
BoostMap: An Embedding Method for
Efficient Nearest Neighbor Retrieval

Vassilis Athitsos, Member, IEEE, Jonathan Alon, Member, IEEE,

Stan Sclaroff, Senior Member, IEEE, and George Kollios, Member, IEEE

Abstract—This paper describes BoostMap, a method for efficient nearest neighbor retrieval under computationally expensive distance

measures. Database and query objects are embedded into a vector space in which distances can be measured efficiently. Each

embedding is treated as a classifier that predicts for any three objects X, A, B whether X is closer to A or to B. It is shown that a linear

combination of such embedding-based classifiers naturally corresponds to an embedding and a distance measure. Based on this

property, the BoostMap method reduces the problem of embedding construction to the classical boosting problem of combining many

weak classifiers into an optimized strong classifier. The classification accuracy of the resulting strong classifier is a direct measure of the

amount of nearest neighbor structure preserved by the embedding. An important property of BoostMap is that the embedding optimization

criterion is equally valid in both metric and nonmetric spaces. Performance is evaluated in databases of hand images, handwritten digits,

and time series. In all cases, BoostMap significantly improves retrieval efficiency with small losses in accuracy compared to brute-force

search. Moreover, BoostMap significantly outperforms existing nearest neighbor retrieval methods such as Lipschitz embeddings,

FastMap, and VP-trees.

Index Terms—Indexing methods, embedding methods, similarity matching, multimedia databases, nearest neighbor retrieval, nearest

neighbor classification, non-Euclidean spaces.

Ç

1 INTRODUCTION

NEAREST neighbor retrieval is the task of identifying the
database objects that are the most similar to a given

query object. The most straightforward algorithm for
nearest neighbor retrieval is brute-force search: we simply
measure all distances between the query and the database
objects. Clearly, as database size increases, brute-force
search can become computationally demanding or even
impractical. This problem is exacerbated in domains with
computationally expensive distance measures. Such mea-
sures occur frequently in pattern recognition. Examples
include the Kullback-Leibler (KL) distance for matching
probability distributions [1], dynamic time warping for
matching time series [2], [3], or the edit distance [4] for
matching strings and biological sequences. We introduce an
embedding method, called BoostMap, for efficient nearest
neighbor retrieval in such domains. BoostMap maps
database and query objects into a real vector space, where
distances can be computed orders-of-magnitude faster than
in the original space. These fast embedding-based distances
can be used to speed up the nearest neighbor retrieval.

Our method makes two key contributions to the current
state of the art. The first contribution is defining a new
quantitative criterion of embedding quality, which directly

measures how well the embedding preserves the nearest
neighbor structure of the original space. The key idea is that
any embedding F naturally defines a binary classifier ~F that
predicts, for any three objectsX,A,BwhetherX is closer toA
or toBby simply checking ifF ðXÞ is closer toF ðAÞor toF ðBÞ.
IfF never makes any mistakes, thenF perfectly preserves the
nearest neighbor structure. We show that the error rate of F
on a specific set of triples ðX;A;BÞ is a direct measure of the
amount of nearest neighbor structure preserved by F . This is
in contrast to the global measures of stress and distortion
typically used for evaluating embedding quality [5], which
take into account all pairwise distances between objects and,
thus, mainly depend on pairs of objects that are not nearest
neighbors of each other.

The second contribution is an algorithm for constructing
and optimizing embeddings according to the proposed
measure of embedding quality. We show that any linear
combination of embedding-based binary classifiers ~F natu-
rally corresponds to an embedding and a distance measure.
Consequently, the problem of constructing a multidimen-
sional embedding is reduced to the classical boosting
problem of combining many weak classifiers into an
optimized strong classifier. The BoostMap method is based
on this reduction and performs embedding optimization
using AdaBoost [6]. An important property of BoostMap is
that the embedding optimization criterion is equally valid in
both metric and nonmetric spaces.

The experiments evaluate the usefulness of BoostMap for
efficient nearest neighbor retrieval and classification in
relatively large databases with nonmetric distance measures
like the chamfer distance [7], shape context matching [8],
and dynamic time warping [2], [3]. Using BoostMap leads
to significant improvements in retrieval efficiency with
small losses in accuracy compared to brute-force search.
Furthermore, BoostMap significantly outperforms existing

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008 1

. V. Athitsos is with the Computer Science and Engineering Department,
University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019.
E-mail: athitsos@uta.edu.

. J. Alon, S. Sclaroff, and G. Kollios are with the Computer Science
Department, Boston University, 111 Cummington Street, Boston, MA
02215. E-mail: {jalon, sclaroff, gkollios}@cs.bu.edu.

Manuscript received 20 Oct. 2006; revised 15 Feb. 2007; accepted 26 Feb.
2007; published online 29 Mar. 2007.
Recommended for acceptance by M.-H. Yang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0743-1006.
Digital Object Identifier no. 10.1109/TPAMI.2007.1140.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

methods for efficient nearest neighbor retrieval and
classification in non-Euclidean spaces such as Lipschitz
embeddings [5], FastMap [9], and VP-trees [10].

2 RELATED WORK

Various methods have been employed for speeding up
nearest neighbor retrieval. The reader can refer to [5], [11],
[12], [13] for comprehensive reviews of existing nearest
neighbor methods. A large amount of work focuses on
efficient nearest neighbor retrieval in multidimensional
vector spaces [14], [15], [16], [17], [18], [19], [20], [21], [22].
Particular mention should be made to Locality Sensitive
Hashing (LSH) [23], an approximate nearest neighbor
method that has been shown theoretically to scale well with
the number of dimensions and has produced good results in
practice [24], [25], [26]. However, those methods can only be
applied in vector spaces. The focus of this paper is on the
nearest neighbor retrieval in nonvector spaces induced by
computationally expensive distance measures.

A more general class of spaces is the class of metric spaces,
that is, spaces with a metric distance measure. Examples of
metric distance measures are the edit distance for strings [4],
the Hausdorff distance for edge images [27], or bipartite
matching for sets [28]. A number of nearest neighbor methods
have been designed that are applicable to arbitrary metric
spaces; the reader is referred to [12] for a comprehensive
survey of such methods. VP-trees [10] hierarchically partition
the database into a tree structure by partitioning, at each node,
the set of objects based on whether they are closer than a
threshold to a specific object, called a pivot object. A similar
structure, called metric trees, has been proposed indepen-
dently in [29]. MVP-trees [30] are an extension of VP-trees,
where multiple pivot points are used at each node. M-trees
[31] are a variant of metric trees explicitly designed for
dynamic databases. Slim-trees [32] improve on M-trees by
minimizing the overlap between nodes. An approximate
variant of M-trees is proposed in [33] and achieves additional
speedups by sacrificing the guarantee of always retrieving
the true nearest neighbors. A general problem with the above-
mentioned tree-based indexing methods is that their perfor-
mance tends to approach brute-force search as the intrinsic
dimensionality of the space increases. The reason is that, as
dimensionality increases, distances to pivot objects are less
likely to warrant pruning of large portions of the database.

Two alternative indexing methods for general metric
spaces are Approximating and Eliminating Search Algorithm
(AESA) [34] and Linear AESA (LAESA) [35]. Those methods
compute the exact distance between the query and a small set
of database objects and then use the triangle inequality to
establish lower bounds on the distance between the query
and the database objects. However, by relying on the triangle
inequality, those methods cannot handle nonmetric distance
measures such as the ones used in our experiments.

In domains with a computationally expensive distance
measure, significant speedups can be obtained by embedding
objects into another space with a more efficient distance
measure. Several methods have been proposed for embed-
ding arbitrary spaces into a Euclidean or pseudo-Euclidean
space [9], [36], [37], [38], [39], [40], [41]. Some of these
methods, in particular, Multidimensional Scaling (MDS) [41],
Bourgain embeddings [5], [36], [42], Locally Linear Embed-
ding (LLE) [38], and Isomap [39] need to evaluate exact

distances between the query and most or all database objects
and, thus, are not designed for efficient nearest neighbor
retrieval. Methods that can be used for efficient retrieval
include Lipschitz embeddings [5], FastMap [9], MetricMap
[40], and SparseMap [37].

BoostMap, the method described in this paper, was
introduced in [43] and is an embedding method for efficient
nearest neighbor retrieval. A key difference between
BoostMap and existing embedding methods is that Boost-
Map optimizes a direct measure of the amount of nearest
neighbor structure preserved by the embedding. Another
distinguishing feature of BoostMap is that it addresses the
problem of embedding optimization from a machine
learning perspective in contrast to the geometric perspec-
tive taken by existing methods [5], [9], [37], [40]. As a result,
the embedding optimization criterion in BoostMap does not
rely on any geometric properties and is equally valid in
Euclidean, metric, and nonmetric spaces. In contrast,
FastMap [9] and MetricMap [40] are based on Euclidean
properties, and the design of Bourgain embeddings [36],
[37] and SparseMap [37] (which is an approximation of
Bourgain embeddings) is based on metric properties.

Nonmetric distance measures are frequently used in
pattern recognition. Examples of nonmetric distance mea-
sures are the chamfer distance [7], shape context matching
[8], dynamic time warping [3], or the KL distance [1].
Methods that are designed for general metric spaces can
still be applied when the distance measure is nonmetric.
However, methods that are exact for metric spaces become
inexact in nonmetric spaces, and no theoretical guarantees
of performance can be made. BoostMap can guarantee
correct retrieval results in metric spaces, as do Lipschitz
embeddings and SparseMap [5], [37].

In several domains where BoostMap is applicable,
methods have been proposed for speeding up similarity
queries under the specific distance measures used in those
domains. Various techniques have been proposed for time
series databases using nonmetric distance functions [3], [44],
[45]. These techniques use the filter-and-refine approach [5]
and use efficient distance approximations in the filter step.

One of the distance measures tested in the experiments is
shape context matching [8]. Shape context matching is based
on the shape context feature, which describes the distribution
of points around a given location. Several methods have been
proposed for speeding up similarity matching and classifica-
tion using shape context. In [46], efficient retrieval is attained
by pruning based on comparisons of a small subset of shape
context features, and also using vector quantization. In [25],
the Earth Mover’s Distance between shape context features is
efficiently approximated using an embedding, and then,
Locality Sensitive Hashing is applied. In [47], a discriminative
classifier is learned based on correspondences of shape
context features between the test object and a small number of
training objects.

It is natural that a method designed for a specific
distance measure, like the abovementioned methods for
time series matching and shape context matching, can
sometimes lead to better performance than a general
method applicable to arbitrary distance measures. At the
same time, our method, which is general, does outperform
some methods designed for specific distances [47], [48] in
our experiments and, thus, may be a viable alternative in
applications where such methods are being used to

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

improve efficiency. Furthermore, a method applicable to
arbitrary measures has the advantage of being readily
applicable in arbitrary settings and novel applications.

For nearest neighbor classification applications, there are
also methods that explicitly speed up classification and are
not concerned with retrieving the true nearest neighbors.
Condensing methods [49], [50], [51] speed up classification
by trying to identify training objects whose removal from
the database does not hurt classification accuracy. By
removing those objects from the database, the query needs
to be compared to fewer objects in order to be classified.
Approaches that speed up classification without reducing
the database size are described in [52] and [53]. In those
approaches, tree-based index structures are constructed
separately for each class. When it becomes clear, during
search, that a specific class cannot achieve a majority of
k-nearest neighbor votes, then that class is dropped from
consideration. This way, the winning class can be identified
without having to retrieve the actual k-nearest neighbors.

3 BACKGROUND

Let XX be a space of objects, and D be a distance measure in
XX. If D is computationally expensive, a way to speed up
retrieval is to embed objects into another space with a more
efficient distance measure. Typically, we construct an
embedding F : XX! IRd, where distances in IRd are mea-
sured using a weighted Minkowski ðLpÞ metric, like the
Euclidean ðL2Þ distance or the Manhattan ðL1) distance. We
use � to denote the distance measure used in IRd. We use
the notation �F ðX1; X2Þ as shorthand for �ðF ðX1Þ; F ðX2ÞÞ.

Evaluating Lp distances in IRd takes time linear to the
length d of the vectors. There are many spaces where we
need to use distance measures that take time superlinear to
the length of the objects. Such distance measures are
common in spaces where objects are represented as sets
or sequences of features or tokens, and where measuring
the distance between two objects involves establishing
optimal correspondences between the features/tokens of
the two objects. Some examples of such spaces are

. the space of binary edge images with the chamfer
distance [7]. Each edge image in this space is
represented as a set of edge pixels. Computing the
chamfer distance involves computing the distance
from each edge pixel in one image to its nearest edge
pixel in the other image and takes Oðd log dÞ time for
images with d edge pixels.

. the space of strings with the edit distance [4]. This
distance is computed using dynamic programming
and takes timeOðd1d2Þ, where d1 andd2 are the lengths
of the two strings. A related distance measure is
dynamic time warping [2], [3] for comparing time
series. Variants of the edit distance are also used for
matching proteins and DNA sequences.

3.1 Some Simple Embeddings

Given any space XX with a distance measure D, we can
extend D to define the distance between elements of XX and
subsets of XX. Let X 2 XX and IP � XX. Then,

DðX; IPÞ ¼ min
P2IP

DðX;P Þ: ð1Þ

Given a subset IP � XX, a simple one-dimensional (1D)
embedding F IP : XX! IR can be defined as follows:

F IPðXÞ ¼ DðX; IPÞ: ð2Þ

The set IP that is used to define F IP is called a reference set. In
many cases, IP can consist of a single object P , which is
typically called a reference object or a vantage object [5]. In that
case, we denote the embedding as FP

FP ðXÞ ¼ DðX;P Þ: ð3Þ

We call FP a reference object embedding.
Another family of simple 1D embeddings is proposed in

[9]. The idea there is to choose two objects X1, X2 2 XX,
called pivot objects, and then, given an arbitrary X 2 XX to
define the embedding FX1;X2 of X to be the projection of X
onto the “line” X1X2

FX1;X2ðXÞ ¼ DðX;X1Þ2 þDðX1; X2Þ2 �DðX;X2Þ2

2DðX1; X2Þ
: ð4Þ

The reader can find in [9] an intuitive geometric interpreta-
tion of this equation, based on the Pythagorean theorem.
We call FX1;X2 a line projection embedding.

A multidimensional embedding can be constructed by
concatenating such 1D embeddings: if F1; . . . ; Fd are
1D embeddings, we can define a d-dimensional embed-
ding F as F ðXÞ ¼ ðF1ðXÞ; . . . ; FdðXÞÞ. In existing work,
1D embeddings defined using reference sets (2) are used
to form Lipschitz embeddings [5], and line projection
embeddings (4) are used to construct FastMap embed-
dings [9].

3.2 Embedding Application: Filter-and-Refine
Retrieval

Let F be an embedding from a space XX with distance
measure D to IRd with distance measure �, and let UU � XX
be a database of objects. We can use F to speed up k-nearest
neighbor retrieval by applying the filter-and-refine frame-
work [5] in which retrieval is done as follows:

. Offline preprocessing step. Compute and store
vector F ðUÞ for every database object U 2 UU.

. Embedding step. Given a query object Q, compute
F ðQÞ.

. Filter step. Rank all database objects in order of the
distance of their embeddings from F ðQÞ.

. Refine step. For some integer p that is a parameter of
the algorithm, rerank the p highest-ranked database
objects by evaluating their exact distances D to Q.

. Output. Return the khighest-ranked database objects.

The filter step provides a preliminary ranking of
database objects by comparing d-dimensional vectors using
the distance measure �. The refine step applies D only to
the top p candidates. Assuming that � is significantly more
efficient than D, filter-and-refine retrieval is much more
efficient than brute-force retrieval.

4 OVERVIEW OF THE BOOSTMAP METHOD

An embedding F is proximity-preserving when it perfectly
preserves proximity relations between triples of objects, that
is, when it holds for all X, A, B 2 X that

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DðX;AÞ � DðX;BÞ , �F ðX;AÞ � �F ðX;BÞ: ð5Þ

If (5) does not hold for some triple ðX;A;BÞ, we say thatF fails

on that triple. In BoostMap, the goal is to construct an

embedding that is as close to being proximity preserving as

possible. For the purpose of speeding up the nearest neighbor

retrieval, it is sufficient to limit our attention to triples

ðX;A;BÞ of a specific type, as discussed in Section 5.3.

Deciding for a triple ðX;A;BÞwhetherX is closer toAor to

B is a binary classification problem (we ignore the typically

rare case where X is equally far from A and B). Any

embedding F defines a binary classifier ~F that decides

whetherX is closer toA or toB by simply checking if F ðXÞ is

closer to F ðAÞ or to F ðBÞ. Our goal is to construct an

embedding F whose associated classifier ~F is as accurate as

possible. In Section 5, we show that the task of optimizing a

multidimensional embedding that is a concatenation of

1D embeddings is equivalent to the task of designing a good

linear combination of classifiers. The latter task is a natural fit

for boosting methods proposed in the machine learning

literature. In the BoostMap method, we optimize embedding

quality using AdaBoost [6], as described in Section 6.

5 ASSOCIATING EMBEDDINGS WITH CLASSIFIERS

5.1 Using Embeddings to Define Classifiers

As in previous sections, XX is a space of objects, and D is a

distance measure defined on XX. If ðX;A;BÞ is a triple of

objects in XX, one of the following three cases must be true:

. X is closer to A than to B.

. X is equally far from A and B.

. X is closer to B than to A.

In order to denote, for each triple ðX;A;BÞ, which of those

three possibilities is true, we define the proximity order P of

triple ðX;A;BÞ as follows:

P ðX;A;BÞ ¼
1 if DðX;AÞ < DðX;BÞ;
0 if DðX;AÞ ¼ DðX;BÞ;
�1 if DðX;AÞ > DðX;BÞ:

8<
: ð6Þ

In spaces where distances can take any value within some

range of real numbers, it is typically unusual for an object to

have the exact same distance to two database objects.

Consequently, we consider the task of estimating P ðX;A;BÞ
to be a binary classification task.

Let F be an embedding that maps ðX;DÞ to ðIRd;�Þ. We

can guess whether X is closer to A or to B by checking if

F ðXÞ is closer to F ðAÞ or to F ðBÞ. More formally, for every

embedding F , we define a classifier ~F as follows:

~F ðX;A;BÞ ¼ �F ðX;BÞ ��F ðX;AÞ: ð7Þ

If we define signðxÞ to be 1 for x > 0, 0 for x ¼ 0, and �1 for
x < 0, then signð ~F ðX;A;BÞÞ is an estimate of P ðX;A;BÞ.

5.2 Using Classifiers to Define Embeddings

At this point, we have established that every embedding F :

ðXX; DÞ ! ðIRd;�Þ corresponds to a binary classifier ~F

of triples of objects. It is shown in [54] that the converse does

not hold: There exist classifiers H of triples such that H 6¼ ~F

for all embeddings F . At the same time, there is always an

embedding F such that H ¼ ~F , if H is of the following form:

HðX;A;BÞ ¼
XJ
j¼1

�j ~FjðX;A;BÞ; ð8Þ

where J is any positive integer, and each Fj is an
embedding mapping XX and D to some real vector space
IRdj and some distance measure �j.

Proposition 1. If classifier H is of the form of (8), then we can
define an embedding F and distance measure � such that
F : ðXX; DÞ ! ðIRd;�Þ and H ¼ ~F for some integer d.

Proof. Given that HðX;A;BÞ ¼
PJ

j¼1ð�j ~FjðX;A;BÞÞ, we
define F and � as follows:

F ðXÞ ¼ ðF1ðXÞ; . . . ; FJðXÞÞ;

�ðF ðX1Þ; F ðX2ÞÞ ¼
XJ
j¼1

ð�j�jðFjðX1Þ; FjðX2ÞÞÞ:

Embedding F maps XX into a d-dimensional vector space,
where d ¼

PJ
j¼1 dj, and � is the sum of individual

distances �j that correspond to embeddings Fj.
Given these definitions, the proof that H ¼ ~F can be

obtained in a few simple steps by starting from the
definition of ~F in (7)

~F ðX;A;BÞ ¼ �F ðX;BÞ ��F ðX;AÞ

¼
XJ
j¼1

ð�j�j
Fj
ðX;BÞÞ �

XJ
j¼1

ð�j�j
Fj
ðX;AÞÞ

¼
XJ
j¼1

ð�jð�j
Fj
ðX;BÞ ��j

Fj
ðX;AÞÞÞ

¼
XJ
j¼1

ð�j ~FjðX;A;BÞÞ ¼ HðX;A;BÞ:

ut

We have shown that if classifier H is a weighted linear
combination of classifiers corresponding to embeddings,
then H itself is equivalent to a specific embedding F and a
specific distance measure �. By the word “equivalent,” we
mean that, for any ðX;A;BÞ, H misclassifies ðX;A;BÞ if and
only ifF fails on that triple. This equivalence allows us to map
the problem of embedding optimization to the problem of
optimizing a weighted linear combination of binary classi-
fiers, which is exactly the problem that boosting methods are
designed to solve.

5.3 Classification Error as a Measure of Embedding
Quality

Suppose that we have a database UU � XX, and in our
application, we are only interested in retrieving up to
kmax nearest neighbors for each query object X 2 XX. An
example of such an application is k-nearest neighbor
classification, where for every test object, we want to retrieve
k database objects, so kmax ¼ k in that case. We denote the set
of the kmax nearest neighbors ofX in UU asNNðX;UU; kmaxÞ. In
order to achieve perfect retrieval accuracy of up to
kmax nearest neighbors using an embedding F , it suffices

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

that classifier ~F be perfect on a set of triples TTkmax
, defined as

follows:

TTkmax
¼ fðX;A;BÞjX 2 XX; A 2 NNðX;UU; kmaxÞ; B 2 UUg:

ð9Þ

In the above equation, B can be any database object.
In the ideal case where ~F makes no mistakes on triples in

TTkmax
, the following holds: 8X,A 2 XX, 8k 2 f1; . . . ; kmaxg,A is

the k-nearest neighbor of X in UU iff F ðAÞ is the k-nearest
neighbor ofF ðXÞ inF ðUUÞ. Therefore, usingF , we can retrieve
the correct kmax nearest neighbors for any query object
without needing to measure any exact distances D. If ~F
misclassifies triples that are not in TTkmax

, retrieval accuracy is
not affected. In the typical case where ~F is not perfectly
accurate on TTkmax

, the error rate of ~F on TTkmax
provides us with

a quantitative measure of how well F preserves the kmax-
nearest neighbor structure of XX. Higher error rates indicate
that the proximity rankings obtained usingF are less reliable.
Therefore, if we wish to optimize classifier ~F , it is important to
optimize it for accuracy on the set TTkmax

, as opposed to, for
example, accuracy on the set of all possible triples (which was
done in [43]).

It is interesting to compare the measure of embedding
quality we have proposed, that is, the classification error on
the set TTkmax

, with the measures of stress and distortion that
are often used to evaluate embedding quality [5]. The
measure proposed here is fundamentally a local measure.
Assuming that kmax � jUUj, the vast majority of triples of
objects ðX;A;BÞ are such that neither A nor B is one of the
kmax-nearest neighbors of X, and therefore, we are not
concerned about classifying such triples correctly. In contrast,
stress and distortion are global measures that are affected by
every pair of objects, although the vast majority of pairs of
objects ðX;AÞ are such that X and A are not kmax-nearest
neighbors of each other. Arguably, a method that minimizes
stress or distortion spends most of its effort on pairs of objects
that have no bearing on how well the embedding preserves
the nearest neighbor structure.

6 BOOSTMAP: OPTIMIZING EMBEDDING

CONSTRUCTION USING BOOSTING

As stated in Section 5.3, our goal is to construct an
embedding Fout : ðXX; DÞ ! ðIRd;�Þ in a way that minimizes
the classification error of classifier ~Fout on a specific set of
triples. The building blocks we will use for embedding
construction are simple, 1D embeddings defined using
database objects, according to (3) and (4). By applying (7) to
each such 1D embedding, we obtain a large pool of binary
classifiers. As long as such embeddings preserve at least a
small amount of the structure of the original space, we
expect the corresponding binary classifiers to be more
accurate than a random guess. In other words, we expect the
classifiers associated with 1D embeddings to behave as weak
classifiers [6].

Based on the above considerations, and using the
correspondence we have established between embeddings
and classifiers, we reduce the problem of embedding
optimization to the problem of optimizing a weighted linear
combination of binary weak classifiers. Naturally, this is

exactly the problem that boosting methods [6], [55] have been

designed to solve. In our embedding construction algorithm,

we have chosen to use the AdaBoost method [6].

Algorithm 1. The AdaBoost algorithm. This description is
largely copied from that in [6].
input: ðo1; y1Þ; . . . ; ðo�; y�Þ; oi 2 G; yi 2 f�1; 1g.
output: Strong classifier H : G ! IR.
Initialize wi;1 ¼ 1

� , for i ¼ 1; . . . ; �.
for training round j ¼ 1; . . . ; J : do

1. Train weak learner using training weights wi;j and
obtain weak classifier hj : G ! IR and a correspond-
ing weight �j 2 IR.

2. Set training weights wi;jþ1 for the next round as
follows:

wi;jþ1 ¼
wi;j expð��jyihjðoiÞÞ

zj
: ð10Þ

where zj is a normalization factor (chosen so thatP�
i¼1 wi;jþ1 ¼ 1).

end
Output the final classifier:

HðxÞ ¼
PJ

j¼1 �jhjðxÞ: ð11Þ

The AdaBoost algorithm is shown in Algorithm 1. The

inputs to AdaBoost are a set of objects oi, together with their

corresponding class labels yi, which are equal either to�1 or

to 1. In our problem, each oi corresponds to a triple of objects

of XX. The goal in AdaBoost is to construct a strong classifier

that achieves much higher accuracy than the individual weak

classifiers.
The BoostMap algorithm is an adaptation of AdaBoost to

the problem of embedding construction. In order to apply
AdaBoost to our problem, we need to perform some
preprocessing before invoking AdaBoost, we need to
specify how to implement the first step of the AdaBoost
main loop and, finally, we need to convert the output
classifier of AdaBoost into an embedding. We now describe
in detail how to perform each of these steps.

6.1 Inputs and Preprocessing

The inputs to the BoostMap algorithm are the following:

. A database UU of objects in some space XX with
distance measure D.

. A positive integer kmax specifying the maximum
number of nearest neighbors we will be interested in
retrieving using the resulting embedding.

. A set CC � UU of candidate reference and pivot objects.
Elements of CC will be used to define 1D embeddings.

. A set IL � UU of training objects. Elements of IL will
be used to form training triples, that is, the oi’s used
by AdaBoost.

. Matrices of distances. From each X1 2 CC to each
X2 2 CC, from each X1 2 CC to each X2 2 IL, and from
each X1 2 IL to each X2 2 IL.

In addition, we need to specify parameters that control
the runtime of the training algorithm:

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 5

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

. The size � of the set G of training triples.

. The number � of weak classifiers to consider at each
training round.

. The number � of classifiers selected after a quick
scan at each training round j. These selected
classifiers are then evaluated more thoroughly in
order to choose hj and �j.

. A parameter Zmax that will be used for deciding
when to stop the training algorithm.

The role of these parameters will be fully explained in the

description of the training algorithm.

The goal of the training algorithm is to construct an

embedding Fout in a way that minimizes the classification

error of the corresponding classifier ~Fout on TTkmax
, the set of

triples defined in (9). During the course of the algorithm, we

need to keep in memory a matrix of distances from every

object in CC to every object included in any of the training

triples. To reduce the memory requirements, we choose

training triples not from the entire database, but from a

smaller set IL � UU.

Given IL, we define k0 � dkmax ILj j
UUj j e. Then, we choose

� training triples oi ¼ ðXi;Ai; BiÞ randomly, subject to the

constraints that 1) Ai is a k0-nearest neighbor of Xi in

IL� fXig, and 2) Ai and Bi are not equally far from Xi. We

set class label yi of oi � 1 or 1, according to the proximity order

P ðXi;Ai; BiÞ, as defined in (6). The formula we use for setting

k0 makes the training triple selection process approximate

sampling from TTkmax
, under the constraint that eachXi,Ai and

Bi must be an element of IL. If Ai is one of the k0-nearest

neighbors ofXi in IL,Ai is likely to be one of the kmax-nearest

neighbors ofXi in UU (unless jILj < UUj j
kmax

, in which case,Ai is just

likely to be one of the UUj j
ILj j nearest neighbors of Xi).

Now, we proceed to specify how to implement the
training algorithm, that is, how to implement Step 1 of the
main loop of AdaBoost, as shown in Algorithm 1. We
should note that, in Algorithm 1, Step 2 of the main loop is
fully specified.

6.2 Choosing the Next Weak Classifier and Weight

At training round j, given training weights wi;j, the weak
learner is called to provide us with a weak classifier hj and a
weight �j. In BoostMap, the weak learner simply evaluates a
large number of weak classifiers and finds the best classifier
and best weight for that classifier. Each weak classifier is a
classifier ~Fi, whereFi is a 1D embedding. In [56], [57], [58], we
have described alternative families of weak classifiers that
can be used within the context of this algorithm.

As described in [6], the function Zjðh; �Þ gives a measure
of how useful it would be to choose hj ¼ h and �j ¼ � at
training round j

Zjðh; �Þ ¼
X�
i¼1

ðwi;j expð��yihðXi;Ai; BiÞÞÞ: ð12Þ

The full details of the significance of Zj can be found in [6].
Here, it suffices to say that if Zjð ~F; �Þ < 1, then choosing
hj ¼ h and �j ¼ � is overall beneficial and is expected to
reduce the training error. Overall, lower values of Zjð ~F; �Þ
are preferable to higher values.

Finding the optimal � for a given classifier h and
computing the Zj value attained using that optimal � are

very common operations in our algorithm, so we define
specific notation

Aminðh; j; lÞ ¼ argmin�2½l;1ÞZjðh; �Þ; ð13Þ

Zminðh; j; lÞ ¼ min
�2½l;1Þ

Zjðh; �Þ: ð14Þ

In the above equations, j specifies the training round, and l

specifies the smallest value we allow for �. Function

Aminðh; j; lÞ returns the � that minimizes Zjðh; �Þ, subject to

the constraint that � � l. We compute Amin following the

optimization method described in [6]. Argument l will be

used to ensure that no classifier has a negative weight. In

Section 6.3, we will use classifier weights to define a

weighted L1 distance measure � in IRd, and non-negative

weights ensure that � is a metric.

The number of classifiers to evaluate is specified by

parameter � of the algorithm. As an implementation choice,

half of these � classifiers are reference-object embeddings and

half are line-projection embeddings. A very simple way of

implementing Step 1 from Algorithm 1 is to 1) define � weak

classifiers by picking randomly �=2 reference objects and

�=2 pairs of pivot objects from CC and 2) set hj and �j to be the

classifierh (among those �weak classifiers) and weight� that

minimize Zjðh; �Þ.
The implementation that we actually use in our experi-

ments differs from the above description in two ways. The

first difference is that, before selecting a new weak classifier,

we check whether removing or modifying the weight of an

already selected weak classifier would improve the strong

classifier. Removals and weight modifications that improve

the strong classifier are given preference because they do not

increase the complexity of the strong classifier.

The second difference is that, instead of evaluating every

weak classifier h using function Zmin, we first evaluate all

weak classifiers using an alternative measure, the training

error �jðhÞ

�jðhÞ ¼
X�
i¼1

wi;j
yi � signðhðXi;Ai; BiÞÞ

2
: ð15Þ

Using function �j, we select the best � classifiers (given

parameter �), and then among those � classifiers, we choose

the best one using functionZmin. FunctionZmin takes an order

of magnitude more time to compute than the training error

because computing Zmin involves searching for the optimal

weight Amin, whereas computing the training error does not

involve such a search. The step of selecting a smaller set of

classifiers based on training error can be skipped if the

runtime of the training algorithm is not a concern.

Our implementation of Step 1 of the AdaBoost algorithm

is shown in Algorithm 2. In that algorithm, we denote with

Hj the classifier assembled by AdaBoost after j training

rounds, so that Hj ¼
Pj

i¼1 �ihi. It is possible that some

weak classifier occurs multiple times in Hj, that is, that

there exist i, g < j such that hi ¼ hg. Without loss of

generality, we assume that we also have an alternative

representation of Hj�1 as a weighted linear combination of

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

unique weak classifiers. We denote that representation as

Hj�1 ¼
PKj�1

i¼1 �0i;j�1h
0
i;j�1.

Note that, as specified in Step 26 of Algorithm 2, the

algorithm terminates when we select a new weak classifier hj
for which Zjðhj; �jÞ � Zmax, meaning that we have failed to

find a weak classifier that would be more than marginally

beneficial to add to the strong classifier.

Algorithm 2. The steps of the BoostMap training algorithm.

Steps 3–23 implement Step 1 of the AdaBoost algorithm, as

shown in Algorithm 1.

1 Initialize training weights wi;1 1
� , for i ¼ 1; . . . ; �,

2 Initialize H0 0, j 1.

3 z minc¼1;...;Kj�1
Zjðh0c;j�1;��0c;j�1Þ.

4 if z < 1 then

/*Remove an already selected weak classifier,

by adding its negation.*/

5 g argminc¼1;...;Kj�1
Zjðh0c;j�1;��c;j�1p:Þ.

6 hj h0g;j�1.

7 �j ¼ ��0g;j�1:

8 Go to Step 27.

9 end

10 z minc¼1;...;Kj�1
Zminðh0c;j�1; j;��0c;j�1Þ.

11 if z < Zmax, then

/*Modify the weight of an already selected

weak classifier. The third argument of Zmin

ensures that the new weight �0g;j of h
0
g

is non-negative.*/

12 g argminc¼1;...;Kj�1
Zminðh0c;j�1; j;��0c;j�1Þ.

13 hj h0g;j�1.

14 �j Aminðh0g; j;��0g;j�1Þ.
15 Go to Step 27.
16 end

17 IFj1 fFX1 ; . . . ; FX�=2g, where X1; . . . ; X�=2 are random

elements of the set CC of candidate objects.

18 IFj2 fFXi;1;Xi;2 ji ¼ 1; . . . ; �=2g, where

X1;1; X1;2; . . . ; X�=2;1; X�=2;2 are random objects of CC.

19 IFj IFj1 [IFj2.

20 ~IFJ f ~F j F 2 IFjg.
21 HHj set of the � classifiers h in ~IFJ with the smallest

�jðhÞ.
22 hj argminh2HHj

Zminðh; j; 0Þ.
23 �j Aminðhj; j; 0Þ.
24 if Zjðhj; �jÞ � Zmax then

25 return Hj�1

26 end

27 zj Zjðhj; �jÞ.
28 Set weights wi;jþ1 for training round jþ 1 using (10).
29 j jþ 1.

30 Go to Step 3.

6.3 Defining an Embedding and a Distance Measure

The output of AdaBoost is a strong classifier H. Without
loss of generality, we can write H as H ¼

Pd
c¼1 �

0
c

~Fc, where
each ~Fc is associated with a unique 1D embedding Fc.
Classifier H has been trained to estimate, for triples of
objects ðX;A;BÞ, if X is closer to A or to B. However, our

final goal is to construct not a classifier but an embedding.
To achieve that, we use Proposition 1 to convert H into an
embedding Fout : XX! IRd and a distance measure �

FoutðxÞ ¼ ðF1ðxÞ; . . . ; FdðxÞÞ; ð16Þ

�ððu1; . . . ; udÞ; ðv1; . . . ; vdÞÞ ¼
Xd
c¼1

ð�0cjuc � vcjÞ: ð17Þ

� is a weighted Manhattan ðL1Þ distance measure. � is a
metric, because the training algorithm ensured that all �c’s
are non-negative, and thus, we can apply to the resulting
embedding any additional indexing, clustering, and visua-
lization tools that are available for L1 metric spaces.

7 PROPERTIES OF BOOSTMAP EMBEDDINGS

In this section, we take a closer look at some properties of
the proposed algorithm for constructing embeddings, and
of the resulting embeddings.

7.1 Contractiveness

An embedding F : ðXX; DÞ ! ðIRd;�Þ is contractive if for any
X1, X2 2 XX it holds that �F ðX1; X2Þ � DðX1; X2Þ. As ex-
plained in [5], when an embedding is contractive, then filter-
and-refine retrieval can guarantee retrieval of the true nearest
neighbors.

The output embedding Fout : ðXX; DÞ ! ðIRd;�Þ, con-
structed as described in (16) and (17), can be made contractive
by dividing �ðFoutðX1Þ; FoutðX2ÞÞwith a normalization term,
provided that D is metric. First, we address the case where
Fout contains no line projection embeddings

Proposition 2. Let X1, X2 2 XX. Suppose that, in (17), �0i > 0

for all i and suppose that D is metric. If all dimensions of Fout

are reference-object embeddings, then it holds that

1Pd
i¼1 �

0
i

�ðFoutðX1Þ; FoutðX2ÞÞ � DðX1; X2Þ: ð18Þ

Proof. If each dimension of Fout, is a reference-object
embedding, then Fout can be represented as Fout ¼
ðFP1 ; . . . ; FPdÞ, where d is the dimensionality of Fout, and
Pi are reference objects. We will denote FoutðX1Þ as
ðx1;1; . . . ; x1;dÞ and FoutðX2Þ as ðx2;1; . . . ; x2;dÞ. First, based
on the triangle inequality, we can easily see that

jx1;i � x2;ij ¼ jDðX1; PiÞ �DðX2; PiÞj � DðX1; X2Þ: ð19Þ

Using this observation, we can complete the proof

1Pd
i¼1 �

0
i

�F ðX1; X2Þ ¼
1Pd
i¼1 �

0
i

Xd
i¼1

ð�0ijx1;i � x2;ijÞ

� 1Pd
i¼1 �

0
i

Xd
i¼1

ð�0iDðX1; X2ÞÞ

¼ 1Pd
i¼1 �

0
i

DðX1; X2Þ
Xd
i¼1

�0i

¼ DðX1; X2Þ
ut

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 7

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

If Fi, the ith dimension of Fout is a line-projection
embedding, then it is shown in [5] that jFiðX1Þ � FiðX2Þj �
3DðX1; X2Þ. Therefore, if we divide �ðX1; X2Þ by 3

Pd
i¼1 �

0
i,

then Fout is contractive even in the case where some of its
dimensions are line-projection embeddings.

We should point out that the distance measures D used
in the experiments are nonmetric and, thus, the resulting
embeddings are not contractive. No existing domain-
independent embedding method [9], [37], [40] is contractive
in nonmetric spaces. Consequently, none of these methods,
including BoostMap, can guarantee perfect retrieval accu-
racy in nonmetric spaces.

7.2 Complexity

Before we start the training algorithm, we need to compute
three distance matrices: distances between objects in CC,
distances between objects in IL, and distances from objects in
CC to objects in IL. If (as in our experiments) jCCj ¼ jILj, then the
number of distances that we need to precompute is quadratic
to jCCj. During training, at each training round, we evaluate
� weak classifiers by measuring their performance on
� training triples, which takes Oð��Þ time. In contrast,
FastMap [9], SparseMap [37], and MetricMap [40] do not
require training at all. However, we should emphasize that
the cost of training is a one-time preprocessing cost. In many
applications, this cost is acceptable, as long as it results in
better trade-offs between retrieval accuracy and efficiency.

Computing the d-dimensional embeddingFout of an object
takes OðdÞ time and requires measuring between d and
2d exact distances D: one distance for each reference object
embedding in Fout and two distances for each line projection
embedding in Fout. For comparison, the number of distance
evaluations required by other methods to embed an object is
2d for FastMap, d for SparseMap, and dþ 1 for MetricMap. It
follows that, for BoostMap and these other methods, comput-
ing the embeddings of all database objects takesOðdjUUjÞ time,
inserting a new object to the database requires OðdÞ time to
compute its embedding, and computing the d-dimensional
embedding of a query object also takes OðdÞ time.

Comparing, during the filter step, the embedding of the
query to the embeddings of n database objects takes time
OðdnÞ. As d increases, this becomes more expensive.
However, in our experiments, the filter step always takes

negligible time; retrieval time is dominated by the few exact
distance computations we need to perform at the embed-
ding step and the refine step.

8 EXPERIMENTS

In this section, we experimentally evaluate BoostMap by
comparing it to several alternative existing methods for
efficient nearest neighbor retrieval. Experiments are per-
formed in four different domains: hand shape classification
using a database of hand images, offline handwritten digit
recognition using the Modified National Institute of
Standards and Technology (MNIST) database [59], online
handwritten digit recognition using the isolated digits
benchmark (category 1a) of the UNIPEN Train-R01/V07
database [60], and similarity-based retrieval of time series
using a benchmark time series data set [44].

8.1 Data Sets

Here, we provide details about each of the four data sets we
use in the experiments. More detailed descriptions of each
data set can be found at the experiments section in [54].

8.1.1 American Sign Language (ASL) Handshape

Data Set

The ASL handshape data set consists of a database of
80,640 synthetic images of hands, generated using the Poser 5
software [61], and a query set of 710 real images of hands. All
images display the hand in one of 20 different 3D handshape
configurations (Fig. 1), which are all commonly used in ASL.
For each of the 20 handshapes, we synthetically generate a
total of 4,032 database images that correspond to different
3D orientations of the hand.

The query images are obtained from video sequences of a
native ASL signer either performing individual handshapes
in isolation or signing in ASL. The hand locations were
extracted from those sequences using the method described
in [62]. Accurate localization of the hand in such sequences
remains a very challenging task and hand localization fails in
more than 50 percent of the frames. In these experiments, we
only use frames where the hand is localized correctly. The
query images are obtained from the original frames by
extracting the subwindow corresponding to the hand region.
Database and query images are normalized so that the
minimum enclosing circle of the hand region has radius 120.

The distance measure used to compare images is the
chamfer distance [7], [63], which operates on edge images.
The synthetic images generated by Poser can be rendered
directly as edge images. For the query images, we simply
apply the Canny edge detector [64]. On an AMD Athlon
2 GHz processor, we can compute on the average 715 chamfer
distances per second. Nearest neighbor classification via
brute-force search takes about 112 seconds per query and
yields an error rate of 67 percent.

8.1.2 Offline Handwritten Digit Data Set (MNIST)

The MNIST data set of handwritten digits [59] contains
60,000 database images and 10,000 query images. Each
image is a 28	 28 image displaying an isolated digit
between 0 and 9 (Fig. 2). The distance measure used is
shape context matching [8], which achieves a nearest
neighbor classification error of 0.54 percent. As can be seen

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 1. The 20 handshapes used in the ASL handshape data set.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

on the MNIST Web site (http://yann.lecun.com/exdb/
mnist/), shape context matching outperforms in accuracy a
large number of other methods on the MNIST data set.
Using our own optimized C++ implementation and
running on an AMD Opteron 2.2 GHz processor, we can
compute on the average 15 shape context distances per
second. Using brute-force search for nearest neighbor
classification averages approximately 60 minutes per query.

8.1.3 Online Handwritten Digit Data Set (UNIPEN)

We use the isolated digits benchmark (category 1a) of the

UNIPEN Train-R01/V07 database [60], which consists of

15,953 digit examples. The digits have been randomly

divided into 10,630 database objects and 5,323 query objects.

Each digit is preprocessed exactly, as described in [48]. Each

extracted point is represented by three features: 2D normal-

ized location ð~xi; ~yiÞ and the tangent angle �i of the line

segment between ð~xi; ~yiÞ and ð~xi�1; ~yi�1Þ. The distance

measure D used for classification is dynamic time warping

[2]. On an AMD Athlon 2.0 GHz processor, we can compute

on the average 890 dynamic time warping (DTW) distances

per second. Therefore, nearest neighbor classification using

brute-force search takes about 12 seconds per query and

yields an error rate of 1.90 percent.

8.1.4 Time Series Data Set

We use the time series benchmark data set described in [44].

To generate that data set, various real data sets were used as

seeds, and multiple copies of every real sequence were

constructed by incorporating small variations in the original

patterns, as well as additions of random compression and

decompression in time. As described in [54], we randomly

split the data into 1,000 queries and 31,818 database objects.

Distances in this data set are measured using constrained

dynamic time warping with a warping length � ¼ 10 percent

of the total length of the shortest sequence [44]. On the

average, on an AMD Opteron 2.2 GHz processor, we can

compute 60 distances per second. Consequently, brute-force

retrieval of the nearest neighbors of a query takes on average

530 seconds.

8.2 Evaluation Methodology and Parameter
Choices

In our experiments, retrieval time is dominated by the

number of exact distance computations that we perform.

Other operations, such as the filter step of filter-and-refine

retrieval, take negligible time (less than 0.1 seconds/query

for all computations that are not part of measuring an exact

distance). Consequently, we mainly report processing time

using the number of exact distances we need to measure per

query.

In evaluating k-nearest neighbor retrieval accuracy, we

consider the retrieval result for a query to be correct if

and only if all k-nearest neighbors of the query have been

correctly identified. For example, if we measure accuracy on

50-nearest neighbor retrieval for a particular method and a

set of parameters, 95 percent retrieval accuracy means that

for 95 percent of the queries, we successfully identify all

50 nearest neighbors.
For filter-and-refine retrieval, we must specify two

parameters: d, which is the dimensionality of the embedding,

and p, which specifies the number of exact distances to

measure during the refine step. In all experiments, we use the

d and p values that maximize efficiency given a specific

setting for retrieval accuracy. As an example, if we want to

measure the efficiency of FastMap for 50-nearest neighbor

retrieval with 95 percent accuracy, we first find, for each d, the

smallest value of p (denoted as pd) that is needed to obtain the

desired accuracy when a d-dimensional FastMap embedding

is used during the filter step. If values d and pd are specified,

then the number of exact distance computations per query is

also specified. This way, for each d, we compute the number

of exact distance computations per query needed in order to

attain the desired 95 percent accuracy. After computing that

number for each d, we simply select the d that minimizes the

number of exact distance computations, and we report results

for that d (and its associated pd).
With respect to the additional free parameters that are

needed by the BoostMap algorithm (see Section 6.1), here,

we provide the default values, used in all experiments

unless noted otherwise:

. kmax ¼ 50.

. jCCj ¼ jILj ¼ 5; 000, except for the UNIPEN data set,
which is the smallest among our four data sets. For
UNIPEN experiments, jCCj ¼ jILj ¼ 3; 500 due to the
relatively small size of the database.

. � ¼ 300; 000.

. � ¼ 2; 000.

. � ¼ 200.

. Zmax ¼ 0:9999.

8.3 Methods Used for Comparison Purposes

We compare BoostMap to several alternative methods for

nearest neighbor retrieval:

. FastMap [9]. We construct FastMap embeddings by

running the FastMap algorithm on a subset of the

database, containing 5,000 objects (3,500 objects for

the UNIPEN data set). The subset used for each data
set is the set CC used for BoostMap.

. Random reference objects (RRO). We construct a

multidimensional Lipschitz embedding as a con-

catenation of multiple 1D embeddings, where each

1D embedding is obtained by choosing a random

reference object P from the database.

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 9

Fig. 2. Example images from the MNIST data set of handwritten digits.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

. Random line projections (RLP). We construct a

multidimensional embedding as a concatenation of

multiple 1D embeddings, each of which is defined by

choosing two random database objectsX1,X2 as pivot
objects.

. VP-trees [10]. VP-trees rely on the triangle inequality
to achieve efficient retrieval while always finding the
true nearest neighbors. Since the distance measures in
our experiments are nonmetric, using a method
similar in [65], we modify the search algorithm so that
it guarantees correct retrieval results if the triangle
inequality is satisfied up to a constant �. Larger values
of � lead to more accurate results and slower retrieval
time. We should note that in some experiments, we use
values of � that are smaller than 1 in order to compare
VP-trees with other methods at ultraefficient settings.
VP-trees were not designed to be used with such small
� values (which lead to unreasonably aggressive
pruning), and this is reflected in the corresponding

results, where VP-trees are much less accurate than the
other methods when � < 1.

. Brute-force search. For nearest neighbor classifica-
tion only, we provide results obtained using brute-

force search on random subsets of the database

versus the number of objects in those subsets.

8.4 Evaluation on the Nearest Neighbor Retrieval

To measure retrieval accuracy, we first find the true k-nearest

neighbors of each query in each data set using brute-force

search. Then, we compare the results obtained by each

method with the correct results obtained from brute-force

search. In Figs. 3, 4, 5, and 6, we compare BoostMap to

alternative methods on the task ofk-nearest neighbor retrieval

on all four data sets. BoostMap clearly outperforms all other

methods in three of the four data sets, namely, the ASL

handshape, MNIST, and UNIPEN data sets. The performance

difference between BoostMap and the other methods varies

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 3. Comparing performance on the ASL handshape data set, using the chamfer distance as the exact distance measure. Each graph shows the
number of exact distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for
90 percent, 95 percent, and 99 percent of the 710 query objects.

Fig. 4. Comparing performance on the MNIST data set, using shape context matching as the exact distance measure. Each graph shows the
number of exact distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for
90 percent, 95 percent, and 99 percent of the 10,000 query objects.

Fig. 5. Comparing performance on the UNIPEN data set, using DTW as the exact distance measure. Each graph shows the number of exact
distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90 percent,
95 percent, and 99 percent of the 5,323 query objects.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

depending on the setting, that is, the desired accuracy and the

number of nearest neighbors to retrieve. In many settings,

BoostMap achieves retrieval times that are from 50 percent to

over 300 percent faster than the times attained by the best

alternative method. The time series data set is the only data set

where BoostMap is not the best-performing method. In that

data set, using RRO provides results that are roughly as good

as those of BoostMap for 90 percent and 95 percent retrieval

accuracy and results that are better than those of BoostMap for

99 percent retrieval accuracy.

The results on the time series data set illustrate one

limitation of the training algorithm: Since we use AdaBoost

as the underlying training method, the classifier that is

constructed is not a globally optimal classifier. AdaBoost is

essentially a greedy optimization method that finds locally

optimal solutions. It is possible in some cases to obtain a

better classifier using random choices. In [57], we describe

improvements that allow the BoostMap method to outper-

form RRO on the time series data set.

We have also performed experiments to evaluate the

sensitivity of performance to the settings of the various

parameters (namely, �, jCCj, kmax, �, and �) used in the training

algorithm. The results are shown in Figs. 7 and 8. These

experiments were performed on the ASL handshape data set

and the UNIPEN data set. In each experiment, we varied only

one parameter, whereas the other parameters were set as

specified in Section 8.2 with the following exceptions:

. In the experiments where � does not vary, we set
� ¼ 100; 000 to speed up the training algorithm.

. In all cases,� is not allowed to be smaller than2jCCj, and
� is not allowed to be smaller than �. Consequently, �

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 11

Fig. 7. Comparing performance of BoostMap embeddings on the ASL handshape data set and the UNIPEN data set, when varying parameters of the
training algorithm. Each graph shows, for different parameter settings, the number of exact distance computations needed to achieve correct
retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90 percent of the query objects. The parameters that vary are � (the number of training
triples), jCCj (the number of candidate reference and pivot objects), � (the number of weak classifiers considered at each training round), and � (the
number of weak classifiers for which (13) and (14) are evaluated at each training round). In each graph, the parameters that do not vary are set as
described in the text.

Fig. 6. Comparing performance on the time series database, using constrained DTW as the exact distance measure. Each graph shows the number
of exact distance computations needed by each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90 percent,
95 percent, and 99 percent of the 1,000 query objects.

Fig. 8. Comparing performance on the ASL handshape data set and the
UNIPEN data set, when varying parameter kmax of the training algorithm.
Each graph shows, for five different values of kmax, the number of exact
distance computations needed to achieve correct retrieval of all
k nearest neighbors (k ranging from 1 to 50) for 90 percent of the
query objects. With jUUj, we denote the size of the database.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

and � are set to 2,000 and 200, respectively, when
possible,andotherwise, theyareset to thehighest legal
value, given the settings of the other parameters.

As one would expect, decreasing the number � of training

triples, while speeding up the offline training algorithm,

leads to worse online performance. Similarly, online perfor-

mance deteriorates by decreasing the size of CC, the set of

candidate reference objects and pivot subjects. As a reminder,

in all experiments, the size of IL (the set of objects from which

we form training triples) is set equal to jCCj. Decreasing � leads

to worse performance on the handshape data set but has very

small impact on the UNIPEN data set, at least within the

ranges tested (50 to 2,000). A similar result is obtained for

parameter �: Decreasing the value of � leads to somewhat

worse performance on the handshape data set but makes very

little difference on the UNIPEN data set.

Fig. 8 displays the effects of varying parameter kmax,

which is used in choosing training triples. Parameter kmax

represents the maximum number of nearest neighbors that

we are interested in retrieving. As we see in Fig. 8, actual

performance does not vary significantly as we shift the value

of kmax within a fairly large range: between 50 and 600 for the

handshape data set and between 3 and 600 for the UNIPEN

data set. We also display results obtained by setting

kmax ¼ jUUj, where jUUj is the size of the database. With that

setting, training triples are chosen entirely randomly from

the set of all possible triples formed by objects of IL, as was

done in the first implementation of the BoostMap algorithm

[43]. The results show that, in general, using kmax � jUUj
leads to better performance. The only exception is the result

for kmax ¼ 16 for the handshape data set, which produces

performance worse than using kmax ¼ jUUj.

8.5 Evaluation on the Nearest Neighbor
Classification

Here, we evaluate the performance of the proposed methods

on the task of efficient nearest neighbor classification.

Evaluation is performed on all data sets except for the time

series data set, which does not contain class label information.

In each data set, we compare BoostMap with the following

methods: RRO, RLP, FastMap, and VP-trees. We should note

that, in order for VP-trees to attain the efficiency of other

methods (that is, fewer than 1,000 exact distance computa-

tions per query), we had to set parameter � to values smaller

than 1, as discussed in Section 8.3. Consequently, the results

obtained using VP-trees in these experiments were much

worse than those of the other methods.

8.5.1 Classification Experiments on the ASL Handshape

Data Set

Classification on the ASL handshape data set is challenging.
Unlike typical handshape recognition settings, which
assume a fixed 3D orientation for each handshape, in this
data set, the orientation is arbitrary. Our goal is to identify
for each query image which of the 20 handshapes it
displays. Given the vast difference in appearance between
different 3D orientations of the same shape, it is not
surprising that k-nearest neighbor classification using
brute-force search has a very high error rate of 67 percent.
That rate is achieved using k ¼ 1.

Fig. 9 displays the error rate attained using several
different methods. Overall, BoostMap produces better results
than the other methods. At the cost of 100 exact distance
computations, BoostMap attains an error rate of 67 percent,
which essentially equals the error rate of brute-force search.
Therefore, using BoostMap, we obtain a speed up factor of
800 over brute-force search, with no losses in classification
accuracy. In terms of actual runtime, using BoostMap, we can
classify about 3.5 queries per second, whereas it takes
112 seconds on the average to classify a query using brute-
force search.

For a cost of 100 exact distance computations, RRO
achieves an error rate of 69 percent, whereas RLP and
FastMap achieve error rates of 70 percent. RRO and RLP
achieve an error rate of 67 percent at 400 distances and
500 distances, respectively, whereas for FastMap, the error
rate is 69 percent at 500 distances. We also note that VP-trees
and brute-force search perform significantly worse than the
other methods when allowing no more than 500 distant
computations per query on the average.

Overall, it is fair to say that the accuracy we obtain on the
ASL handshape data set is not at the level where it can be
useful for actual applications. We should emphasize that this
low accuracy is not caused by BoostMap or the other
embedding methods, it is inherent in the choice of the
underlying distance measure, that is, the chamfer distance,

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

Fig. 9. Comparing classification accuracy versus efficiency trade-offs achieved by the BoostMap, RRO, RLP, and FastMap methods on (a) the ASL
handshape data set, (b) the MNIST data set, and (c) the UNIPEN data set. For the handshape data set, we also show results using VP-trees and
using brute-force search on random subsets of the database of different size. Results for VP-trees and brute-force search are discussed in the text
for the other two data sets.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

which produces a high error rate even when using brute-force

search. Reliable handshape classification of hand images

displaying arbitrary 3D orientations is still an open problem.

8.5.2 Classification Experiments on the MNIST Data Set

As a reminder, exact k-nearest neighbor classification using
shape context matching achieves an error rate of 0.54 percent
with classification time per object equal to about 60 minutes.
That rate is achieved using k ¼ 8. Fig. 9 displays the error rate
attained using filter-and-refine retrieval with the BoostMap,
RRO, RLP, and FastMap methods. BoostMap achieves an
error rate of 0.58 percent at a cost of 800 exact distance
computations. At the same cost of 800 exact distance
computations, the RRO, RLP, and FastMap methods obtain
error rates of 0.66 percent, 0.75 percent, and 1.17 percent,
respectively.

In [47], a discriminative classifier is trained using shape
context features and achieves an error rate of 2.55 percent on
the MNIST data set. Overall, the cost of classifying a test object
using the method in [47] is the cost of evaluating 50 exact
distances. At the same cost of 50 exact distances per query,
BoostMap achieves a classification error of 1.50 percent. We
should point out that in [66], we describe a method for further
improving the performance of BoostMap (0.83 percent error
rate at the cost of 50 distances per query) by combining
multiple BoostMap embeddings in a cascade structure.

Two additional methods that can be used for speeding up
the nearest neighbor classification are the well-known
condensed nearest neighbor (CNN) method [51] and VP-trees
[10]. Both methods achieve significantly worse trade-offs
between accuracy and efficiency compared to our method.
CNN requires 1,060 exact distances and yields an error rate of
2.40 percent. With VP-trees, the error rate is 0.63 percent, but
an average of 21,152 exact distances need to be measured per
query. At 800 exact distances per query, the error rate is a very
high 24.8 percent.

Table 1 summarizes the results of all the different
methods.

8.5.3 Classification Experiments on the UNIPEN

Data Set

Fig. 9 displays the error rate attained using filter-and-refine

retrieval with the BoostMap, RRO, RLP, and FastMap

methods on the UNIPEN data set. Exact k-nearest neighbor

classification usingbrute-force search achieves an error rate of

1.90 percent on this data set. That rate is achieved using k ¼ 1.

BoostMap achieves an error rate of 1.95 percent at a cost of

75 exact distance computations and an error rate of 1.90 at

a cost of 300 distance computations. At a cost of 300 exact

distance computations, the RRO, RLE, and FastMap methods

obtains error rates of 1.99 percent, 1.97 percent, and

1.97 percent, respectively. As in the other data sets, VP-trees

do not work very well, yielding an error rate of 17 percent.

Overall, BoostMap achieves a 35-fold speedup over brute-

force search, while achieving the same error rate, thus

reducing classification time per query from 12 seconds to

0.34 seconds.
We should note that the Cluster Generative Statistical

Dynamic Time Warping (CSDTW) method [48], which has
been explicitly designed for classifying time series and, in
particular, for online handwritten character recognition,
achieves an error rate of 2.90 percent on the UNIPEN data
set at a cost equivalent to 150 exact computations of DTW
distances. For the same cost, BoostMap attains a significantly
lower error rate of 1.97 percent. Even at a cost of 32 distance
computations per query, BoostMap achieves an error rate of
2.26 percent, which is still lower than that of CSDTW. The
advantage of CSDTW over our method is that it requires
significantly less memory; in our method, we store in memory
the embeddings of all database objects, and this requires
about 1.4 Mbytes for a 32-dimensional embedding.

Table 2 provides a summary of classification results

obtained using different methods, including VP-trees,

different embedding methods, and CSDTW.

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 13

TABLE 1
Speeds and Error Rates Achieved by Different Methods

on the MNIST Data Set

Results using brute-force search were obtained by choosing a random
subset of the database, including as many objects as the number shown
in the “distances per query object” column.

TABLE 2
Speeds and Error Rates Achieved by Different Methods

on the UNIPEN Data Set

To make it easier to compare different methods, for some methods, we
show multiple results, which correspond to different numbers of exact
distance evaluations per query.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

9 DISCUSSION

The foundation of the BoostMap method has been the

correspondence that we established in Section 5 between

embeddings and classifiers: the association of every

embedding with a corresponding classifier, and the proof

that any linear combination of such embedding-based

classifiers naturally corresponds to an embedding and a

distance measure. By treating embeddings as classifiers and

embedding construction as a problem of learning how to

estimate the proximity order of triples of objects, we obtain

an algorithm that directly maximizes the amount of nearest

neighbor structure preserved by the embedding. We

emphasize that the optimization criterion that we use does

not rely on any geometric assumptions and is equally

principled for Euclidean, metric, and nonmetric spaces.

Furthermore, the local nature of our optimization criterion

is in contrast with the global nature of measures such as

stress and distortion, which focus on preservation of all

pairwise distances and are not direct indicators of how well

nearest neighbor structure is preserved.
In the filter-and-refine retrieval framework, embedding-

based similarity rankings are used to select a small number of
candidate nearest neighbors. Since our embedding construc-
tion method directly maximizes the accuracy of these
similarity rankings, fewer candidates need to be evaluated
during the refine step. As evidenced in our experiments,
BoostMap leads to significantly better trade-offs between
retrieval accuracy and efficiency compared to alternative
methods, manytimesattaining 50percent to300percent faster
retrieval time than the best alternative method. Furthermore,
in all data sets, BoostMap led to significant computational
savings over brute-force search, savings that in many settings
were between one and two orders of magnitude.

Our training algorithm relies on sampling sets of candi-
date objects and training objects from the database. This
scheme works as long as the sampled objects are representa-
tive of the distribution of database objects but may fail in cases
where the number of samples is only a small fraction of the
database size, and where the database has a large amount of
local structure. Handling such cases is an interesting topic for
future investigation. Another topic for investigation is
whether embedding quality can improve by using different
variants of boosting such as LogitBoost [55] or FloatBoost [67]
in place of AdaBoost, during embedding construction.

10 CONCLUSION

The main topic of this paper has been embedding-based
nearest neighbor retrieval and classification in spaces with
computationally expensive distance measures. We have
established a correspondence between embeddings and
classifiers that allows us to reduce embedding construction
to the problem of boosting many weak classifiers into a strong
classifier. The proposed embedding construction algorithm is
domain-independent and directly maximizes the amount of
the nearest neighbor structure preserved by the embedding.
Furthermore, embedding optimization does not rely on any
Euclidean or metric properties. The resulting embeddings
outperform alternative methods on several data sets and lead
to speedups of orders of magnitude over brute-force search.

ACKNOWLEDGMENTS

This work was supported by US National Science Founda-

tion grants IIS-0308213, IIS-0329009, and CNS-0202067, and

by US Office of Naval Research grant N00014-03-1-0108.

REFERENCES

[1] T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[2] J.B. Kruskall and M. Liberman, “The Symmetric Time Warping
Algorithm: From Continuous to Discrete,” Time Warps, Addison-
Wesley, 1983.

[3] E. Keogh, “Exact Indexing of Dynamic Time Warping,” Proc. Int’l
Conf. Very Large Data Bases, pp. 406-417, 2002.

[4] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals,” Soviet Physics, vol. 10, no. 8, pp. 707-
710, 1966.

[5] G. Hjaltason and H. Samet, “Properties of Embedding Methods for
Similarity Searching in Metric Spaces,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 25, no. 5, pp. 530-549, May 2003.

[6] R. Schapire and Y. Singer, “Improved Boosting Algorithms Using
Confidence-Rated Predictions,” Machine Learning, vol. 37, no. 3,
pp. 297-336, 1999.

[7] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric
Correspondence and Chamfer Matching: Two New Techniques
for Image Matching,” Proc. Int’l Joint Conf. Artificial Intelligence,
pp. 659-663, 1977.

[8] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.

[9] C. Faloutsos and K.I. Lin, “FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and
Multimedia Datasets,” Proc. ACM Int’l Conf. Management of Data
pp. 163-174, 1995.

[10] P. Yianilos, “Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces,” Proc. ACM-SIAM
Symp. Discrete Algorithms, pp. 311-321, 1993.

[11] C. Böhm, S. Berchtold, and D.A. Keim, “Searching in High-
Dimensional Spaces: Index Structures for Improving the Perfor-
mance of Multimedia Databases,” ACM Computing Surveys,
vol. 33, no. 3, pp. 322-373, 2001.

[12] G.R. Hjaltason and H. Samet, “Index-Driven Similarity Search in
Metric Spaces,” ACM Trans. Database Systems, vol. 28, no. 4,
pp. 517-580, 2003.

[13] D.A. White and R. Jain, “Similarity Indexing: Algorithms and
Performance,” Proc. Storage and Retrieval for Image and Video
Databases, pp. 62-73, 1996.

[14] R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-
Dimensional Spaces,” Proc. Int’l Conf. Very Large Data Bases,
pp. 194-205, 1998.

[15] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The A-
Tree: An Index Structure for High-Dimensional Spaces Using
Relative Approximation,” Proc. Int’l Conf. Very Large Data Bases,
pp. 516-526, 2000.

[16] K. Chakrabarti and S. Mehrotra, “Local Dimensionality Reduction:
A New Approach to Indexing High Dimensional Spaces,” Proc.
Int’l Conf. Very Large Data Bases, pp. 89-100, 2000.

[17] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold, “Cluster-
ing for Approximate Similarity Search in High-Dimensional
Spaces,” IEEE Trans. Knowledge and Data Eng., vol. 14, no. 4,
pp. 792-808, Nov./Dec. 2002.

[18] Ö. Egecioglu and H. Ferhatosmanoglu, “Dimensionality Reduc-
tion and Similarity Distance Computation by Inner Product
Approximations,” Proc. Int’l Conf. Information and Knowledge
Management, pp. 219-226, 2000.

[19] K.V.R. Kanth, D. Agrawal, and A. Singh, “Dimensionality
Reduction for Similarity Searching in Dynamic Databases,” Proc.
ACM Int’l Conf. Management of Data, pp. 166-176, 1998.

[20] R. Weber and K. Böhm, “Trading Quality for Time with Nearest-
Neighbor Search,” Proc. Int’l Conf. Extending Database Technology:
Advances in Database Technology, pp. 21-35, 2000.

[21] N. Koudas, B.C. Ooi, H.T. Shen, and A.K.H. Tung, “LDC:
Enabling Search by Partial Distance in a Hyper-Dimensional
Space,” Proc. IEEE Int’l Conf. Data Eng., pp. 6-17, 2004.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[22] E. Tuncel, H. Ferhatosmanoglu, and K. Rose, “VQ-Index: An
Index Structure for Similarity Searching in Multimedia Data-
bases,” Proc. ACM Multimedia, pp. 543-552, 2002.

[23] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” Proc. Int’l Conf. Very Large Databases,
pp. 518-529, 1999.

[24] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recogniz-
ing Objects in Range Data Using Regional Point Descriptors,” Proc.
European Conf. Computer Vision, vol. 3, pp. 224-237, 2004.

[25] K. Grauman and T.J. Darrell, “Fast Contour Matching Using
Approximate Earth Mover’s Distance,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. I: 220-I: 227, 2004.

[26] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast Pose Estimation
with Parameter-Sensitive Hashing,” Proc. IEEE Int’l Conf. Compu-
ter Vision, pp. 750-757, 2003.

[27] D. Huttenlocher, D. Klanderman, and A. Rucklige, “Comparing
Images Using the Hausdorff Distance,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 15, no. 9, pp. 850-863, Sept. 1993.

[28] H.W. Kuhn, “The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83-87, 1955.

[29] J. Uhlman, “Satisfying General Proximity/Similarity Queries with
Metric Trees,” Information Processing Letters, vol. 40, no. 4, pp. 175-
179, 1991.

[30] T. Bozkaya and Z. Özsoyoglu, “Indexing Large Metric Spaces for
Similarity Search Queries,” ACM Trans. Database Systems, vol. 24,
no. 3, pp. 361-404, 1999.

[31] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. Int’l Conf.
Very Large Data Bases, pp. 426-435, 1997.

[32] C. Traina, Jr., A. Traina, B. Seeger, and C. Faloutsos, “Slim-Trees:
High Performance Metric Trees Minimizing Overlap between
Nodes,” Proc. Seventh Int’l Conf. Extending Database Technology,
pp. 51-65, 2000.

[33] P. Zezula, P. Savino, G. Amato, and F. Rabitti, “Approximate
Similarity Retrieval with M-Trees,” VLDB J., vol. 4, pp. 275-293,
1998.

[34] E. Vidal, “New Formulation and Improvements of the Nearest-
Neighbour Approximating and Eliminating Search Algorithm
(AESA),” Pattern Recognition Letters, vol. 15, no. 1, pp. 1-7, 1994.

[35] L. Micó and E. Vidal, “A New Version of the Nearest-Neighbour
Approximating and Eliminating Search Algorithm (AESA) with
Linear Preprocessing Time and Memory Requirements,” Pattern
Recognition Letters, vol. 15, no. 1, pp. 9-17, 1994.

[36] J. Bourgain, “On Lipschitz Embeddings of Finite Metric Spaces in
Hilbert Space,” Israel J. Math., vol. 52, pp. 46-52, 1985.

[37] G. Hristescu and M. Farach-Colton, “Cluster-Preserving Embed-
ding of Proteins,” Technical Report 99-50, Computer Science
Dept., Rutgers Univ., 1999.

[38] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, pp. 2323-2326, 2000.

[39] J. Tenenbaum, V.D. Silva, and J. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science,
vol. 290, pp. 2319-2323, 2000.

[40] X. Wang, J.T.L. Wang, K.I. Lin, D. Shasha, B.A. Shapiro, and K.
Zhang, “An Index Structure for Data Mining and Clustering,”
Knowledge and Information Systems, vol. 2, no. 2, pp. 161-184, 2000.

[41] F. Young and R. Hamer, Multidimensional Scaling: History, Theory
and Applications. Lawrence Erlbaum Associates, 1987.

[42] N. Linial, E. London, and Y. Rabinovich, “The Geometry of
Graphs and Some of Its Algorithmic Applications,” IEEE Symp.
Foundations of Computer Science, pp. 577-591, 1994.

[43] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, “BoostMap: A
Method for Efficient Approximate Similarity Rankings,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 268-275, 2004.

[44] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh,
“Indexing Multi-Dimensional Time-Series with Support for Multi-
ple Distance Measures,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, pp. 216-225, 2003.

[45] B.-K. Yi, H.V. Jagadish, and C. Faloutsos, “Efficient Retrieval of
Similar Time Sequences under Time Warping,” Proc. IEEE Int’l
Conf. Data Eng., pp. 201-208, 1998.

[46] G. Mori, S. Belongie, and J. Malik, “Shape Contexts Enable
Efficient Retrieval of Similar Shapes,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, vol. 1, pp. 723-730, 2001.

[47] H. Zhang and J. Malik, “Learning a Discriminative Classifier
Using Shape Context Distances,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 1, pp. 242-247, 2003.

[48] C. Bahlmann and H. Burkhardt, “The Writer Independent Online
Handwriting Recognition System Frog on Hand and Cluster
Generative Statistical Dynamic Time Warping,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 3, pp. 299-
310, Mar. 2004.

[49] V.S. Devi and M.N. Murty, “An Incremental Prototype Set
Building Technique,” Pattern Recognition, vol. 35, no. 2, pp. 505-
513, 2002.

[50] G.W. Gates, “The Reduced Nearest Neighbor Rule,” IEEE Trans.
Information Theory, vol. 18, no. 3, pp. 431-433, 1972.

[51] P.E. Hart, “The Condensed Nearest Neighbor Rule,” IEEE Trans.
Information Theory, vol. 14, no. 3, pp. 515-516, 1968.

[52] T. Liu, K. Yang, and A.W. Moore, “The IOC Algorithm: Efficient
Many-Class Non-Parametric Classification for High-Dimensional
Data,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 629-634, 2004.

[53] T. Liu, A.W. Moore, and A.G. Gray, “Efficient Exact k-nn and
Nonparametric Classification in High Dimensions,” Neural In-
formation Processing Systems, 2003.

[54] V. Athitsos, “Learning Embeddings for Indexing, Retrieval and
Classification, with Applications to Object and Shape Recognition
in Image Databases,” PhD dissertation, Boston Univ., 2006.

[55] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic
Regression: A Statistical View of Boosting,” Annals of Statistics,
vol. 28, no. 2, pp. 337-374, 2000.

[56] J. Alon, V. Athitsos, and S. Sclaroff, “Online and Offline Character
Recognition Using Alignment to Prototypes,” Proc. Int’l Conf.
Document Analysis and Recognition, pp. 839-843, 2005.

[57] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff,
“Query-Sensitive Embeddings,” Proc. ACM Int’l Conf. Management
of Data, pp. 706-717, 2005.

[58] V. Athitsos and S. Sclaroff, “Boosting Nearest Neighbor Classifiers
for Multiclass Recognition,” Proc. IEEE Workshop Learning in
Computer Vision and Pattern Recognition, 2005.

[59] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

[60] I. Guyon, L. Schomaker, and R. Plamondon, “Unipen Project of
On-Line Data Exchange and Recognizer Benchmarks,” Proc. 12th
Int’l Conf. Pattern Recognition, pp. 29-33, 1994.

[61] Poser 5 Reference Manual. Curious Labs, Aug. 2002.
[62] Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2D Hand

Tracking in Video Sequences,” Proc. IEEE Workshop Applications of
Computer Vision, pp. 250-256, 2005.

[63] V. Athitsos and S. Sclaroff, “Estimating Hand Pose from a
Cluttered Image,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 432-439, 2003.

[64] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679-698, 1986.

[65] S.C. Sahinalp, M. Tasan, J. Macker, and Z.M. Özsoyoglu,
“Distance Based Indexing for String Proximity Search,” Proc.
IEEE Int’l Conf. Data Eng., pp. 125-136, 2003.

[66] V. Athitsos, J. Alon, and S. Sclaroff, “Efficient Nearest Neighbor
Classification Using a Cascade of Approximate Similarity Mea-
sures,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 486-493, 2005.

[67] S.Z. Li and Z.Q. Zhang, “Floatboost Learning and Statistical Face
Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 9, pp. 1112-1123, Sept. 2004.

ATHITSOS ET AL.: BOOSTMAP: AN EMBEDDING METHOD FOR EFFICIENT NEAREST NEIGHBOR RETRIEVAL 15

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Vassilis Athitsos received the BS degree in
mathematics and the MS degree in computer
science from the University of Chicago in 1995
and 1997, respectively, and the PhD degree in
computer science from Boston University in
2006. In 2005-2006, he worked as a researcher
at Siemens Corporate Research, developing
methods for database-guided medical image
analysis. In 2006-2007, he was a postdoctoral
research associate in the Computer Science

Department at Boston University. Since August 2007, he has been an
assistant professor at the Computer Science and Engineering Depart-
ment at the University of Texas at Arlington. His research interests
include computer vision, machine learning, and data mining. His recent
work has focused on efficient similarity-based retrieval, human motion
analysis and recognition, shape modeling and detection, and medical
image analysis. He is a member of the IEEE.

Jonathan Alon received the BSc degree in
physics and computer science from Tel Aviv
University in 1994 and the MA and PhD degrees
in computer science from Boston University in
2001 and 2006. In September 2006, he joined
the image-processing group at NegevTech as
an algorithms engineer, developing methods for
visual inspection for the semiconductor industry.
His research interests include computer vision
and pattern recognition. His published work is in

the areas of gesture recognition, efficient database retrieval, and
character recognition. He is a member of the IEEE.

Stan Sclaroff is an associate professor of
computer science at Boston University, where
he founded the Image and Video Computing
research group. He received the PhD degree
from the Massachusetts Institute of Technology
(MIT) in 1995. In 1996, he received a US Office of
Naval Research (ONR) Young Investigator
Award and a US National Science Foundation
(NSF) Faculty Early Career Development Award.
He has coauthored numerous scholarly publica-

tions in the areas of tracking, video-based analysis of human motion and
gesture, surveillance, deformable shape matching and recognition, as
well as image/video database indexing, retrieval and data mining
methods. He has served on the technical program committees of more
than 60 computer vision conferences and workshops. He has served as
an associate editor for IEEE Transactions on Pattern Analysis, 2000-
2004 and 2006-present. He is a senior member of the IEEE.

George Kollios received the diploma in elec-
trical and computer engineering in 1995 from the
National Technical University of Athens, Greece,
and the MSc and PhD degrees in computer
science from the Polytechnic University, New
York, in 1998 and 2000, respectively. He is
currently an associate professor in the Computer
Science Department at Boston University in
Massachusetts. His research interests include
spatio-temporal indexing, data mining, multime-

dia indexing, and sensor and stream data management. He is the
recipient of a US National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Award and his research is supported by
the US NSF and other agencies. He also received a Best Paper Award in
IEEE International Conference on Data Engineering (ICDE) 2004 for his
paper with title “Approximate Aggregation Techniques for Sensor
Databases.” He was the general chair for the International Symposium
on Large Spatio-Temporal Databases (SSTD) 2007, a co-organizer of the
US NSF Information and Data Management (IDM) workshop for 2004,
and he served as the local arrangements chair for the International
Conference on Scientific and Statistical Database Management
(SSDBM) 2003 and IEEE International Conference on Data Engineering
(ICDE) 2004. He is an associate editor for the IEEE Transactions on
Knowledge and Data Engineering. He has served in many technical
program committees for top database and data mining conferences
including Very Large Databases Conference (VLDB), International
Conference on Knowledge Discovery and Data Mining (ACM SIGKDD),
IEEE International Conference on Data Engineering (ICDE), International
Conference on Machine Learning (ICML), and IEEE International
Conference on Data Mining (ICDM) and has been a reviewer for top
journals including IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), ACM Transactions on Database Systems (TODS), Very
Large Databases (VLDB) Journal, and Information Systems. He is a
member of the ACM, the IEEE, and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 1, JANUARY 2008

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

