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Abstract—In this article, we define and address the problem
of finding the visual focus of attention for a varying number
of wandering people (VFOA-W) — determining where a person
is looking when their movement is unconstrained. VFOA-W
estimation is a new and important problem with implications
in behavior understanding and cognitive science, as well as
real-world applications. One such application, presentedn this
article, monitors the attention passers-by pay to an outdoo
advertisement using a single video camera. In our approactotthe
VFOA-W problem, we propose a multi-person tracking solutim  Fig. 1. Determining VFOA from eye gaze.In the VFOA-W problem,
based on a dynamic Bayesian network that simultaneously iefs allowing an unknown number of people to move about the scemal (
the number of people in a scene, their body locations, their enter/exit the scene) complicates the task of estimatinh sabject'svisual
head locations, and their head pose. For efficient inference focus of attention(VFOA). Because a large field of view is necessary, the
in the resulting variable-dimensional state-space we propse resolution is often too low to e_stimate the VFOA usir]g eyee_g(ns seen
a Reversible Jump Markov Chain Monte Carlo (RIMCMC) above). In our work, VFOA is inferred from a person’s locatiand head
sampling scheme, as well as a novel global observation modelP®5®

which determines the number of people in the scene and their . . . . .
locations. To determine if a person is looking at the adversement attention (VFOA) problem, in which there exists a varyingrier

or not, we propose Gaussian Mixture Model (GMM) and Hidden Of wandering people. We denote this as ¥EOA-W problem
Markov Model (HMM)-based VFOA-W models which use head whose tasks are:

pose and location information. Our models are evaluated for 1) to automatically detect and track \@rying number of
tracking performance and ability to recognize people looking at mobile observers,

an outdoor advertisement, with results indicating good pefor- . . .
mance on sequences where up to three mobile observers pass in 2) and to estimate their VFOA with respect to one or more

front of an advertisement. fixed targets.

Index Terms— Computer vision, tracking, video analysis, con- Solutions to the VFOA-W problem have implications for other
sumer products. fields (e.g. human behavior, HCI) as well as real-life agtians.
In our example of the outdoor advertisement applicatior, th
goal is to identify each person exposed to the advertise st
determine if and when they looked at it. We can also colldotiot
hypothetical questiorf:An advertising firm has been askeduseM statistics such as the amount of time they spent hgoat

" d tdoor displ d ion f i sh “the advertisement.
0 produce an outdoor dispiay ad campaign Tor use In SNopPINg 1y, /poa-wy problem represents an extension of traditional

malls and train stations. Internally, the firm has develogeueral VFOA problems studied in computer vision (e.g. [38]) in two

competm.g designs, one of which must.tlae chgsen to presre%rgpects. First, for VFOA-W, the VFOA must be estimated for a
to the client. Is there some way to empirically judge the bes

. tnknown, varying number of subjects instead of a fixed nhumber
placement and content of these advertisementS@irently, the . - . S .
L . o of static subjects. Second, in VFOA-W, mobility is uncoasied.
advertising industry relies on recall surveys or trafficdés to

. . By unconstrained motion, we mean that the subjects are free t
measure the effectiveness of outdoor advertisements. vowe y ’ )

these hand-tabulated aporoaches are often imoracticabar E/alk about the scene (or wander): they are not forced to memai
. pp! : | Imp eated or otherwise restrained. This complicates the taskhe
expensive to be commercially viable, and yield small sample

of data. A tool that automatically measures the effectigenef subject's appearance will change as he moves about the andne

. . keeps his attention focused on the target.
printed outdoor advertisements would be extremely vakjalt P 9 . .
does not currently exist Camera placement and the unconstrained motion of the dsbjec

However, in the television industry, such a tool does efike can limit the video resolution of the subjects, making VFOA

Nielsen ratinas measure media effectiveness by estimakia estimation from eye gaze difficult, as illustrated in FigdreTo

. 9 . . y : 9 address this problem, we follow the work of Stiefelhagenlet a
size Of_ the net cumulative audience of a program via surve‘)lﬁ]o showed that VFOA can be deduced from head pose when
and Nielsen BOX(.%S' I one were to des_,lgn a S|m|Ia_r SySteme resolution is insufficient to determine eye gaze [38].

for outdoor advertisements, it mightitomatically determine the In this articl incioled probabilistic f K
number of people who have actually viewed an advertisen‘senth\r r;:stilr?:triric eVI\ZN c? A?(/(\)/pgi(ej 2 prlmcclzremgtrt?o;ttl)lfhlg aEdhvienmr tisi

a percentage of the total number of people exposed. tdhis 9 ’ pPly

is an example of an important extension of the visual focus gample to demor_wstrate its usefulness in a real-llfe_emqmdlln. .
ur method consists of two components: a dynamic Bayesian

Manuscript received August 11, 2006; revised March 05, 2007 network, which simultaneously tracks people in the sceng an

. INTRODUCTION
S motivation for this work, we consider the following
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estimates their head pose, and two VFOA-W models based person tracking is a well studied topic with a variety of eliint
Gaussian mixture models (GMM) and hidden Markov modekspproaches. We restrict our discussion to probabilisacking
(HMM) which infer a subject’s VFOA from their location and methods which use a particle filter (PF) formulation [20]9][3
head pose. We assume a fixed uncalibrated camera which canlsd, [23]. Some computationally inexpensive methods use a
placed arbitrarily, with the condition that subjects appeatical single-object state-space model [23], but suffer from tiability
with their face in view of the camera when they look at theésrg to resolve the identities of different objects or model iations
as in Fig. 1. between objects. As a result, much work has been focused on
Besides defining the VFOA-W problem itself, which to oumadopting a rigorous Bayesian joint state-space formulatiothe
knowledge is a previously unaddressed problem in the titeza problem, where object interactions can be explicitly defif#0],
we also make several contributions towards a solution.t,Fir§39], [15], [17], [44], [32]. However, sampling from a joirstate-
we propose a probabilistic framework for solving the VFOA-Wspace can quickly become inefficient as the dimension of the
problem by designing a mixed-state dynamic Bayesian né&twaspace increases when more people are added [20]. Recent work
that jointly represents the people in the scene and theiowsr has concentrated on using MCMC sampling to track multiple
parameters. The state-space is formulated in a true meréiem people more efficiently [17], [44]. In a previous work [32].ew
fashion, consisting of size and location parameters forhiged proposed to generalize this model to handle a varying number
and body, as well as head pose parameters for each persownfipeople using RIMCMC, which allows for a formal definition
the scene. This type of framework facilitates defining iat¢ions of object appearance (births) and disappearances (defating)
between people. the scene through the definition of a set of reversible move
Second, because the dimension of the state representingla sitypes (see Section IlI-D). In this work, we extend the model o
person is sizable, the multi-object state-space can groweto [32] to handle a more complex object model and a larger state-
quite large when several people appear together in the scesmace, necessitating the design of new move types and pdopos
The dimension of the state-space also changes as people edittributions, a new observation model, and inter- anciperson
or leave the scene. Efficiently inferring a solution in a &rginteractions.
variable-dimensional space is a challenging problem. Tiress
this issue, we designed a Reversible Jump Markov Chain Morge Head-Pose Tracking
Carlo (RIMCMC) sampling method to do inference in this large
variable dimensional space.
Third, in order to localize, identify, and determine therect

Head-pose tracking is the process of locating a persond hea
and estimating its orientation in space. Existing methods ¢

. be categorized in two of the following ways: feature-based v
number of people present, we propose a novel global obsanvat .
. . appearance-based approaches and parallel vs. serialaappso
model. This model uses color and binary measurements taIT

from a background subtraction model and allows for the tlire eature-based approaches, a set of facial features sutiea
. 9 . o . 8yes, nose, and mouth are tracked. Making use of anthropomet
comparison of observations containing different numbérstn

jects measurements on these features, the relative positionfieof t

Finally, we demonstrate the applicability of our model btracked features can be used to estimate the head-pose [10],

applying it to the outdoor advertisement problem. We shoai th)fls]’ [37]. A feature-based approach employing stereoouisi

we are able to gather useful statistics such as the number Gt propo_sed |n_[42]. '_I'he major drawl_aack of the feat_ure_dbase
agproach is that it requires high resolution head imageg ik

people who looked at the advertisement and the total nurﬁberi practical in many situati . .
. - . . y situations. Occlusions and other amibigs

people exposed to it on a set of video sequences in which @eoé?esent difficult challenges to this approach as well

walk past a simulated advertisement. We provide an evaluaif '

) . . L In the appearance-based approach, instead of concegtmatin
our approach on this data using a comprehensive set of olgiect e : . .
specific facial features the appearance of the entire heaubis
performance measures.

. S . . eled and learned from training data. Due to its robustnésset
The remainder of the article is organized as follows. In Bect . .
. . . is an abundance of literature on appearance-based appsoach
Il we discuss related works. In Section Ill we describe OUL . eral authors have probosed using neural networks 28, [
joint multi-person head-pose tracking model. In Sectionw¥¢ prop g ’

propose the GMM and HMM methods for modeling VFOA-W.pg:ﬁgﬁ:;:sm[z(i?zgt ;r;?jlgﬁfg[?goalgd multi-dimensional@sian
In Section V we describe our parameter setting procedure. (ilnln the serial approach to head-po.se tracking, the tasksaf he
Section VI we evaluate our models on captured video segsence '

) ) L acking and pose estimation are performed sequentialiis &
of people passing by an outdoor advertisement. Some lioTitat also kn%wn ag a “head trackin thepn ose estimgtion" frabfriewo
of our approach are discussed in Section VII. Finally, Secti g P

VIl contains some concluding remarks where head tracking is accomplished through some tracking
9 ' algorithm, and features are extracted from the trackinglies
to perform pose estimation. This methodology has been uged b
Il. RELATED WORK
several authors [37], [28], [19], [43], [41], [7]. In appdees

To our knowledge, our yvork is the first attempt to estimate tr}%lying on state-space models, the serial approach may have
VFOA-W. However, there is an abundance of literature camogr |,er computational cost over the parallel approach astres

the three component tasks of the VFOA-W problem: multi-pers ; ¢mailer configuration space, but head-pose estimatioendep
tracking, head pose tracking, and VFOA estimation. on the tracking quality.
In the parallel approach, the tasks of head tracking and pose
A. Multi-Person Tracking estimation are performed jointly. In this approach, knage
Multi-person tracking is the process of locating a variablef the head-pose can be used to improve localization acgurac
number of moving people or objects in a video over time. Multiand vice-versa. Though the configuration space may be larger
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in the parallel approach, the computational cost of the twhead, X
approaches may ultimately be comparable as a result of t ’
parallel approach’s improved accuracy through joint tiagkand
pose estimation. Benefits of this method can be seen in [42] a1
[3]. In this work, we adopt an appearance-based parallebagp

to head-pose tracking, where we jointly track the bodiesg, th
heads, and estimate the poses of the heads of multiple peojbody, X&
within a single framework.
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C. Visual Focus of Attention (xB,y8)”

Estimating VFOA is of interest to several domains as a pezsor?:. ¢ ) )

. . . . L ig. 2. State model for varying numbers of people and their head-
VF_OA IS Oﬂer‘ strongly correlated ‘_N'th his pehawor or ayv  pose. The joint multi-person stateX: consists of an arbitrary number of
Strictly speaking, a person’s VFOA is determined by his eyeeg  single-person stateX; ;, each of which contains a bod¥?, and headX”,
However, measuring the VFOA using eye gaze is often difficulwmtr?onfé?g- Tbh)e r?o'd?/]tis m?dglw 35 a botlﬂdti;e% b%:( Wri]th Fcljalmm?"ﬁe

: ; ; Co - ocation @, y?), height scales?, and eccentricitye®. The head locatio
or impossible as It can require elth_er the movement of tthUb has similar parameters for locatior’(, y"), heights”, and eccentricitye”,
to be constrained, or high-resolution images of the eyesctwh as well as in-plane rotation”. The head also has an associate@mplar
may not be practical ([34], [22]). 6", which models the out-of-plane head rotation.
In [38], Stiefelhagen et al. made the important observatiar .
where the dynamic modep(X:|X;—1), governs the temporal

visual focus of attention can be reasonably derived by Ipeesd- Ut h . h : d the ob
in many cases. We rely on this assumption to simultaneouﬁg0 ution of X, given the previous statX,_;, and the obser-

estimate the VFOA for multiple people without restrictirfueir vation Iikelifhoc;]d, p(z‘a'_Xt)(’j EXpresses thV\;] well theHobserved
motion. Others have followed this work, such as Danninger _[ﬁatureszt I'It t_e predicted estimation of the stak;. Here

al. [9] (where VFOA is estimated using head-pose in an offidg @ norma Ization copstapt. . N

setting), Stiefelhagen [36] (where VFOA for multiple peepind In pra_ctlce, the estimation (_)f the filtering dl_strlbutlon Erlq 1
multiple targets is estimated through head pose), and Kataer Is often intractable. However, it can be approxw_nat_ed _by)apg

et al. [16] (where the head pose is used to determine the saizire .the Monte Carlo method, where the tar%eg distribution (Bp. 1
in human-human-robot interaction). Note that in thesetedla 'S repres(e;r;ted by a set of samples{X;",n = 1,..,N},
works the VFOA is modeled for a fixed number of seated peopfghere X; " denotes then-th sample. In this work we use

using an unsupervised learning process. RIMCMC, where a set of uniformly-weighted samples form a so-
called Markov chain. Given the sample set approximationhef t
D. Other Related Work posterior at timer — 1, p(X—1|Z1.—1) ~ 3, 6(Xe—1 — X)),

. . . . . .__the Monte Carlo approximation of Eq. 1 is written
While we believe that this work is the first attempt to estienat PP q

VFOA-W, there exist several previous works in a similar vein p(X¢|Z1.4) = C—lp(zt|xt)zp(xt|xg’_‘)l), 2

The 2002 Performance Evaluation of Tracking and Surveilian _ _ no o )
Workshop (PETS) defined a number of estimation tasks on sideo !N the following sub-sections we describe the joint muktrgon
depicting people passing in front of a shop window, inclgdiy) @nd head tracking model, the dynamic model, the observation

determining the number of people in the scene, 2) deterginiffodel, and how RIMCMC sampling is used to do inference.
the number of people in front of the window, and 3) deterninin

the number of people looking at the window. Several methods State-Space Definition for a Varying Number of People

?r;[éfl:g?r:ed[zg ?Iz?]oﬁzl\:\?:vgre;ﬁo:laSIt(r?e;Zr(\j\;JogrEs \éﬁgf:weeansrhe state at time describes the joint configuration of people
g ' ) ’ 9 in the scene. Because the amount of people in the scene may

atter_npts to use_head-pose or eye gaze o detect wk_\en peagle V\\/lgry, we define a state model designed to accommodate changes
looking at the window; all estimations were done using ordgyp

location, assuming that a person pausing in front of the aind in dimension [32]. The joint state vectat, is defined byX; =

is looking at it. A preliminary version of this article apped in {Xili € Zi}, where X, is the state vector for persoh and
[30] 9 AP y ppe 7 is the set of all person indexes at timeThe total number

of people present in the scenerig = |Z;|, where| - | indicates
set cardinality. A special case exists when there are nol@eop
_ _ _ _ present in the scene, denoted Xy = ¢ (the empty set).

In a Bayesian approach to multi-person tracking, the gotd i Each person is represented by two components: ki,
gstlmate the posterior dlstrlt;utlcb)n for a target stXtg taking gng headXéft, X, = (Xli),tvxﬁt) as seen in Figure 2. The
intoaccount a sequence of observatidas; = (Z1,.,Zt), pody component is represented by a bounding box, whose state
p(X¢|Z1.¢). The state, or joint multi-person configuration, iS,ector contains four parameterX? = (27,4, s, %) (we drop
the union of the set of individual states describing eacls@®r o, ; subindices to simplify notation). The point’( 4*) is the
in the scene. The observations consist of information etdrh cont{nuous 2D location of the center of the bounding béxis
from an image sequence. The posterior distribution is &§8® he height scale factor of the bounding box relative to aresfee
recursively by height, and’ is the eccentricity defined by the ratio of the width

p(Xi|Z1:) = C 'p(Zy|Xy) x (1) of the bounding box to its height.

The head component is represented by a bounding box which
/XH p(Xe|X¢-1)p(Xi—1]Z1:4-1)dX¢ -1, may rotate in the image plane, along with an associatededescr

1. JOINT MULTI-PERSON ANDHEAD-POSETRACKING
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exemplar used to represent the head-pose (see Fig. 4). dtee spatial support of\; ;, p(X;, X;) = SXS“%XJ is the recall, and

vector for the head is defined b¢" = (L",6") whereL" = Xi, Xj) = 8505% s the precision, so thag — 0 for no
(«",y", 5", e",+") denotes the continuous 2D configuration Ofverlap, and increased overlap increases the penalizeiong.

the head, including the continuous 2D locatieft ("), the height  \we also introduce intra-person interactions to the overall
scale factors”, the eccentricitye, and the in-plane rotation". motion model. The intra-person interaction model is meant t
The discrete variabl@ represents the head-pose exemplar whickhnstrain the head model w.rt. the body model, so that they

- h oh

completely defined by the couple”, ™). is not detached from the body). The intra-person interactio
. . model po, (X;) is defined aspo,(X:) = [Tpez, P(LLIXE ),

B. Dynamic and Interaction Model wherep(Ly ,|X} ;) o exp(—X d*(L},, X} ,)), and the distance

The dynamic model governs the evolution of the state betwe&mction d(-) is equal to zero when the head center is within a
time steps. It is responsible for predicting the motion obgle predefined region relative to the body (i.e. the area defiyeithd
(and their heads) as well as governing transitions betwhen top third of the body bounding box), and equal to the Euclidea
head-pose exemplars. It is also responsible for modetitey- distance between the head and nearest edge of the predefined
personinteractions between the various people, as welh&ta-  region otherwise. This term penalizes head configurationisiw
personinteractions between the body and the head. We define fiall outside an acceptable range of the body, increasinghes t
dynamic model for a variable number of objects as distance between the head and body increases. With these ter

(Xt X 1) o pvr(Xe[ Xy 1)po(Xa), 3) S)e(g:l:sds,egthMonte Carlo approximation of Eq. 2 can now be

where pv(Xt.Ith) .is the multi-objecj[ transition m.o_del and p(Xe|Z1y) ~ Cilp(ZtIXt)po(Xt)va(XtIXEﬁ)l) )
po(Xy) is an interaction term. The multi-person transition model o

is defined more specifically as _ C_lp(Zt|Xt) H $(Xi0. X)X ®)

. X ¢ X if Ty #0 ijec
pv (Xe[X¢-1) = { kHlEI' PXipXe) if It f@ ., (4) hoxcb (n)
t= [T oLk X0 > pv (XelX3™)).
wherek is a constant. The single-person transition model is given ke n
by p(Xit| Xy 1) = C. Observation Model
{ (Xt X;¢—1) if | previously existed; € Ty.;—1 The observation model estimates the likelihood of a progose
p(Xi,t) if iis a previously unused indek¢Z Z1.:—1  configuration, or how well the proposed configuration is sutgl

) ] ) " by evidence from the observed features. Our observationemod
wherep(Xi_,t) is a mixture whl_ch selects parameters from e'the_{onsists of abody modeland ahead modelformed from a set
a previously dead tracked object or a new proposal (seedBectis fie features. The body model consists hifiary and color
llI-E, birth move). The first termp(X; +|X; ;1) is given by features, which are global in that they are defined pixebwis
(X o) Xieo1) = p(XC 1 XE ,_p(LE LY )pol 100, 1), over the entire image. The binary featuré&}‘(") make use of
T R T Y ) a foreground segmented image, while the color featurss'Y
where the dynamics of the body st&& and the head spatial state€XPloit histograms in hue-saturation (HS) space. The headeim
componentZ! are modeled ag"’-order auto-regressive (AR) IS local in that its featuresZ*) are gathered independently
processes. This model applies for dead objects as well as (@ each person from an area around the head.. Thgy are
objects, as it is necessary for the positions of dead objectseésponsible for the localization of the head and estimatibn
be propagated for a certain duration in order to allow them {fe head-pose, and includexture Z{*, skin color Z", and
possibly be reborn. The head-pose exempléfs,are modeled silhouette Z;* features. For the remainder of this section, the
by a discretel**-order AR process represented by a transitiofme index () has been omitted to simplify notation. Assuming

probability table. conditional independence of body and head observatiorss, th
The interaction modaty (X;) handles two types of interactions,overall likelihood Ais givg)r; b%/m bin N
inter-persomp,, and intra-persopo, : po(Xt) = po, (Xt)po, (Xt). p(Z]X) = p(Z™|Z7"", X)p(Z™" [ X)p(Z"[X). )

For modeling inter-person interactions we follow the methoTpe first two terms constitute the body model and the thirchter
proposed in [17], in which the inter-person interaction elod represents the head model.

po, (X¢) serves the purpose of restraining multiple trackers from 1y Body Model: An issue arises when defining an observation
fit'Fing the same person.by. penalizing overlap. It accompE‘Shlikelihood for a variable number of objects. Fairly compari
this by exploiting a pairwise Markov Random Field (MRF)}he |jikelihoods, a task essential to the filtering processnore
whose graph nodes are defined by the people present at eggfiplicated when the number of objects may vary. For a fixed
time step. The links in the graph are defined by the G@f  nymber of objects, the comparison of two observation liaids
pairs of proximate people. By defining an appropriate paént can pe relatively straightforward. Given an observati&alihood
function ¢(X; s, Xj¢) oc exp(—g(Xi, Xj¢)), the interaction for 5 single object, the joint multi-object observationelikood
modelpo, (X¢) = T1ec #(Xi,t, X;,) enforces a constraint in the cap pe defined as the product of the individual object likedis
mqlti-person dynamic mpde_l, basgd on the locations of_ a0peI's [17], [18], [44]. For a static number of objects, the obséom
nelghbors. les()?‘o)rgs)tlr/?gl‘t)l(s)defln.ed by a non-negative IQ‘an"“ﬁkelihoods are directly comparable because the numberbef o
function, g = pri,}}j)ﬁru(X;’,XJj), which penalizes configurations jects, and thus the number of factors in the likelihood, igdix
which contain overlapping pairs of people, whese is the Fairly comparing two likelihoods defined in this manner when
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Fig. 3. The binary observation model determines the number of objets and localizes the objectsln (a)-(c), twoground truthpeople appear in the scene
segmented from the background (shown in green). The biramggfound model consists @y = 1 Gaussian, the black contour in (d). The background
model consists of three GMMs dk},;, = 4 mixture components each in (eyu(= 1: red contour,,m = 2: blue contour, andn = 3: green contour). The
square data points in (d) and (e) represent measured prgcisiall observations from the hypotheses in (a)-(c). ftesquare indicates the, p) values
for the hypothesis containing only 1 object in (a), the blgease indicates the two-object hypothesis in (b), and tleemisquare indicates the three-object
hypothesis in (c). Clearly, the two-object hypothesis, alihagrees with the ground truth, fits the model better tharothers. The binary observation model
will associate the highest likelihood to the hypothesisahiaig the actual number of objectsi(= 2).

the number of objects may vary is problematic, as the numbter choose better multi-person configurations.

of factors in the likelihood terms we wish to compare may be The binary likelihood is computed for the foreground and
different. This can eventually lead to observation likebds of background cas¢(Zbi"|X) A p(zbm,F|X)p(me,B|X) where

different magnitude orders reflecting a variation in nuMb&r i, gefinition of the binary foreground terp(Z""™ ¥ |X), for all
factors rather than an actual difference in the likelihoeeel. non-zero person countsi(+ 0) is a single Gaussian distribution

To address this issue, we propose a global body observatianprecision-recall space/{,p*). The binary background term,
model which allows for a direct comparison of observations(z'5|X), on the other hand, is defined as a set of Gaussian
containing different numbers of objects. Our model detectgixture models (GMM) learned for each possible person count
tracks, and maintains consistent identities of peoplejngdédnd (,, ¢ M). For example, if the multi-person state hypothesizes
removing them from the scene when necessary. It is comprisg@t two people are present in the scene, the binary backdrou
of a binary feature and a color feature. likelihood term is the GMM density of the observed and p”
Body Binary Feature values learned fom = 2. For details on the learning procedure,
We introduced the binary feature in a previous work [32kee Section V.
which relies on an adaptive foreground segmentation tecieni  |n Figure 3, an example of the binary observation model égin
described in [35]. At each time step, the image is segmemtted i to recognizeM = {1,2,3} objects is shown. Learning of the
sets of foreground pixel$” and background pixel$; from the GMM parameters was done using the Expectation Maximization
images ( = F'U B), which form the foreground and backgroundgm) algorithm on 948 labeled images from the data set desdri
observations """ and z"™ 7). in Section V-B. As shown in Figures 3(a)-(c), tvgmound truth

For a given multi-person configuration and foreground segeople appear in the scene. The binary feature also enasurag
mentation, the binary feature computes the distance betwehe tracker to propose hypotheses with good spatial fittng i
the observed overlap (between the spatial support of théi-mukimilar manner. For example, a poorly placed object mighy on
person configurations™ obtained by projectingX onto the cover a small fraction of the foreground blob correspondimg
image plane and the segmented image) and a learned vapirson appearing in the image. In this case, the foregrousad
Qualitatively, we are following the intuition of a statentesuch ), measurements will not match the learned values well, as the
as: “We have observed that two well-placed trackers (tragkivo learning has been done using tightly-fitting example data.
people) should contain approximately 65% foreground arfb 35544y Color Feature

background.” The overlap is measured #orand B in terms of The color feature is responsible for maintaining the ictsti
precision and recally” = 5RE, pF" = S0E B = S QB ¢ negple over time, as well as assisting the binary feature
and p? = SXT“B. An incorrect location or person count willin localization of the body. The color feature uses HS color
result inv and p values that do not match the learned valuesbservations from the segmented foreground and background

well, resulting in a lower likelihood and encouraging thedab regions Z°°F andz°"?) . Assuming conditional independence
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between foreground and background, the color likelihoogris
ten p(zcol|zbin7 X) _ p(zcol,F|Zbin,F7 ){)p(zcol,B|Zbin,B7 X)

The color foreground likelihood compares an adaptive 4-D
spatial-color model histogram{ C, with a 4-D spatial-color
observed histogrant/ (X;). The observation likelihood measures
the similarity of the 4-D histograms by(z°"" |z F X)
exp(—=Apd%(HC, H(X}))), Wheredy(HC, H(X;)) is the Bhat-
tacharya distance [6] between the histograms. The 4-Ddrestos
H(i,bp, h, s) are collected as follows. The first dimension corre-
sponds to the objeat and the remaining dimensions correspond
to an object color model proposed by Pérez et al. [26]. Fer th :
object color model, the histogram is defined over 3 body part:
bp corresponding to the head, torso, and legs. For each bod)#
part region, a 2-D HS+V histogram is computed using the Hue-
Saturation-Value elements from the corresponding londtiahe T -
training image. The HS+V histogram is constructed by pdgda (b) Exemplar discretization.
an By x Bs HS histogram (wherés;; = 8 and B = 8 are the Fig. 4. The head-pose model(a) The head pose represented by the angles

number of H and S bins) using only the pixels with H and fsulting from the Euler decomposition of the head rotationt. the head
greater than 0.15. The +V portion of the HS+V histogram diosta frame, known as pan, tilt, and rolb) Left: set of discrete posed® used to

a5y 1 (5 =8) Value histogram comprised ofthe pixels wit{eEsert utof e laton exenolrs o he Py deabese,
Hue or Saturation lower or equal to 0:15 when using the representation on the left).
The 4-D adaptive color model/ C is selected from a set of
competing adaptive color models every frame. When an objddéead-Pose Texture Feature
first appears, pixel values extracted from the initial fraare The head-pose texture feature reports how well the textima o
used to initialize each competing color model. At the end @xtracted image patch matches the texture of the discretd- he
each subsequent frame, the point estimate solution forfeets’ pose hypothesized by the tracker. Texture is representied us
locations is used to extract a 4-D multi-person color hisioy responses from three filters: a coarse scale Gaussian dilfare
which is compared to each model. The nearest matching co®abor filter, and a coarse Gabor filter, as seen in Figure 5.
peting model receives a vote, and is updated with the erilact Texture models were learned for each discrete head-pose
data by a running mean. When computing the foreground colg?. Training was done using severéd x 64 images for each
likelihood in the following frame, the model with the mosttes head-pose taken from the Prima Pointing Database. Histogra
is used. equalization was applied to the training images to reduce
The background color likelihood helps reject configuradionvariation in lighting, the filters were applied on a subsaeupl
containing untracked people by penalizing unexpectedsolhe grid to reduce computation, and the filter responses conatee
background model is a static 2D HS color histogram, learmem f into a single feature vector. Then, for each head-pb¢e = oh
empty training images. The background color likelihoodéémed here, for simplicity), the meaef = (6?) and diagonal covariance

vector

_ ¢ _
asQ(Z§°l’B|ZfZ"’B7Xt) x e*is, wherep andd; are defined matrix oy = (0%), j = 1,..., Niea Of the corresponding training
as in the foreground case but using the background imagesfdature vectors were computed and used to define the person

Cog;pllj'te Ejhi/lhic?t(lngrﬁmh d model | e for localin texture likelihood model flrom Eq.10 as
ead Model: The head model is responsible for localizing tewxe y _ L ytew tex 0,
the head and estimating the head-pose. The head likelir®od i P2 1X) Zy P Ao dg(Zi, e, (11)

defined as : whered; is the head pose associated with pers@amdd, is the
m normalized truncated Mahalanobis distance defined as:
p(2"X) = | [] p(Zi1X0)p(Z3"1X)p(Z51X5). | . (10) N >
ez dg(u,v) = ! z max <uj —(9173‘) T | (12)
The overall head likelihood is composed of the geometric ter =1 %5

mean of the individual head likelihood terms. The geometri\ﬁ
mean provides a pragmatic solution to the problem of compari
likelihoods with a variable number of factors (correspogdio
varying numbers of people). However, note that it is notifiadtie
in a probabilistic sense.

here T;., = 3 is a threshold set to make the distance more
robust to outlier components. The normalization constanand
the parameten,** are learned from the training data using a
procedure proposed in [40].

The head model consists of three featurtesiure 2", skin H?:éiii?urik;z;szﬂrsea owerful tool for modeling the head
color Z$¥, andsilhouetteZ;* . The silhouette feature, proposed in P 9

this work, helps localize the head using foreground segati pose, but prone to confusion due to background clutter. Tp he

The texture and skin color features, which have appeared nlnnake our head model more robust, we have defined a skin color

binary model (or mask)Me, for each head-posé), in which

previous works including our own [3], [41], use appearance;: . L A
. . he value at a given location indicates a skin pixel (1), ooa-n
dependent observations to determine the head-pose ofltfecsu = ", . .
skin pixel (0). An example of a skin color mask can be seen in

This extra 1D V histogram is appended as one extra row in the H3gure 5. The skin color binary models were !eamed from _Skin
histogram, resulting in a “2D” HS+V histogram. color masks extracted from the same training images usetkin t
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be inefficient in such high-dimensional spaces [1]. The sitas

Metropolis-Hastings (MH) based MCMC particle filter is more

efficient [17], but does not allow for the dimensionality dfet

state-space to vary (the number of people must remain static

solve this problem, we have defined a type of RIMCMC sampling

scheme [11] based on a method we proposed previously [32]

which includes a set of reversible move types jianpg which

can change the dimension of the state-space (note thateaedlitf

Fig. 5. Head-pose c_)bservation featurega) Te_xFure ?s used to estimate the RIJMCMC model was originally used for tracking in [44]).

head-pose by applying three filters to the original imagepéugeft). These . . . .

filters include a coarse scale Gaussian filter (upper righfjne scale Gabor The RIMCMC algorithm starts in an arbitrary conflguratNPl

filter (lower left), and a coarse scale Gabor filter (lowehtjg(b) Skin color sampled from the Markov chain belonging to the previous time

models help to keep the head-pose robust in presence offeackfclutter.  step,t — 1. The first step is to selectraove type from the set of

(¢) A silhouette model is responsible for localizing the head. reversible move& by sampling from a prior distribution on the

texture model using a Gaussian skin-color distribution ehed MOVe typesu ~ p(v). The next step is to choose a target object

in normalized RG space [2]. i* (or two objectsi* and k* in the case of awapmove), and
The head-pose skin color likelihood compares the learné@ply the selected move type to form a proposal configuration

model with a measurement extracted from the imagé (skin X" . The proposal is evaluated in acceptance tesand based

color pixels are extracted from the image using a temporalp this test either the previous staé" ") or the proposed state

adaptive person-dependent skin color distribution modeicw X~ is accepted and added to the Markov chain for time

is updated with a MAP adaptation to the current person usingA reversible move defines a transition from the current state

skin color pixels in the estimated head location). The skiloe X and a proposed statX® via a deterministic functiom.,

likelihood of a measuremer®?* belonging to the head of personand, when necessary, a generated random auxiliary varlable
i is defined as [11]. This transition can involve changing the dimensiohasen

X and X*. The transition function, is a diffeomorphism or

L |

(a) texture (b) skin color (c) silhouette

sk sk 6,

P(Zi7 1K) ocexp —Agk||Zi7 = M7l (13) " an invertible function that maps one space to another. Tisere
where||.||; denotes thel,; norm and),; is a parameter tuned flexibility in defining the transition:,,, so long as it meets the
on training data. following criteria: 1. it is abijection i.e. if h, defines a one-to-
Head-Pose Silhouette Feature one correspondence between sets; 2. its derivative idiibhsii.e.

In addition to the pose dependent head model, we proposeittbas a non-zero Jacobian determinant; 3. it has a corresggpn
use a head silhouette likelihood model to aid in localizinghead reverse move:lf, which can be applied to recover the original
by taking advantage of foreground segmentation informatid state of the system. The reverse move must also meet thenfarst t
head silhouette model i§°% (see Figure 5) is constructed by av-criteria. For move types that do not involve a dimension gean
eraging head silhouette patches extracted from binargfoumd the reverse move is often the move type itself, in which case i
segmentation images re-sized@ x 64 (see Section V-B, note is possible to recover the original multi-object configioatby
that a single model is used unlike the pose-dependent mémtelsreapplying the same move. Move types that involve a change in
texture and skin color). dimension usually cannot revert to the previous state, ard a

The silhouette likelihood works by comparing the modedlefined inreversible move paitswhere one move is the reverse
H*" to an extracted binary image patch (from the foregrounef the other.
segmentation) corresponding to the hypothesized locatibn  Following [1], the general expression for the acceptantie ra
the head,Zs. A poor match indicates foreground pixelsfor a transition defined by., from the current stat&X; to a
in unexpected locations, probably due to poor placement pfoposed stat&™; (allowing for jumps in dimension) is given
the head model. The head silhouette likelihood term is defase

(X3, X*;) = min {1 pX"|Zu) o p(v7)

P(Z5"|X;) o exp —Agit||Z5" — HY)|y, (14) VP Ze) < po) (15)
¢ (X:,U|X";,U") ’ dh, (X:,U) ’
where \,;; is an parameter tuned on training data. 70 (X*¢,U*[X¢,U) 9(X:,U) ’

In practice, we found that introducing this term (not defimed
our previous work [3] or in others’ like [41]) greatly impred
the head localization in the combined body-head optinorati
process. Further details on the head-pose model can be fo
in [2].

whereU is an auxiliary dimension-matching variable abid is
its reverse move counterpapi;X*+|Z1.¢) is the target distribution
evgluated at the proposed configurati®ii;, p(X¢|Zi.:) is the
lt'erget distribution evaluated at the current configuraan p(v)
is the probability of choosing move type p(v’?) is the proba-
bility of choosing the reverse move typé?, ¢, (X*¢, U*|X;, U)
D. Component-wise Reversible-Jump MCMC is the proposal for a move from(X;, U) — (X*;,U*),
Having defined the components of Eq. 2 (state-space, dynami&(X:, U|X*;, U*) is the proposal distribution for the reverse
model, and observation model) we now define an RIMCMC samove from(X*;, U*) — (X4, U), and% is the Jacobian
pling scheme to efficiently generate a Markov Chain représgn determinant of the diffeomorphism froifX;, U) — (X*;, U*).
the posterior distribution in Eq. 9. The Jacobian determinant is the matrix of all first-ordertiphr
As the state vector for a single person is ten-dimensiohal, tderivatives of a vector-valued function, which reducestie éor
multi-person state-space can quickly become very largenwheur selected moves (see [29] for further details).
allowing for an arbitrary number of people. Traditional Seq- Instead of updating the whole of an objéct in a single move
tial Importance Resampling (SIR) particle filters are knoten as in [44] and [32], we propose to splK; into components



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (T-PAMI) 8

of differing dimension{X’;,Li,ei} for some move types, andwhere
update these components one-by-one to increase the dfficien wn = TLer p(X; |X(n))

of the sampling process. Haario et al. [12] showed that such 1 N J€L: 1 ”N t=1n (n)
MCMC methods (which define proposal distributions thattspli CXt) = 7 2n=1wn = 7 2n=1 Pv (X[ X3 7).
the dimension of the state-space) are often more efficiehtess \yhen ;* = ;+ a previously unused object index is chosen
sensitive to increasing d_lmen_smn than those proposingesiover g p(X*i*,tIXfﬁ)l) reduces top(X*;+ ;) (Eq. 5). In this case,
the full dimension for high-dimensional spaces [12]. INVi0&S  jnitia| size parameters of a new object are sampled frormisgir
works using RIMCMC ([32] and [18]), a single update move Wagayssian distributions. Location parameters are selecsity
defined in whichall the parameters of a person were updateg ster sampling for efficiency (a hierarchical process ol
simultaneously. This was sufficient for simple object medéut e image is broken into smaller regions, a region is rangoml
we found it to be inefficient for our complex model represegti gojected based on the probability of selecting its conteants

(20)

the body, head, and head pose. a point is sampled from the selected region) on a smoothed
foreground segmented image. If a previously dead object is
E. Reversible Move Type Definitions chosen to be reborn*( # i*), the new object parameters are

In this work, we define a set of six reversible move types belodken from the dead object. Initial head and pose paramaters
T = {birth, death swap body updatehead updatepose updatp ~ chosen to maximize the head likelihood in both cases. Refer t
The traditional update move is split into three componenveso [29] for further details. After simplification, it can be shio that
for efficiency. The split was made such that the set of pararsets reduces to

modified for each of the update move types only affect a femser . p(Z X" ec,. (X7 0, X" 1)
in the observation likelihoodbody updatemodifies the location ap = mim (1’ P(Z:]X¢) 1 (21)
and size of the bodyX?), head updatenodifies the location and ng:g « ngz_‘*g) )

p(v= qp (2"

size of the headl{;), andpose updateipdates the head posg )
(2) Birth. Birth adds a new objec*;~ with index:i* to the multi- (2) Death. The reverse of a birth movehfjz = hg, the death
object configurationX;, while keeping all other objects fixed, move is designed so that it may revert the state back to the
forming a proposed statX*;. This move implies a dimension initial configuration after a birth, ofX;, U) = hy(hy(X¢, U)).
change frommI’ — mI' + T, whereT" denotes the dimension The death move removes an existing obj&gt ; with index :*

of a single object within the multi-object configuration.eThirth from the stateX;, keeping all other objects fixed. This move
move proposes the new multi-object configuratldf,, generated implies a dimension change fromI’ — mI' — I'. It proposes
from the birth proposal distributionX™; ~ ¢,(X*+|X¢,U), by a new stateX* and an auxiliary variabldJ*, generated from
applying the transition functiork;, and sampling a dimension- the death proposal distributiofiX*;, U*) ~ ¢4(X*¢, U*|X4), by
matching auxiliary variableU, U ~ ¢(U). The birth move applying the transition functioh;..,. The transition is given by
transition is given byX*; = h;,(X¢, U) where the specific objects (X*;, U*) = hy(X:), where the specific objects are defined as
are defined as

X*i,t = Xi,t7 { 7é i* ) U* = Xi,t7 i=1" . (22)
xX* _ Xi,t7 { 75 i 16
= U, i=i* 18) The proposal for the death movg(X*;, U*|X;) is given by
The auxiliary variableU is responsible for dimension matching in qa(X* 5, U [Xe) = > qa(i) qa(X"t, U [X4,4),  (23)

the transition(X,, U) — (X) (e, U acts as a placeholder forWhereqd(z‘) selects the objieergf indeX to be removed and placed

the missing dimension iiX;). The proposal for the birth move, . . . -
g, (X*[X,, U) is given by in the set of dead object®;, and the object-specific proposal

distribution is

qb(X*t|Xt,U) = z Qb(i)Qb(X*t|Xt7U7i)7 (17)
ieD,U{it} otherwise.
(24)

In practice, the death move selects an object according; 0

x N7 i ok
qa(X* ¢, U*|Xy, i) :{ gljezt,j#* 0XTj =X  Mi=1i

whereg, (i) selects the object to be added, is the next available
unused object index anB; is the set of currently dead objects., ' F'™" . < . .
The target object index sampled frog (i) is denoted as*, (which is uniform over the set of existing objects in our mipde
making the proposed set of objects indices a union of theentirr and removes that object from the state-space. Refer to [29] f

setZ; and the target object indeX, 7*; = Z; U{i*}. The object- further details. After simplificatiory, is expressed as

specific proposal distribution for a birth move is given by o — min (1. 2ZdX70) 1 o
11 yN x (n) ! P pZX) T Ilec, Kir Xy o) (25)
CXH N 2 on=1 P(XT i 4| X321 ) X pgvfgg « qbgé*g).
' y={ ez, p(XalX{))x o e
w(X7e[Xe, U, ) 7?;(15(* . tj_ X_tt)l if i =4 (3) Swap. Exchanges the parameters of a pair of objects with
g 0 ” otherwise. indexes:* and k*, allowing the tracker to recover from events

(18) in which the identity of two people become confused (e.g. in

where in the case of=i*, the proposal can be rewritten as  occlusion). The transition is given bX*; = hs(X:), where
specific objects are defined

~ 1 (15N
@ (X" t1Xe, U, i%) = oy <W 2 n=1 wnp(X*i*,”Xz(ti)l)) X { Xy, A iAK
X5 =

[Tjez, 6(X"je — Xj1), Xpe g, t=1" (26)

(19) Xy, 0=k
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The proposal for the swap move(X*¢|X;) is defined as samplern® from the previous time leaving the other parameters
. A . unchangeday,.,q can then be shown to reduce to [29]:
s(X"t[Xe) = D qs(i k) qs(X"¢[Xeois k), (27)

| Z\L L* i 4| X"
= I (1 PZLIL i) p(LY ] z,t>>7 (36)

where the target object indice$ and k* are randomly sampled P(Z¢|Li- 1) p(Lis o X3 )

from ¢ (4, k). The object-specific proposal distribution exchangeg®) Pose update Modifies the pose parametéy ;- of a person

the state values and histories (past state values) of shijeeind with indexi*. Like the previous update moves it is self-reversible
E*. It can be shown [29] that the expression for thereduces and does not change the dimension of the state. The move

to . transition is given by(X*, U*) = hy(X, U), where
as = min <1 M) . (28) b .
B p(Xt'Zl:t) (X*f,L*l,e*) _ { (X%;Luez) 747574* 7 U* :91'*-
(4) Body update. Modifies the body parameters of a current (X3, L, U) =17, 37)

objectX*‘jyt with indexi = i* keeping the head of persan=i*

and all other people fixed. The update move transition isrgbxe The head-pose update move proposal is defined as

(X*t,U") = hyoay(X¢, U), where the specific objects are defined q9(X*:, U%| Xy, U Z a9 (1) qo(X* ¢, U*| X, U, ), (38)
as i€,
(X* xc+h ) { (Xb,, XP,) i i Ut — xb where the object-specific proposal distribution is defined a
1,t it) = ’ h ’ . Lk 3 = i* t
’ U, X; i=1 ’ . . . [
( o) (29) q0(X*1, U [X4, U,i) = £ 32, P(Q*i*,(t|)9§ﬁ)1)p(9*i*.,t|9*1@1)><
7% 7 n *
The body update move proposal is defined as 6(0%i ¢ = O o) [Tz P(X5e| X 21)0(XG 4 — Xj0), (39)
Tbody (X1, U X, U) Z Tbody (1) Qhody (X7 ¢, U%|X¢, U,i).  where §*;« , denotes the proposed head-pose configuration for
i€T, targeti* and 6*;- ; denotes all state parameters excépt- ;.

(30 This implies selecting a person indeX, and sampling a new

The object-specific proposal distribution is defined as head-pose for this person from(¢* ;- t|9t(7—l*1))l using an appro-

Thody (X4, U* Xy, U, i) = priate samplen® from the previous time step, leaving the other
L3 p(X |Xb (n)) (X*b |Xb (n)) (X*b _ XT) parameters unchanged, can then be shown [29] to reduce to
N ZLun Z* i*,t it i *
o n) o ) Zh X*h*
H];éq,* ( ],t|Xt—1) (X 7,t X],t): (31) ap = min 17 p( thl }Z ,t) . (40)
p(Z; |Xi*,t)

where X*ﬁ-’*,t denotes all state parameters excé@‘ti—’*_,t, and
X*?yt denotes the proposed body configuration for tafgeThis g Inferring a Solution
implies randomly selecting a persehand sampling a new body
configuration for this person frorp(X*Z* t|Xb o )), using an
appropriate sample* from ¢ — 1, leaving the other parameters
unchanged. Thusy,,q, can then be shown to reduce to [29]:

The first N, samples added to the Markov Chain are part of
the burn-in period, which allows the Markov Chain to reach
the target density. The chain after this point approximates
filtering distribution, which represents a belief disttion of

_ p(Zb X+ D Tee,. o(X i 0. X"1y) the current state o_f the o_bjects given the observa’Fionsodztsd
Qpody = min | 1, Z0XE 1] (X 1. X10) . not, however, provide a single answer to the tracking prable
p(ZiX- ) e, et At (32) To find this, we compute @oint estimate solutignwhich is a
single state computed from the filtering distribution whgdrves
as the tracking output. To determine the set of objects in the
scene, we compute the mode of the object configurations in the
Markov Chain (each sample contains a set of object indices; w

(5) Head update.Modifies the head parameters of a current ob-
ject L*Z*_,t with index:*. The transition is given byX*;, U*) =
hnead(Xt, U), where the specific objects are defined as

b o o (Xft,Li 0y i . select the set that is repeated most often accounting fottifge
(X753, L7, 07) = (X‘?7t,U,70“)’ i=i* , UT=Lig. changes resulting from swap moves). Using these samples, we
" ' (33) find the mean configuration of each of the body and head spatial
The head update move proposal is defined as configuration parameteréX?,, L;',). For the out-of-plane head
rotations represented by the discrete exemplarwe compute
Thead X6, U Xt, U) = D Ghead(i) qheaa(X 1, U*[Xt, U, 4),  the mean of the corresponding Euler angles for pan and tig. T
i€y (34) detailed steps of our joint multi-person body-head tragkamd
. o T . VFOA-W estimation model are summarized in Figure 6.
where the object-specific proposal distribution is defined a
Ghead (X1, U™ [Xy, U, d) = IV. MODELING THE VFOA FOR A VARYING NUMBER OF
LS p(L e X (T X)) 6 (T — T ) % WANDERING PEOPLE
[Tz p(X J,t|Xt_)1) 6(X5 ¢ — Xj0)s The VFOA-W task is to automatically detect and track a

(35) varying number of people able to move about freely, and to
where L*;« ; denotes all state parameters excépt- .. This estimate their VFOA. The VFOA-W problem is significantly raor
implies selectmg a persari and sampllng a new head configuracomplex than the traditional VFOA problem because it alléovs
tion for this person from)(X*l* t|X )) using an appropriate the number of people in the video to vary and it allows for the
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At each time stept, the posterior distribution of Eq. 9 for the previous timepsis represented by a set &f unweightedsamples
p(Xi-1]Z1ii—1) = {Xg’i)l}ﬁ’zl. The approximation of the current distributi@iiX+|Z1.+) is constructed according to steps 1 apd
2, from which apoint estimate solutioor head and body parameters is determined in step 3. Thesaliithese parameters are
used in step 4 to determine if a person’s attention is diceatethe advertisemenfocused or not Unfocusejl
1) Initialize the Markov Chain by choosing a sample from the 1 Markov Chain with the mode configuratiom{™().
Apply the motion model to each objeqf[iezt p(Xt$i|XECL)1’,L-), and accept as sample= 0.
2) RIMCMC Sanpl i ng. Draw N + Np samples according to the following schedule.
« Begi n with the state of the previous samplg™ = X"~ Y.
o« Choose Move Type by sampling from the set of moves T = {birth, death, swap,
body update, head update, pose updatgéth prior probability p.«.
o Sel ect a Target i* (or set of targets™, k™ for swap) according to the target proposa(:) for chosen move type
o Sanpl e New Confi guration X*; from the move-specific proposal distributign-. For move typev, this implies:
— Birth - add a new persoii* according to Eq. 17m{™* = m{™ + 1.
— Death- remove an existing persaii according to Eq. 237,@”)* =m{™ —1.
Swap- swap the parameters of two existing peopigs* X'} — X,i"f X" - x
Body Update- update the body parametersf’”fn)* of an existing personi™ (Eq. 30).

Head Update- update the head parameteiv?:*t<7l)* of an existing person™.
— Pose Update update the pose paramel‘éﬁ)* of an existing personi*.
o Conpute Acceptance Rati o « according to Equation 21, 25, 28, 32, 36, or 40.
o Accept/ Rej ect. Accept the proposaK™: if o > 1, otherwise accept with probability. If accepted, add it tg
the Markov ChainXin) = X*in). If rejected, add the previous sample in the Markov Chainht® ¢urrent position
X" =x"Y.
3) Conpute a Point Estinmate Sol uti on from the Markov Chain (as in Section IlI-F):
« to avoid bias in the Markov Chain, discard the fifég burn-in samples. The sample s{aKE”)}Q’f;é\’H represents an
approximation of the filtering distribution.
. form a sample setV from the mode configuratioX; as described in Section Ill-F. Compute theint estimatebody
X? and headX} parameters from their mean value Tifi.

4) Determ ne the VFOA- Wfor each person in the scene according to Section IV.

Fig. 6. Algorithm for joint multi-person body and head tragk and VFOA-W estimation with RIMCMC.

people in the video to freely walk about the scene, whereas For this reason, we chose to split the image ihig;,q—., = 5
previous works [36] the number of people appearing in a singhorizontal regiond,, k = {1, ...,5}, and modeled the probability
video was fixed and they were constrained to remain seated (& a focused state as
their VFOA to be estimated). The advertising applicationsgn ~ p(z""|f =1) =35 pa” € I, 2"|f = 1)
as an introduction to VFOA-W represents a relatively simple =30 pa e L)p(Ma" € Iy, F = 1)
instance of the problem as we only attempt to measure VFOA for
a single target, though it is straightforward to extend thisdel Where the first termp(z" € 1) models the probability of a
for multiple targets. person’s head location belonging to regidp and the second

At each timet a person’s VFOA-W is defined as being in ond®m p(z"|e" € Iy, f = 1) models the probability of focused
of two statesf;: head-pose given the region the head belongs to. The inolusio

) ) the head location in modeling the VFOA-W allowed us to solve

» focused:f: =1, looking at the advertisement, or an issue not previously addressed in [24], [34], [38]: reéisgl

» unfocused:f; = 0, not looking at the advertisement. the VFOA-W of a person whose focus state depends on their
Note that this is just one of many ways in which the VFOA-Wocation.
can be represented, but it is sufficient to solve the task&ostt The terms of the VFOA-W model in Equation 41 are defined as
in Section 1. A person’s state of focus depends both on thé@llows. Each region is defined by its center and width, deddty
location and on their head-pose as seen in Figure 7. For heag anday, , resp. The probability of a head locatiofi belonging
location and head-pose information, we rely on the outpuhef to region I, is modeled by a Gaussian distributignz" ¢
RJIJMCMC tracker described in Section III. I) = N(z;z5,,01,). For each region, the distribution of
VFOA-W Modeling with a Gaussian mixture Model (GMM)  pointing vectors representingfacused statevas modeled using
Estimating the VFOA-W can be posed in a probabilistie Gaussian distributiop(z"|z" € I, f = 1) :N(zh;z?k,sz)
framework as finding the focus state maximizing the a pawteri where z}‘k are the mean pointing vectors angj, is the full
probability f = argmax;p(f|z") o p(z"|f)p(f), where covariance matrix learned from training data. 2D projewtiof
2" = (pan,tilt) is the head pointing vector of the persortypical pointing vectors for each region are seen in Figure 7
parametrized by a pan and tilt angle (see Fig. 4). We assuene The probability of being unfocused is modeled as a uniform
prior on the VFOA-W statep(f) to be uniform thus, it has no distribution p(z"|f = 0) = Ty foa—w-
effect on the VFOA-W estimation. To model the probability of The parameters of the VFOA-W model (Gaussian mean and
being in a focused state we consider the horizontal headigosi covariance matrix) and the uniform distribution modelirte t
2" and head pointing vector (see Figure 7). Because the targefocused state distribution were learned from trainindada
is stationary, the ranges of* corresponding to the focused statelescribed in Section V. Though our VFOA-W model does not
are directly dependent on the location of the head in the é@nagnake use of the vertical head location, it is straightfodvar

(41)
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TABLE |
SYMBOLS, VALUES, AND DESCRIPTIONS FOR KEY PARAMETERS

[ Parametef Value | Set by [Description |
Qgeale 0.01 learned |body and head scale variance
Qposition 2.4 learned [body and head position variance
Kyr 1 learned |[body binary model mixture comps. (fore)
Ky 4 learned |body binary model mixture comps. (back|
AR 20 hand-tunedbody color foreground parameter
**I et Asil 200 hand-tunedhead silhouette parameter
Eenced Zy, )\ge” - learned |head texture parameters
\ f‘/zm:g Trex exp(%Q) untuned |head texture threshold
Ask 0.5 hand-tunedihead skin color parameter
Dbirth 0.05 untuned |prior prob. of choosing &irth move
Ddeath 0.05 untuned |prior prob. of choosing a@eathmove
Pswap 0.05 untuned |prior prob. of choosing awapmove
Pupdate 0.283 untuned |prior prob. ofbody, head, posmoves
N 300,600,800hand-tunednum. samples in chain for 1,2,3 people
Np 0.25*N  [hand-tunedinumber ofburn-in samples
Training Focused Head X Locations Ky foa—w 5 untuned |VFOA-W modehumber of mixture comps
400 T " " " " T T Tyfoa—w | 0.00095 learned [VFOA-W modelikelihood threshold
p(f]ft—1)] .2 (change)hand-tunedHMM modeltransition prob. for focus stafe

el o A

I
3oor ] V. TRAINING AND PARAMETER SELECTION

250} | A. Experimental Setup

To simulate the advertising application described in theoin
duction, a home-made advertisement was placed in an exposed
window with a camera set behind. Several actors were irtstluc
to pass in front of the window and allowed to look at the
o I advertisement (or not) as they would naturally (actors wesed

due to privacy concerns for actual passers-by). A recordfri-
% o 0 om0 220 20 a0 s minute duration 60 x 288 resolution, 25 fps) was made in which
) . X axis ) . a maximum of three people appear in the scene simultaneously
Fig. 7. VFOA-W modeling. Top: VFOA-W is determined byead-posend Th ded data includ hall . t h |
horizontalpositionin the image. The horizontal axis is split inf6, o4 —w = € re_cor e ala Includes cha englr_lg eveljl S such as eeop
5 regions (1,...,I5), and a VFOA-W model is defined for each of theseoccluding each other and people entering/exiting the scene
regions. Yellow, green, cyan, black, and blue data poinpsesentfocused

head locations used for training and red arrows represenprdfzctions of - d lecti
typical samples ofocusedpointing vectorsz". Note that the advertisement B. Training and Parameter Selection

is affixed to a window and appears just above the image frarottom: over The recorded video data was organized into a disjoint tmgini
9400 training points representing a person ifoeusedstate (also seen in the d test set of | si The traini t isti 06 ni
left pane) were split into thé<, f,,—., regions and used to train a model fordNd 1est set or equal size. e training set, consisting n
each region. sequences (for a total of 1929 frames), was manually arettat
for body location, head location, and focused/unfocusate st
Table | provides a list of the key parameters of our model.
arameters were either learned automatically from trgimiata
a(?earneo), tuned by handHand-tunejl or selected without ex-
i . . haustive tuning ntuned. The parameters for the foreground
VFOA-W Modeling with a hidden Markov model (HMM) Ining u d P . gr
aﬁegmentatlon were hand-tuned by observing results on dlve tr

The VFOA-W GMM does not take into account the tempor ing set. The binary body model was trained using background
dependencies between the focus states. Such dependeanies g : y y 9 g

) subtraction and training set annotations. Using this mfion
be modeled using an HMM. If we denote a sequence of foc 9 9 fatfon,

states b and a sequence of head pose obser at'oné‘ Ms were trained for the foreground and background models
L Yfir . quen P oservations. as (parameters were selected through cross-validation)d l4@ao-
the joint posterior probability of the observation and thates

can be written as: tations were l_Jsed_ to learn the paramgters of the Gaus_sian ski
) color distribution in the head-pose skin feature. The si#ite
mask was also trained using the head annotations by avgragin
h - h the binary patches corresponding to head annotationsmiesees
p(frr, 21.7) = p(fo) Hp(zt [f)p(fel fe-1)- (42)  for the VFOA-W model, includingr’, #,—.,, Were optimized on
=t the training data (bootstrapped to 9400 training points,Fgure
7) to achieve the highest VFOA-W event recognition perfaroga
In this equation, the emission probabilitigg:?|f;) are modeled (see Section VI for details). The transition probability tfe
as before (GMM for focused and uniform for unfocused). Bat, iIHMM p(f|f;—1) is defined as a 0.8 for a transition to the same
the HMM case, a transition matrix is used to model the tempetate and 0.2 to change state. The training set was also ased t
ral VFOA-W state transitionp(f;|f;_1). Given z.., VFOA-W learn prior size models (scale and eccentricity) for thesper
recognition is done by finding the optimal sequence maximgizi models. Texture models and the skin color masks were learned
p(f1:T|z{ﬁT) using the Viterbi algorithm [27]. from the Prima-Pointing Database, which consists of 30 skts

head samples
9
g

to generalize the model to do this. To reduce noisy VFOA-V[g
estimations, a smoothing filter with an 10-frame window w:
applied to the GMM output.
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TABLE |I TABLE Il
TEST SET DATA SUMMARY. MULTI-PERSON TRACKING RESULTS AVERAGED OVER THE ENTIRE TEST
SET.

sequence a b c diefghi|l j Tracking Quality Measured Measure Value

length (s) 1513121056 4 4 4 11 False positive rateF'P = .0183 = .0031

# people (smulta}neous [tota) (1/3) @72) 1(373) detection False negative ratd’N = .0107 = .0038

# looks at advertisement 2 3 0 322212 4 Counting distancCD — 0344 + 0078
images of 15 people, each containing 93 frontal images of the spatial fit EOdi’j ff'tt f_’if 'gggii ‘ggzg
same person in a different pose ranging from -90 degrees to $6 fracking Trackei:g p'umy %:_.:92801 .'0171
degrees (see Figure 4). The texture parametgrand \;** were
learned according to the method described in [40]. B. Advertisement Application Performance

To evaluate the performance of the advertisement apmitati
VI. EVALUATION the results from our model were compared with ground truth

In order to evaluate the performance of our application, trnotations. Results appear in Fig. 8 (summarized in Tap. IV
test set was annotated similarly to the training set. Theges and the companion videos [14]. For evaluation, we consitiebe
consists of ten sequences summarized in Table Il. Sequ@mescriteria defined below, and report results for the GMM and HI\/IM
d contain three people (appearing sequentially) passingoint f models for each. To reduce errors caused by people partially
of the window. Sequences—i contain two people; sequenge appearing in the image, VFOA-W results are computed on a
contains three people appearing simultaneously. We cardpar reg_ion-of-interest defined from 8 frames after a person ape
results with the ground truth over 200 experiments on theego t Until 8 frames before they exit the scene. .
sequences (corresponding to 20 full runs of the DBN model pér The number of people exposed to the advertisemen®ver
sequence). The length of the Markov Chain was chosen suth tHi¢ entire test set, 25 people passed the advertisemeri, oui
there was a sufficient number of samples for good qualityinac RJIJMCMC tracking model estimated _25.15 peop_le appeared, on
(see Table 1). Experimental results are illustrated in Fégiand average (over 20 runstd dev= .17) which results in 3.4% error

fully shown in companion videos [14]. for both models. In Figure 8a we can see that the number of
people was correctly estimated for every sequence except
andi.

A. Multi-Person Body and Head Tracking Performance 2. The number of people who looked the advertisemen20
To evaluate the tracking performance we adopt a set of mesf-the 25 people actually focused on the advertisement aesom
sures proposed in [31], with some minor changes to names guint. The GMM model estimated 22.95 people looked at the ad,
notation. These measures evaluate three tracking gsalifie while 21.2 did so for the HMM resulting in 6.0% (HMM) and
ability to estimate the number and placement of people in thed.75% (GMM) error rates.
scene detection, how tightly the estimated bounding boxes fit3. The number of events where someone looked the ad-
the ground truth gpatial fif), and the ability to persistently track vertisement. The VFOA-W recognition sequences were broken
a particular person over timérgcking). Overall results are given into continuous segments, or events, where a look-event is a
in Table 111, with illustrations for sequences, ¢, h, andi in Fig. focused state fot > 3 frames. 21 look-events actually occurred
9 and further details available at [14]. over the test set. The GMM model estimated 28.5 look-events
To evaluate detection, we rely on the ratesFafse Positive occurred while the HMM model estimated 21.45 giving error
and False Negativeerrors (normalized per person, per framejates of 2.14% (HMM) and 35.45% (GMM). These results were
denoted byFP and FN. As indicated in Tab. Ill, for a given determined through a standard symbol-matching technique.
person in a given frame there is a 1.8% chance of our methédTime spent looking at the advertisementOver the entire test
producing a false positive error and 1.1% chance of produain set, people spent 37.28s looking at the advertisement. Tl G
false negative error. Th€ounting DistanceCD measures how model estimated that people looked at the ad for 38.59s while
close the estimated number of people is to the actual numike HMM estimated 37.89s, yielding 1.63% (HMM) and 3.51%
(normalized per person per frame).CAD value of zero indicates (GMM) error rates.
a perfect match. As shown in Tab. Ill, th€D is near zero, 5 and 6. VFOA-W recognition rate estimation. The VFOA-W
indicating good performance. recognition rate is computed with respect to frames as well a
Spatial fitting between the ground truth region and the &ackevents (continuous segments of frames with a similar VFOA-W
output is measured for the body and the head usind-theasure state). The frame-based recognition rate is computedthjiras
F = %, wherep is recall andv is precision. A perfect fit is the number of frames in which the estimate and ground trutbeag
indicated byF' = 1, no overlap byF = 0. Tab. Ill indicates that over the number of frames. The overall frame-based redognit
the spatial fitting for both the head and body were quite goorhtes are 83.90% (mean GMM) and 92.53% (mean HMM). The
above 80%. aforementioned~-measure F = %, is used to compute the
To evaluate tracking performance we rely on fhaity mea- event-base recognition rate [16] wherés the event-based recall
sure, which estimates the degree of consistency with whieh t(the number of segments where the ground truth and estimate
estimates and ground truths were properly identififdngar 1 agree, normalized by the number of segments in the groutig) tru
indicates well maintained identity and near 0 indicates poor andv is the precision (the number of segments where the ground
performance, see [31] for details) Tab. Ill shows that oudeto truth and estimate agree, normalized by the number of segmen
had good tracking quality (.93), though it dropped to .81 im the estimate). The overall event-based recognitionsraie
sequence: where two people occlude one another as they cro86.37% (GMM) and 93.85% (HMM). Results for each sequence
paths. appear in Fig. &) and(f).
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TABLE IV

VEOAW ESTIMATION SUMMARY FOR GMM AND HMM MODELS. Experiments in [3] show that our head pose model perfornteibet

error rates (in %) for near frontal faces1@® mean error) than for faces near profile
— |# giooplq# peoglgolookeqi# Ioozklivent"nmelf(égused poses (8° mean error)_
gmlq 3.40 ‘ 14.75 ‘ 35.45 351 3. VFOA-W Modeling. »
VFOA-W recognition rates The relatively simplez-axis positional model used for VFOA-
| event-basefframe-based W is sufficient to yield good results to estimate VFOA for
hmm  93.95 92.53 moving people. A more complex scenario may require a more
gm 90.37 83.90

geometrically complex VFOA-W model which takes into acdoun
the observed head pose and the locations of the advertisemen
C. Varying the Number of Particles person and camera.

To study the model's dependency on the number of samplds,Data Set.
we conducted a series of experiments on sequénahich is Although the designed data set was useful to demonstrate the
omitted for space reasons. In summaky,= 600 samples were ability of our VFOA-W algorithm to perform in a realistic
required for good performance in Matlab betweenl and 5 situation, it does contain some limitations. First, onlurf@ctors
seconds processing time per frame on an Intel Pentium IV 3appeared throughout the data set. Second, the actors did not

GHz processor. We refer the reader to [14] for detalils. walk into the far background, and thus their size did not vary
appreciably. Third, the maximum number of actors appearing
VIl. DISCUSSION ANDLIMITATIONS simultaneously did not exceed three, and the actors onlgse

While our proposed model yielded convincing results on tH%athS in one test sequence and one training sequence @ausin

preceding experiments, there exist some limitations taribdels occlusion)_. Finally, though teste_d outdoors, the lightigditions
and data set. In this section we discuss some of these lionigat V€ relatively stable. The design of a future VFOA-W data se

and how they might be addressed in future work. should take these issues into account.
1. Multi-Person Tracking.
Separability of classes in the binary background obsemati VIII. CONCLUSION
model limits the number of people that the model can track In this article, we have introduced the problem of estinwatire
simultaneously. As the number of people increases, th@delar visual focus of attention for a varying number of wanderimpp
background model loses ability to discriminate betweefediht ple and presented a principled probabilistic approach teirgp
numbers of objects (i.e. the fewer objects in the scene, theOur approach expands on state-of-the-art RIMCMC tragki
more confident our estimation). In independent experimehts models, with novel contributions to object modeling, obser
binary observation model was found to be robust for up tion modeling, and inference through sampling. It is a geher
five simultaneous objects, though this limitation dependstee model that can be easily adapted to similar tasks. We applied
typical size of the objects with respect to the scene and tbaer model to a realistic advertising application and predica
variability of object size. An alternative approach to theaby rigorous objective evaluation of its performance in thisiteat.
observation model proposed in [33] addresses this limitati ~ We compared two VFOA-W models (GMMs and HMMs) and

Our observation model is also limited in its ability to hamdl found the temporal dependencies of the HMM to yield superior
occlusion. Though it performs well for full occlusion in oexper- performance. From these results we have shown that our gedpo
iments (with a relatively small number of people), our aggio model is able to track a varying number of moving people and
would be less robust in situations where a monocular camefatermine their VFOA-W with good quality (exhibiting only a
view is insufficient to resolve the occlusion due to the cameB% error rate in determining the number of people who looked a
placement or multiple occlusions This is a common problethe ad). Finally, through the detailed evaluation of theremir
to monocular tracking algorithms. A multi-view approackcisu strengths and limitations of our approach, we have idedtifie
as that proposed by in [5] may better address these typesseferal lines of research for future work.
situations, which can occur in realistic environments. Acknowledgments
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Fig. 9. Tracking and VFOA-W results for sequencesb, e, h, and . Tracking results appear as boxes around the body and heaéllgwypointing
vector/head border indicatesfacusedstate, a white pointing vector/head border indicatesigiocusedstate. The ground truth appears as shaded boxes for
the head and the body (the head area is shaded yellow whdedadsfocusedand gray when labeled amfocusell VFOA-W results for the GMM model
appear at the bottom. The yellow bars represent the grouit (raised indicates fcusedstate, lowered indicatasnfocusedand no yellow bar indicates the
person is not present in the scene). GMM VFOA-W estimategaspas colored lines. VFOA-W performance was nearly peffed, with good event-based
recognition in all sequences. Mild frame-based VFOA-W ggttion errors occurred i, h, and:. Frame 162 of sequendeshows aF' P error generated

as a tracker was placed where no ground truth was present.
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