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Mutual Information for
Lucas-Kanade Tracking (MILK):
An Inverse Compositional Formulation

Nicholas Dowson, Member, IEEE, and
Richard Bowden, Senior Member, IEEE

Abstract—Mutual Information (MI) is popular for registration via function
optimization. This work proposes an inverse compositional formulation of Ml for
Levenberg-Marquardt optimization. This yields a constant Hessian, which may be
precomputed. Speed improvements of 15 percent were obtained, with convergence
accuracies similar those of the standard formulation.

Index Terms—Mutual Information, registration, Newton optimization, tracking.

4

1 INTRODUCTION

AN inverse compositional formulation for aligning a template and
a reference image using mutual information is derived in this paper.
The alignment or registration of a pair of images is an operation
required in many applications such as image mosaicking [16],
simultaneous localization and tracking [6], and multimodal image
alignment [13]. In many applications, numerous registration
operations are required. So, any improvements in the speed have
a large effect on application performance as a whole.

Lucas and Kanade made one of the earliest practical attempts to
efficiently align a template image to a reference image [9], by
minimizing the Sum of Squared Difference similarity function.
Processing was limited by using a Newton-Raphson method to
traverse the space of warp parameters. In Newton-Raphson
optimization, iterative parameter updates to alignment parameters
are obtained by multiplying the Jacobian by the inverse Hessian of
the similarity function. Lucas and Kanade mainly considered
translations, but they demonstrated that any linear transformation
could be used.

Later research considered more complex transforms and
attempted to reformulate the similarity function, allowing pre-
computation of some terms. In particular, Hager and Belhumeur [8]
proposed inverting the roles of the reference and template at a
strategic point in the derivation, and Shum and Szeliski [16]
constructed the warp as a composition of two nested warps. In a
general treatise on Lucas-Kanade (LK) techniques [1], Baker and
Matthews combined these methods to formulate the inverse-
compositional method.

Sum of Squared Differences (SSD) has several advantages as a
similarly function: it is fast, it is simple to implement, it has a wide
basin of convergence (making convergence easy), its gradient is
simple to derive, and it is well understood. SSD’s disadvantages
include limited robustness to noise and variations in lighting
conditions. Its wide basin of convergence can also make the result
ambiguous. However, tracking multiple features and the use of
models of appearance and structure can significantly improve
robustness [5].

Mutual Information (MI) is only slightly more expensive than
SSD to compute and has several advantages. MI tolerates nonlinear
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relationships between the intensities in images and is robust to
noise. MI has a sharp peak, giving a precise result. However, a
starting point near to the solution is required. In the medical image
registration field, MI is now widely used after its concurrent
introduction and popularization by Viola and Wells [20], Stud-
holme et al. [17], and Collignon et al. [4].

Numerous MIimplementations exist [13], but few use an analytic
derivative, limiting the optimization methods that may be used. The
analytic derivative is difficult to obtain because of the nonlinear
flooring functions implicit in the histogramming process used in
calculating MI. Notable exceptions are an analytic derivative of MI
using Partial Volume Interpolation by Maes et al. [10]; and a
derivative for MI using B-spline Parzen windowing by Thevenaz
and Unser [18]. More recently, a general derivation of the four
common types of MI was published by Dowson and Bowden [7].
The availability of a general analytic derivative for MI allows its use
in the so-called Lucas-Kanade (LK) framework. This has implica-
tions to applications in both the computer vision and medical
imaging communities.

The contribution of this work is to develop an inverse
compositional formulation for MI. This uses two techniques: First,
the alignment function is recomposed as a function of a base warp
and a warp variation and, second, the roles of template and
reference image are inverted or exchanged. This is difficult in the
case of MI because the template and reference values are not
separable into two terms. But, with some limited assumptions of
constancy, speed-ups are still obtainable while maintaining the
same accuracy as the conventional forwards-additive approach.
Brooks and Arbel have also explored reformulating functions [3].
However, they use a BFGS optimizer, a bracketing and line-
minimization method. BFGS only requires a Jacobian to be supplied
and iteratively constructs a Hessian during optimization. In
contrast, our approach evaluates a Hessian directly and uses this
in a Levenberg-Marquardt (LM) algorithm, a Newton-type method.
A direct comparison would really be considering two optimization
philosophies rather than two formulations and is hence beyond the
scope of this work.

The remainder of the paper is arranged as follows: After a
background to image alignment in Section 2, the inverse composi-
tional formulation of MI is presented in Section 3. The derivation
obtained is compared to existing methods in terms of convergence
and speed in Section 4 before the conclusions are given in Section 5.

2 BACKGROUND

To begin with a brief formalization of the registration process is
required. Let I, represent a reference image and let I; represent a
template image. The images are functions of 2D coordinate x € IR?.
Some trivial changes to the formalization allow volumetric data IR?
to be represented as well. Since I, and I; are represented as lattices
of values at integral positions for x, interpolation is used to obtain
values at nonintegral x values.

The registration process aims to locate the region in I, that most
resembles I; by minimizing a distance function, f, which measures
the similarity of the two regions. The position of I; relative to I, is
specified by a warp function w with parameters v.

Vieg = arg, min f[1.(w(x, v)), I;(x)]. (1)

The position of greatest similarity is found using an optimization
method. f can be any similarity measure, e.g., SSD or MI. MI
increases with greater similarity, so, to maintain convention, we
minimize negative MI. For convenience and computational effi-
ciency, I, is treated as infinite in extent and sampling to measure f is
always performed within bounds of the defined region of I,.
Regions outside the defined region of I, are defined as 0. Hence, I, is
constant with respect to the warp parameters and computationally
expensive boundary checking is avoided.

Many optimization algorithms exist, but LK methods use a
particular group of these: The so-called Newton-type methods, i.e.,
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Fig. 1. Updates for four Newton-type optimization Methods. (1 is a matrix of ones.)
Although not explicitly indicated, several A values may be tested.

methods which assume locally parabolic topology and ”jump” to the
minimum using gradient mformatlon v+ ) - (v(”)
G (v(k ). Here, H is the Hessian of f ()vz , G is the Jacobian of f, 3
and k indexes the iteration number. Newton methods should be
contrasted with methods that choose a direction, bracket the
minimum, and minimize along the line using Brent’s algorithm [2],
e.g., Powell’s Method or Variable Metric Methods [14]. Bracketing
methods are more stable than Newton methods, but somewhat
slower since more function evaluations are performed.

Minima in tracking and registration problems are frequently
numerous and closely spaced, so the robustness of bracketing yields
little advantage. Speed improvements, on the other hand, make
multiple initializations practical, which can improve performance.

Generally, LK type methods apply Quasi-Newton optimization,
i.e., an approximate Hessian, H, is used. In general, Newton and
Quasi-Newton only perform well when near to the minimum.
Steepest Descent methods, which ignore local curvature and
instead multiply G by a scalar step-size value ), perform better
when further from the minimum. The Levenberg-Marquardt [11]
method combines these two methods for optimal performance. A
summary of these methods is supplied in Fig. 1.

2.1 Lucas-Kanade Framework

The Lucas-Kanade (LK) framework uses the sum of squared
differences function in a forwards-additive formulation to use the
terminology of [1]. In this formulation, a base warp, v, and a warp
variation, Av, are used together to parameterize the relative
positions of I, and I;:

fssp(v+Av) = 2:[1,,.(w(x7 v+ AV)) = (%) (2)

X

A first order Taylor expansion is applied to the function within the
brackets (not to the function as a whole):

2
fosp(v+Av)=>" {1,‘(w(x, v)) + VI, 887‘\"” Av — I,,(x)} . (3

X

where VI, is the gradient of the image I, with respect to its
coordinates. A partial derivative with respect to Av is then obtained:

Assuming a locally parabolic shape and setting the gradient to zero
gives a closed form solution for updating v, which takes the form:
Av = H'G, where

=3 (vr O 00— 1o ), 6)
H= Z(w —) (w ‘2—1") (6)

Of course, a true parabolic surface seldom occurs, so the warp
parameter must be iteratively computed and updated until the
variation in parameters or function values becomes sufficiently
small. The computational cost of each update is O(NxNy) for G
and O(NXN‘%) for H, where Ny is the number of pixels and N, is
the number of warp components.
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The Hessian is denoted with a tilde because of an early hidden
approximation made in the Taylor expansion, which neglects some
of the second order information. A full second order expansion
applied to the the entire fssp function yields the full Hessian:

H*Z wa—WT v18—w+
- " ox " ox

(7)
ow, 1 ow. *w
(1, - 1) [[a (v V15 4 VI"W} }

In a full Newton derivation, (7) would replace (6). Apart from
the second term in H being computationally expensive to compute
O(16NxN?2), it is often marginal compared to the first term,
especially near the minimum and has little effect on convergence.

2.2 The Inverse-Compositional Method

Baker and Matthews presented a reformulation of the SSD distance
function and update method called the inverse compositional
method in [1]. The warp function was recomposed as a function of
two warps w(x, v) and w(x, Av) with the roles of I, and I, inverted:

D (L(wix, Av)) = I(w(x, v)))*. (®)

X

fssp(v, Av) =

Following the steps in Section 2.1, using this formulation yields the
following approximation of the Hessian: H = (VI ‘7“’) (VI1,2). This
depends solely on the template and is therefore constant with
respect to v. In other words, the Hessian may be precomputed,
decreasing the overall complexity of each iterative update to v from

O(NXNE) to O(NxNy), reducing the time to register I, and I;.

3 MUTUAL INFORMATION IN AN LK FRAMEWORK
(MILK)

Mutual Information was originally presented by Shannon [15] as a
measure of the information shared between two signals. This is
calculated using the joint probability distribution function (PDF) of
the intensities (amplitudes) of the two images (signals)

. N (r,t,v)

Jur ;Pn(h t,v)log (pir(ﬁ It v)> ) 9)
where r € [0; N, — 1] € Z and t € [0; Ny — 1] € Z are, respectively,
the range of allowed intensity values in I, and I;. The joint PDF is
estimated from the joint histogram p,, = N 'h,. The marginal
probabilities are simply obtained by summing along one axis of the
PDF, ie., p, =>,pn and p, = Y py. As discussed in [7], several
methods to measure MI exist, with the primary variation being how
the image is sampled and the histogram is populated. But, in all
cases, (9) is used.

The membership function of the histogram, 1), illustrates the
relationship between p and v more clearly than (9)

- Zw[r

For this work, the in-Parzen windowing formulation of MI was used,
where the window function is a B-spline: ¢ = (3,(-). This formula-
tion, originally proposed by Thevenaz and Unser [18], individually
convolves each intensity sample with the Parzen window before the
information loss associated with binning occurs. This is important
because interpolated intensities can take noninteger values, the
fractional part of which is usually thrown away. The result is a
piecewise constant function as v varies, for which many bracketing
and Newton-type optimization methods do not perform well.
Unlike the standard-sampling approach, where v(¢) is top-hat
function, where 1 is 1 for 0 < ¢ < 1 and 0 otherwise, or the Post-
Parzen windowing approach, where the histogram is convolved
with a Parzen window after construction, the cost function for

pr(r,t,v) w(x,v))] - Y[t — I(x)]. (10)
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in-Parzen windowing is smooth. This improves convergence,
especially at positions close to the global maximum. In this work, a
third order B-spline window was used.

The Jacobian of Ml is found by applying the product and chain
rules and some simplifications [7] to obtain a Jacobian and a Hessian:

o-ghn()

H— {aprtl Opri (L _ l) 4 82[{# log <[ﬁ) }
L ov ov \pu pr ov? Dr
The derivatives of ¢ are easily calculated from the calculus of
B-splines [19] since 0, B, (¢) = B,_1(e +3) — By_1(c — 3). The second
derivative is obtained in a similar manner.

The last term in (12) is usually neglected because it is expensive
to obtain and does not affect convergence overly once the solution
is near the local minimum. This is the analog of neglecting the
second order terms for SSD in (7).

(11)

(12)

3.1 Inverse-Compositional MILK

The inverse compositional derivation for MI may now be obtained
in the same manner as for SSD by splitting the warp into a function
of two parameters, v and Av:

(13)

Fr(v, Av) = 3 pr(v, Av) 1og( pr(v, AV) ) |
Tt

Pr(V)pi(Av)

Hereafter, to save space, the function parameters are not
shown. Using the same approach as Section 2.2 for MI, the
following gradient function is obtained:

P Ope o (Prt) 9P }
G= og|—
Z{ P OAY g(pt) 9Av
(prf>

The first term in (14) cancels out, using reasoning similar to that
used in [7] to obtain (11). In 3~ % ;K'V , because p;, is independent of
, the summations may be separated to form Z,; (;Z”v > Drt-
But >, prt = pi, which cancels with 1} , so the whole term becomes
t(fgv This summation is zero because the window function is
a B-spline, with the property: 3", 7z 00(e) = >\ o Oc(Ba(e +3) —
Bs(e —1)) = 0. The same reasoning was also used to eliminate p, in

the log function parameter, although this is not shown in (14).

The Hessian is obtained using chain and product rules, before
applying some simplification,

_ apf T aprt 1
H’;{_mv Avp

8 Prt prt
+ lo
dAv? 8 D
In the first term of (15), only one factor is dependentron rsoitmay be
separated out to form: Zé{;’g’v > %= S Ip” O because ris

independent of Av. Hence, the first term becomes dependent on
t only.

14
ap,, (14)

8Av

aprt g aprt i
OAV OAV pyy

(15)

_ Z opy " Op: l Z 6Pr/ 6prl 1
—~ 0Av O0Avp, T 0AvV BAvp,.f

(9 prt Drt
+ Z 9Av2 < '
In (16), there are three summations, the first of which is first

order and independent of I.. The second sum is first order but
dependent on I, and the third is second order.

(16)
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The expensive second order term (O(Nx N2 + N2N?N?)) can be
neglected as it was for SSD and forwards-additive MI since it is
marginal at positions close to the minimum. However, term two
presents more of a problem since its dependence on I, requires it to
be recomputed every time v is updated. Its computational cost of
O(NxNy + N2N?N?) is significant relative to that of the first sum
(O(NxNy + NZN?)), but this sum cannot simply be neglected since,
of term one and term two, it forms a larger proportion of H.

Unlike SSD, in MI the influence of I, and I; cannot be wholly split
into separate terms that are combined additively for any formula-
tion of the MI function. Hence, for MI, H is always at least partially
dependent on v. MI is not the only such function. Normalized
Correlation (NC) suffers from the same disadvantage since one of
the components of NC is a sum of I,.I; products, which is not
separable either.

This cost of reevaluating the second term in (16) every iteration is
overcome by assuming its constancy anyway. This assumption is
reasonable so long as the changes to v are small. Although, under
large changes, this assumption becomes inaccurate, so does the
assumption of local linearity made by the use of a first order Taylor
expansion. Hence, H may be treated as a precomputable constant.
This yielded good results.

4 EXPERIMENTS

Several experiments were undertaken to demonstrate the following:

e Inverse-compositional MIconverges as frequently and in the
same number of iterations as forwards-compositional MI.
e  Due the precomputation of the Hessian, the computational
cost of registration is lower for Inverse-compositional MI
than for forwards-additive ML
Experiments were performed using three image pairs for typical
applications. These are shown in the first column of Fig. 2. The first
pair of images are two slices taken from a simulated MRI of a human
brain using T1 and PD modes. Because the brain was simulated, the
ground truth is known exactly. The different modalities also present
difficulties for similarity that assume a linear intensity relationship
between image pairs. In the second image pair, the template was
extracted directly from the reference image of a natural scene.
Although this is somewhat artificial, it allows the ground truth to be
exactly known. The third example is of an indoor scene where the
lighting conditions have changed substantially. The images were
hand registered using key-points at a high resolution (2, 560 x 1,920)
before being cropped and subsampled. Hence, the ground truth is
known to within less than a pixel.

Simulated registrations using a six degree of freedom (DoF)
affine warp from multiple initial starting points were performed.
The initial positions were generated by randomly offsetting three
of the corner points of the template and computing the parameters
yielding the affine transformation between the ground truth and
offset positions. This is similar to the test framework used by Baker
and Matthews in [1]. In total, 600 tests per image were performed.
These consisted of six groups of 100 tests, where a different
standard deviation was associated with each group and a normal
distribution was used for the random offsets. Standard deviations
of 2,4, 6,8, 10, and 12 pixels were used. The results over 50 outer-
loop iterations of a Levenberg-Marquardt (LM) algorithm are
plotted for each image in the second column of Fig. 2. LM rather
than Newton optimization was used since it’s use of multiple
function evaluations makes it more robust to tracking failure. The
number of iterations was not fixed, two termination criteria were
also used: when the change in function value was too low, i.e.,
[f¥) — =1 < 10~!) and when the maximum change in any one
warp parameter was too low, ie., max, |Av¥| < 107, where n
indexes the component of Av.

The number of outer-loop iterations is not directly related to the
number of function evaluations since the number of inner-loop
iterations may vary. In LM optimization, G and H are only
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Fig. 2. Convergence rate for three typical examples of registration problems dealing with: (a) multiple modalities in medical images, (b) clutter in natural images, and
(c) specularities in images. In all cases, the template used is displayed as a shaded green template in the upper left-hand corner. The size of the template is displayed. The
error over 50 outer loop iterations of the Levenberg-Marquardt algorithm is shown for Ml and SSD in both cases for forwards additive and inverse compositional

formulations.

Mean Time / Std. Dev.(s) Evaluations of f / f,G & H
Image MI fwds Ml inv. SSD fwds SSD inv. | MI fwds MIinv. SSD fwds SSD inv.
Image 1: Brain 2.6/1.2 2.2/0.78 2.4/1.2 2.5/1.1 36/18 35/16 39/34 38/36
Image 2: Palace 1.4/0.66  1.3/0.61 0.36/0.18  0.21/0.14 | 64/37 63/37 31/32 19720
Image 3: Economist | 3.6/1.5 3.6/1.6 5.1/2.3 4.3/2.4 32/13 33/14 39/33 38/27

Fig. 3. Time (mean and standard deviation) and number of evaluations (of inner loop evaluations where only f is measured and outer loop evaluations where f, G, and H
are calculated) required to converge for the three images (across all tests). Note that the inverse-compositional methods do not recalculate the Hessian, but reuse the

precalculated one.

recalculated from the images once per outer-loop iteration. For
inverse-compositional formulations H is reused. Only f is re-
evaluated every inner loop iteration. Since LM optimization may
terminate early, the number of inner and outer loop iterations is
displayed, along with the mean time per optimization, in Fig. 3.
Additional optimizations were made, by reusing computational
constructs utilized to calculate f, for calculating, G and again for
calculating H. This partially obscures the advantages of using a
precomputed H since the cost of evaluating [ in addition to G is
low. A larger increase in cost occurs when H is calculated using
second order information. This is clearly shown in Fig. 4, where the
mean cost per evaluation per pixel for each method tested was
measured over 20 tests.

In the first image, inverse-compositional MI managed to
converge faster than forwards-additive MI. The difference arose

because inverse-compositional MI utilizes an approximate Hessian
as discussed in Section 3.1. The initially faster convergence was a
surprising result which is believed to occur because the forwards-
additive approach updates the Hessian to model local conditions,
leading it to take more conservative steps than the inverse-
compositional algorithm. However the constant histogram also
has the side effect of a larger final error than the forwards-additive
approach. The final error also increased with initial offset because
the region in I, initially overlapped had less in common with the
overlapped region when the algorithm finally converged. This
implies that, once convergence is reached, optimization should be
restarted with an updated Hessian that accounts for local conditions.
An experiment to verify if restarting the algorithm would improve
the final error for the inverse-compositional formulation was
undertaken. One hundred random offsets with a standard deviation
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Values Time / pixel (us)

Evaluated | MI fwds Ml inv. SSD fwds SSD inv.
f 41 42 18 15
f&G 2.5 2.3 .88 77
fLG&H| 24 2.4 1.6 1.6

f, G & H | 28. 15. 11. 11.

Fig. 4. Cumulative cost of evaluating a function, its Jacobian, Hessian, and full
second order Hessian. Results for both SSD and M, for forwards-additive and
inverse-compositional approaches, are shown as a time cost per pixel averaged
over 20 evaluations. A 1,884 x 1,252 template was used, which was sufficient that
the overhead of function initialization was negligible. Affine transformations were
used.

of 12 pixels were used used to initialize optimization for the medical
image pair shown in Fig. 2a. The results of these tests, given in Fig. 5,
show that restarting the algorithm reduced the final error of the
inverse-compositional method to that of the forwards-additive
method. The re-evaluation of the Hessian caused by the restart came
at an increased time cost of 2.9s versus 2.7s without the restart (3.3s
for the forwards-additive approach). The SSD tests are of interest
only in this case since the nonlinear relationships of multimodal
medical images are well known to confound SSD.

In the second image pair, SSD converged faster than MI in every
case. This is due to the direct match of the template and reference
intensities (in the correct position) and the large basin of conver-
gence typical of SSD. MI, on the other hand, appeared to become
trapped or slowed by the local topology of function surface.
Although MI is perhaps not the ideal distance function for the a
problem like image 2, note how the inverse-compositional approach
for MI performs as well as the forwards additive approach.

Image 3 is a difficult problem due to the radical changes to
intensity induced by specularities on the object as lighting
conditions change. MI’s tolerance of nonlinear intensity relation-
ships allows slightly better performance than SSD in that

itwds , swategici2)

mibwds , strategic(2)

mitwds , sratpgici2)

(d

b 4
MI inv.

mifwds , srategici2)

MI fwds

ribwds , strategic(2)

mibwds . stategici2)
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Fig. 5. Experiment showing the improvement in final accuracy for the inverse-
compositional formulation when restarting optimization. Only the last 25 iterations
are shown to make the improvement visible.

convergence is always toward ground truth, but convergence
failure occurs in most cases. Inverse-compositional MI performs
comparably to forwards-additive MI, although it too becomes
trapped in local minima in many cases.

For M, the mean time to convergence was faster for the inverse-
compositional formulation in most cases, despite the thriftiness of
the LM method with Hessian evaluations. Time savings up to
15 percent were made. Approximately the same number of iterations
were performed in both cases. For SSD, the inverse-compositional
approach was almost twice the speed of the forwards-additive
approach for image 2, agreeing with previous work [1]. The speed
improvement was due partly to the efficiency of the inverse-
compositional formulation and partly to the fewer iterations
required to converge on average. This pattern was not repeated for
images 1 and 3 for two reasons: first, LM’s thriftiness with Hessian
evaluations and second, the cost of Hessian evaluation was reduced
by reusing parts of the function and Jacobian evaluations.

The speed of SSD relative to MI indicated that, for many
applications, it is still the method of choice. Standard sampled MI

Jssdwas , stategic(2) fsscowds , srategic(z)

.

SSD fwds

Jssdiwds . stategic(2)

fssdowds , strategici2)

SSD inv.

Fig. 6. Tracking a face over a video sequence using various algorithms at (a) Frame 24, (b) Frame 37, (c) Frame 100, and (d) Frame 200. Four algorithms were used,
namely, the forwards-additive and inverse-compositional formulations for Ml and SSD. All of the methods performed comparably, except in the case of SSD an occlusion
halfway through the sequence pulled the SSD trackers of target. Ml supposedly deals with occlusions better. In our experience, this is not always the case.
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can compete with SSD in speed [7], but, due to its noisy function
surface, does not perform well for Newton-type optimization
methods. It does perform well for random sampling optimization
methods and with the simplex algorithm, but these algorithms do
not use the Hessian, so an inverse-compositional approach holds no
advantages.

In addition to the tests above, a tracking algorithm was
implemented using the strategic update approach of Matthews
et al. [12]. In it, the tracking performance of forwards-additive MI
and inverse-compositional MI were compared on a video sequence.
For comparable real-time performance to SSD, standard sampled
MI was used rather than the in-Parzen windowing approach used in
the tests above. The results are shown in Fig. 6. As shown, the
inverse-compositional approach performed just as well as forwards
additive. Results using SSD are also shown for interest. SSD also
tracked quite well, but a large occlusion by the hand pulled the
tracker off target.

5 CONCLUSION

In this paper, an inverse compositional formulation for Mutual
Information was introduced. This reformulates the MI function to
yield an approximate Hessian that is dependent only upon the
template image values and is therefore constant. The Hessian is
approximate because cross terms between the reference and
template intensities exist, which cannot be separated and vary
with the warp parameter. These can be assumed to be constant too
because the variation warp parameter is small. Inverse Composi-
tional SSD on the other hand has an exact Hessian (to first order)
because the effects of the two images are entirely separable.

The result of several experiments showed that inverse-composi-
tional MI could compete with forwards-additive MI in terms of
registration accuracy and demonstrated computational savings of
up to 15 percent. This improvement occurred despite two con-
founding factors. First, Levenberg-Marquardt optimization does not
require a Hessian to be evaluated every time a function is calculated.
Second, the Hessian computation was optimized by reusing
components utilized to calculate the function value. For methods
where the Hessian is required every iteration, like the Newton
method, the computational improvement would be greater. In
testing, SSD and MI each performed best in different applications,
suggesting that neither function is ideal in all circumstances.

The source code and test harness of this work have been made
available at the authors’” Web site. In future work, the effect of
using more accurate joint-histogram approximations estimated
from the marginal histograms will be investigated. Testing with
nonrigid 3D data transformations will also be examined, as will
reformulations of other functions like Normalized Correlation.
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