting to some counters and small control logic, as

depicted in figure 7 on the right, where start− cnt and stop− cnt are up-counters to generate

rows (i) and columns (j) current index limits. start− vcnt and stop− vcnt are down-counters

to generate new index limits taking into account both the diagonal order and the algorithm

iterations. value− cnt are an up-counter (i) for row indices generation and a down-counter (j)

for columns indices generation. The finite state machine reads counters terminal count (tc) signals

and generates start and enable (en) signals also checking rows and columns bounds. Finally

iteration counter is a down-counter devoted to perform the number of iterations programmed.

This architecture has been synthesized with Synopsys design compiler, placed and routed

with Cadence encounter on a 0.13 µm standard cell technology both for QCIF and CIF

frames. The address generation unit for QCIF frames can run at 550 MHz requiring an area of

9170 µm2, whereas for CIF frames can run at 510 MHz requiring an area of 10655 µm2.

B. Data–path

The proposed architecture implements equations 3 and 4 respectively to generate both ui,j and

zi,j . As it can be inferred from equations 3 and 4, the architecture bottleneck is the division. In

the case of the proposed architecture the division algorithm needs to be unrolled and pipelined

in order to obtain a parallel divider able to sustain high throughput. Moreover, since ui,j and

zi,j are in [0, 1] the numerator will never be greater than the denominator, thus we do not need

to introduce operands normalization, as in most SRT dividers implementations [19].

As depicted in figure 5 (b), to perform these operations, the data–path can process at the same

time uN , uS , uW , uE , zN , zS , zW , zE and gi,j . As described by equations 3 and 4 zN , zS , zE
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and zW can be employed to evaluate the square values required by ũi,j and ui,j denominator;

moreover they are needed to calculate ẑi,j . Employing four multipliers the four square values

can be calculated at the same time (top-left in figure 5 (b)), meanwhile the four z values are

added together to obtain ẑi,j (top-right in figure 5 (b) ). During the same clock cycle uN , uS ,

uE and uW are employed to evaluate the first part of the discrete gradient |∇u|2i,j and are

stored into four registers. Since the discrete gradient is squared and multiplied by four it can

be computed simply adding together the squared differences, in fact the following expression

holds true 4 |∇u|2i,j = (uS −uN)2 +(uE −uW )2. The discrete gradient calculation has been split

into three parts: 1) subtractions uSN = uS − uN and uEW = uE − uW , 2) squares uy = u2
SN

and ux = u2
EW , 3) addition uy + ux, where each part is implemented in a separate clock cycle

(top-center in figure 5 (b) ). While the discrete gradient second part is evaluated, the squared z

values are added together to obtain ui,j denominator and multiplied by the proper u input (uN ,

uS , uE or uW ) to compute the partial values required by ũi,j . Moreover in the same clock cycle

ẑi,j is shifted by 4ε2/α (see figure 5 (b) in the middle).

During the following clock cycle the evaluation of ũi,j is completed and gi,j (shifted by α) is

added to generate ui,j numerator. In the same clock cycle the computation of ui,j denominator is

completed adding to z squared values the term 1/α. Moreover zi,j numerator and denominator

are calculated: the former adding to 4ε2/αẑ the term 1/α, the latter shifting the discrete gradient

by ε/β and adding 1/α + 16ε2/β. Finally two dividers are employed to compute in parallel ui,j

and zi,j starting from their numerators and denominators (bottom part of figure 5 (b)).

From the results shown in figure 4 it is worth noticing that probably more than 12 bits

will be employed for the representation of data fractional part. Since ui,j and zi,j are in [0, 1],

the data–path has been implemented (synthesized, placed and routed) varying the data width

representation (m) from 14 to 24 bits. Besides considering the ranges detailed in section III for

α, β and ε, internal data need up to 9 bits for the integer part representation. Results detailed

in figure 8 show how the frequency achievable by the data–path changes varying the number of

bits to represent the output results. From the results reported in figure 8 it can be observed that

to make the data–path able to process a new sample at each clock cycle, the address generation

unit needs to be connected to a fast memory interface block.
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Fig. 8. Proposed data–path: area Vs number of bit per output results (m)

C. Memory interface block

It is reasonable to suppose that u, z and g values are stored (at least partially) in three buffers.

The memory interface block is a simple finite state machine that starting from the matrix row

address (i) and the matrix column address (j) generated by the address generation unit, is able

to load uN , uS , uE , uW , zN , zS , zE , zW and gi,j from the buffers and to feed the data–path with

these values. Exploiting the lower frequency achievable by the data–path, the memory interface

block behaves as a sort of serial to parallel component. In figure 9 (a) a block scheme of the

memory interface block is shown. The finite state machine (FSM) is devoted to receive the

row and column indices, i and j, calculated by the address generation unit. Starting from these

values the FSM selects to add 1, 0 or -1 to in order to implement i + 1, i or i− 1 (analogously

with j). The result obtained on the column index j ought to be multiplied by the number of

columns (#COLS) and added with the result obtained on the row index i; when an address

is correctly generated it is validated by the FSM. Given an address on the proper address bus

(g abus, u abus and z abus), the data buffers (g, u and z) latch the data required by the memory

interface block on the data bus (g dbus, u dbus and z dbus); finally the FSM loads each value

into its register (bottom-right in figure 9 (a)). The memory interface block has been synthesized,

placed and routed on a 0.13 µm standard cell technology for QCIF and CIF frames varying m
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Fig. 9. Memory interface block scheme and area Vs data width for QCIF and CIF frames

Since the critical path (for this implementation) is in the address generation (j ×#COLS + i),

the maximum achievable clock frequency depends only on the frame size and not on the data

width. In fact the maximum achievable frequency is about 215 MHz and 190 MHz for QCIF and

CIF frames respectively. Experimental results show that the amount of gates required increases

as the data width grows (see figure 9 (b)). Finally, since the data–path produces two data per

clock cycle, namely ui,j and zi,j , they can be sent to the proper buffer resorting to a further

address generator a multiplier and an adder.

V. PROPOSED ARCHITECTURE PERFORMANCE

In the following we will focus on the case of m = 16 and one bit per clock cycle, and we will

discuss the global architecture performance. Simulations performed on the proposed architecture

VHDL description show that the data–path needs 20 clock cycles to evaluate a new couple of

results (u and z). Due to the improved diagonal scanning the data–path latency decreases as
∑Lat0

i=1 i. In fact after the 20th column is processed, the simulation shows that the architecture

produces a couple of new values (ui,j , zi,j) at each clock cycle. Considering post place and

route frequency and that the memory interface should run faster than the data–path to fetch the

required data, the proposed architecture can sustain more than 25 QCIF frames per second and

about 15 CIF frames per second. In figure 10 (c) the performance achievable with the proposed
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Fig. 10. Post place and route architectures for QCIF and CIF frames (a) and (b). Performance comparison with [14] and [6]

architecture are summarized and compared with the run time of the fixed point C model [20]

described in [14] and of a competitive software implementation [6] within the Megawave package

(Megawave 2.31a) [21] running on a Linux Mandrake 10 - Pentium IV at 1.6 GHz with 512 MB

of RAM. Post place and route of the whole architecture shows that 4.72 mm2 and 4.73 mm2

are required for QCIF and CIF frames respectively (see figure 10 (a, b)).

Thanks to the parametric VHDL description the two implementations have been achieved

simply changing some parameters in the VHDL source and re-performing the design flow. In

figure 10 (a, b) it can be observed that: since the QCIF design is slightly smaller than the CIF

one, also the QCIF chip is slightly less dense than the CIF one. As far as the power consumption

is concerned post place and route analysis shows that about 337 mW are required for the QCIF

architecture and 395 mW for the CIF architecture.

VI. CONCLUSIONS

In this paper the Mumford and Shah functional has been investigated from the implementation

point of view. A detailed study of finite precision representation effect has been carried out, a

fast VLSI architecture has been described and results obtained through the implementation on a

0.13 µm standard cells technology have been presented. Finally the authors would like to thank

the reviewers for their suggestions that have actually improved the quality of this work.
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[7] D. Cremers, F. Tishhäuser, J. Weickert, and C. Shnörr, “Diffusion snakes: introducing statistical shape knowledge into the

Mumford and Shah functional,” International Journal of Computer Vision, vol. 50, no. 3, pp. 295–313, 2002.

[8] T. P. Vogl, J. W. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Accelerating the convergence of the back-propagation

method,” Biological Cybrnetics, vol. 59, pp. 257–263, 1988.

[9] W. Vanzella, F. A. Pellegrino, and V. Torre, “Self-adaptive regularization,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 26, no. 6, pp. 804–809, jun. 2004.

[10] F. Gibou, D. Levy, C. Cardenas, P. Liu, and A. Boyer, “Partial differential equation based segmentation for radiotherapy

treatment planning,” Mathematical Biosciences and Engineering, vol. 2, pp. 209–226, 2005.

[11] Intel, “http://www.intel.com/design/xeon/datashts/252135.htm.”

[12] L. Ambrosio and V. M. Tortorelli, “Approximation of functionals depending on jumps by elliptic functionals via Γ-

convergence,” Comm. Pure Appl. Math., vol. 43, pp. 999–1036, 1990.

[13] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. on Image Processing, vol. 10, no. 2, pp. 266–277,

feb. 2001.

[14] M. Martina and G. Masera, “Mumford and Shah functional: Finite precision analysis and software implementation,” in

IEEE International Symposium on Signal Processing and Information Technology, 2004.

[15] M. F. Adams, “A distributed memory unstructured Gauss-Seidel algorithm for multigrid smoothers,” in ACM/IEEE

Proceedings of SC2001: High Performance Networking and Computing, 2001, pp. 1–4.

[16] M. M. Strout, L. Carter, J. Ferrante, J. Freeman, and B. Kreaseck, “Combinig performance aspects of irregular Gauss-Seidel

via sparse tiling,” in 15th Workshop on Languages and Compilers for Parallel Computing, 2002, pp. 1–4.

[17] F. Z. Hadjam, A. Rahmoun, and M. Benmohammed, “On designing a systolic network for the resolution of linear systems

using the Gauss-Seidel method,” in IEEE International Conference on Computer Systems and Applications, 2001, pp.

283–286.

[18] J. A. Yang and Y. Choo, “Formal derivation of an efficient parallel 2-D Gauss-Siedel method,” in Proceedings of the 6th

International Parallel Processing Symposium, 1992, pp. 204–207.

[19] J. E. Robertson, “A new class of digital division methods,” Trans. on Electronic Computers, vol. 7, pp. 218–222, 1958.

[20] M. Martina, “Mumford and Shah C model,” downloadable at www.vlsilab.polito.it/∼martina.

[21] MegaWave2, “available at: http://www.cmla.ens-cachan.fr/cmla/megawave/index.html.”

August 4, 2005 DRAFT


