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Analysis of Head Gesture and Prosody Patterns for
Prosody-Driven Head-Gesture Animation
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Abstract— We propose a new two-stage framework for joint analysis
of head gesture and speech prosody patterns of a speaker towards
automatic realistic synthesis of head gestures from speechprosody. In
the first stage analysis, we perform Hidden Markov Model (HMM)
based unsupervised temporal segmentation of head gesture and speech
prosody features separately to determine elementary head gesture and
speech prosody patterns, respectively, for a particular speaker. In the
second stage, joint analysis of correlations between theseelementary head
gesture and prosody patterns is performed using Multi-Stream HMMs
to determine an audio-visual mapping model. The resulting audio-visual
mapping model is then employed to synthesize natural head gestures
from arbitrary input test speech given a head model for the speaker. In
the synthesis stage, the audio-visual mapping model is usedto predict a
sequence of gesture patterns from the prosody pattern sequence computed
for the input test speech. The Euler angles associated with each gesture
pattern are then applied to animate the speaker head model. Objective
and subjective evaluations indicate that the proposed synthesis by analysis
scheme provides natural looking head gestures for the speaker with
any input test speech, as well as in “prosody transplant” and“gesture
transplant” scenarios.

Index Terms— Multimedia computing, speech analysis, video signal
processing, animation

I. I NTRODUCTION

State of the art visual speaker animation methods are capable of
generating synchronized lip movements automatically fromspeech
content; however, they lack automatic synthesis of speakergestures
from speech. Head and face gestures are usually added manually by
artists, which is costly and often look unrealistic. Hence,learning the
correlation between gesture and speech patterns of a speaker towards
automatic realistic synthesis of speaker gestures from speech remains
as a challenging research problem.

There exists significant literature on speaker lip animation, that is,
rendering lip movements synchronized with the speech signal [1].
Since lip movement is physiologically tightly coupled withacoustic
speech, it is relatively an easy task to find a mapping betweenthe
phonemes of speech and the visemes of lip movement. Many schemes
exist to find such audio-to-visual mappings among which the HMM
(Hidden Markov Model)-based techniques are the most commonas
they yield smooth animations exploiting temporal dynamicsof speech
[2]–[9]. Some of these works also incorporate synthesis of facial
expressions along with the lip movements to make animated faces
look more natural [3], [6], [8], [9]. The common strategy in these
techniques is to train a joint HMM structure with extracted visual
and audio feature vectors and then to use the trained HMM structure
to generate speech-driven facial expressions and lip movements.

Despite exhibiting variations from person to person and in time,
head and body gestures are also correlated with speech. For exam-
ple, it has been observed that manual gestures are correlated with
prosody [10], [11] and verbal content of the speech [12], whereas
head gestures are mostly correlated with the prosody [11], [13],
[14]. Although correlations between speech and head/body gestures
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have been investigated in several works, there are only a limited
number of publications addressing speech-driven head and body
gesture synthesis. In [15], audio streams from training videos are
first segmented using pitch contour information. The same boundaries
are also applied to the corresponding video streams for segmenting
head motions. The co-occurring audio and head motion segments
are stored as pairs in a database. Later, a new test audio stream
is segmented, and an optimal head gesture sequence is determined
from the database using dynamic programming to create synthetic
head motions. A similar methodology is followed in [16], where
audio/head motion feature pairs extracted from training videos are
stored into a database indexed by audio features. Later, audio features
extracted from a new test input speech are used to search for K-
nearest neighbors. The optimum nearest neighbor combination, found
by dynamic programming, is used to synthesize corresponding head
motions. In [17], we presented a preliminary demonstrationof natural
looking head and arm gesture synthesis from speech using a manually
determined audio-visual mapping from speech to head and arm
motions.

The aim of this paper is to present a framework for joint analysis
of head gesture and speech prosody patterns towards automatic
generation of the audio-visual mapping from speech prosodyto head
gestures. Although the same framework can also be applied toanaly-
sis of co-occurring arm gesture and speech patterns, this isbeyond the
scope of the current paper. There are some open challenges involved
in the joint analysis of head gestures and prosody towards prosody-
driven head gesture synthesis: First, unlike phonemes and visemes
in speech articulation, there does not exist a well-established set
of elementary prosody and gesture patterns for gesture synthesis.
Second, synchronicity of gesture and prosody patterns may exhibit
variations. For instance, a speaker can move her/his head before the
corresponding prosodic utterance with a variable time lag.Moreover,
gestural patterns may span time intervals of different duration with
respect to their prosodic counterparts. Third, prosody andgesture
patterns are speaker dependent, and may exhibit variationsin time
even for the same speaker. Previously reported works [15]–[17] do
not address any of these challenges; for instance, the asynchrony
problem is either ignored or handled by manual alignment. Inthis
work, we address these challenges by first processing the head gesture
and prosody features separately by a parallel HMM structureto learn
and model the gestural and prosodic elements (elementary patterns),
respectively, over training data for a particular speaker.We then
employ a multi-stream parallel HMM structure to find the jointly
recurring gesture-prosody patterns and the correspondingaudio-to-
visual mapping.

HMM-based segmentation techniques are commonly employed in
modeling multi-stream correlations; for example, for speech-driven
lip animation in [7]–[9] and for audio-visual event detection in [18].
We can classify HMM based modeling techniques as supervised
and unsupervised. Speech and lip motion correlation modeling can
be thought of as a supervised analysis/segmentation problem, since
phonemes and visemes constitute well-established elementary units
for these modalities. Hence, speech-driven lip animation task is often
equivalent to find a mapping between the phonemes of speech and the
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visemes of lip movement. On the other hand, we shall considerthe
audio-visual gesture modeling/mapping as an unsupervisedsegmen-
tation problem, where the recurrent joint events are not well defined
and to be extracted from the joint feature streams.

The organization of this paper is as follows: In Section II, we
first provide an overview of the proposed HMM-based analysis-
synthesis framework, and then describe the computation of head
gesture and speech prosody features. Robust and accurate tracking
of the speaker head motions is an integral part of the overallsystem;
hence, it is described in detail. Section III presents the proposed two-
stage unsupervised analysis procedure to identify and model jointly
recurring head gesture and prosody patterns. Section IV explains
HMM-based synthesis of head gesture parameters from input test
speech. In Section V, we describe the experiments conducted, and
present objective and subjective evaluation of the prosody-driven head
gesture synthesis results. Finally, Section VI provides conclusions.

II. OVERVIEW OF THE PROPOSEDSYSTEM AND FEATURE

EXTRACTION

A block diagram of the proposed system for prosody-driven head
gesture animation, which consists of analysis and synthesis parts, is
depicted in Fig. 1. The analysis part includes two feature extraction
modules and two-stages of analysis. Feature extraction modules
compute the head gesture featuresf g and speech prosody features
fp, respectively, from training stereo video sequences of a speaker.
At the first stage analysis, individual feature streams are used to
train separate parallel HMM structures, which provide probabilistic
models for temporal recurrent patterns in the corresponding modal-
ities, respectively. The segments corresponding to these patterns are
detected and labeled over the training video streams, wherepattern
labels for prosody and gesture are denoted bylp andlg, respectively.
At the second stage, the labels of temporally segmented gesture and
prosody streams are used together to train a discrete multi-stream
parallel HMM to identify jointly recurring patterns. The resulting
joint HMM structure models the correlation between speech prosody
and head gestures. The synthesis part makes use of the joint HMM
to predict the gesture labels from the prosody labels computed for
a test input speech using the prosody HMM obtained by the first
stage analysis. The corresponding gesture features, i.e.,head motion
parameters, are synthesized using the gesture HMM obtainedat the
first stage analysis and finally animated on a 3D head model. The
details of the two stages of the analysis, shown by Stage-I and Stage-
II blocks in Fig. 1, are presented in Section III, whereas thegesture
synthesis part is described in detail in Section IV. In the remainder
of this section, we describe our methodology for extractionof head
gesture and speech prosody features.

A. Extraction of Head Gesture Features

We define the head gesture feature vector,f
g
k, for frame k to

include the Euler angles associated with the 3D head rotation and
their first differences,

f
g
k = [θk, φk, ψk,∆θk,∆φk,∆ψk]T (1)

whereθk, φk andψk are the Euler angles of rotation, with respect
to a reference framekr, around thex, y and z axes, respectively,
and ∆θk, ∆φk, ∆ψk denote their respective first differences. The
reference framekr can be selected as the first frame in which the
subject’s head is assumed to be at neutral position.

1) 3D Point Tracking: For video recording, we use a rectified
stereo camera system with two identical cameras, and assumethat
the intrinsic camera parameters are knowna priori. For each frame
k, we initially detect a rectangular head region from one of the stereo

views (e.g., the right or the left but not both) using a boosted Haar
based cascade classifier structure, which was initially proposed by
Viola and Jones [19] and later improved by Lienhart and Maydt[20].
The detected rectangular head region is used to initialize the search
window within which facial pixels are segmented based on a Gaussian
skin color distribution model computed over a training set of sampled
skin colors. An ellipseEk is then fitted to the facial skin region.

Let Pkr denote the set of image points within the ellipseEkr

of the reference framekr so thatPkr = {pkr ,1
,pkr,2, . . . ,pkr,N}

and pkr,n = [xn, yn]T . For each framek, we employ the hierar-
chical Lukas-Kanade technique [21] to find the optical flow vectors,
{vk,1,vk,2, . . . , vk,N}, from framekr to framek. The setPk of
the corresponding image points in framek is then obtained by
pk,n = pkr ,n + vk,n, n = 0, 1, ..., N .

In order to find the 3D world coordinates of the image points in
each setPk, we compute the disparity vectors at these points using
bandpass images and a cross correlation measure based on thesum
of absolute differences [22]. The disparity vectors are also validated
using several criteria [23]. Given the disparity vectors for each frame
and the intrinsic parameters of the rectified stereo camera system, the
3D world coordinates of the 2D points from both setsPkr andPk

are calculated by the well-known triangulation technique.Let W k

denote the3×M matrix formed by the 3D world coordinates of the
points associated withPk, so thatW k = [wk,1,wk,2, . . . ,wk,M ]
and wk,m = [Xm, Ym, Zm]T . While forming the matrixW k, we
exclude those points inPk that fall outside the ellipseEk due to
possible erroneous optical flow vectors. The excluded points are
outliers which may corrupt the 3D motion capture process. Hence
the dimension M of the matricesW k and W kr are re-determined
at each framek according to the number of points that fall within
the detected ellipseEk.

2) Computation of the Euler Angles:Let Rk and tk denote the
rotation matrix and the translation vector, respectively,of the rigid
head motion from framekr to k. Then,W k and W kr are related
by

W k =
ˆ

Rk tk

˜

»

W kr

1
T

–

. (2)

The rotation matrixRk and translation vectortk are estimated by
a unitary constraint optimization technique as explained in the Ap-
pendix. Once estimated, the rotation matrixRk can be decomposed
into three matrices:

Rk = [rk
ij ] = Rx(θk)Ry(φk)Rz(ψk) (3)

whereRx(θk), Ry(φk) and Rz(ψk) are the matrices that specify
rotations aroundx, y and z axes, respectively [24], [25]. The Euler
angle vectorek = [θk, φk, ψk]T which mapsW kr to W k, is finally
extracted from this decomposition by

ek =
h

arctan(−rk
23/r

k
33), arcsin(rk

13), arctan(−rk
12/r

k
11)

iT

.

(4)
In cases where the head rotation between the current framek and

reference framekr is larger than a threshold angle (e.g., if|θk| > 25◦

or |φk| > 25◦ or |ψk| > 25◦), the optical flow vectors, hence the 3D
point correspondences between two frames, may become unreliable.
In such cases, we switch to incremental motion estimation, where
the reference frame for framek is set to framek − 1. Thus, we
recompute optical flow vectors with respect to framek − 1; hence,
the new 3D point correspondences and the resulting incremental Euler
angle vectorδk−1, which defines the rotation between framesk and
k− 1 are computed. Then, the Euler angle vector with respect to the
reference framekr is given by

ek = ek−1 + δk−1 (5)
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Fig. 1. Overview of the proposed synthesis-by-analysis system.

3) Smoothing of the Feature Vector by Kalman Filtering:We
finally employ a Kalman filter for post smoothing of the computed
(estimated) Euler angles, which are input as observationszk to the
Kalman filter. The measurement noiserk models the estimation
errors in the Euler angles. The head gesture feature vector,fk (the
superscriptg is omitted for ease of notation), consisting of the Euler
angles and their first differences, is selected as the state vector. The
state-space representation of the Kalman filter is given by

fk+1 = F fk + Guk

zk = Hfk + rk
(6)

where

fk =

»

ek

∆ek

–

, F =

»

I3×3 I3×3

03×3 I3×3

–

G = I6×6, H =

»

I3×3

03×3

– (7)

The 3 × 1 vector ∆ek denotes the first differences of the Euler
angles. The model noiseuk and measurement noiserk are assumed
to be uncorrelated, zero-mean white Gaussian processes. The output
of the Kalman filter gives the final feature vector for the head
gestures.

B. Extraction of Prosody Features

The prosodic speech events can be described by the temporal
variations of loudness/intensity and pitch as well as pauses between
phrases, phoneme durations, timing, and rhythm. Among these, the
most expressive one is the pitch, which is the rate of vocal-fold
cycling. In this study, pitch frequency,V , and speech intensity,I ,
are considered as prosody features.

The pitch contour is extracted at a rate of 100 Hz from the speech
signal using the autocorrelation method as described in [26]. The
mean of all pitch contours over all active utterances is removed to
emphasize local variations [27], and then the resulting mean-removed
contours are low-pass filtered to reduce discontinuities. The regions
between utterances without a valid pitch are filled with zeromean

unit variance Gaussian noise. The intensity features are also extracted
over the active utterances. The squared sound intensities are weighted
with a 32 ms Kaiser-20 window, and the speech signal intensity is
calculated as the sum of these weighted samples. The 32 ms window
is shifted by 10 ms for each frame to extract intensity valuesat 100
Hz frame rate. The intensity features are also mean removed over
active utterances and between-utterance regions are filledwith zero
mean unit variance Gaussian noise. The first order derivative, ∆Vk,
of the post-processed pitch frequency at framek is calculated using
the following regression formula:

∆Vk =

P2
i=1 i(Vk+i − Vk−i)

2
P2

i=1 i
2

. (8)

Finally, the pitch frequency, its derivative and the intensity are
concatenated to form the 3 dimensional prosody feature vector f

p
k at

framek:
f

p
k = [Vk ∆Vk Ik]T (9)

III. H EAD GESTURE-PROSODYPATTERN ANALYSIS

In this section, we propose a two stage HMM-based unsupervised
analysis framework, where the first stage aims to separatelyextract
elementary gesture and prosody patterns for a speaker, and the
second stage determines a correlation model between these head
gesture and prosody patterns. In the first stage analysis, recurring
elementary gesture and prosody patterns are determined separately by
unsupervised temporal clustering of individual gesture and prosody
feature streams, respectively. The extracted elementary prosody and
gesture patterns are analogous to phonemes and visemes in the
speech and lip motion modeling. However, the elementary gesture
and prosody patterns are not well established as in the case of
phonemes and visemes, since the nature and strength of head gesture
and prosody patterns may vary from person to person and in time.
Hence, the need for unsupervised stage I analysis in order toextract
these patterns for each speaker. Furthermore, the joint recurring nature
of these patterns are also not well established as in the caseof
phoneme-viseme association; hence, the need for stage II analysis
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for joint modeling of correlations between head gesture andprosody
patterns. In order to find a mapping between prosody and gesture
patterns, unsupervised temporal segmentation of joint gesture and
prosody pattern labels is performed, which defines the correlation
between gesture and prosody pattern streams and relates co-occurring
head gesture and prosody patterns.

We note that if a multi-stream HMM structure were directly
employed for joint analysis of gesture and prosody feature streams,
as commonly used for event detection [18], instead of the proposed
two-stage analysis, the resulting joint gesture-prosody feature seg-
ments would not necessarily correspond toindependentmeaningful
elementary gesture and prosody patterns. As a result, the synthesized
gesture sequence might contain poorly defined gestural elements,
which would degrade the quality of prosody-driven head gesture
animation.

A. Stage-I: Extraction of Elementary Head Gesture and Prosody
Patterns

The first stage analysis defines recurrent elementary head gesture
and prosody patterns separately using unsupervised temporal cluster-
ing over individual feature streams. The gesture and prosody feature
streamsF g andF p are separately used to train two HMM structures
Λg and Λp, which capture recurrent head gesture segmentsεg and
prosody segmentsεp. For ease of notation, we use a generic notation
to represent the HMM structure which is identical for the gesture
and prosody streams. The HMM structureΛ, which is used for
unsupervised temporal segmentation, hasM parallel branches and
N states as shown in Fig. 2. In the HMM structureΛ, observation
probability densities are modeled by a single Gaussian withdiagonal
covariance for both gesture and prosody streams. The stateslabeled
as ss and se are non emitting start and end states of the parallel
HMM structure. Fig. 2 clearly illustrates that the parallelHMM Λ
is composed ofM parallel left-to-right HMMs,{λ1, λ2, . . . , λM},
where eachλm is composed ofN states,{sm,1, sm,2, . . . , sm,N}.
The state transition matrixAλm of eachλm is associated with a sub-
diagonal matrix ofAΛ. The feature stream is a sequence of feature
vectors,F = {f 1,f 2, . . . , fT }, wheref t denotes the feature vector
at framet. Unsupervised temporal segmentation using HMM modelΛ
yieldsL number of segmentsε = {ε1, ε2, . . . , εL}. Thel-th temporal
segment is associated with the following sequence of feature vectors,

εl = {f tl
,f tl+1, . . . , f tl+1−1} l = 1, 2, . . . , L (10)

where f t1
is the first feature vectorf 1 and f tL+1−1 is the last

feature vectorf T .

s1,1

ss

s1,2 s1,N−1 s1,N

s2,1

sM,1 sM,2

s2,2 s2,N−1 s2,N

se

sM,NsM,N−1

Fig. 2. Parallel HMM structure

The segmentation of the feature stream is performed using Viterbi
decoding to maximize the probability of model match, which is the

probability of feature sequenceF given the trained parallel HMM
Λ,

P(F |Λ) = max
tl,ml

L
Y

l=1

P({f tl
,f tl+1, . . . , f tl+1−1}|λml

)

= max
εl,ml

L
Y

l=1

P(εl|λml
) (11)

whereεl is thel-th temporal segment, which is modeled by theml-th
branch of the parallel HMMΛ. One can show thatλml

is the best
match for the feature sequenceεl, that is,

ml = argmax
m

P(εl|λm) (12)

Since, the temporal segmentεl from frame tl to (tl+1 − 1) is
associated with segment labelml, we define the sequence of frame
labels based on this association as,

ℓt = ml for t = tl, tl + 1, . . . , tl+1 − 1 (13)

whereℓt is the label of thet-th frame and we have a label sequence
ℓ = {ℓ1, ℓ2, . . . , ℓT } corresponding to the feature sequenceF . The
first stage analysis extracts the frame label sequencesℓg and ℓp

given the head gesture and prosody feature streamsF g and F p.
While mapping the gesture and prosody features to discrete frame
labels, the mismatch between the frame rates of gesture and prosody
is eliminated by downsampling the frame rate of prosody label stream
to the rate of gesture label stream.

The parallel HMM structure has two important parameters to set
before training the modelΛ. The first parameter is the number of
states in each branch,N . It should be selected by considering the
minimum duration of temporal patterns. Selecting a smallN may
hamper modeling long term statistics for each branch of the parallel
HMM. The extreme caseN = 1 reduces to K-Means unsupervised
clustering. We select the number of states in each branch of the head
gesture HMMΛg as NΛg = 10, corresponding to the minimum
gesture pattern duration of 10 frames (1

3
sec assuming 30 video

frames/sec). Note that the gesture patterns can be longer than 10
frames since the HMM structure allows self-state transitions. On
the other hand, the prosody patterns are expected to follow smooth
pitch frequency movements over several syllables. Considering the
average syllable durations and smoothness of the pitch contours, we
setNΛp = 5 in each branch of the prosody HMM modelΛp.

The second parameter is the number of temporal patterns,M .
Since the number of head gesture and prosody patterns is speaker
dependent, we propose selection ofM by using two fitness measures.
The first fitness measureα, which is inversely related to in-class
variance, is defined as the frame average of the log-probability of
model match,

α =
1

T
log(P(F |Λ)) (14)

The α measure is expected to saturate with increasing number
of parallel branches inΛ, since the training database is expected
to contain limited number of temporal patterns. However, small
variations within temporal patterns are also expected, hence the
number of branchesM can be more than the actual number of
temporal patterns in the training corpus. Consequently, the second
fitness measure, which is the average statistical separation between
two similar temporal patterns, increases with the decreasing number
of temporal patterns. The second fitness measureβ is considered
as the average statistical separation between two similar temporal
patterns, and it is defined as

β =
1

T

L
X

l=1

log(
P(εl|λml

)

P(εl|λm∗

l
)
), (15)
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whereλm∗

l
is the second best match for the temporal segmentεl,

that is,
m∗

l = argmax
∀m6=ml

P(εl|λm) (16)

In general, theα measure increases with the number of patterns
M , while β measure decreases. Hence, a good value forM can
be selected such thatβ is high enough, whileα reaches a certain
value.

B. Stage-II: Joint Modeling of Prosody-Gesture Patterns

In the second stage, unsupervised segmentation of the jointgesture-
prosody label stream is performed to detect recurrent jointlabel
patterns. Note that this task is similar to the task of stage I, except
in the second stage we have a multi-stream discrete observation
sequence. For this task, the parallel HMM structure in Fig. 2is used
with discrete multi-stream HMM branches. In multi-stream HMMs,
all streams share the same state transition structure however emission
probabilities are determined independently for each stream.

The joint gesture-prosody frame label stream, denoted byℓgp, is
defined such that for every framek, ℓgp

k = [ℓgk, ℓ
p
k]T . We represent

the discrete multi-stream parallel HMM structure byΓgp and itsm-
th branch byγgp

m . The discrete HMMΓgp is trained over the joint
gesture-prosody label stream. Each branchγgp

m , associated with a
joint gesture-prosody temporal label pattern, is then described by

γgp
m = (Aγ

gp
m
, [Bγ

g
m

Bγ
p
m

],Πγ
gp
m

) (17)

where Aγ
gp
m

denotes a state transition matrix,Bγ
g
m

and Bγ
p
m

are
discrete observation probability distributions for gesture and prosody
label streams, andΠγ

gp
m

is an initial state probability matrix. The
distributionsBγ

g
m

and Bγ
p
m

define the probability of observing a
gesture-prosody label at states and framek, given by

P (ℓgp
k |s) = P (ℓgk|s)

κgP (ℓpk|s)
κp (18)

where the exponents,κg andκp, are the stream weights, which may
be set to unity.

For the purpose of synthesis, each multi-stream discrete HMM
branch, γgp

m , can be split into two individual single-stream dis-
crete HMM models γg

m = (Aγ
gp
m
,Bγ

g
m
,Πγ

gp
m

) and γp
m =

(Aγ
gp
m
,Bγ

p
m
,Πγ

gp
m

), respectively for gesture and prosody streams.
These single stream HMM models share the same state transition
and initial state probability matrices but their discrete observation
probability distributions are different. The individual observation
distributions are then given byP (ℓgk|s) andP (ℓpk|s) for gesture and
prosody models, respectively.

Unsupervised temporal segmentation of joint label streamsis
demonstrated by the following example, which also illustrates how
the asynchrony between gestures and prosody is handled in our
scheme.

Example:Let us have two label streamsℓa andℓb, where each label
can assume values 1, 2, or 3. When temporal segmentation of the joint
label stream is performed using the HMM structureΓgp with M = 2
patterns andN = 3 number of states for each pattern, we obtain the
result shown in Fig. 3. One can observe that the recurrent joint label
patterns are captured and the asynchrony between individual label
streams is modelled by the first and the last states of the HMM
branches.

The number of statesNΓgp for each branch ofΓgp should be
selected according to the number of head gesture and prosodypatterns
determined by the stage I analysis, sinceΓgp models the recurrent
joint gesture-prosody label pairs. Similarly, the number of branches
MΓgp in Γgp should be selected by considering the two fitness
measuresα andβ as defined in (14) and (15). The selection ofNΓgp

andMΓgp is further discussed in SectionV.

IV. PROSODY-DRIVEN GESTURESYNTHESIS

In this section, we address prosody-driven gesture synthesis us-
ing the proposed gesture-prosody pattern model. A detailedblock
diagram of the proposed prosody-driven gesture synthesis system is
shown in Fig. 4. The system takes speech as input and producesa
sequence of head gesture features, i.e., Euler angle vectors, which
are naturally correlated with the input speech. The detailsof the sub-
blocks are described in the following.

1) Prosody Feature Extraction:The prosody features,F p, are
extracted from the input speech signal as described in Section II-B.

2) Prosody Feature Segmentation:Temporal segmentation of
prosody feature sequenceF p is performed using the HMM model
Λp, which is trained in the stage I analysis in Section III-A. During
the temporal segmentation, the conditional probabilityP (F p|Λp) is
maximized using Viterbi decoding to extract the temporal prosody
segment sequence,εp, and the sequence of prosody frame labels,ℓp.

3) Gesture Segment Label Estimation:The aim of this step is to
predict the sequence of gesture frame labels,ℓg, given the prosody
frame labelsℓp. To this effect, temporal segmentation of the prosody
frame labels,ℓp is performed using the HMM modelΓp, which
is extracted by splitting the jointly trained gesture-prosody HMM
modelΓgp. As a result of this temporal prosody label segmentation,
a state sequencesp = {sp

1, s
p
2, . . . , s

p
K} associated withℓp =

{ℓp1, ℓ
p
2, . . . , ℓ

p
K} is extracted. Then, the gesture frame label sequence

ℓg is predicted by maximizing the probability of observing gesture
label on the state sequence pathsp over the gesture HMM model
Γg, such that,

ℓgk = arg max
m

P (m|sp
k,Γg) (19)

where k is the frame index,m runs over all possibleM gesture
patterns and the conditional probabilityP (m|sp

k,Γ
g) is defined by

the discrete observation probability distributionBγ
g
m

.
4) Generation of Euler Angles:This step computes the gesture

segment sequenceεg , consisting of the Euler angle features, given
the gesture frame label sequenceℓg. First, we find the segment frame
boundaries,{tl}L

l=1, by merging the same gesture frame labels in
the sequenceℓg . Then, the Euler angle features for thel-th segment,
εg

l = {f g
tl
,f g

tl+1, . . . , f
g
tl+1−1}, are generated from the HMMλg

ℓtl
,

which is theℓtl
-th branch of the parallel HMM modelΛg (computed

in stage I).
Note that the segment duration for thel-th segment is extended

as dl = (tl+1 + ∆ − (tl − ∆)) frames, where∆ is the number of
overlapping frames at the segment boundaries to smooth segment-
to-segment transitions. The state sequences

g
l or equivalently the

state occupancy durations for thel-th segment is calculated using
the diagonal terms of thedl-step state transition matrix of the HMM
λg

ℓtl
. Having the state sequencesg

l and the continuous observation
probabilityP (f g|sg

l ), which are modeled using a Gaussian distribu-
tion, the Euler angle features are generated along the statesequence
associated with the distributionP (f g|sg

l ). The segment boundaries
have2∆ + 1 number of frame overlaps, where the overlapped and
averaged features generate smoother segment-to-segment transitions.

5) Smoothing of Euler Angles:As the final step of the gesture
synthesis, the Euler angles are smoothed using median filtering
followed by a Gaussian low pass filter to remove motion jerkiness.
The median filtering is performed over 11 visual frames and the
Gaussian smoothing is performed over 15 visual frames. Fig.5
depicts the samples generated from the HMM, and outputs of the
median and Gaussian filters. The figure clearly shows that themedian
filter removes jitters within a state and the Gaussian low pass filter
smooths the state-to-state transitions.

There are two main advantages of using HMMs for gesture
synthesis. The first is the random variations in the synthesized gesture
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patterns for each segment. This variation yields more natural looking
synthesis results than using a fixed gesture dictionary, since humans
produce slightly varying gestures at different occasions for the same
semantics. The second advantage is generating gestures with varying
durations in accordance with prosody of the speaker.

V. EVALUATION AND RESULTS

In this section, we present experimental results and evaluation
of the proposed system. Section V-A describes the audio-visual
database, which is used in the experimental evaluation to generate
objective and subjective results. The evaluation of the gesture-prosody
pattern analysis is presented in Section V-B, and the objective
and subjective performance results for synthesis are presented in
Section V-C. Speaker dependency of the prosody-driven headgesture
synthesis system is evaluated in Section V-D.

A. Database and Experimental Setup

We have conducted experiments using the MVGL-MASAL
gesture-speech database. The database includes four recordings of
two subjects telling stories in Turkish. The subjects are instructed to
tell stories to children audience. All gestures are spontaneous within
this context. Each story lasts approximately7 minutes. The audio-
visual data is synchronously captured from the stereo camera and
the sound card. The stereo video includes only upper body gestures
with 30 frames per second whereas the audio is recorded with 16
kHz sampling rate and 16 bits per sample. The detailed specification
of the stereo camera can be found on [28]. The performance of the
proposed analysis and synthesis system is evaluated in detail on the
recordings of the first speaker, whereas the recordings of the second
speaker are used to investigate the speaker dependency problem. For
the first speaker, the database is partitioned into two partssuch that
three stories are used for training of the models and one story is used
for testing. For objective evaluation of the synthesis, theEuler angles
extracted from the test sequence are considered as the ground truth
for the synthesized head motion.

B. Analysis Results

The head gesture and prosody correlation analysis includesun-
supervised temporal segmentation of the individual feature streams
as well as the joint gesture-prosody label stream. The objective and
subjective evaluation of these tasks are presented in the following.

Segmentation of Head Gesture Patterns:The parallel HMMΛg

is trained with features extracted from the training video using
Expectation-Maximization (EM) algorithm. The resulting HMM
structure provides a probabilistic cluster model for unsupervised
segmentation of head gestures into recurring elementary patterns.

The number of branches, or equivalently the number of gesture
patterns,MΛg is a critical model parameter. In order to setMΛg , the
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two fitness measuresα andβ, as respectively defined in (14) and (15),
are calculated for varying number of gesture patterns and plotted in
Fig. 6. Theα value, which measures the probability of model match,
increases with increasing number of patterns as expected. Note thatβ
measures the statistical separation between patterns. A good value for
MΛg is such thatβ is high enough, whileα reaches a certain value.
Therefore,MΛg can be selected in the vicinity whereα andβ curves
(normalized with their minimum and maximum values) intersect. In
Fig. 6, β reaches the maximum atMΛg = 5, which is near the
intersection point. Hence, we set the number of gesture patternsMΛg

to 5.
Consequently, when the training head gesture sequence is seg-

mented usingΛg, the segments belonging to the same gestural
patterns are observed to be visually alike. The mean Euler angle
vectors and the typical thumbnails for the five gesture patterns are
depicted in Fig. 7.

Segmentation of Prosody Patterns:The speech prosody feature
sequence is extracted from the audio part of the training database.
As defined in stage I, the HMM modelΛp is trained with prosodic
features to obtain unsupervised temporal segmentation of the audio
stream.
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Fig. 8. Theα andβ fitness measures for varying number of prosody patterns.

The two fitness measuresα and β are calculated for varying
number of prosody patterns using HMM modelΛp and plotted in
Fig. 8. Theα value, which measures the probability of model match,
increases and theβ value, which measures statistical separation
between patterns, decreases with increasing number of patterns as
expected. The number of prosody patternsMΛp can thus be set to
a value in the vicinity whereα and β curves intersect. Hence, we
selectMΛp as 5 in our experiments.

The means and standard deviations of the normalized intensity and
pitch frequency trajectories for the five prosody patterns are depicted

in Fig. 9. Note that the first pitch trajectory (upper-left) is associated
with the no-pitch segments that we filled with zero mean and unit
variance Gaussian noise. The noise filling is necessary for successful
modeling of those segments with continuous density HMMs. The
other four prosody patterns can be classified using the prosodic
transcription conventions introduced by the American English Tones
and Break Indices (ToBI) standard [29]. The two prosody patterns
on the upper right are both falling boundary tones (L%); the pattern
on the lower left is a falling boundary tone, which makes a peak
before the last syllable (HL%), and the pattern on the lower right
is a rising-falling boundary tone, which rises within the last syllable
(LHL%). We should note that these prosody patterns are obtained
using unsupervised clustering over the training database,and they do
not define a complete prosodic transcription convention forTurkish.

Segmentation of Joint Gesture-Prosody Patterns:In the first stage
analysis, we obtain two independent HMM structures,Λg and Λp,
respectively for recurrent head gesture and prosody patterns. We
then extract two independent and parallel streams of head gesture
and prosody pattern labels via temporal segmentation usingthese
HMM structures. In the second stage, the discrete multi-stream
HMM structure Γgp is trained using EM over the joint gesture-
prosody pattern label stream to perform unsupervised segmentation.
The number of states for each branch ofΓgp is selected asNΓgp = 4
to model possible label pair transitions. These four statesmodel
four different gesture-prosody label pair combinations within a joint
gesture-prosody label pattern. Note that the extreme case,NΓgp = 1,
can only model a single co-occurrence pattern of gesture-prosody
labels.

The two fitness measuresα andβ for Γgp, and also the number
of gesture patterns inΛg, are considered for selection of the number
of joint gesture-prosody label patternsMΓgp . The number of joint
patternsMΓgp is expected to be larger than or equal to the number
of gesture patternsMΛg , since in a robust synthesis process all the
gesture patterns need to be generated for some temporal prosody label
pattern. Hence, for the selection ofMΓgp , we present the two fitness
measuresα andβ together with the normalized Euclidean distance
measureǫn as defined in (20) for varying number of joint gesture-
prosody label patterns in Fig. 10. The parameterMΓgp is selected as
6, since this value, which is near the intersection ofα andβ curves, is
greater thanMΛg , and the distanceǫn has a minimum atMΓgp = 6.
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Fig. 10. Theα andβ fitness measures and the normalized Euclidean distance
measureǫn for varying number of joint gesture-prosody label patterns.

Observation probability distributions of the joint multi-stream
HMM are plotted in Fig. 11. It can be seen that each branch of
the HMM structureΓg models a temporal sequence of identical
elementary gesture patterns. That is, in each of the six classes, a
distribution of prosody patterns co-occurs with a single elementary
gesture pattern. Note that this association between temporal prosody
label patterns and a single gesture pattern is very beneficial to
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Fig. 7. The mean Euler angles with standard deviations and typical thumbnails for the five gesture patterns: (a) Turn Left, (b) Turn Right, (c) Tilt Left, (d)
Tilt Right, and (e) Nod

obtain smooth prosody-driven head gesture animations. Furthermore,
boundaries of the prosody patterns within the co-occurringgesture
pattern are determined by the state transition probabilities of Γp,
and hence, the asynchrony problem is handled through the learned
statistics of the joint multi-stream HMMΓgp.

C. Synthesis Results

Prosody-driven head gesture synthesis generates an Euler angle
sequence, which is naturally correlated to a given test speech signal.
The details of the synthesis process is given in Section IV. In
this section, we present objective and subjective evaluations of the

prosody-driven head gesture synthesis process. The evaluations are
performed over the test database, which is defined in SectionV-A.

The objective evaluations compare the difference between original
and synthesized Euler angles. Furthermore, A-B comparisontype
subjective evaluations are performed using the talking head avatar
of Momentum Inc.[30], where the Euler angles that we deliver are
used to drive head gestures/motion of the speech-driven talking head
animation. The subjective tests are used to measure opinions on the
naturalness of the synthesized head gestures using the speech-driven
talking head animations.

We have adopted the Input-Output Hidden Markov Model
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Fig. 9. The means and standard deviations of the normalized intensity (dB) and pitch frequency (Hz) trajectories for thefive prosody patterns.
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x-axis. Dark and white regions represent low and high probability values, respectively. Note that in each of the six classes, a distribution of prosody patterns
co-occurs with a single elementary gesture pattern.

(IOHMM) structure [8], [31] as a possible alternative scheme for
the joint analysis of gesture and prosody label streams at the second-
stage. In that case, the IOHMM structure replaces the HMMΓgp to
predict gesture segment labels from prosody labels. The states in the
IOHMM are fully connected and the number of states is selected to
be the same as the number of states in theΓgp model, which is24.

The IOHMM implementation of the Torch Machine Learning Library
[32] is used in our experiments.

Objective Results:The objective evaluations compare the distance
between original and synthesized Euler angles. In our evaluations
we have used three different distance measures. Let the original and
synthesized Euler angles at framek are represented withek and êk,
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TABLE I
THE MEAN AND STANDARD DEVIATION OF THE DISTANCE MEASURES

BETWEEN THE ORIGINAL AND THE TWO SETS OF SYNTHESIZEDEULER

ANGLES, FROM THE PROPOSEDΓgp AND IOHMM MODELS.

Model Γgp IOHMM

[µǫn , σǫn ] [0.817896, 0.010981] [0.890652, 0.012861]
[µǫm , σǫm ] [1.946043, 0.020871] [2.290755, 0.073021]
[µǫe , σǫe ] [13.694374, 0.158944] [16.427827, 0.525493]

respectively. The first distance measureǫn is a normalized Euclidean
distance measure, which penalize Euler angles in wrong directions
[6],

ǫn =

PK

k=1(êk − ek)T (êk − ek)
PK

k=1(êk + ek)T (êk + ek)
(20)

The second measureǫm is the Mahalanobis distance, which is the
Euclidean distance weighted with the inverse covariance matrix, Σ−1,
of the original Euler anglesek,

ǫm =
1

K

K
X

k=1

q

(êk − ek)T Σ
−1(êk − ek) (21)

The third distance measure is the standard Euclidian distance, ǫe =
1
K

PK

k=1

p

(êk − ek)T (êk − ek).
The original Euler angles are extracted from the visual partof

the test database to be used as the ground truth in the objective
evaluations. Two sets of synthesized Euler angles are generated
using the audio part of the test database. The first set is generated
with the proposed head gesture synthesis system based on theΓgp

model. The second set is generated by replacing the second stage
joint gesture-prosody correlation modelΓgp by IOHMM. The error
measure statistics for the three distance measuresǫn, ǫm and ǫe
between the original and synthesized Euler angles are collected over
synthesis trials repeated a hundred times. The mean and standard
deviation of the distance measures are given in Table I. Notethat
all three distance measures favor the proposed joint gesture-prosody
correlation modelΓgp.

TABLE II
THE SUBJECTIVEA-B COMPARISONRESULTS

A-B pair Preference Score

Original - Γgp -0.23
Original - IOHMM -0.83

Γgp - IOHMM -0.56
Identical pairs 0.04

Subjective Results:Subjective A-B comparisons are performed
using the speech-driven talking head animations to measureopinions
on the naturalness of the synthesized head gestures. The subjects are
asked to evaluate the naturalness of the speech-driven synthesized
head gestures for an A-B test pair on a scale of(−2, −1, 0, 1, 2),
where the scale corresponds to (A much better, A better, no prefer-
ence, B better, B much better).

The whole test database is manually partitioned into meaningful
15 segments, where each segment is approximately12 seconds. For
each evaluation8 segments out of15 are randomly selected. Three
sets of A-B comparison pairs, each including these8 segments,
are considered for the speech-driven talking head animations using
the original and two sets of synthesized Euler angles. Furthermore,
three random startup A-B test pairs and another three test pairs with
identical synthesis algorithms are also included to the subjective
test set. Hence, the total number of A-B pairs in a test is30.
Apart from the three random start-up A-B pairs, all the pairsare

randomized across conditions and pairwise. The subjectivetests are
performed over15 subjects. The average preference scores for the
three comparison sets are presented in Table II. Note that the scores
of the three random start-up pairs are ignored in calculating the
final preference scores. As expected, the subjective A-B comparisons
indicate a preference for the talking head animations with the original
Euler angles. On the other hand, animations synthesized with the
proposed joint gesture-prosody correlation modelΓgp are preferred
over animations generated using the IOHMM correlation model with
an average preference score of−0.56. Also note that the preference
for the animations with the original Euler angles is stronger in the
case of IOHMM driven animations as compared to the proposedΓgp

driven animations. This is expected, since the output and transition
probabilities in the IOHMM structure are conditional directly on the
input sequence, whereas in the joint multi-stream HMM, the output
gesture patterns are affected by the states only and not directly by
the input. Hence, use of parallel multi-stream HMM in the second
stage is more robust to any noise in the input stream.

Samples of the audio-visual sequences for the prosody-driven
talking head animations are available online [33]. These samples
are selected to demonstrate three possible related applications. The
first one is the speaker dependent prosody-driven gesture synthesis
application, where gesture-prosody correlation model of aspeaker
is used to animate the same speaker with her/his speech. The
second application is head gesture transplant, where gesture-prosody
correlation model of speakerA is used to animate speakerB from
speakerA’s speech. Furthermore, the prosody transplant is considered
as the third application, where gesture-prosody correlation model of
speakerA is used to animate speakerA from speakerB’s speech. In
the demonstration of the prosody transplant we used speech input
from audio-book recordings in English, where the gesture-prosody
correlation model is performed over the story telling recordings in
Turkish. Although one should expect differences in prosodypatterns
across different languages, the naturalness of the animations is
observed to be acceptable. We also note that the talking speed of
these two speakers are different, where the native Turkish speaker
has a faster rate than the native English speaker. As expected from
the proposed correlation model, we observe slower head gesture
animations for the native English speaker.

D. Speaker Dependency

The proposed analysis method is capable of providing personalized
elementary head gesture and prosody patterns and a personalized
prosody to gesture mapping model. To demonstrate this, we have
repeated the experiments with a second speaker. The second speaker
is also instructed to tell the same four stories to an audience of
children. The system is then trained using the recordings ofthe
speaker. At the end of the two-stage analysis for modeling gesture-
prosody correlation, we have observed that the resulting elementary
patterns for both prosody and head gestures significantly differ from
those of the first speaker.

In order to set the number of gesture patterns,MΛg , and prosody
patterns,MΛp , the two fitness measuresα andβ are calculated for
varying number of gesture and prosody patterns, respectively, which
are plotted in Fig. 12 and Fig. 13. In both plots, the probability of
model match,α, increases and the statistical separation between pat-
terns,β, decreases with increasing number of patterns. The numbers
of gesture and prosody patterns are selected in the vicinitywhereα
andβ curves intersect, asMΛg = 4 andMΛp = 5. The mean Euler
angle vectors and typical thumbnails for the four gesture patterns
are plotted in Fig. 14. Similarly, the means and standard deviations
of the normalized intensity and pitch frequency trajectories for the
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Fig. 14. The mean Euler angles with standard deviations and typical thumbnails from the second speaker for the four gesture patterns: (a) Tilt Left, (b) Nod
with Tilt Right, (c) Nod, (d) Tilt Right.
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Fig. 15. The means and standard deviations of the normalizedintensity (dB) and pitch frequency (Hz) trajectories for the five prosody patterns of the second
speaker.

five prosody patterns are plotted in Fig. 15. Note that the elementary
gesture patterns for the second speaker is distinctively different than
the ones for the first speaker (see Fig. 7 for comparison). Sample
video streams of the typical elementary gesture patterns are available
online in [33]. The elementary prosody patterns also differfor the

second speaker. Three of the prosody patterns are falling boundary
tones (L%), and the other one is a rising boundary tone (H%) for the
second speaker.

At the second stage analysis, the joint gesture-prosody pattern label
stream is segmented in an unsupervised manner using the discrete
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Fig. 12. Theα andβ fitness measures for varying number of head gesture
patterns of the second speaker.
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Fig. 13. Theα and β fitness measures for varying number of prosody
patterns of the second speaker.

multi-stream HMM structureΓgp. The two fitness measures for
Γgp are plotted in Fig. 16. In the unsupervised segmentation, the
number of joint gesture-prosody patterns is set toMΓgp = 5. As for
the demonstration of synthesis results, to better emphasize speaker
dependency, we have used the same audio-book recordings in English
and the same face model to derive the head gesture animationsfor
the two different speakers. A sample animation video is available
online in [33], where the video stream resulting from the second
speaker’s gesture-prosody correlation model, is presented in parallel
with the video stream generated from the first speaker’s model for
visual evaluation of the speaker dependency performance.
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Fig. 16. Theα andβ fitness measures and the normalized Euclidean distance
measureǫn for varying number of joint gesture-prosody label patternsfor the
second speaker.

VI. CONCLUSIONS

We proposed a new two-stage joint head gesture and speech
prosody analysis framework. In the first stage of the analysis, elemen-

tary gesture and prosody patterns are extracted using unsupervised
segmentation for a speaker, and in the second stage, a correlation
model between head gesture and prosody patterns is developed.
The proposed two-stage analysis framework offers the following
advantages: i) Meaningful elementary gesture and prosody patterns
are defined for a speaker at the first stage. ii) A mapping between
these elementary prosody and head gesture patterns is obtained with
unsupervised segmentation of the joint gesture-prosody label stream.
iii) The HMM-based analysis and synthesis yields flexibility in mod-
eling structural and durational variations within gestural and prosodic
patterns. iv) Automatic generation of the elementary gesture patterns
produces natural looking prosody-driven head gesture synthesis.

In addition to successful demonstration of speaker dependent
speech-driven head gesture synthesis system, different applications,
such as head gesture transplant and prosody transplant, arealso
demonstrated. After extracting a gesture-prosody correlation model
for speakerA, head gesture transplant animates speakerB from
speakerA’s speech, and prosody transplant animates speakerA from
speakerB’s speech. In the prosody transplant demonstration, gesture-
prosody correlation model is trained with audio-visual recordings
in Turkish, and prosody-driven gesture synthesis is performed with
speech input recordings in English. The naturalness of the prosody
transplant is found to be acceptable. Also in this demonstration, we
observe slower head gesture animations for the native English speaker
whose talking speed is slower.

The proposed HMM based two-stage head gesture and speech
prosody analysis system can be utilized to model the correlation
between any other loosely correlated modalities, such as facial
expressions and speech prosody, arm gestures and speech semantics,
etc. Furthermore, the proposed speaker dependent speech-driven head
gesture synthesis system can be tailored to model speaker’semotion
and mood. We also note that prosody patterns obtained using the
proposed stage I analysis over a multi-speaker phonetically rich
Turkish (or any other language) training database, can be used to
define a complete ToBI-like prosodic transcription convention for
Turkish (or any other language) intonation.
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APPENDIX

RIGID MOTION PARAMETER ESTIMATION BY CONSTRAINED

OPTIMIZATION

This appendix summarizes the method used for estimating the
rotation matrix,R, and translation vector,t, that describe the rigid
motion between the world point coordinate matricesW k andW kr

(see Section II-A).
Let mk denote the mean of the column vectors in the matrixW k

such that

mk =
1

N

N
X

i=1

w
i
k (22)

andmkr be defined similarly. Then, the translationt betweenW k

andW kr is given by

t = mk − mkr (23)

Furthermore, letW ′
kr

and W ′
k represent the mean-removed

coordinate matrices such that

W
′
k = W k − mk1

T , and W
′
kr

= W kr − mkr1
T (24)
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Then, the rotation matrixR can be found by minimizing the cost
function

f(R) = ‖E‖2
F = tr(EE

T ) (25)

where ‖ · ‖F and tr(·) denote the Frobenius-norm and the matrix
trace, respectively, and

E = W
′
k − RW

′
kr

(26)

The minimization of the cost functionf(R), f : R
3×3 → R, is a non-

linear optimization problem, under the unitary constraintRT R = I,
which can be solved by the algorithm proposed in [34], where Manton
describes a modified Newton method for optimization on the complex
Stiefel manifold which defines the space related with the unitary
constraint.

We simplified this method to minimize the cost functionf(R) for
a square and real matrixR subject to the constraintRT R = I as
follows:

1) Choose initialR such thatRT R = I.
For small rotations,R can be approximated in terms of a
parameter vectoru = [ux, uy , uz]

T such that [35]

R ≈ I + S = I +

2

6

6

4

0 −uz uy

uz 0 −ux

−uy ux 0

3

7

7

5

(27)

Equating the residual defined in (26) to zero, we obtain the
following equation to solve forS:

W
′
k − W

′
kr

= SW
′
kr

(28)

which can be expressed in terms ofu as

vec(W ′
k − W ′

kr
) = Ku =

2

6

4

K1

...
KN

3

7

5
u

Kn =

2

4

0 Zn −Yn

−Zn 0 Xn

−Xn Yn 0

3

5

(29)

where operatorvec(.) obtains a column vector by stacking the
columns of the operand matrix and each3×3 sub-matrixKn is
constructed using thenth point (Xn, Yn, Zn) from W ′

kr
. The

least squares solution of (29) can then be used to findu and
to constructS. The initial guess forR can finally be obtained
by projection onto the unitary spaceR = π(I +S) (described
in step 5 below).

2) Compute the derivativeDR and the HessianHR of f given
by

DR = −2EW
′T
kr

(30)

HR = −2((W ′
kr

W
′T
kr

) ⊗ I3×3) (31)

where⊗ denotes Kronecker product.

3) If
q

tr(DT
RDR − RT DRRT DR) < ǫ, then stop.

4) Compute the Newton step sizeZ := Z (cp).
The Newton step size is defined as the value ofZ , Z ∈
R

3×3, confined to the tangent spaceV , at which the quadratic
approximationg(Z) has its critical point:

g(Z) ≈ f(R) + tr(ZT
D) + (1/2) vec(Z)T

H vec(Z) (32)

where

D = DR, H = HR−(1/2)[(RT
DR+D

T
RR)T⊗I ] (33)

The tangent spaceV is defined as a subset ofR3×3 such
that Z = RA whereA is skew-symmetric. The critical point

Z(cp) ∈ V , i.e. the Newton step size, satisfies the following
linear constraint:

tr(ZTD) +
h

vec(Z)T
H

i

vec(Z(cp)) = 0 (34)

By writing Z asZ =
P3

i=1 αiRAi, whereAi (i = 1, 2, 3)
is an arbitrary basis for skew-symmetric matrix, the critical
point Z (cp) can be found by solving the following linear
equation forαi (i = 1, 2, 3)

∂g(Z)

∂αi

= tr((RAi)
T
D)+vec(RAi)

T
H vec(Z) = 0 (35)

Note that the above equation can be put into a matrix form:

K
T
HKα = K

T vec(D) (36)

where

K = (I ⊗ R)[vec(A1), vec(A2), vec(A3)]
α = [α1, α2, α3]

T (37)

5) SetR′ := π(R + Z).
The projectionπ(R), π : R

3×3 → St, onto the Stiefel
manifold,St = {R ∈ R3×3 : RT R = I}, is defined as

π(R) = argmin
Q∈St

‖R − Q‖2. (38)

If the singular value decomposition ofR is UΣV T , then the
projection is simply given by [34]

π(R) = UI3×3V
T (39)

6) If f(R) ≤ f(R′) then abort.
7) SetR := R′. Go to Step 2.

REFERENCES

[1] T. Chen, “Audiovisual speech processing,”IEEE Signal Processing
Mag., vol. 18, pp. 9–21, 2001.

[2] S. Morishima, K. Aizawa, and H. Harashima, “An intelligent facial
image coding driven by speech and phoneme,”Proc. of the Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP ’89), pp. 1795–1798,
1989.

[3] C. Bregler, M. Covell, and M. Slaney, “Video rewrite: Driving visual
speech with audio,”Proc. ACM SIGGRAPH ’97, pp. 353–360, 1997.

[4] F. Huang and T. Chen, “Real-time lip-synch face animation driven
by human voice,”Multimedia Signal Processing, 1998 IEEE Second
Workshop on, pp. 352–357, 1998.

[5] E. Yamamoto, S. Nakamura, and K. ShiKano, “Lip movement synthesis
from speech based on hidden markov models,”Speech Communication,
pp. 105–115, 1998.

[6] M. Brand, “Voice puppetry,”Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pp. 21–28, 1999.

[7] P. S. Aleksic and A. K. Katsaggelos, “Speech-to-video synthesis using
facial animation parameters,”IEEE Trans. on Circuits and Systems for
Video Tech., vol. 14, no. 5, pp. 682–692, 2004.

[8] Y. Li and H.-Y. Shum, “Learning dynamic audio-visual mapping with
inputoutput hidden markov models,”IEEE Trans. on Multimedia, vol. 8,
no. 3, pp. 542–549, 2006.

[9] J. Xue, J. Borgstrom, J. Jiang, L. Bernstein, and A. Alwan, “Acoustically-
driven talking face synthesis using dynamic bayesian networks,” in Proc.
of the Int. Conf. on Multimedia and Expo 2006 (ICME 2006), 2006, pp.
1165–1168.

[10] L. Valbonesi, R. Ansari, D. McNeill, F. Quek, S. Duncan,K. E.
McCullough, and R. Bryll, “Multimodal signal analysis of prosody and
hand motion: Temporal correlation of speech and gestures,”Proc. of the
European Signal Processing Conference 2002 (EUSIPCO’02), vol. 1,
pp. 75–78, 2002.

[11] K. Munhall, J. A. Jones, D. E. Callan, T. Kuratate, and E.Vatikiotis-
Bateson, “Visual prosody and speech intelligibility: Headmovement
improves auditory speech perception,” inPSYCHOLOGICAL SCIENCE,
vol. 15, no. 2, 2004, pp. 133–137.

[12] F. Quek, D. McNeill, R. Ansari, X. Ma, R. Bryll, S. Duncan, and K. Mc-
Cullough, “Gesture cues for conversational interaction inmonocular
video,” ICCV99 Wksp on RATFGRTS, pp. 64–69, 1999.



14

[13] T. Kuratate, K. G. Munhall, P. E. Rubin, E. Vatikiotis-Bateson, and
H. Yehia, “Audio-visual synthesis of talking faces from speech produc-
tion correlates,” inSixth European Conference on Speech Communica-
tion and Technology (EUROSPEECH’99), 1999, pp. 1279–1282.

[14] H. P. Graf, E. Cosatto, V. Strom, and F. J. Huang, “Visualprosody: facial
movements accompanying speech,”Proc. of IEEE Int. Conf. Automatic
Face and Gesture Recognition, pp. 381–386, 2002.

[15] E. Chuang and C. Bregler, “Mood swings: expressive speech animation,”
ACM Transactions on Graphics, vol. 24, no. 2, pp. 331–347, 2005.

[16] Z. Deng, C. Busso, S. Narayanan, and U. Neumann, “Audio-based
head motion synthesis for avatar-based telepresence systems,” in ACM
SIGMM 2004 Workshop on Effective Telepresence (ETP’04), 2004, pp.
24–30.

[17] M. E. Sargin, F. Ofli, Y. Yasinnik, O. Aran, A. Karpov, S. Wilson,
E. Erzin, Y. Yemez, and A. M. Tekalp, “Gesture-speech correlation
analysis and speech driven gesture synthesis,” inProc. of the Int. Conf.
on Multimedia and Expo 2006 (ICME 2006), 2006.

[18] M. Naphade and T. Huang, “Discovering recurrent eventsin video using
unsupervised methods,” inProc. of the Int. Conf. on Image Processing
2002 (ICIP 2002), 2002, pp. II: 13–16.

[19] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,”IEEE CVPR, pp. 511–518, 2001.

[20] R. Lienhart and J. Maydt, “An extended set of haar-like features for
rapid object detection,”Proc. of the Int. Conf. on Image Processing
2002 (ICIP’02), vol. 1, pp. 900–903, 2002.

[21] J. Y. Bouguet, “Pyramidal implementation of the lucas kanade feature
trackerdescription of the algorithm,”Intel Corporation, Microprocessor
Research Labs, OpenCVDocuments, 1999.

[22] M. Brown, D. Burschka, and G. Hager, “Advances in computational
stereo,”Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 25, no. 8, pp. 993–1008, 2003.

[23] P. Fua, “Combining stereo and monocular information tocompute dense
depth maps that preserve depth discontinuities,”12th. International Joint
Conference on Artificial Intelligence, pp. 1292–1298.

[24] D. Varshalovich, A. Moskalev, and V. Khersonskii,Description of
Rotation in Terms of the Euler Angles. Quantum Theory of Angular
Momentum. World Scientific, 1988.

[25] K. Shoemake, “Animating rotation with quaternion curves,”Proceedings
of the 12th annual conference on Computer graphics and interactive
techniques, pp. 245–254, 1985.

[26] P. Boersma, “Accurate short-term analysis of the fundamental frequency
and the harmonics-to-noise ratio of a sampled sound,”Proc. of the Inst.
of Phonetic Sciences, vol. 17, pp. 97–110, 1993.

[27] S. Ananthakrishnan and S. Narayanan, “An Automatic Prosody Recog-
nizer using a Coupled Multi-Stream Acoustic Model and a Syntactic-
Prosodic Language Model,”Acoustics, Speech, and Signal Processing,
2005. Proceedings.(ICASSP’05). IEEE International Conference on,
vol. 1, 2005.

[28] Point Grey Research Inc. http://www.ptgrey.com/.
[29] K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C.Wightman,

P. Price, J. Pierrehumbert, and J. Hirschberg, “Tobi: A standard for
labeling english prosody,” inProc. of the Int. Conf. on Spoken Language
Processing (ICSLP), 1992, pp. 867–870.

[30] Momentum Inc. Speech-Driven Talking Head Avatar is available at
http://www.momentum-dmt.com/.

[31] Y. Bengio and P. Frasconi, “Input-output HMMs for sequence process-
ing,” Neural Networks, IEEE Transactions on, vol. 7, no. 5, pp. 1231–
1249, 1996.

[32] R. Collobert, S. Bengio, and J. Mariethoz, “Torch: a modular machine
learning software library,”IDIAP Research Report, vol. 2, p. 46, 2002.

[33] Prosody-Driven Head Gesture Animation demonstrations are available
at http://mvgl.ku.edu.tr/prosodygesture/.

[34] J. H. Manton, “Optimisation algorithms exploiting unitary constraints,”
IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 635–650,
March 2002.

[35] D. Demirdjian and T. Darrell, “Motion estimation from disparity im-
ages,” inProc. of the Eighth IEEE Int. Conf. on Computer Vision, vol. 1,
2001, pp. 213–218.

Mehmet Emre Sargın (S’04) received the B.Sc.
degree in Electrical and Electronics Engineering
from Middle East Technical University, Ankara,
Turkey, in 2004, and the M.Sc. degree in Electrical
and Computer Engineering from Koc University,
Istanbul, Turkey, in 2006. He is currently pursuing
the Ph.D. degree in Electrical and Computer Engi-
neering at University of California, Santa Barbara,
CA. His research interests include computer vision,
pattern recognition, machine learning and bio-image
informatics. He is the second prize winner in the

ICASSP’07 student paper contest.
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