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Discriminant Subspace Analysis:
A Fukunaga-Koontz Approach
Sheng Zhang, Member, IEEE, and Terence Sim, Member, IEEE

Abstract—The Fisher Linear Discriminant (FLD) is commonly used in pattern recognition. It finds a linear subspace that maximally

separates class patterns according to the Fisher Criterion. Several methods of computing the FLD have been proposed in the literature,

most of which require the calculation of the so-called scatter matrices. In this paper, we bring a fresh perspective to FLD via the Fukunaga-

Koontz Transform (FKT). We do this by decomposing the whole data space into four subspaces with different discriminabilities, as

measured by eigenvalue ratios. By connecting the eigenvalue ratio with the generalized eigenvalue, we show where the Fisher Criterion is

maximally satisfied. We prove the relationship between FLD and FKT analytically and propose a unified framework to understanding

some existing work. Furthermore, we extend our theory to the Multiple Discriminant Analysis (MDA). This is done by transforming the data

into intraclass and extraclass spaces, followed by maximizing the Bhattacharyya distance. Based on our FKT analysis, we identify the

discriminant subspaces of MDA/FKT and propose an efficient algorithm, which works even when the scatter matrices are singular or too

large to be formed. Our method is general and may be applied to different pattern recognition problems. We validate our method by

experimenting on synthetic and real data.

Index Terms—Discriminant subspace analysis, Fukunaga-Koontz transform, pattern classification.

Ç

1 INTRODUCTION

IN recent years, discriminant subspace analysis has been
extensively studied in computer vision and pattern

recognition. It has been widely used for feature extraction
and dimensionality reduction in face recognition [2], [3],
[15] and text classification [4]. One popular method is the
Fisher Linear Discriminant (FLD), also known as the Linear
Discriminant Analysis (LDA) [5], [7]. It tries to find an
optimal subspace such that the separability of two classes is
maximized. This is achieved by minimizing the within-class
distance and maximizing the between-class distance simul-
taneously. To be more specific, in terms of the between-class
scatter matrix Sb and the within-class scatter matrix Sw, the
Fisher Criterion can be written as

JF ð�Þ ¼ trace ð�TSw�Þ�1ð�>Sb�Þ
n o

; ð1Þ

where � is a linear transformation matrix. By maximizing the
criterion JF , FLD finds the subspaces in which the classes are
most linearly separable. The solution [7] that maximizes JF is
a set of the first eigenvectors f�ig that must satisfy

Sb� ¼ �Sw�: ð2Þ

This is called the generalized eigenvalue problem [5], [7]. The
discriminant subspace is spanned by the generalized eigen-
vectors. The discriminability of each eigenvector is measured
by the corresponding generalized eigenvalue, for example,

the most discriminant subspace corresponds to the largest
generalized eigenvalue. Equation (2) can be solved by matrix
inversion and eigendecomposition, namely, by applying
eigendecomposition on S�1

w Sb. Unfortunately, for many
applications with high-dimensional data and few training
samples, for example, face recognition, the scatter matrix Sw
is singular because, generally, the dimension of the data is
larger than the number of samples. This is known as the
undersampled or small sample size problem [7], [5].

Until now, many methods have been proposed to
circumvent the requirement of nonsingularity of Sw, such
as Fisherface [2], Discriminant Common Vectors [3], Dual
Space [19], LDA/GSVD [9], and LDA/QR [20]. In [2],
Fisherface first applies PCA [13], [18] to reduce dimension
such that Sw is nonsingular, then followed by LDA. The
LDA/GSVD algorithm [9] avoids the inversion of Sw by the
simultaneous diagonalization via GSVD. In [20], Ye and Li
proposed a two-stage LDA method which applies QR
decomposition on a small matrix, followed by LDA.
Moreover, Ye and Li [20] also showed that both Fisherface
and LDA/QR are the approximations of LDA/GSVD.

However, these methods do not directly relate to the
generalized eigenvalue �, the essential measure of discri-
minability. In fact, as we will show in Section 4, existing
methods result in a suboptimum of the Fisher Criterion
because important discriminant information is discarded to
make Sw invertible. In our previous work [22], we proposed
a better solution by applying the Fukunaga-Koontz Trans-
form (FKT) to the LDA problem. Based on the eigenvalue
ratio of FKT, we decomposed the whole data space into four
subspaces. This revealed the relationship between LDA,
FKT, and GSVD and allowed us to correctly maximize JF
even when Sw is singular.

In this paper, we extend our previous work in two ways:
First, we present a unified framework for understanding
other LDA-based methods. This provides valuable insights
on how to choose the discriminant subspaces of the LDA
problem. Second, we propose a new approach to multiple
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discriminant analysis (MDA). This is done by casting the
multiclass problem into a two-class one and by maximizing
the Bhattacharyya distance (which is the error bound of the
Bayes Classifier [5]) rather than the Fisher Criterion. Then, the
discriminant subspace is obtained algebraically via FKT. This
means that our method can find the global optimum directly
(no iteration required), which is not the case in [6]. For
completeness, in this paper, we include details of our
previous work [22] as well.

To summarize, our work has three main contributions:

1. We present a unifying framework to understand
different methods, namely, LDA, FKT, and GSVD. To
be more specific, we show that, for the LDA problem,
GSVD is equivalent to FKT and the generalized
eigenvalue of LDA is equal to both the eigenvalue
ratio of FKT and the square of the generalized singular
value of GSVD.

2. We prove that our approach is useful for general
pattern recognition. Our theoretical analyses demon-
strate how to choose the best subspaces for maximum
discriminability and unify other subspace methods
such as Fisherface, PCA+NULL space, LDA/QR, and
LDA/GSVD.

3. We further propose a new criterion to handle MDA,
derived from the Bhattacharyya distance. Because
the Bhattacharyya distance upper bounds the Bayes
error [5], this new criterion is theoretically superior
to the Fisher Criterion, which is not related to the
Bayes error in general.

The rest of this paper is organized as follows: Section 2
reviews related work, that is, PCA, LDA, Fisherface,
PCA+NULL Space, LDA/QR, and LDA/GSVD. We discuss
FKT in Section 3, where discriminant subspace analysis
based on FKT is also presented. In Section 4, we show how
to unify some LDA-based methods based on our theory.
Moreover, we demonstrate how to handle the multiclass
problem by FKT in Section 5. We apply our theory to the
classification problem on synthetic and real data in Section 6
and conclude our paper in Section 7.

2 RELATED WORK

Notation. Let A ¼ fa1; . . . ; aNg, ai 2 IRD denote a data set

of given D-dimensional vectors. Each data point belongs to

exactly one of C object classes fL1; . . . ; LCg. The number of

vectors in class Li is denoted by Ni; thus, N ¼
P
Ni.

Observe that, for high-dimensional data, for example, face

images, generally, C � N � D. The between-class scatter

matrix Sb, the within-class scatter matrix Sw, and the total

scatter matrix St are defined as follows:

Sb ¼
XC
i¼1

Niðmi �mÞðmi �mÞ> ¼ HbH
>
b ; ð3Þ

Sw ¼
XC
i¼1

X
aj2Li
ðaj �miÞðaj �miÞ> ¼ HwH>w; ð4Þ

St ¼
XN
i¼1

ðai �mÞðai �mÞ> ¼ HtH
>
t ; ð5Þ

St ¼ Sb þ Sw: ð6Þ

Here, mi denotes the class mean and m is the global mean
of A. The matrices Hb 2 IRD�C , Hw 2 IRD�N , and Ht 2
IRD�N are the precursor matrices of the between-class
scatter matrix, the within-class scatter matrix, and the total
scatter matrix, respectively,

Hb ¼
ffiffiffiffiffiffi
N1

p
ðm1 �mÞ; . . . ;

ffiffiffiffiffiffi
Nc

p
ðmC �mÞ

h i
; ð7Þ

Hw ¼ A1 �m1 � 1>1 ; . . . ;AC �mC � 1>C
� �

; ð8Þ
Ht ¼ ½a1 �m; . . . ; aN �m�: ð9Þ

Here, 1i ¼ ð1; . . . ; 1Þ> 2 IRNi and Ai is the data matrix for
class Li. Let us denote the rank of each scatter matrix by
rw ¼ rankðSwÞ, rb ¼ rankðSbÞ, and rt ¼ rankðStÞ. Note that,
for high-dimensional data ðN � DÞ, rb � C � 1, rw � N � C,
and rt � N � 1.

2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [13] is one of the well-
known subspace methods for dimensionality reduction. It is
the optimal method for statistical pattern representation in
terms of the mean square error. PCA can be readily computed
by applying the eigendecomposition on the total scatter
matrix, that is, St ¼ UDU>. By keeping the eigenvectors
(principal components) corresponding to the largest eigen-
values, we can compute the PCA projection matrix. To solve
the appearance-based face recognition problem, Turk and
Pentland [18] proposed “Eigenface” by using PCA. Note that
PCA is optimal for pattern representation, not necessarily for
classification [5]. LDA [5], however, is another well-known
subspace method designed for pattern classification.

2.2 Linear Discriminant Analysis (LDA)

Given the data matrix A, which can be divided intoC classes,
we try to find a linear transformation matrix � 2 IRD�d,
where d < D. This maps a high-dimensional data to a low-
dimensional space. From the perspective of pattern classifi-
cation, LDA aims to find the optimal transformation � such
that the projected data are well separated.

Regarding pattern classification, usually, there are two
types of criteria that are used to measure the separability of
classes [7]. One is a family of criteria that gives the upper
bound on the Bayes error, for example, Bhattacharyya
distance. The other is based on a family of functions of scatter
matrices. As shown in (1), the Fisher Criterion belongs to the
latter one. Moreover, the solution of the criterion is the
generalized eigenvector and eigenvalue of the scatter
matrices (see (2)). However, if Sw is nonsingular, it can be
solved by the generalized eigendecomposition: S�1

w Sb� ¼ ��.
Otherwise, Sw is singular and we circumvent this by
methods such as Fisherface [2], PCA+NULL Space [10],
LDA/QR [20], and LDA/GSVD [9].

2.3 Fisherface

To handle face recognition under different lightings,
Belhumeur et al. [2] proposed “Fisherface,” which is an
application of LDA. In the Fisherface method, PCA is
performed first so as to make Sw nonsingular, followed by
LDA. This means that Fisherface ¼ LDAþ PCA. However,
there exist at least two problems: 1) During PCA, it is not
clear how many dimensions should be kept so that Sw is
nonsingular and 2) to avoid the singularity of Sw, some
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directions/eigenvectors (corresponding to the small non-
zero eigenvalues) are thrown away in the PCA step, which
may contain discriminant information [21].

2.4 PCA + NULL Space

Considering that the null space of Sw contains discriminant
information, Huang et al. [10] first remove the null space of
St. This is the intersection of null space of Sb and Sw and has
been proven to be useless for discrimination [10]. It can be
done by applying PCA first, followed by computing the
principal components of Sb within the null space of Sw.
More precisely, it is realized in three steps:

. Step 1. Remove the null space of St: Eigendecom-
pose St, St ¼ UDtU

>, and U is the set of eigenvec-
tors corresponding to the nonzero eigenvalues. Let
S0w ¼ U>SwU and S0b ¼ U>SbU.

. Step 2. Compute the null space of S0w: Eigende-
compose S0w and let Q? be the set of eigenvectors
corresponding to the zero eigenvalues. Let
S00b ¼ Q>?S0bQ?.

. Step 3. Remove the null space of S00b if it exists:
Eigendecompose S00b and keep the set of eigenvectors
corresponding to the nonzero eigenvalues.

The key difference between PCA+NULL Space and

Fisherface is in the first step: PCA+NULL Space only

removes the eigenvectors with zero eigenvalues, whereas

Fisherface removes eigenvectors corresponding to zero and

nonzero eigenvalues.

2.5 LDA/QR

In [20], Ye and Li proposed a two-stage LDA method, namely,
LDA/QR. It not only overcomes the singularity problems of
LDA but also achieves computational efficiency. This is done
by applying QR decomposition on Hb first, followed by LDA.
To be more specific, it is realized in two steps:

. Step 1. Apply QR decomposition on Hb: Hb ¼ QR,
where Q 2 IRD�rb has orthogonal columns that span
the space of Hb and R 2 IRrb�C is an upper triangular
matrix. Then, define eSb ¼ Q>SbQ and eSw ¼ Q>SwQ.

. Step 2. Apply LDA on eSb and eSw: Keep the set of
eigenvectors corresponding to the smallest eigenva-
lues of eS�1

b
eSw.

Note that, to reduce computational load, QR decomposi-
tion is employed here, whereas, in the Fisherface and
PCA+NULL space methods, the subspace is obtained by
using eigendecomposition.

2.6 LDA/GSVD

The GSVD was originally defined by Van Loan [14] and
then Page and Saunders [16] extended it to handle any two
matrices with the same number of columns. We will briefly
review the mechanism of GSVD, using LDA as an example.

Howland and Park [9] extended the applicability of LDA
to the case when Sw is singular. This is done by using
simultaneous diagonalization of the scatter matrices via the
GSVD [8]. First, to reduce computational load, Hb and Hw

are used instead of Sb and Sw. Then, based on GSVD, there
exist orthogonal matrices Y 2 IRC�C and Z 2 IRN�N and a
nonsingular matrix X 2 IRd�d such that

Y>H>b X ¼ ½�b;0�; ð10Þ
Z>H>wX ¼ ½�w;0�; ð11Þ

where

�b ¼
Ib

Db

Ob

24 35; �w ¼
Ow

Dw

Iw

24 35:
The matrices Ib 2 IRðrt�rwÞ�ðrt�rwÞ and Iw 2 IRðrt�rbÞ�ðrt�rbÞ are

identity matrices, Ob2 IRðC�rbÞ�ðrt�rbÞ and Ow2 IRðN�rwÞ�ðrt�rwÞ

are rectangular zero matrices that may have no rows or

no columns, Db ¼ diagð�rt�rwþ1; . . . ; �rbÞ and Dw ¼ diag

ð�rt�rwþ1; . . . ; �rbÞ satisfy 1 > �rt�rwþ1 � . . . � �rb > 0, 0 <

�rt�rwþ1 � . . . � �rb < 1, and �2
i þ �2

i ¼ 1. Thus, �>b �b þ
�>w�w ¼ I, where I 2 IRrt�rt is an identity matrix. The

columns of X, which are the generalized singular vectors

for the matrix pair ½Hb;Hw�, can be used as the discriminant

feature subspace based on GSVD.

3 FUKUNAGA-KOONTZ TRANSFORM AND LDA

In this section, we begin by briefly reviewing the Fukunaga-
Koontz Transform (FKT). Then, based on the eigenvalue
ratio of FKT, we analyze the discriminant subspaces by
breaking the whole space into smaller subspaces. Finally,
we connect FKT to the Fisher Criterion, which suggests a
way to select discriminant subspaces.

3.1 Fukunaga-Koontz Transform

The FKT was designed for the two-class recognition

problem. Given the data matrices A1 and A2 from two

classes, the autocorrelation matrices S1 ¼ A1A
>
1 and S2 ¼

A2A
>
2 are positive semidefinite (p.s.d.) and symmetric. The

sum of these two matrices is still p.s.d. and symmetric and

can be factorized in the form

S ¼ S1 þ S2 ¼ ½U;U?�
D 0
0 0

� �
U>

U>?

� �
: ð12Þ

Without loss of generality, S may be singular and r¼rankðSÞ
<D; thus, D ¼ diagf�1; . . . ; �rg, �1� . . . � �r>0. The set of

eigenvectors U 2 IRD�r corresponds to nonzero eigenvalues

and the set U? 2 IRD�ðD�rÞ is the orthogonal complement of

U. Now, we can whiten S by a transformation operator

P ¼ UD�1=2. The sum of the two matrices S1 and S2 becomes

P>SP ¼ P>ðS1 þ S2ÞP ¼ eS1 þ eS2 ¼ I; ð13Þ

where eS1 ¼ P>S1P, eS2 ¼ P>S2P, and I 2 IRr�r is an
identity matrix. Suppose the eigenvector of eS1 is v with
the eigenvalue �1, that is, eS1v ¼ �1v. Since eS1 ¼ I� eS2, we
can rewrite it as

ðI� eS2Þv ¼ �1v; ð14Þ

eS2v ¼ ð1� �1Þv: ð15Þ

This means that eS2 has the same eigenvector as eS1, but the
corresponding eigenvalue is �2 ¼ 1� �1. Consequently, the
dominant eigenvector of eS1 is the weakest eigenvector of eS2

and vice versa. This suggests that a pattern belonging to
Class 1 ought to yield a large coefficient when projected onto
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the dominant eigenvector of eS1 and vice versa. The dominant
eigenvectors therefore form a subspace in which the two
classes are separable. Classification can then be done by, say,
picking the nearest neighbor (NN) in this subspace.

Recently, it was proven that, under certain conditions,
FKT is the best linear approximation to a quadratic classifier
[11]. Interested readers may refer to [7] and [11] for more
details.

3.2 LDA/FKT

Generally speaking, for the LDA problem, there are more
than two classes. To handle the multiclass problem, we
replace the autocorrelation matrices S1 and S2 with the scatter
matrices Sb and Sw. Since Sb, Sw, and St are p.s.d. and
symmetric and St ¼ Sb þ Sw, we can apply FKT on Sb, Sw, and
St, which is called LDA/FKT hereafter in this paper. The
whole data space is decomposed into U and U? (Fig. 1). On
one hand, U? is the set of eigenvectors corresponding to the
zero eigenvalues of St. This has been proven to be the
intersection of the null spaces of Sb and Sw and contains no
discriminant information [10]. On the other hand, U is the set
of eigenvectors corresponding to the nonzero eigenvalues of
St. It contains discriminant information.

Based on FKT, eSb ¼ P>SbP and eSw ¼ P>SwP share the
same eigenspace and the sum of two eigenvalues corre-
sponding to the same eigenvector is equal to 1.

eSb ¼ V�bV
>; ð16ÞeSw ¼ V�wV>; ð17Þ

I ¼ �b þ �w: ð18Þ

Here, V 2 IRrt�rt is the orthogonal eigenvector matrix and
�b, �w 2 IRrt�rt are diagonal eigenvalue matrices. According
to the eigenvalue ratio �b

�w
, U can be further decomposed

into three subspaces. To keep the integrity of the whole data
space, we incorporate U? as the fourth subspace (Fig. 1):

1. Subspace 1. spanðSbÞ
T

nullðSwÞ, the set of eigenvec-
tors fvig corresponding to �w ¼ 0 and �b ¼ 1. Since
�b
�w
¼ 1, in this subspace, the eigenvalue ratio is

maximized.

2. Subspace 2. spanðSbÞ
T

spanðSwÞ, the set of eigenvec-

tors fvig corresponding to 0 < �w < 1 and 0 < �b < 1.

Since 0 < �b
�w
<1, the eigenvalue ratio is finite and

smaller than that of Subspace 1.
3. Subspace 3. nullðSbÞ

T
spanðSwÞ, the set of eigenvec-

tors fvig corresponding to �w ¼ 1 and �b ¼ 0. Since
�b
�w
¼ 0, the eigenvalue ratio is minimum.

4. Subspace 4. nullðSbÞ
T

nullðSwÞ, the set of eigenvec-
tors corresponding to the zero eigenvalues of St.

Note that, in practice, some of these four subspaces may not

exist, depending on the ranks of Sb, Sw, and St. As

illustrated in Fig. 1, the null space of Sw is the union of

Subspace 1 and Subspace 4, whereas the null space of Sb is

the union of Subspace 3 and Subspace 4, if they exist.

Therefore, from the perspective of FKT, we reach the same

conclusion as Huang et al. in [10]. That is, Subspace 4 is the

intersection of the null spaces of Sb and Sw.

3.3 Relationship between FKT, GSVD, and LDA

How do these four subspaces help to maximize the Fisher

Criterion JF ? We explain this in Theorem 1, which connects

the generalized eigenvalue of JF to the eigenvalues of FKT.

We begin with a lemma (see Appendix A for the proof):

Lemma 1. For the LDA problem, GSVD is equivalent to FKT,

with X ¼ ½UD�1=2V;U?�, �b ¼ �>b �b, and �w ¼ �>w�w,

where X, �b, and �w are from GSVD (10), (11), and U, D, V,

U?, �w, and �b are matrices from FKT (16), (17), (18).

Now, based on the above lemma, we can investigate the

relationship between the eigenvalue ratio of FKT and the

generalized eigenvalue � of the Fisher Criterion JF .

Theorem 1. If � is the solution of (2) (the generalized eigenvalue

of Sb and Sw) and �b and �w are the eigenvalues after applying

FKT on Sb and Sw, then � ¼ �b
�w

, where �b þ �w ¼ 1.

Proof. Based on GSVD, it is easy to verify that

Sb ¼ HbH
>
b ¼ X�>

�>b �b 0
0 0

� �
X�1: ð19Þ
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According to Lemma 1, �b ¼ �>b �b, thus,

Sb ¼ X�>
�b 0
0 0

� �
X�1: ð20Þ

Similarly,

Sw ¼ X�>
�w 0
0 0

� �
X�1: ð21Þ

Since Sb� ¼ �Sw�,

X�>
�b 0
0 0

� �
X�1� ¼ �X�>

�w 0
0 0

� �
X�1�: ð22Þ

Letting v ¼ X�1�, and multiplying X> on both sides, we
obtain the following:

�b 0
0 0

� �
v ¼ � �w 0

0 0

� �
v: ð23Þ

If we add �
�b 0
0 0

� �
on both sides of the above equation,

then

ð1þ �Þ �b 0
0 0

� �
v ¼ � I 0

0 0

� �
v: ð24Þ

This means that ð1þ �Þ�b ¼ �, which can be rewritten as
�b ¼ �ð1� �bÞ ¼ ��w because �b þ �w ¼ 1. Now, we can
observe that � ¼ �b

�w
. tu

Corollary 1. If � is the generalized eigenvalue of Sb and Sw, �
and � are the solutions of (10) and (11), and �=� is the
generalized singular value of the matrix pair ðHb;HwÞ, then
� ¼ �2

�2 , where �2 þ �2 ¼ 1.

Proof. In Lemma 1, we have proven that �b ¼ �>b �b and

�w ¼ �>w�w, that is, �b ¼ �2 and �w ¼ �2. According to

Theorem 1, we observe that � ¼ �b
�w

. Therefore, it is easy to

see that � ¼ �2

�2 . Note that �
� is the generalized singular

value of ðHb;HwÞ by GSVD and � is the generalized

eigenvalue of ðSb;SwÞ. tu
The corollary suggests how to evaluate discriminant
subspaces of LDA/GSVD. Actually, Howland and Park in
[9] applied the corollary implicitly, but, in this paper, we
explicitly connect the generalized singular value �

� with the
generalized eigenvalue �, the measure of discriminability.

Based on our analysis, the eigenvalue ratio �b
�w

and
the square of the generalized singular value �2

�2 are both

equal to the generalized eigenvalue �, the measure of

discriminability. According to Fig. 1, Subspace 1, with the

infinite eigenvalue ratio �b
�w

, is the most discriminant sub-

space, followed by Subspace 2 and Subspace 3. However,

Subspace 4 contains no discriminant information and can be

safely thrown away. Therefore, the eigenvalue ratio �b
�w

or the

generalized singular value �2

�2 suggests how to choose the

most discriminant subspaces.

3.4 Algorithm for LDA/FKT

Although we proved that FKT is equivalent to GSVD on the
LDA problem, as we will see in Table 1, LDA/GSVD is
computationally expensive. Since Subspace 4 contains no
discriminant information, we may compute the Subspaces 1,
2, and 3 of LDA/FKT based on QR decomposition. Moreover,
we use smaller matrices Hb and Ht because matrices Sb, Sw,
and St may be too large to be formed. Our LDA/FKT
algorithm is shown in Fig. 2.

Now, we analyze the computational complexity of the

algorithm as follows:

1. Time complexity. Line 2 takes OðDN2Þ time to
compute the QR decomposition on Ht. To multiply
two matrices, Line 3 takes Oðr2

tNÞ time, Line 4 takes
OðrtDCÞ time, and Line 5 takes Oðr2

t CÞ time. Line 6
takes Oðr3

t Þ time to invert eSt, multiply the matrices,
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TABLE 1
Comparison between Different Methods: N Is the Number of Training Samples, D Is the Dimension, and C Is the Number of Classes

For discriminant subspaces, please refer to Fig. 1.

Fig. 2. Algorithm 1: Apply QR decomposition to compute LDA/FKT.



and perform eigendecomposition on the rt � rt
matrix eS�1

t
eSb. Since rt < N , C � D, the most inten-

sive step is Line 2, which takes OðDN2Þ time to
compute the QR decomposition. Thus, the time
complexity is OðDN2Þ.

2. Space complexity. Lines 2 and 4 involve matrices Ht

and Hb. Because of the size of the matrix, Ht requires
OðDNÞ space in memory, and Hb requires OðDCÞ.
Lines 3, 5, and 6 only involve R 2 IRrt�N , Z 2 IRrt�C ,
and eSt, eSb 2 IRrt�rt , which are all small matrices.
Therefore, the space complexity is OðDNÞ.

4 COMPARISON

Although Fisherface, PCA+NULL, LDA/GSVD, and
LDA/QR were all proposed independently and appear
to be different algorithms, in this section, we explain how
FKT provides insights into these methods.

4.1 Fisherface: Subspaces 2 and 3

In the Fisherface method, PCA is performed first so as to
make Sw nonsingular. This is done by throwing away
Subspaces 1 and 4 (Fig. 1). As a result, Subspace 1, the most
discriminant subspace in terms of the Fisher Criterion, is
discarded. Therefore, Fisherface operates only in Subspaces 2
and 3 and is suboptimal.

4.2 PCA + NULL Space: Subspace 1

Considering the discriminant information contained in the
null space of Sw, PCA+NULL Space first removes the null
space of St, which is Subspace 4 (Fig. 1). Now, only
Subspaces 1, 2, and 3 are left. Second, within Subspace 1, the
principal components of Sb are computed. Thus, only
Subspace 1, the most discriminant feature space, is used.

Other null space methods have also been reported in the
literature, such as Direct LDA [21] and NULL Space [3]. The
criterion used in these methods is a modified version of the
Fisher Criterion, namely,

�opt ¼ arg max
�
k�>Sb�k s:t:k�>Sw�k ¼ 0: ð25Þ

Equation (25) shows that �opt is the set of eigenvectors
associated with the zero eigenvalues of Sw and the
maximum eigenvalues of Sb. Based on the eigenvalue ratio
from Fig. 1, this is Subspace 1. Thus, the PCA+NULL, Direct
LDA, and NULL space methods all operate only in
Subspace 1. However, as we will show in our experiments
in Section 6.1, using Subspace 1 alone is sometimes not
sufficient for good discrimination because Subspaces 2 and
3 may be necessary. In the worst case, when Subspace 1
does not exist,1 these null space methods will fail.

4.3 LDA/QR: Subspaces 1 and 2

To circumvent the nonsingularity requirement of Sw and
reduce the computation, a two-stage strategy is used in LDA/
QR [20]. The eigenspace (corresponding to nonzero eigenva-
lues) of Sb is computed by applying QR on Hb. In fact, this is
Subspace 1

S
Subspace 2 (Fig. 1) because the eigenvalues ofSb

associated with Subspaces 3 and 4 are all zero, which are
thrown away by the QR decomposition. Then, the eigenvec-
tors corresponding to the smallest eigenvalues of eS�1

b
eSw

are computed, equivalently, computing the eigenvectors
corresponding to the largest �b�w . Note that eS�1

b
eSw, rather thaneS�1

w
eSb, is eigendecomposed because eS�1

w may still be singular
(�w is zero within Subspace 1). Therefore, as Fig. 1 illustrated,
Subspaces 1 and 2 are preserved by LDA/QR. This means that
LDA/QR operates in Subspaces 1 and 2.

4.4 LDA/GSVD: Subspaces 1, 2, 3, and 4

Both LDA/GSVD and LDA/FKT simultaneously diagona-
lize two matrices, but, so far, nobody has investigated the
relationship between these two methods. In this paper, one
of our contributions is the proof that LDA/GSVD and
LDA/FKT are equivalent (see Appendix A for the proof).
More specifically, from the perspective of FKT, the Y and Z
in LDA/GSVD (see (10) and (11)) are just arbitrary rotation
matrices. The discriminant subspace of LDA/GSVD X is
equal to ½UD�1=2V;U?�, where U? is Subspace 4, and U is
the union of Subspaces 1, 2, and 3. This means X contains
Subspaces 1, 2, 3, and 4 (see Fig. 1). Therefore, the subspaces
obtained by LDA/GSVD are exactly those obtained by
LDA/FKT. However, LDA/GSVD is computationally ex-
pensive (Table 1). In Fig. 2, we presented an efficient
algorithm to compute LDA/FKT. This is achieved by using
QR decomposition on St to obtain Subspaces 1, 2, and 3. We
do not have to compute for Subspace 4, since it contains no
discriminant information.

5 MULTIPLE DISCRIMINANT ANALYSIS (MDA)

5.1 MDA/FKT

From the perspective of the Bayes Classifier, LDA is optimal
only for two Gaussian distributions with equal covariance
matrices [5], [7], and the Fisher Criterion has been extended
to handle multiple Gaussian distributions or classes with
unequal covariance matrices. This suggests that, for multi-
ple Gaussian distributions or classes with unequal covar-
iance matrices, LDA-based methods are not optimal with
respect to the Bayes Classifier. The worst case occurs when
all classes have the same mean. In this case, Sb ¼ 0 and all
LDA-based methods will fail. Subspaces 1 and 2 do not
exist and we are left with only Subspaces 3 and 4, which are
less discriminative. To handle these problems, we cast the
multiclass problem into a binary pattern classification
problem by introducing � ¼ ai � aj and defining the
intraclass space �I ¼ fðai � ajÞ j LðaiÞ ¼ LðajÞg, as well as
the extraclass space �E ¼ fðai � ajÞ j LðaiÞ 6¼ LðajÞg, where
LðaiÞ is the class label of ai. This idea has been used by
other researchers, for example, Moghaddam in [15]. The
statistics of �I and �E are defined as follows:

mI ¼mE ¼ 0; ð26Þ

�I ¼ HIH
>
I ¼

1

NI

X
LðaiÞ¼LðajÞ

ðai � ajÞðai � ajÞ>; ð27Þ

�E ¼ HEH>E ¼
1

NE

X
LðaiÞ6¼LðajÞ

ðai � ajÞðai � ajÞ>: ð28Þ

Here,NI ¼ 1
2

P
niðni � 1Þ is the number of samples in �I and

NE ¼
P

Li 6¼Lj ninj is the number of samples in �E . For
example, if every class has the same number of training
samples, ni ¼ n for i ¼ 1; . . . ; C, then NI ¼ 1

2Nðn� 1Þ and
NE ¼ 1

2NðN � nÞ. Note that, usually, rankð�EÞ and rankð�IÞ
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1. Subspace 1 will not exist if Sw is full rank and invertible. This can
happen if there are enough training samples.



are both greater thanC � 1, whereC is the number of classes.
HI and HE are the precursor matrices of �I and �E given by

HI ¼
1ffiffiffiffiffiffi
NI

p ½. . . ; ðai � ajÞ; . . .� ; 8i > j

such that LðaiÞ ¼ LðajÞ;
ð29Þ

HE ¼
1ffiffiffiffiffiffiffi
NE

p ½. . . ; ðai � ajÞ; . . .� ; 8i > j

such that LðaiÞ 6¼ LðajÞ:
ð30Þ

Our goal is now to find a subspace � in which �I and �E

are as separable as possible. Here, the Bhattacharyya distance
[5], [7] is used because it measures the overlap of any two
probability density functions (pdf). If the pdfs are Gaussian,
the Bhattacharyya distance is given analytically by

Dbh ¼
1

8
ðmE �mIÞ>

�E þ �I

2

� ��1

ðmE �mIÞ

þ 1

2
ln

j �Eþ�I

2 jffiffiffiffiffiffiffiffiffi
j�Ej

p ffiffiffiffiffiffiffiffi
j�I j

p :

Since mE ¼mI , this simplifies to

Dbh ¼
1

2
ln

j �Eþ�I

2 jffiffiffiffiffiffiffiffiffi
j�E j

p ffiffiffiffiffiffiffiffi
j�I j

p
¼ 1

4
ln j��1

E �I þ ��1
I �E þ 2Ij �D ln 4

	 

:

ð31Þ

The optimal subspace � can be computed by maximizing
the new criterion [7], which is the Bhattacharyya distance:

JMDA ¼ ln jð�>�E�Þ�1ð�>�I�Þþ
ð�>�I�Þ�1ð�>�E�Þ þ 2Idj:

ð32Þ

Here, Id is the identity matrix in the low-dimensional space.
Note that the Bhattacharyya distance may still be used even if
the underlying distributions are not Gaussian [5]. It has been
proven in [7] that, to maximize JMDA, we must choose the
generalized eigenvectors of the matrix pair ð�I ;�EÞ corre-
sponding to the largest �þ 1

� , where � is the generalized
eigenvalue. When �E or �I is singular, we cannot obtain the
subspace directly by matrix inversion because of the
singularity problem. However, we can apply FKT to analyze
�E and �I so that we can obtain four subspaces with two
eigenvalue curves as in Fig. 1. Suppose �I and �E are the
eigenvalues associated with the same eigenvector and � is the
generalized eigenvalue of matrix pair ð�I ;�EÞ, then � ¼ �I

�E
and �I þ �E ¼ 1. Now, to maximize JMDA is to compute the
eigenvectors corresponding the maximal �þ 1

� or, equiva-
lently, �E�I þ

�I
�E

. This is realized when �I ! 0 and �E ! 1 or
�I ! 1 and �E ! 0. In Fig. 1, Subspace 1

S
Subspace 3 is the

most discriminant subspace that satisfies the above criterion.
The leftmost and rightmost part of Subspace 2 can provide
additional discriminant information. The eigenvector of
Subspace 2 corresponding to equal eigenvalues ð�I ¼ �E ¼
0:5Þ is the least discriminative. To distinguish from
LDA/FKT, we will call this technique MDA/FKT. The key
difference between them is that MDA/FKT is optimal in
terms of the Bhattacharyya distance, whereas LDA/FKT is
optimal in terms of the Fisher Criterion.

Compared with other related work on MDA, our MDA/
FKT has some unique features. First, the discriminant
subspace obtained by MDA/FKT is optimal in terms of
Bhattacharyya distance. Moghaddam [15] computed the top
eigenvectors of �E and �I individually as the projection
subspaces, which may not be discriminant. Second, our
method finds the globally optimal subspace by analytically
maximizing the Bhattacharyya distance, which is the error
bound of the Bayes Classifier. Another method recently
proposed by De la Torre Frade and Kanade [6] maximizes
the Kullback-Leibler divergence, which does not relate to
the Bayes Classifier. Their method finds a local optimum by
using an iterative method. Finally, MDA/FKT can provide
more than C � 1 discriminant eigenvectors because usually
the rank of �E and �I is greater than C � 1, the upper
bound of rankðSbÞ. By comparison, LDA-based methods
can only provide C � 1 discriminative eigenvectors because
C � 1 is the upper bound of rankðSbÞ.

5.2 Algorithm for MDA/FKT

Based on the new criterion (32), our analyses on FKT show
that Subspaces 1 and 3 are the most discriminant subspaces
(Fig. 1). However, we cannot directly work on �I 2 IRD�D

and �E 2 IRD�D, which may be singular or too large to be
formed. An alternative is to use the precursor matrices HI 2
IRD�NI and HE 2 IRD�NE . However, it is not efficient to use
HE as well because NE is too large. As shown above,
NI / N , but NE / N2, where N is the total number of
samples. Although N � D, N2 could be close to D or even
greater. For example, in our face recognition experiments,
when C ¼ 67, D ¼ 5; 600, and n ¼ 2 (two training samples
per class), then N ¼ Cn ¼ 134, NI ¼ 67, and NE ¼ 8; 844.
�E is 5; 600� 5; 600 and HE is 5; 600� 8; 844 in size.

Can we find an efficient way to obtain the Subspaces 1
and 3 of MDA/FKT without HE or �E? Yes. Based on the
relationship between St, �I , and �E , we devise a method
that works with HI 2 IRD�NI and Ht 2 IRD�N only. Let us
start with a lemma (see Appendix B for the proof.):

Lemma 2. If St is the total scatter matrix defined in (5) and �I and
�E are the covariance matrices of the intraclass and extraclass
defined in (27) and (28), then 2NSt ¼ NI�I þNE�E , whereN
is the total number of samples, NI is the number of intraclass
samples, and NE is the number of extraclass samples.

Let us define �0I ¼ NI

2N �I and �0E ¼ NE

2N �E , then St ¼
�0I þ �0E . To efficiently compute the generalized eigenvalues
and eigenvectors of ð�I ;�EÞ, we need the following theorem:

Theorem 2. If ð�;vÞ is the dominant generalized eigenvalue and
eigenvector of the matrix pair ð�I ;�EÞ and ð�0;v0Þ is the
dominant generalized eigenvalue and eigenvector of matrix
pair ð�0I ;�0EÞ, then v ¼ v0 and � ¼ NI

NE
�0.

Proof. The generalized eigenvalue equation of matrix pair
ð�I ;�EÞ is �Ev ¼ ��Iv. Since �I ¼ 2N

NI
�0I and �E ¼ 2N

NE
�0E ,

we have

2N

NE
�0Ev ¼ �

2N

NI
�0iv ð33Þ

and, thus,

�0Ev ¼ NE

NI
��0iv: ð34Þ
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Comparing with the generalized eigenvalue equation
of matrix pair ð�0E;�0IÞ: �0Ev0 ¼ �0�0Iv0, we observe that
v ¼ v0 and � ¼ NI

NE
�0. tu

Furthermore, it is obvious that the proof of Theorem 2 is
valid for the other generalized eigenvalues and eigenvec-
tors as well, not just the dominant one. There is a one-to-one
mapping between the corresponding eigenvalues and
eigenvectors of the two pairs of matrices.

Therefore, to compute any generalized eigenvalue and
eigenvector of the matrix pair ð�I ;�EÞ, we can work on the
matrix pair ð�0I ;�0EÞ. Since St ¼ �0I þ �0E and, based on our
FKT analysis, each generalized eigenvalue�0 is equal to

�0I
�0
E

, the
eigenvalue ratio of FKT. This can be realized by using smaller
matrices Ht 2 IRD�N and HI 2 IRD�NI , where N � D and
NI � D.

Now, the idea of our algorithm is similar to LDA/FKT,
which applies QR decomposition on Hb and Ht to obtain
Subspaces 1, 2, and 3. However, we apply QR decomposi-
tion on Ht and HI to compute Subspaces 1, 2, and 3. Note
that MDA/FKT is optimal for the Bhattacharyya distance,
whereas LDA/FKT is optimal for the Fisher Criterion. Our
MDA/FKT algorithm is shown in Fig. 3.

5.3 Computational Complexity

Let us analyze the time complexity first. Line 2 takes
OðDN2Þ time to compute the QR decomposition on Ht. To
multiply two matrices, Line 3 takes Oðr2

tNÞ time, Line 4
takes OðrtDNIÞ time, and Line 5 takes Oðr2

tNIÞ time. Line 6
takes Oðr3

t Þ time to invert eSt, multiply the matrices, and
perform eigendecomposition on the rt � rt matrix eS�1

t
e�I .

Since rt < N , NI � D, the most intensive step is Line 2,
which takes OðDN2Þ time to compute the QR decomposi-
tion. Thus, the time complexity is OðDN2Þ.

Considering the space complexity, in MDA/FKT, Lines 2
and 4 involve matrices Ht and HI . Each matrix requires
OðDNÞ space in the memory because of the size of the
matrix. Lines 3, 5, and 6 only involve R 2 IRrt�N;Z 2 IRrt�NI

and eSt; e�0I 2 IRrt�rt , which are all small matrices. Therefore,
the space complexity is OðDNÞ.

Table 1 compares the time/space complexity of the
methods mentioned in this paper. Observe that our

MDA/FKT is comparable to most of LDA-based methods.

MDA/FKT, however, is optimal in terms of Bhattacharyya

distance, the error bound of the Bayes Classifier, which is

not the case for other methods.

6 EXPERIMENTS

Up until now, we have shown that FKT can be used to unify
other LDA-based methods. Moreover, we proposed a new
approach for MDA. In this section, we evaluate the
performance of LDA/FKT and MDA/FKT by using syn-
thetic and real data. The synthetic data has two sets, whereas
the real data consists of three sets for digit recognition and
face recognition. Table 2 shows the statistics of the data sets
in our experiments.

The experimental setting for recognition is described as

follows. For PCA, we take the top C � 1 principal compo-

nents,2 where C is the number of classes. For Fisherface, we

apply PCA first and take 100 principal components, followed

by LDA. For MDA/FKT, when performing comparison with

other methods, we project MDA/FKT to C � 1-dimensional

space. With respect to recognition, we employ 1-NN in the

low-dimensional space for all methods in these experiments.

6.1 Toy Problems

To evaluate the performance of MDA/FKT, we begin with

two toy examples:

. Toy 1: Three Gaussian classes: same mean, different
covariance matrices. The three classes share the same
zero mean in 3D space and each class has 100 points.
They have different covariance matrices:

C1 ¼ ½1; 1; 0�> � ½1; 1; 0� þ 0:1½0; 1; 1�> � ½0; 1; 1�;

C2 ¼ ½0; 1; 1�> � ½0; 1; 1� þ 0:1½1; 0; 1�> � ½1; 0; 1�;
and

C3 ¼ ½1; 0; 1�> � ½1; 0; 1� þ 0:1½1; 1; 0�> � ½1; 1; 0�

(Fig. 4a). Note that LDA-based methods will fail here

because Sb ¼ 0.
. Toy 2: Two classes: Gaussian mixture. We also have two

classes in 3D space. One class contains 50 points and
the other contains 75. The first class is generated from a
single Gaussian with zero mean and 0:5I covariance.
The second class is a Gaussian mixture which consists
of three components with different means: ½1; 4; 0�,
½2

ffiffiffi
3
p

;�2; 0�, and ½�2
ffiffiffi
3
p

;�2; 0�. Each component has
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Fig. 3. Algorithm 2: Apply QR decomposition to compute MDA/FKT.

TABLE 2
Statistics of Our Data Sets

2. Asymptotically, if PCA can extract more features than LDA, it will
perform better.



25 points and 0:5I covariance, and its mixture
proportion is 1

3 , as shown in Fig. 5a.

In Toy 1, it does not make sense to maximize traceðS�1
w SbÞ

because Sb ¼ 0. This means that LDA fails when the different

classes share the same mean. However, MDA/FKT can still

be applied because �I 6¼ 0 and �E 6¼ 0. As shown in Fig. 4b,

by using MDA/FKT, we can obtain a 2D discriminative

subspace, which can still approximate the structure of the

original 3D data. Even though it is hard to determine the

decision boundaries in Fig. 4b, we can discern that the three

classes lie principally along three different axes. In Toy 2,

LDA/FKT can obtain only a one-dimensional (1D) projection

(Fig. 5c) because, for two classes, rankðSbÞ ¼ 1. Note that the

1D projections of LDA/FKT overlap significantly, which

means it is hard to do classification. However, as shown in

Fig. 5b, MDA/FKT can obtain a 2D subspace because the rank

of �I or �E depends on the number of samples, not the

number of classes. The larger discriminative subspace of

MDA/FKT makes it possible to separate the classes.
Let us summarize these two toy problems: First,

MDA/FKT can still work even if all classes share the
same mean, whereas all LDA-based methods fail because
Sb ¼ 0. Second, MDA/FKT can provide larger discrimi-
native subspaces than LDA-based methods because the
latter ones are limited by the number of classes.

6.2 Digit Recognition

We perform digit recognition to compare MDA/FKT with
LDA-based methods on the MFEAT [12] data set. This
consists of handwritten digits (“0”-“9”) (10 classes) with
649-dimensional features. These features comprise six
feature sets: Fourier coefficients, profile correlations, Kar-
hunen-Love coefficients, pixel averages in 2� 3 windows,
Zernike moments, and morphological features. For each
class, we have 200 patterns; 30 of them are chosen
randomly as training samples and the rest for testing. To
evaluate the stability of each method, we repeat the
sampling 10 times so that we can compute the mean and
standard deviation of the recognition accuracy.

As shown in Fig. 6a, the accuracy of LDA/FKT and MDA/
FKT is about 95 percent with small standard deviations,
which means an accurate and stable performance. For MDA/
FKT, we can investigate the relationship between perfor-
mance and the projected dimension. Fig. 6b shows a plot of
accuracy versus projected dimensions. The accuracy reaches
the maximum when the projected dimension is around 8,
after which it remains flat even if we increase the projected
dimension. This suggests that MDA/FKT reaches its best
performance around eight dimensions. Another observation
is that the projected dimension should not be limited by the
number of classes. For example, here, we haveC ¼ 10 classes,
but Fig. 6b illustrates that seven or eight dimensions can give
almost the same accuracy asC � 1 ¼ 9 projected dimensions.

6.3 Face Recognition

We also perform experiments on real data on two face data
sets:

1. PIE face data set [17]. We choose 67 subjects3 and each
subject has 24 frontal face images taken under room
lighting. All of these face images are aligned based on
eye coordinates and cropped to 70� 80. Fig. 7a shows
a sample of PIE face images used in our experiments.
The major challenge in this data set is to do face
recognition under different illuminations.

2. Banca face data set [1]. This contains 52 subjects and
eachsubjecthas120face images,whicharenormalized
to51� 55 in size. By using aWebcam andan expensive
camera, these subjects were recorded in three different
scenarios over a period of three months. Each face
image contains illumination, expression, and pose
variations because the subjects are required to talk
during the recording (Fig. 7b).

Fig. 7 shows a sample of PIE and Banca face images used in
our experiments.

For face recognition, usually, we have an undersampled
problem, which is also the reason for the singularity of Sw.
To evaluate the performance under such a situation, we
randomly choose N training samples from each subject,
N ¼ 2; � � � ; 12, and the remaining images are used for
testing. For each set of N training samples, we employ
cross validation so that we can compute the mean and
standard deviation for classification accuracies. We show
the mean and standard deviation (in parenthesis) of the
recognition rate from 10 runs (see Table 3). Note that the
largest number in each row is highlighted in bold.
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Fig. 4. (a) Original 3D data. (b) Two-dimensional projection by MDA/

FKT. Different colors (or markers) represent different classes. Note that

the original 3D data share the same mean ðSb ¼ 0Þ. This results in the

failure of LDA-based methods.

3. The PIE data set contains 68 subjects altogether. We omitted one
because s/he has too few frontal face images.



As shown in Table 3, we observe that the more training
samples, the better the recognition accuracy. To be more
specific, on both data sets, for each method, increasing the
number of training samples increases the mean recognition
rate and decreases the standard deviation. Note that, when
the training set is small, LDA/FKT significantly outperforms
the other methods. For example, for the PIE data set, with two
training samples, LDA/FKT achieves about 98 percent
accuracy compared with the next highest of 90 percent from
PCA+NULL (see the first row of Table 3). Moreover, with four

training samples, LDA/FKT achieves about 100 percent
compared with 94 percent of the PCA+NULL method (see
the second row of Table 3). The standard deviation of
LDA/FKT is also significantly smaller than that of the other
methods. For the Banca data set, we have a similar
observation. With two and four training samples, LDA/FKT
achieves about 5 percent higher in accuracy than the next
highest (see the seventh and eighth rows of Table 3). This
shows that LDA/FKT can handle small-sample-size pro-
blems very well. With more training samples, that is, 6-12,
LDA/FKT is not the best but falls behind the highest by no
more than 1.8 percent (see the bottom four rows of Table 3).
One possible reason is that LDA/FKT is optimal as a linear
classifier, whereas, for the Banca data set, the face images
under expression and pose variations are nonlinearly
distributed.

To compare PCA, MDA/FKT, and various LDA-based
methods with different training samples, we also visualize
the average classification accuracies in Fig. 8.
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Fig. 5. (a) Original 3D data. (b) Two-dimensional projection by MDA/FKT. (c) One-dimensional projection by LDA/FKT. The projection of MDA/FKT is

more separable than that of LDA/FKT because the former can provide a larger discriminant subspace.

Fig. 6. The accuracy rate (mean and standard deviation) of digit

recognition by using: (a) PCA, MDA, and LDA-based methods. (b) MDA/

FKT: accuracy versus projected dimension.

Fig. 7. A sample of face images: (a) PIE data set and (b) Banca data set.
Each row represents one subject. Note that the PIE face images have
only illumination variation, whereas the Banca ones have illumination,
pose, and expression variations. Moreover, the Banca images are
captured in different scenarios with different cameras.



Note that, since MDA/FKT is not limited by the number
of classes (unlike LDA), we may project the data onto a
space whose dimension is greater than the number of
classes. Fig. 9 shows a plot of accuracy versus projected
dimensions for different numbers of training samples for
both the PIE and Banca data sets. We observe the following:

1. The more training samples we use, the better the
recognition rate. This is consistent with our experi-
ments (in Table 3) and it has also been confirmed by
other researchers. The reason is that a larger set of
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TABLE 3
Classification Accuracy (%) of Different Methods with Different Training Set Sizes

Fig. 8. Face recognition by using PCA, MDA/FKT, and various LDA-
based methods with different numbers of training samples per class.
(a) PIE (67 classes). (b) Banca (52 classes). Note that, for visualization,
we only show the mean of the accuracies from 10 runs. These plots are
generated from Table 3.

Fig. 9. Face recognition by varying the number of training samples per
class and the projected dimension. (a) MDA/FKT curves on PIE
(67 classes). (b) MDA/FKT curves on Banca (52 classes). Note that, for
visualization, we only show the mean of the accuracies from 10 runs.



training data can sample the underlying distribution
more accurately than a smaller set.

2. With fewer training samples per class, say, two or four,
the highest accuracy is obtained at C � 1 projected
dimensions (C ¼ 67 for PIE, C ¼ 52 for Banca).

3. However, with more training samples per class, say,
six or more, we can obtain a high classification rate
with fewer than C � 1 projected dimensions. For
example, on the PIE data set, with eight or 10 training
samples per class, we can obtain 98 percent accuracy
by using only 30 projected dimensions (Fig. 9a). The
curves remain flat with increasing dimensions. Thus,
there is no incentive to use more than 30 dimensions.

Now, let us summarize our experiments on real data sets.
First, MDA/FKT is comparable to LDA-based methods with
respect to the accuracy. Second, LDA/FKT and MDA/FKT
significantly outperform other LDA-based methods for
small-sample-size problems.

7 CONCLUSION

In this paper, we showed how FKT can provide valuable
insights into LDA. We derived and proved the relationship
between GSVD, FKT, and LDA and then unified different
LDA-based methods. Furthermore, we proposed a new
method—MDA/FKT—to handle the MDA problem. More
precisely:

1. We decomposed the whole data space into four
subspaces by using FKT. For the LDA problem, we
proved that the GSVD is equivalent to the FKT.

2. We proved that the eigenvalue ratio of FKT and the
square of the generalized singular value of GSVD are
equal to the generalized eigenvalue of LDA, which is
the measure of discriminability according to the
Fisher Criterion. It unifies these three methods that
were previously separately proposed.

3. We proposed a unified framework to understanding
different methods, that is, Fisherface, PCA+NULL,
LDA/QR, and LDA/GSVD. Our theoretical analyses
showed how to choose the discriminant subspaces
based on the generalized eigenvalue, the essential
measure of separability.

4. We also compared some common LDA methods with
LDA/FKT. Most of these methods are suboptimal in
terms of the Fisher Criterion. More specifically,
Fisherface, PCA+NULL, and LDA/QR all operate in
different parts of the discriminative subspaces of
LDA/FKT. We showed that LDA/GSVD and
LDA/FKT are, in fact, equivalent, but our LDA/
FKT is more efficient than LDA/GSVD with respect
to computation.

5. We further presented MDA/FKT with the following
properties:

a. It is derived from the Bhattacharyya distance,
which is the error bound of the Bayes Classifier.
This is theoretically superior to the Fisher
Criterion, which is based on scatter matrices and
which does not relate to the Bayes Classifier.

b. It can provide larger discriminative subspaces;
in contrast, LDA-based methods are limited by
the number of classes.

c. It works even if Sb ¼ 0, which is where LDA-
based methods fail. Furthermore, for Gaussian
mixture pdf, it works better than LDA.

d. It can be realized by an efficient algorithm. This
algorithm is comparable to most of LDA-based
methods with respect to computation andstorage.

6. We experimentally showed the superiority of
LDA/FKT and MDA/FKT. In particular, for small-
sample-size problems, LDA/FKT and MDA/FKT
work significantly better than other methods. In the
case of MDA/FKT, we further observed that using a
small projected subspace (dimension 	 C�1

2 ) is
enough to achieve high accuracy when the training
set is sufficiently large.

An interesting future work is to extend our theory to a
nonlinear discriminant analysis. One way is to use the
kernel trick employed in support vector machines (SVMs),
for example, construct kernelized between-class scatter and
within-class scatter matrices. FKT may yet again reveal new
insights into the kernelized LDA.

APPENDIX A

PROOF OF LEMMA 1

Proof. GSVD¼)FKT.
Based on GSVD,

Sb ¼ HbH
>
b ¼ X�>

�>b �b 0
0 0

� �
X�1; ð35Þ

Sw ¼ HwH>w ¼ X�>
�>w�w 0

0 0

� �
X�1: ð36Þ

Thus,

X>ðSb þ SwÞX ¼
I 0
0 0

� �
: ð37Þ

Since �>b �b þ �>w�w ¼ I 2 IRrt�rt , if we choose the first

rt columns of X as P, that is, P ¼ Xðd;rtÞ, then

P>ðSb þ SwÞP ¼ I. This is exactly FKT. Meanwhile,

we can obtain that �b ¼ �>b �b and �w ¼ �>w�w.

FKT¼)GSVD.
Based on FKT P ¼ UD�1=2,

eSb ¼ P>SbP ¼ D�1=2U>HbH
>
b UD�1=2; ð38ÞeSb ¼ V�bV

>: ð39Þ

Hence,

D�1=2U>HbH
>
b UD�1=2 ¼ V�bV

>: ð40Þ

In general, there is no unique decomposition on the

above equation because HbH
>
b ¼ HbYY>H>b for any

orthogonal matrix Y 2 IRC�C . That is,

D�1=2U>HbYY>H>b UD�1=2 ¼ V�bV
>; ð41Þ

Y>H>b UD�1=2 ¼ b�bV
>; ð42Þ

Y>H>b UD�1=2V ¼ b�b; ð43Þ

where b�b 2 IRC�rt and �b ¼ b�>b b�b. If we define
X ¼ ½UD�1=2V;U?� 2 IRd�d. Then,
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Y>H>b X ¼ Y>H>b ½UD�1=2V;U?�; ð44Þ
¼ ½Y>H>b UD�1=2V;0�; ð45Þ
¼ ½b�b;0�: ð46Þ

Here, H>b U? ¼ 0, and H>wU? ¼ 0 because U? is the

intersection of the null space of Sb and Sw. Similarly, we

can get Z>H>wX ¼ ½b�w;0�, where Z 2 IRN�N is an arbitrary

orthogonal matrix, b�w 2 IRN�rt , and �w ¼ b�>w b�w. Since

�b þ �w ¼ I and I 2 IRrt�rt is an identity matrix, it is easy to

check that b�>b b�b þ b�>w b�w ¼ I, which satisfies the con-

straint of GSVD.
Now, we have to prove X is nonsingular

XX> ¼ ½UD�1=2V;U?�
V>D�1=2U>

U>?

" #
¼ UD�1U> þU?U>?

¼ ½U;U?�
D�1 0

0 I

" #
U>

U>?

" #
:

ð47Þ

Here, V 2 IRr�r and ½U;U?� are orthogonal matrices.
Note that U>U? ¼ 0 and U>?U ¼ 0. From the above
equation, XX> can be eigendecomposed with positive
eigenvalues, which means X is also nonsingular. This
completes the proof. tu

APPENDIX B

PROOF OF LEMMA 2

Proof. Since

�i ¼
1

NI

X
LðaI Þ¼LðajÞ

ðai � ajÞðai � ajÞ>;

�E ¼ 1

NE

X
LðaiÞ6¼LðajÞ

ðai � ajÞðai � ajÞ>:

Then,

NI�I þNE�E ¼
X
i

X
j

ðai � ajÞðai � ajÞ>

¼
X
i

X
j

�
aia

>
i � aia

>
j � aja

>
i þ aja

>
j

�
¼ 2N

X
i



aia

>
i

�
� 2

X

ai
�
X

a>j

�
¼ 2N

X
i

�
aia
>
i

�
� 2N2mm>

¼ 2N

X

aia
>
i �Nmm>

�
;

ð48Þ

where m ¼ 1
N

P
ai is the total mean of the samples.

On the other hand,

St ¼
XN
i

ðai �mÞðai �mÞ>

¼
X


aia
>
i � aim

> �ma>i þmm>
�

¼
X

aia
>
i �Nmm>:

ð49Þ

By examining (48) and (49), we can see that
2NSt ¼ NI�I þNE�E . tu
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