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Estimating Optimal Parameters for
MRF Stereo from a Single Image Pair

Li Zhang, Member, IEEE Computer Society, and Steven M. Seitz, Member, IEEE

Abstract—This paper presents a novel approach for estimating the parameters for MRF-based stereo algorithms. This approach is
based on a new formulation of stereo as a maximum a posterior (MAP) problem in which both a disparity map and MRF parameters are
estimated from the stereo pair itself. We present an iterative algorithm for the MAP estimation that alternates between estimating the
parameters while fixing the disparity map and estimating the disparity map while fixing the parameters. The estimated parameters include
robust truncation thresholds for both data and neighborhood terms, as well as a regularization weight. The regularization weight can be
either a constant for the whole image or spatially-varying, depending on local intensity gradients. In the latter case, the weights for
intensity gradients are also estimated. Our approach works as a wrapper for existing stereo algorithms based on graph cuts or belief
propagation, automatically tuning their parameters to improve performance without requiring the stereo code to be modified. Experiments
demonstrate that our approach moves a baseline belief propagation stereo algorithm up six slots in the Middlebury rankings.

Index Terms—Stereo matching, parameter setting, Markov Random Fields.

1 INTRODUCTION

STEREO matching has been one of the core challenges in
computer vision for decades. See [1], [2] for an excellent
survey and evaluation of the current state of the art. Many of
the current best-performing techniques are based on Markov
Random Field (MRF) formulations [3] that balance a data
matching term with a regularization term and are solved
using graph cuts [4], [5] or belief propagation [6], [7]. (For a
comparative study of these MRF methods and source code,
see [8].) Virtually all of these techniques require users to set
hand-tuned parameters, e.g., regularization weight, by trial
and error on a set of images. In this paper, we argue that
different stereo pairs require different parameter settings for
optimal performance and we seek an automated method to
estimate those parameters for each pair of images.

To see the effect of parameter setting on stereo matching,
we estimated disparity maps, D = {d;}, for Tsukuba and
Map image pairs [2] by minimizing the following energy

S U@)+A D Vidi,dy), (1)

il (i-9)eg

where 7 is the set of pixels, G is the set of graph edges
connecting adjacent pixels, U measures similarity between
matching pixels, and V is a regularization term that
encourages neighboring pixels to have similar disparities.
We minimize (1) using an existing MRF solver [7] and plot the
error rate of the disparity estimation versus ground truth as a
function of ), as shown in Fig. 1. The figure shows that, for the
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same algorithm, the optimal regularization weight X varies
across different stereo pairs. As shown later in the paper, A
and other MRF parameters, e.g., robust truncation thresh-
olds, are related to the statistics of image noise and variation
of scene structures and can all be estimated from a single
stereo pair. Furthermore, we also show thatneighboring pixel
intensity difference [4] can be conveniently incorporated into
our formulation to encourage the disparity discontinuities to
be aligned with intensity edges and the relevant parameters
can be estimated automatically.

To estimate the MRF parameters, we interpret them using
a probabilistic model that reformulates stereo matching as a
maximum a posterior (MAP) problem for both the disparity
map and the MRF parameters. Under this formulation, we
develop an alternating optimization algorithm that computes
both the disparity map and the parameters. Although the
derivation of the algorithm has numerous equations and is
somewhat involved, the resulting technique itself is quite
simple (summarized as a recipe in Fig. 5). Specifically, our
technique serves as a wrapper for existing MRF stereo
matching algorithms that solves for the optimal parameters
for each image pair. Our routine uses the output of the stereo
matcher to update the parameter values, which are in turn fed
back into the stereo matching procedure—it can interface
with many stereo implementations without modification.
Therefore, we emphasize that the goal of this paper is not a
specific stereo algorithm that performs better than existing
algorithms. Rather, we introduce a methodology that boosts
the performance of MRF-based stereo algorithms. In parti-
cular, we demonstrate our method on both graph cuts with
the Potts model and belief propagation with truncated
absolute difference.

The rest of the paper is organized as follows: After
reviewing related work in Section 2, we first give the intuition
for our parameter estimation technique in Section 3. We then
formulate the idea as an MAP problem in Section 4, propose
an optimization algorithm in Section 5, and extend it to
estimate the weights that depend on intensity gradients in
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Fig. 1. Some stereo pairs require more regularization than others, as
shown in the above graphs that plot error as a function of regularization
weight A. The parameters shown above (dotted vertical lines) were
computed automatically using our algorithm.

Section 7. Finally, we show experimental results in Section 8
and discuss future research directions in Section 9.

2 PREviIOus WORK

An early stereo method that requires no parameter setting is
the adaptive window method of Kanade and Okutomi [9],
which depends on properinitialization for good performance.
The only prior work thataddressed the problem of computing
MRF parameters (aka hyperparameters) for stereo matching is
by Chengand Caelli[10]. While theirapproachis animportant
first step, they relied on a restricted MRF model from the
image restoration literature [11] and did not support key
features of the leading stereo algorithms, e.g., occlusion
modeling and gradient-dependent regularization. (Other
MRF models in the image restoration literature, e.g., [12],
[13], [14], also have this limitation when applied to stereo
matching.) In contrast, we designed our approach to support
these features in order to interface with many of the leading
stereo algorithms. Toward this end, we show that the Potts
model and the truncated absolute distance commonly used in
leading stereo algorithms [4], [7] correspond to a binary
distribution and a mixture of an exponential distribution and
an outlier process, respectively. These distributions can be
extended to incorporate static cues, e.g., intensity edges, to
furtherimprove stereomatching performance. Weusehidden
variables to model occlusions and other outliers and apply
expectation maximization (EM) to infer the hidden variables
and estimate the mixture models. Because we use EM instead
of MCMC, our approach is also simpler and more efficient
compared to [10]. Finally, we benchmark our approach on the
Middlebury database [2] and show that it dramatically
improves the performance of a leading algorithm with the
recommended hand-tuned parameters (as opposed to showing
improvement over randomly chosen parameters [10]).

In this work, we use insights from statistical learning to
improve vision algorithms. Our work is therefore related to
Freeman et al. [15] who formulate super-resolution as MRF
inference based on training images and apply belief
propagation to obtain good results. Similarly, with training
images, Freeman and Torralba [16] infer 3D scene structure
from a single image. Unlike Freeman et al.’s approach, our
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Fig. 2. lllustration of the truncated absolute difference metric for the
(a) pixel similarity measure and (b) regularization term in (2).

method doesn’t require training images—MRF parameters
are estimated from the stereo pair itself.

3 INTUITION

In this section, we describe our basic idea for parameter
estimation in MRF-based stereo. In the energy function in
(1), U measures similarity between matching pixels and V'
encourages neighboring pixels to have similar disparities.
Many functional forms have been proposed for U and V,
including squared differences, absolute differences, and
other robust metrics [1]. In this paper, we first focus on
setting parameters for truncated absolute difference (TAD)
because it is a popular choice of top performing stereo
algorithms [4], [7] and it has several good properties. It is
derived from total variation [17], thus preserving disconti-
nuities. It can be efficiently computed via distance trans-
form [7] in belief propagation. Also, it satisfies the metric
property required by the traditional a-expansion algorithm
in graph cut [4]. More recent graph cut algorithms relax this
assumption, though.1 Specifically,

U(d;) =
V(di, d;) =

where e(d;) = I(xi,y;) — J(z; — d;, y;) is the intensity differ-
ence between matching pixels in the image pair / and J and
o and 7 are truncation thresholds, as illustrated in Fig. 2.
Our method can be used to set parameters for other metrics
as well and we give a derivation for the Potts model later in
this paper.

To best set the parameters o, 7, and A for a stereo pair, we
need to know how well the corresponding pixels in two
images can be matched and how similar the neighboring
disparities are in a statistical sense. However, without
knowing the disparity map, those two questions cannot be
answered. This dilemma explains why existing MRF-based
stereo algorithms require users to set parameters manually.

To resolve this dilemma, let’s first consider the case in
which we know the disparity maps. In Figs. 3a and 3c, using
the ground truth disparities from the Middlebury Web site
[2], we plot the histograms of pixel matching errors and
neighboring disparity differences for the Tsukuba stereo
pair. In Figs. 3b and 3d, we show the same histograms in
log-scale. Since the log-scale histograms are not straight
lines or quadratic curves, it means that the probability of
pixel matching errors and that of neighboring disparity

min(|e(d;)[, ),

mln(|dl — dj|,’7'), (2)

1. Bokyov et al. introduced the a-expansion algorithm in [4], which
requires that V' is a metric. Kolmogorov and Zabih [18] generalized V to a
slightly larger class. More recently, Rother et al. [19] generalized it still
further to allow some hard constraints. In addition, they provided a way to
use the expansion algorithm for an arbitrary choice of V' at the price of no
longer guaranteeing that the expansion move is optimal (they show,
however, that it will not increase the energy).
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Fig. 3. Histograms of errors between corresponding pixels in two images in (a) linear and (b) log scale. Superimposed on the plots is the fitted
mixture model. (c) and (d) show histograms and models for neighboring disparity difference.

differences are not simple exponential or Gaussian dis-
tributions. The heavy tail in the matching error histogram is
due to occlusion and violation of brightness constancy; the
heavy tail in the neighboring disparity difference histogram
is due to disparity discontinuities. Those histograms can be
approximated by two segments, a mixture of an exponential
distribution and a uniform outlier process. Figs. 3a and 3c
show the probability distribution of fitted mixture models
overlaid on the histograms. The fit is quite accurate: The
errors are around 1073, only noticeable in the log-scale
graphs in Figs. 3b and 3d. From the shapes of the fitted
distributions, we can recover the optimal set of MRF
parameters, as we describe later in the paper.

In practice, however, ground truth disparities are un-
known and we propose an iterative algorithm that alternates
between estimating MRF parameters from the current
histograms and estimating disparities using the current
MRF parameters. The algorithm iterates until the estimated
disparity map yields histograms that agree with the MRF
parameters or a fixed number of iterations is reached. In the
next section, we present the details of this method by casting
the problem in a probabilistic framework.

4 A ProBABILISTIC MIXTURE MODEL FOR STEREO

In this section, we present the mixture models for the
histograms of pixel matching errors and neighboring
disparity differences and formulate stereo matching prob-
abilistically, based on those mixture models.

4.1 Matching Likelihood

Given an image pair I and J and the disparity map D, we
define the mixture model for pixel matching error as
follows. We assign each pixel ¢ in I a hidden binary random
variable v;, indicating whether the corresponding scene
point is visible in .J.% Let e(d;) = I(xs,yi) — J(z; — di, y;). We
define the mixture model for e(d;) as

L
Ple(di)|di, i) = { ] _ 3)
N Vi = 07

where 1 is the decay rate for the exponential distribution,
le(d;)| takes discrete values, {0,1,---,N—1}, and (=
1:;’;71(’:5\)) is a normalization factor. We define the mixture

probability

2. For brevity, we refer to ~; as a visibility variable, but it can also account
for differences in brightness, e.g., due to specularity.

Plyi=1) =a, (4)

where « is the fraction of pixels in I that are also visible in

J. Summing over ; gives the marginal matching likelihood

P(e(dy)|d;) = aCe el 4 (1 —a)=. (5)

2l

4.2 Disparity Prior

Define Ad, = d; — d; to be the disparity difference on the
graph edge ¢ connecting adjacent pixels ¢ and j. Similarly,
as for pixel matching probability, we assign each edge g a
binary random variable §,, indicating whether the edge is
continuous. We define the mixture model for Ad, as

e vAdl g —1
P(Ady|0,) = {” oo, (©)
where v is the decay rate, |Ady| € {0,1,---,L —1}, and
= 1]:;’;7‘;(_72). We define the mixture probability
P9, =1) =3, (7)

where (§ is the fraction of continuous edges in I. The
marginal distribution is

P(Ady) = fne"2% 1+ (1 - 5) (®)

S

4.3 Stereo as a MAP Problem
Now, we formulate stereo matching as a MAP problem
based on the two defined mixture distributions. Given an
image pair, I and J, our probabilistic model consists of a
disparity function D = {d;} over I and two sets of random
variables I" = {v;} and © = {6,} for pixel visibility and edge
connectivity, respectively.’

We seek to estimate D, «, 11, 8, and v, given I and J, by
maximizing
P(I7 J7 D|a7 /‘1‘7 ﬂ? V)P(a’ /’1/7 ﬂ? V)

P(I,J)

S8 P(I7 J? D|O/7 N? /67 V)?

P(D,a,p, B,v|1,J) = (9)

where the prior on (a, p, 5, v) is assumed to be uniform. To

compute P(I,J, D|a, u, 3,v), we first factor it as

by assuming that / and J are independent of the disparity
prior parameters 8 and v and that D is independent of

3. This model is called “three coupled MRF’s” in [6].
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matching likelihood parameters a and pi.. Then, we compute
P(I,J|D,a, ) and P(D|B,v) by marginalizing over visibi-
lity variables I and continuity variables O, respectively, as
follows:

P(I,J|D,a, ) HP
which assumes P(I'|D,a) = P(T'|a), ignoring the depen-
dence of visibility on geometry for computational conve-
nience. This assumption allows us to evaluate the matching
likelihood by comparing pixel intensities without checking
the global visibility, a simplification that is shared by many
stereo algorithms. Similarly,

P(D|B,v)

i)di, a; ), (11)

HP (Ad,|8,v), (12)

which assumes independence between Ad,, also for
computational convenience. The independence assump-
tions in (11) and (12) allow us to efficiently estimate
parameters «, i, 3, and v, using the Expectation Maximiza-
tion algorithm, as shown in Section 5.

Putting (11) and (12) together, we obtain

P(D, e, p, B,v|1,J)
Dd;, o 1) HP (Ady|B,v).

ocHP

(13)

P(1,J|D,ov,p) P(D|Byv)

Given disparity map D, we can estimate o and p by
maximizing the marginal data likelihood P(I, J|D, o, 1) and
we can estimate § and v by maximizing the marginal prior
distribution P(D|3,v). Also, we can estimate D by
maximizing the likelihood and the prior jointly. Next, we
propose an alternating optimization algorithm for this
maximization and relate the probabilistic model parameters
(o, i, B,v) to (o,7,A) in (1) and (2).

5 AN ALTERNATING OPTIMIZATION

In this section, we present an alternating algorithm to
maximize (13). In (13), given D, maximizing P(I, J|D, «, i)
leads to an estimate of («, 11). This maximization is equivalent
to fitting the mixture model of (3) to the histogram of pixel
matching errors in Fig. 3a, and the EM algorithm is well-
suited for this type of model fitting. Similiarly, we can also
use the EM algorithm to estimate (5,v) by maximizing
P(D|B,v). From («, i, 3,v), we then compute the optimal
MREF parameters (o, 7, A), which in turn are used to update D.

5.1 Estimating g and v Given D

Given D, to estimate the parameters 5 and v using the
EM algorithm, we first compute

L = max{|Ad,y|} + 1, (14)
9

where L is the number of possible neighboring disparity

differences from 0 to max,{|Ady|}. Then, we compute the

conditional probability of 6, as

def ﬂneilj‘Ad"l

= P#,=1|A = 1
wg (6 ‘ dg,,87 ) ﬁn@iumd”“f‘%} ( 5)
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Fig. 4. (a) A graph for (18) for L = 16. (b) An illustration of (24) (solid
curve) as an upper bound for (23) (dotted curve) for (a,b,c) = (1,2,1).

Finally, we estimate 8 and v by maximizing the expected
log-probability Ejy [log P(Ady,0,|3,v)], computed as
Ey,[log P(Ady, 0,6, v)]
= w,log P(Ady, 0, = 1|3,v)
g

+ (1 — wg) log P(Adg,ey — 0|ﬂ7 l/) (]_6)
= 2 wul1o8(An) —vady)) + (1 - =}

1
wy) log

By setting the partial derivatives of (16) with respect to 8 and
v to be zero, we obtain the following estimation of 5 and v.

1
ﬂ:@;“{qa

where |G| is the number of edges in G and v is the solution of
the equation

(17)

> wylAdy|

=2 ng : (18)

1 L
e —1 elv—1

Let f(v;L) = 5 — e“’ 7 be the left-hand side of (18). f
monotonically decreases from £5 to 0 over [0, 00), as shown
in Fig. 4a. When L is large, the second term in f(v; L), ﬁ,
is negligible and the equation has a closed form solution

log( + 1), where y is the right-hand side of (18). When
L is small we start from v =1, and refine v using the
Newton-Raphson method.

5.2 Estimating « and . Given D
The EM algorithm can also be used to estimate o and p.
Given D, we first compute

N = max{e(d;)} + 1, (19)
where N is the number of possible pixel matching errors
from 0 to max;{e(d;)}. Then, we can estimate o and p in the
same way as we estimate § and v using (15), (17), and (18)

with the following variable replacement:

(67 v,n,L,g,G, Ady) -

5.3 Estimating D Given «, i, 8, and v
In this section, we describe how the estimated values of o,
i, 3, and v are used for stereo matching. Given «, 1, 5, and
v, we wish to maximize (13) by minimizing

(o, 1, ¢, N, i, L, e(d;)). (20)
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v = _IOgP(D7Qf,'U,,/8,V‘I,J)
21
= Zpd(dﬁavﬂ)+pr<Adg;ﬁvl/)v ( )
i g
where
o ety L 1= @
pa(di; o, p) = —log | ae t—~ )
(22)

pp(di; B,v) = —log (ﬁne’”m““' + #) :
Equation (21) can be minimized directly using existing
techniques. For example, Sun et al. [6] use belief propaga-

tion to minimize a form of (21).

5.3.1 From Mixture Model to Regularized Energy
Although (21) can be optimized directly, it is not in a form
that existing efficient MRF solvers [4], [7] require. Recall
that our objective is to interface with and boost the
performance of existing stereo algorithms and we therefore
want to convert (21) to the form of (1) and (2). We notice
that a function of the form

h(z;a,b,c) = —log(aexp(—b|z|) + c) (23)

is tightly upper bounded by
h(z;r,s,t) = min(s|z|,t) + 7, (24)
where s = m t = log(*t¢), and r = —log(a + ¢), as shown

in Fig. 4b. Therefore, minimizing (21) can also be approxi-
mately achieved by minimizing

U =" min(sqle(d;)|,ta) + Y _ min(s,|Ady|,t,) = C,  (25)
i g
where
ad CYCN
= tg =log|( 1
Yalri-ag °g< ! >
By ( ﬁnL)
sy=—tt ot =log(1+-—— 26
O TERCOF: 5 20
C= \I|log(a<+1_Ta) + 19 log(ﬂn—l—#).
To further simplify the problem, let a:i—‘;, T :%, and
A =2, and define
me le(di)|, o +)\Zmln(|Ad l, 7). (27)

U’ differs from ¥ by an affine transform, which does not
affect the estimation of D. Equation (27) is the objective
function used in [4], [7] for stereo matching.

Our iterative algorithm is summarized in Fig. 5. We
typically start with o =3 =10.5, p =v =1.0, N =255, and
set L be the maximum disparity plus 1, although robust
convergence is observed with various initial values, as
shown in Section 8. STEREO-MATCHING could be any
stereo algorithm that works with (27).

ESTIMATING OPTIMAL PARAMETERS FOR MRF STEREO FROM A SINGLE IMAGE PAIR 5

Initialize (v, 1, N, 8, v, L), and iterate

— Compute sg4, 14, sp, and t,, using Eq. (26)
—Seto="4,7="2and A\ =2

— Compute D by STEREO-MATCHING with Eq. (27)
— Update L., and v by iterating EM Egs. (14,15,17,18)
— Update N,a, and p by iterating EM Egs. (19,15,17,18)

with the variable replacement defined in Eq. (20)

Until convergence or a fixed number of iterations.

Fig. 5. Algorithm for estimating stereo matching parameters.

Although we develop our method based on mixture
distributions that correspond to a truncated absolute differ-
ence metric, we emphasize that our method is general and can
be applied to other metrics as well by modeling the matching
likelihood and/or disparity prior with other types of
distributions. For example, notice that, if |z| is replaced by
2?in (23) and (24), (24) is still a good upper bound for (23). This
suggests that, if we use a mixture of Gaussian (instead of
exponential) distribution and uniform outlier to model pixel
matching errors, we can have a truncated quadratic metric for
the data term (with certain technical modifications in the EM
fitting steps). In Section 6, we replace the mixture distribution
for neighboring disparity differences with a binary distribu-
tion and transform our algorithm in Fig. 5 to handle the Potts
model as a disparity prior.

6 PARAMETER SETTING FOR THE PoTtTs MODEL

To set parameters for the Potts model, we assume the
neighboring disparity differences have a binary distribu-
tion, defined as:

Ad, =
P(Ad,) = {ﬁ’ 9 =0

Ad, # 0. (28)

1- ﬁ ’
This binary distribution is simpler than the mixture distribu-
tion in (8), assumed for the truncated absolute difference
measure. Given the disparity field D = {d,}, the maximum
likelihood estimation for parameter [ is simply

[{Ad, = 0}
gl

which is the percentage of neighboring pixels that have the
same disparity values. This constitutes one step of our
alternating optimization method.

For the other step, given the parameter (3, the disparity
field D is estimated by minimizing (21) with p, computed as
follows: p,(Ady; 5) = —log(P(Ad,|3)) with P(Ady|5) de-
fined as in (28). To connect p, to the Potts model, we rewrite
P(Ad,|B) using the delta notation, 6(-), as

P(Ad,y) = (1= 0)(1 = 6(Ady)).

B = (29)

po(Ady) + (30)
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Using (30), we have

pp(Ady; B) = —6(Ady)log 8 — (1 — 6(Ady)) log(1 — B)

— (1= 8(Ad)) + 10g%7 (31)
where
sp:loglfﬁ. (32)

Notice that p,(Ady; ) in this form differs from the Potts
model only by a constant log}, which does not affect the
optimization. Therefore, our parameter estimation method in
Fig.5, developed for the truncated absolute difference metric,
also applies to the Potts model, with the following modifica-
tions: Use (29) to estimate (3 instead of the EM equations (14),
(15), (17), and (18); use (32) to estimate s, instead of (26);
ignore t, and .

7 INTENSITY GRADIENT CUES

Recent stereo algorithms use static cues, such as color
segments [6], [20] and intensity edges [21], [22], to improve
performance. Here, we show that neighboring pixel
intensity difference [4] can be conveniently incorporated
into our formulation to encourage the disparity disconti-
nuities to be aligned with intensity edges and the relevant
weighting parameters can be estimated automatically.

Define Al, to be the intensity difference between the two
pixels connected by a graph edge g. To relate Al, to the
continuity of the disparity map, we treat A/, as a random
variable and define a corresponding mixture distribution.
We require the mixture distribution of A, to share the
same hidden variable 6, of Ad,. Specifically,

ge AL 9 =1,
P(AIgWg) = { 1 eg -0,

K>

(33)

where  is the decay rate,* |AI| € {0,1,---,K — 1}, and
&= 1]:(:{’;7% This model has the following property: If a
graph edge is continuous, both the color and the disparity
differences are encouraged to be small; if a graph edge is
discontinuous, the color and disparity differences are
unconstrained. The corresponding marginal distribution is

P(AL, Ad,) = Bene (AHIALD 4 (1 — g) (34)

1
KL’
Given I, Al, and J, our goal is to recover D, «, i, 3, v,
and , by maximizing
P(D,a,u, B,k v|I,AIJ)

x HP(e(d,;)|d,¢, a,p) [[ P(AL, AdyB, 5, v) . (35)

P(IJ|D.a,p) P(AIDI|B k)

The alternating algorithm in Section 5 can still be applied
with a minor change. The estimation of o and y is the same
as before. The estimation of 3, k, and v can be done as
follows. Initially, we set K = max,{AI,}+ 1. For each

4. The exponential part of this distribution is inspired by [23], in which a
Laplacian distribution is used to model derivative filter responses of natural
images.

iteration, we first update L as in (14). Then, we compute
the condition probability of ¢, as

at fene(ALLAG)
g —(K|AL|+v|Ad, 1-3°
ﬂgne (K|AL|+v]Ady)) + L

(36)

Finally, we update 3 and v using (17) and (18), respectively,
and update ~ also using (18) with the following variable
replacement: (v, L, Ady) — (k, K, Al).

After estimating (o, p, 8,v, k), we estimate D by mini-
mizing (21) with p, depending on Al,. Specifically,

ppldis AL, B, 5, v) = —log (ﬂfne’“'“"e’”md"‘ + %) (37)
Accordingly, s, and ¢, also depend on Al,.

—K|AL)| K LeF1AL|
5y = e T tpzlog(lﬂfn—e’) (38)
ﬂgne*""mlﬂ +ﬁ 1-p

In (38), s, approaches 0 in proportion to e *4%/ when A7, is
large; s, approaches —4— when Al is near 0. Therefore, the

H‘Kms,;
regularization weight A = varies over the image: large in
:

uniform areas and small across color edges.

8 EXPERIMENTAL RESULTS

We implemented the EM algorithm to estimate the
parameters for two different MRF stereo algorithms, in
particular, graph cuts (GC) with the Potts model [4] and
belief propagation (BP) with truncated absolute difference
(TAD) [7]. We first describe our test images and then report
our results using GC, followed by the results using BP.

8.1 Image Selection

The Middlebury Web site [2] is a well-known resource for
benchmarking stereo algorithms. There are currently two
collections of benchmark data sets—an older collection and
a newer one. In Fig. 6, we show the performance evaluation
of the leading stereo algorithms relgorted on the Web site
using the old benchmark collection.” From left to right, the
3D structures of the underlying scenes in these benchmarks
become simpler: Tsukuba (multiple depth layers with
irregular boundaries), Sawtooth (three planes with irregular
boundaries), Venus (four planes with regular boundaries),
and Map (two layers with regular boundaries). Notice that
most algorithms perform well on either complex scenes or
simpler ones, but not both. We believe that this incon-
sistency is partly due to the fact that each algorithm uses the
same set of parameters for all the scenes of different
complexity. The number 1 algorithm [24] in Fig. 6 performs
very well for all the cases, partly because one of its
parameters is automatically adapted for different cases.
Therefore, we decided to mainly use these four image pairs
to test our parameter setting method. The Middlebury Web
site also evaluates algorithms using the new benchmark
collection, which mostly contain complex scene geometry.
There, different algorithms perform much more consis-
tently: The top algorithms tend to give top results across
different data sets. We show that our method can converge
to reasonable parameters for these data sets as well and

5. The overall rank is obtained by sorting the sum of all the individual
ranks, as per personal communication with Daniel Scharstein.
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Algorithm Overall Tsukuba Sawtooth Venus Map
name ranking | all untex. disc. | all untex. disc. | all untex. disc. | all disc.
Sym. BP + occl. 1 2 3 2 1 1 1 4 3 6 1 1
Patch-based 2 1 1 1 5 1 5 2 3 2 8 10
Segm.-based GC 3 6 5 7 6 1 6 1 1 1 28 33
Graph+segm. 4 10 3 9 4 1 3 3 2 3 33 37
GC + mean shift 5 3 9 4 17 11 7 7 9 7 23 29
Segm.+glob.vis. 6 8 10 12 2 1 2 g8 11 14 30 35
Belief prop. 7 4 7 3 14 22 13 1 10 20 22 14
Layered 8 14 17 15 7 1 8 19 29 5 13 13
2-pass DP 9 13 13 14 10 10 14 9 12 13 20 21
Region-Progress. 10 11 11 13 3 1 4 10 16 15 29 36
GC+occl. 11 5 2 5 13 14 17 22 27 11 18 16
MultiCam GC 12 18 23 8 12 1 19 16 19 12 10 12
GC+occl. 13 7 8 6 8 1 9 31 32 4 31 24

Improved Coop. 14 15 14 19

20 17 21 12 13 26 6 7

Adapt. weights 15 12 12 10

18 20 15 13 8 8 27 31

Symbiotic 16 23 22 21 15 15 23 5 5 17 16 18
Disc. pres. 17 17 19 20 19 13 16 21 22 19 11 6
Var. win. 18 21 21 23 21 19 22 17 14 24 4 4
Graph cuts 19 20 18 18 22 11 18 25 26 16 9 8
Reliability-DP 20 9 15 11 16 24 11 27 24 25 17 17
Multiw. cut 21 37 33 38 11 26 12 6 6 18 5 5
Graph cuts 22 19 16 16 9 16 10 24 23 10 35 22
Tree DP 23 16 6 17 25 29 20 15 17 9 26 30
4-State DP 24 31 28 34 24 17 31 14 7 29 7 11
Comp. win. 25 26 26 26 28 25 24 23 20 23 129
Realtime 26 30 31 30 23 23 25 20 18 21 21 27
Cooperative 27 27 27 28 29 33 30 30 30 37 3 2
Relax+occl. 28 35 34 35 27 21 36 18 15 32 14 15
Bay. diff. 29 36 39 24 26 27 26 33 35 31 2 3
Stoch. diff. 30 28 30 32 33 30 27 28 25 34 25 20

Fig. 6. The performance evaluation of the top 30 stereo algorithms on the Middlebury Web site as of 26 February 2006. The complexity of 3D structures
of the underlying scenes in these benchmarks varies significantly, starting from Tsukuba (multiple depth layers with irregular boundaries) on the left to
Map (two layers with regular boundaries) on the right. Most algorithms perform well on either complex scenes or simpler ones, but not both. This
inconsistency is partly due to the fact that each algorithm uses the same set of parameters for all the scenes of different complexity.

discuss how our method may be extended to further
improve algorithm performance on these data sets in
Section 9.

8.2 Results on Graph Cuts with the Potts Model

For the experiments in this section, we used the a-expansion
graph cut stereo matching code [4] with the Potts model as the
neighborhood terms. In all experiments, we alternated
between EM and GC six times. In each alternation, alpha
expansion was applied to all depth layers for three passes in
total. The cost for EM is negligible and the total runtime varies
from 20 to 40 seconds for different stereo pairs.

8.2.1 Convergence

In our first experiment, we tested our algorithm on the four
old Middlebury benchmarks. In Figs. 7 and 8, we show the
disparity maps and corresponding (o, \)° at iterations 1, 2,
4, 6 for the four cases, starting from noisy and over-
smoothed initializations, respectively. As the algorithm
proceeds, the parameters are tuned and the disparity maps
improve. Note that this experiment shows that the solution
is relatively invariant to the initial conditions.

8.2.2 Optimality

To quantify the optimality of the tuned parameters, in our
second experiment, for each case in Experiment 1, we fix ¢
but vary A from 1 to 80 and estimate disparity using the
same GC algorithm. We plot the error as a function of A in

6. Recall that the Potts model has only parameters ¢ and X but no 7.

Fig. 9. The bars indicate our estimated values whose
corresponding error rates are quite close to the minimum
error rates of the graphs in all four benchmarks.

8.3 Results on Belief Propagation with Truncated
Distance

For the experiments in this section, we implemented
belief propagation using distance transforms [7]” as our
baseline stereo matcher. In all experiments, we alternated
between EM and BP six times. In each alternation, BP
was executed for 60 iterations and each iteration takes
about 1 second. The cost for EM is negligible and the
total runtime is about 6 minutes.

8.3.1 Convergence

In our third experiment, we tested our algorithm on the four
old and two new Middlebury benchmarks. In Fig. 10, we
show the disparity maps and corresponding (o, 7,A) at
iterations 1, 2,4, and 6, obtained by using our method without
the intensity gradient cue.® In Fig. 11, we show the disparity
maps and corresponding («, i, 8, v, k) at the same iterations,
using our method with the intensity gradient cue. In both
figures, the initial regularization is weak and the disparity

7. Among the three acceleration techniques proposed in [7], we have
only used the distance transform technique.

8. The initial values in Fig. 10 are not round numbers as in Figs. 7 and 8
because they are converted from the initial values « = 6 = 0.5, p = v = 1.0,
N =255, and L = MAX_DISPARITY + 1. They are slightly different because
MAX_DISPARITY is different for different scenes.
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o =10.00, A = 1.00 o=11.18, A =5.15

o =10.00, A = 1.00 oc=1171,A=5.13

o =10.46,\ = 5.00

o =17.09,A =14.74 0 =16.67,A =14.84

o =23.10,A =23.21 o =23.18, A\ = 23.36

o =16.68, A = 16.29 o =16.71,A = 16.33

riri

L A
o =10.00, A = 1.00 o =15.65,\=5.49 o =67.81,\="70.17 o =66.50,\ = 71.48

Fig. 7. Convergence of our parameter estimation for GC stereo with the Potts model on the four Middlebury benchmarks starting from noisy disparity
maps. The four columns correspond to iterations 1, 2, 4, and 6.

L

o = 10.00, A = 50.00 o =15.98, A = 19.57

o =16.67,\ = 15.03 o =16.72,\ = 14.98

o =10.00, A = 1.00 o =23.10,\ = 28.41 0 =23.19, A =2343 0 =23.19,\=2343

o = 10.00, A = 50.00 o =17.27,A=19.95 o =16.74,\ = 16.38 o =16.74,\ = 16.38

riririni

o =10.00, A = 50.00 0 =66.54, A = 94.65 o =66.08, \ = 72.03 0 =66.27,A="7170

Fig. 8. Convergence of our parameter estimation for GC stereo with the Potts model on the four Middlebury benchmarks starting from oversmoothed
disparity maps. The four columns correspond to iterations 1, 2, 4, and 6.
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“Tsukuba Sawtooth

s
2

2 Vems 1 Map

Disparity error percentage
Disparity error percentage
3

2

Disparity error percentage
s &
Disparity error percentage

3

o

o
2

10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80

jon weight Regularization weight

10 20 30 40 50 60 70 80
Repularizati gt

10 20 30 40 50 60 70 0
Regularization weight gularization weight

Fig. 9. Optimality of our parameter estimation for GC stereo with the Potts model. The four graphs show error rate with respect to ground truth as a
function of regularization weight A while fixing 0. The vertical solid lines are our estimation for \.

o =5.12,7 =16.10
A = 0.065

o=2894,7="7.02
A=0.83

o =17.50,7 = 2.31
A=6.78

o =18.39,7 = 1.64
A=19.49

o =5.12,7 = 16.92
A =0.069

o =16.11,7 = 10.76
A=0.95

o =3443,7 =2.42
A=13.78

o =34.79,7 = 1.73
A = 20.08

o =5.12,7 =16.92
A =0.069

o=1329,7 =11.13
A=0.76

[ ;
o =16.99,7 =12.51
A=0.89

o =512, =18.49
A =0.075

J

o =28.10,7 = 2.65
A=11.14

o =2887,7=1.90
A =15.59

o =60.25,7 = 4.43
A =13.42

o =85.50,7 = 1.87
A=41.71

Fig. 10. Convergence of our parameter estimation for BP stereo with the TAD metric on the four Middlebury benchmarks. The four columns

correspond to iterations 1, 2, 4, and 6.

map is noisy. As the algorithm proceeds, the regularization
increases and the disparity map becomes cleaner.

In our fourth experiment, we repeated Experiment 3, but
with different initial values. We show the initial and final
(0,7, A),including those of Experiment 3, in the top five rows
in the tables in Fig. 12. Despite the variation of scales in initial
parameters, the final parameters are consistent, showing
robust convergence of our algorithm. We also compared the
final disparity maps using the ground truth and showed the
error rate in the last column. The error rates are also
consistent. In addition to trying different initial values, we
also tried starting with the ground truth disparity maps and
estimated the parameters. Then, we estimated the disparity
map while keeping those parameters fixed. The error rates
are shown in the bottom right corner. Both the error rates and
the parameters are close to the results obtained without
knowing ground truth. However, the parameters computed
from ground truth disparities don’t result in disparity maps

with lower error rates. This unintuitive fact is because real
scenes are not perfectly described by our MRF model, as
discussed in Section 9.

8.3.2 Optimality

In our fifth experiment, for each case in Experiment 4, we
fix o and 7 but vary A from 1 to 50 and estimate disparity
using BP. We plot the error as a function of X in Fig. 13. The
verticle dotted lines indicate our estimated values, whose
corresponding error rates are quite close to the minimum
error rates of the graphs in all four benchmarks.

8.3.3 Improvement

In our sixth experiment, we show how our automatic
parameter setting method can improve over choosing fixed
parameters manually. We first run BP with the fixed
parameters suggested in [7] and the result is shown in the
fourth row (“Fixed”) in Fig. 14. We then compare this result
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o =0.94, 1 = 0.31 o =0.96, 1 = 0.22 o =0.96, 1 = 0.21
B =087,y =149 B =098 =333 B =0.98,v =358
=021 =014 =014

| 7_;;.‘_._.“_ -
a=05pu=1 o =0.69, = 0.40 a =097, =0.18 a=0.97414=0.15
f=05v=1 5 =0.86,vr=1.11 5 =0.98,v =247 5 =0.98,v =354
k=1 Kk =0.18 r=0.13 k=0.13

Fig. 11. Convergence of our parameter estimation for BP stereo with the TAD metric on the two new Middlebury benchmarks. The four columns
correspond to iterations 1, 2, 4 and 6. The intensity gradient cue is used in this experiment.

Tsukuba Sawtooth

Initial parameters Final parameters Disparity Initial parameters Final parameters Disparity

o T A o T A error(%) o T A o T A error(%)
5.12 2.60 0.91 1849 | 1.61 | 9.75 2.23 5.12 2.82 093 | 3479 | 1.72 | 20.12 0.97
33.66 | 2.60 942 | 1853 | 1.60 | 9.84 2.26 33.66 | 2.82 9.65 | 3478 | 1.72 | 20.10 0.97
1.11 2.60 0.18 1847 | 1.62 | 9.67 2.15 1.11 2.82 0.19 | 3444 | 1.72 | 20.07 0.99
5.12 16.10 | 0.065 | 1839 | 1.64 | 9.49 2.12 512 | 1692 | 0.069 | 34.79 | 1.73 | 20.08 0.97
5.12 0.59 4.71 18.52 | 1.60 | 9.83 2.24 5.12 0.64 479 | 3478 | 1.72 | 20.08 0.98

Ground truth disparities | 17.44 | 1.44 | 10.83 2.29 Ground truth disparities | 31.72 | 1.59 | 21.62 0.99

Venus Map
Initial parameters Final parameters Disparity Initial parameters Final parameters Disparity
o T A o T A error(%) o T A o T A error(%)

5.12 2.82 093 | 28.88 | 1.85 | 15.82 1.34 5.12 3.15 096 | 86.39 | 1.81 | 43.08 0.20
33.66 | 2.82 9.65 | 28.88 | 1.84 | 15.90 1.33 33.66 | 3.15 9.89 87.01 | 1.81 | 42.98 0.19

1.11 2.82 0.19 | 28.89 | 1.84 | 15.88 1.34 1.11 3.15 0.19 | 8571 | 1.81 | 43.05 0.20
512 | 1692 | 0.069 | 28.87 | 1.90 | 15.59 1.33 5.12 | 18.50 | 0.075 | 85.50 | 1.87 | 41.71 0.18
5.12 0.64 479 | 28.88 | 1.84 | 15.84 1.33 5.12 0.71 4.87 | 86.55 | 1.81 | 43.01 0.20

Ground truth disparities | 26.54 | 1.75 | 15.38 1.42 Ground truth disparities | 60.58 | 1.81 | 46.80 0.19

Fig. 12. Convergence of our parameter estimation for BP stereo with the TAD metric from five different initializations. The last rows use ground truth
disparity maps to estimate parameters and then compute new disparity maps with these estimated parameters.

Tsukuba Sawtooth Venus Map
1 1 1 1
2 10 8 10 2 10 8 10
8 & g g
H § 5 g
E. § 3 5
s & 5 5100
§ § § §
£ E1o° e 0 £
E B & B
10 i
Ato 0 10 20 30 40 50 [ 0 10 20 30 40 50 | 0 10 20 30 40 50 [ 10 0 10 20 30 40 50
Regularization weight Regularization weight Regularization weight Regularization weight

Fig. 13. Optimality of our parameter estimation for BP stereo with TAD metric. The four graphs show error rate with respect to ground truth as a
function of regularization weight A while fixing (o, 7). The vertical dotted lines are our estimation for A.

with the result in the third experiment where we solve for chosen parameters. The reason is that a user exploits the
(0,7, ), shown in the third row (“Adaptive”) in Fig. 14. Our  ground truth or his perception as a reference when setting
adaptive method shows similar results to the fixed para- the parameters, while our algorithm estimates the para-
meters for Sawtooth and Venus, but dramatic improvement meters based on model fitting. When the ground truth is not
on Map. As reported in [6], the Map pair requires different the optimal solution of our model, the estimated disparity
parameter settings than the other three data sets. Our map can deviate from the ground truth. Overall, our
algorithm automatically finds appropriate parameters with- automatic parameter setting technique improves the ranking
out any user intervention. For the Tsukuba data set, theresult ~ of the baseline algorithm by six slots on the Middlebury
is slightly worse than the results with the fixed manually benchmarks.
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Parameter Overall Tsukuba Sawtooth Venus Map
setting ranking all untex. disc. all untex. disc. all untex. disc. all disc.
Adaptive+Grad 9 1.87200.67 14 713 9 | 0.831403223 348 9 | 1.53200.92 12 10.37 21 020 2 220 1
Fixed+Grad 2 14 1.84 18 1.0517 9.87 21 | 0.87140.28 21 578 18 | 1.22 17 1.05 13 13.39 25 020 2 249 3
Adaptive 17 2.12 21 1.36 21 10.76 21 | 0.97 14 0.31 23 6.79 19 | 1.33 18 1.13 14 14.65 28 0.18 2 2.20 1
Fixed 23 1.84 18 1.33 20 10.02 21 | 1.24210.3223 7.18 23 | 1.34 18 1.18 15 15.17 28 0.38 14 347 7
Fixed+Grad 1 36 7.68 37 5.76 33 11.79 21 | 5.92 40 0.30 22 13.12 29 | 6.90 39 3.20 30 14.11 27 | 20.19 41 3541 41

Fig. 14. Performance comparison of fixed and adaptive BP stereo with TAD metric. Fixed: (o, 7, ) = (10, 2,10). Adaptive: estimated (o, 7, ). Fixed +
Grad 1: estimated (a, u, 3,v), fixed k = 1. Fixed + Grad 2: estimated («, i, 3, v), fixed k = 0.01. Adaptive + Grad: estimated (o, p, 5, v, k).

The improvements so far do not include the intensity
gradient cue proposed in Section 7. Now, we consider this
cue. First, we use the estimated values for (a, p, 3, v), but set
& =1 and 0.01, respectively. The results for the two « values
are shown in the fifth row (“Fixed + grad 1”) and the second
row (“Fixed + grad 2”), respectively. x = 1 is apparently too
large and « = 0.01 is better. If we estimate (a,y,3,v, k)
together, as described in Section 7, we get the first row
(“Adaptive + grad”) of Fig. 14. As expected, error rates in
discontinuity regions, shown in the columns under “disc,”
are consistently reduced. Overall, our parameter estimation
technique raises the rank of the baseline algorithm (with
intensity gradient cue) by five slots and the resulting adaptive
algorithm is ranked ninth among all stereo algorithms in the
Middlebury rankings.

9 DISCUSSION

In this paper, we presented a parameter estimation method
for MRF stereo. Our method converges consistently and
significantly improves a baseline stereo algorithm. Our
method works as a wrapper that interfaces with many
stereo algorithms without requiring any changes to those
algorithms. Here, we discuss some ideas for future work.

First, our model gives higher energy to the ground truth
than to the estimated disparity maps [25]. One of the reasons
is that we model visibility photometrically, but not geome-
trically. In other words, we assume visibility variables I are
independent of D. Although this independence assumption
simplifies our computation, it also causes errors in the results.
The same problem is also observed in [26] for computing
optical flow. One topic of future work is to model the
occlusion process more precisely, such as in [24], and estimate
its parameters accordingly.

Second, we use histograms of pixel matching errors and
neighboring disparity differences for a whole image,
assuming the mixture models don’t vary across the image.
This assumption may be valid for the matching errors,
which are largely due to sensor noise, but it may not be
accurate for the disparity maps, which may have spatially
varying smoothness. For example, it is difficult to evaluate
whether the Teddy benchmark is smoother than the Cones
or vice versa, based on the whole image. However, if we
consider image patches of 100 x 100 pixels at different
locations, the answer is much clearer. It is therefore an
interesting problem to devise an MRF stereo model with
spatially varying regularization. As this model will poten-
tially involve many more parameters, automatic parameter
tuning is even more important in this case, compared to the
spatially constant regularization case.

Third, graph cuts and belief propagation have also
shown great promise in other low-level vision problems,
e.g., segmentation [27], [28], matting [29], and optical flow
[26]. Estimating parameters for MRF models in those
problems will help to create more automated vision systems
in a large variety of applications.
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