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Abstract— We propose a new two-stage framework for joint analysis
of head gesture and speech prosody patterns of a speaker towla
automatic realistic synthesis of head gestures from speegbrosody. In
the first stage analysis, we perform Hidden Markov Model (HMM)
based unsupervised temporal segmentation of head gesturexcé speech
prosody features separately to determine elementary headegture and
speech prosody patterns, respectively, for a particular spaker. In the
second stage, joint analysis of correlations between thestementary head
gesture and prosody patterns is performed using Multi-Stram HMMs
to determine an audio-visual mapping model. The resulting adio-visual
mapping model is then employed to synthesize natural head geires
from arbitrary input test speech given a head model for the spaker. In
the synthesis stage, the audio-visual mapping model is used predict a
sequence of gesture patterns from the prosody pattern seqonee computed
for the input test speech. The Euler angles associated withaeh gesture
pattern are then applied to animate the speaker head model. Qjective
and subjective evaluations indicate that the proposed syhgesis by analysis
scheme provides natural looking head gestures for the speak with
any input test speech, as well as in “prosody transplant” and‘gesture
transplant” scenarios.

Index Terms— Multimedia computing, speech analysis, video signal
processing, animation

|. INTRODUCTION

State of the art visual speaker animation methods are cadbl
generating synchronized lip movements automatically frgpeech
content; however, they lack automatic synthesis of spegkstures
from speech. Head and face gestures are usually added riyaloyial
artists, which is costly and often look unrealistic. Herleayning the
correlation between gesture and speech patterns of a spgealeds
automatic realistic synthesis of speaker gestures froractpeemains
as a challenging research problem.

There exists significant literature on speaker lip aninmattbat is,
rendering lip movements synchronized with the speech kigja
Since lip movement is physiologically tightly coupled wilcoustic
speech, it is relatively an easy task to find a mapping betvwieen

have been investigated in several works, there are only &elim
number of publications addressing speech-driven head amy b
gesture synthesis. In [15], audio streams from trainingeegd are
first segmented using pitch contour information. The sammbaries

are also applied to the corresponding video streams for setjng
head motions. The co-occurring audio and head motion segmen
are stored as pairs in a database. Later, a new test audamstre
is segmented, and an optimal head gesture sequence is ohetrm
from the database using dynamic programming to create sijath
head motions. A similar methodology is followed in [16], wae
audio/head motion feature pairs extracted from trainindews are
stored into a database indexed by audio features. Laten &atures
extracted from a new test input speech are used to search-for K
nearest neighbors. The optimum nearest neighbor combmdtund

by dynamic programming, is used to synthesize correspgnid@ad
motions. In [17], we presented a preliminary demonstratibnatural
looking head and arm gesture synthesis from speech usingaatha
determined audio-visual mapping from speech to head and arm
motions.

The aim of this paper is to present a framework for joint asialy
of head gesture and speech prosody patterns towards aigomat
generation of the audio-visual mapping from speech prosodhead
gestures. Although the same framework can also be appliedaty-
sis of co-occurring arm gesture and speech patterns, theymnd the
scope of the current paper. There are some open challengggeid
in the joint analysis of head gestures and prosody towaradsoply-
driven head gesture synthesis: First, unlike phonemes @&ames
in speech articulation, there does not exist a well-esthbl set
of elementary prosody and gesture patterns for gesturehesist
Second, synchronicity of gesture and prosody patterns mhipie
variations. For instance, a speaker can move her/his hefacehibe
corresponding prosodic utterance with a variable time NMareover,
gestural patterns may span time intervals of different tilbmawith

phonemes of speech and the visemes of lip movement. Manynsshe respect to their prosodic counterparts. Third, prosody gesture

exist to find such audio-to-visual mappings among which th&vH

patterns are speaker dependent, and may exhibit variaitiotime

(Hidden Markov Model)-based techniques are the most comason even for the same speaker. Previously reported works [18]-dlo

they yield smooth animations exploiting temporal dynaneitspeech
[2]-[9]. Some of these works also incorporate synthesis aafal

not address any of these challenges; for instance, the fammc
problem is either ignored or handled by manual alignmentthia

expressions along with the lip movements to make animateeisfa work, we address these challenges by first processing tliegesture

look more natural [3], [6], [8], [9]. The common strategy inese
techniques is to train a joint HMM structure with extracteidual
and audio feature vectors and then to use the trained HMN\dtsiie
to generate speech-driven facial expressions and lip mentsm
Despite exhibiting variations from person to person andirimet
head and body gestures are also correlated with speechx&or- e
ple, it has been observed that manual gestures are codeldtie
prosody [10], [11] and verbal content of the speech [12], neas
head gestures are mostly correlated with the prosody [11], [
[14]. Although correlations between speech and head/bedyuges
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and prosody features separately by a parallel HMM strudtutearn
and model the gestural and prosodic elements (elementésrips),
respectively, over training data for a particular speakie then
employ a multi-stream parallel HMM structure to find the jin
recurring gesture-prosody patterns and the corresponaliaip-to-
visual mapping.

HMM-based segmentation techniques are commonly emplayed i
modeling multi-stream correlations; for example, for spedriven
lip animation in [7]-[9] and for audio-visual event detectiin [18].
We can classify HMM based modeling techniques as supervised
and unsupervised. Speech and lip motion correlation muoglelan
be thought of as a supervised analysis/segmentation pnolsimce
phonemes and visemes constitute well-established elenyennhits
for these modalities. Hence, speech-driven lip animatsk is often
equivalent to find a mapping between the phonemes of speelcthan



visemes of lip movement. On the other hand, we shall congfuer
audio-visual gesture modeling/mapping as an unsupengsgchen-
tation problem, where the recurrent joint events are not defined

and to be extracted from the joint feature streams.

views (e.g., the right or the left but not both) using a boddtaar
based cascade classifier structure, which was initiallyp@sed by
Viola and Jones [19] and later improved by Lienhart and M4g64%.

The detected rectangular head region is used to initializesearch

The organization of this paper is as follows: In Sectldn le wwindow within which facial pixels are segmented based on asSian
first provide an overview of the proposed HMM-based analysiskin color distribution model computed over a training detampled

synthesis framework, and then describe the computationeafd h
gesture and speech prosody features. Robust and accluaekindy
of the speaker head motions is an integral part of the oveyatem;
hence, it is described in detail. Sectlad 11l presents tloppsed two-
stage unsupervised analysis procedure to identify and injoisly

skin colors. An ellipseSy, is then fitted to the facial skin region.
Let P, denote the set of image points within the ellipSg.
of the reference framé, so thatPy, = {p, . Pk 2> - » Pk, N}
andp,, , = [€n,yn]". For each framek, we employ the hierar-
chical Lukas-Kanade technique [21] to find the optical flovetees,

recurring head gesture and prosody patterns. Seffidn INaiesp {vj1,vkz2,..., vk ~}, from framek, to framek. The setP, of
HMM-based synthesis of head gesture parameters from irgait tthe corresponding image points in frankeis then obtained by
speech. In SectiollV, we describe the experiments conduatetl p, , =p, , +vkn, n=0,1,...,N.

present objective and subjective evaluation of the prosivosen head In order to find the 3D world coordinates of the image points in
gesture synthesis results. Finally, Secfioh VI providescigions.  each setP;,, we compute the disparity vectors at these points using

Il. OVERVIEW OF THE PROPOSEDSYSTEM AND FEATURE
EXTRACTION

A block diagram of the proposed system for prosody-driveadhe
gesture animation, which consists of analysis and syrghesits, is
depicted in Fig[L. The analysis part includes two featurteaesion
modules and two-stages of analysis. Feature extractionulesd

bandpass images and a cross correlation measure based sumthe
of absolute differences [22]. The disparity vectors are aslidated
using several criteria [23]. Given the disparity vectonsdach frame
and the intrinsic parameters of the rectified stereo camsters, the
3D world coordinates of the 2D points from both sés. and P
are calculated by the well-known triangulation techniquet W,
denote the3 x M matrix formed by the 3D world coordinates of the

compute the head gesture featur and speech prosody featured?0iNts associated wit:, so thatW. = [wi,1, w2, ..., W]

f?, respectively, from training stereo video sequences ofemls.
At the first stage analysis, individual feature streams aeduto
train separate parallel HMM structures, which provide ptubstic
models for temporal recurrent patterns in the correspandiodal-
ities, respectively. The segments corresponding to thatterps are
detected and labeled over the training video streams, wbettern
labels for prosody and gesture are denoted*bgndl?, respectively.
At the second stage, the labels of temporally segmentedirgeand
prosody streams are used together to train a discrete strdam
parallel HMM to identify jointly recurring patterns. The sdting
joint HMM structure models the correlation between speeadsqdy
and head gestures. The synthesis part makes use of the juikt H
to predict the gesture labels from the prosody labels coeatpir

and wy,,m = [Xm,Ym,Zm]T. While forming the matrixW ., we
exclude those points P, that fall outside the ellips&€; due to
possible erroneous optical flow vectors. The excluded poare
outliers which may corrupt the 3D motion capture processadde
the dimension M of the matrice® ;,, and W, are re-determined
at each framés according to the number of points that fall within
the detected ellipséy.

2) Computation of the Euler Anglet:et R, andt; denote the
rotation matrix and the translation vector, respectivelythe rigid
head motion from framé:, to k. Then, W and W, are related
by

Wi, }

Wi = R tk}|: 17 2

a test input speech using the prosody HMM obtained by the firghe rotation matrixR;, and translation vectot, are estimated by
stage analysis. The corresponding gesture featureshé@a&d motion a unitary constraint optimization technique as explainedhe Ap-
parameters, are synthesized using the gesture HMM obtaindte pendix. Once estimated, the rotation matiy can be decomposed
first stage analysis and finally animated on a 3D head moded. Timto three matrices:

details of the two stages of the analysis, shown by Stage-Saage- otk

Il blocks in Fig.[, are presented in Sectiad I, whereasdhsture Ry = [rij] = R (06) Ry (¢1) R ()

®)

synthesis part is described in detail in Secfiah IV. In theamder
of this section, we describe our methodology for extractbriead
gesture and speech prosody features.

A. Extraction of Head Gesture Features

We define the head gesture feature vecipf, for frame & to
include the Euler angles associated with the 3D head rotatial

where R, (0r), Ry(¢r) and R.(v;) are the matrices that specify
rotations aroundc, y and z axes, respectively [24], [25]. The Euler
angle vectore, = [0k, ¢r, ¥r]T which mapsW . to W, is finally
extracted from this decomposition by

e, = [arctan(—rgg/réfg), arcsin(rlfg)7 arctan(—r]fg/rlfl)

(4)

heir first diff In cases where the head rotation between the current fkaarel
their first dilierences, reference framé,. is larger than a threshold angle (e.g/6if| > 25°
9 — [0k, b1, i, Ak, Ay, Atpy,] " (1) orl¢r| > 25° or [¢hx| > 25°), the optical flow vectors, hence the 3D
. ) point correspondences between two frames, may becomealnieel
whered, ¢x andy;, are the Euler angles of rotation, with respect, sych cases, we switch to incremental motion estimatidmerey
to a reference framé,, around thex, y and z axes, respectively, the reference frame for framk is set to framek — 1. Thus, we
and Adx, Agr, Ay denote their respective first differences. Thgecompute optical flow vectors with respect to frafe- 1; hence,
reference framek, can be selected as the first frame in which thg,e new 3D point correspondences and the resulting incresiEaler
subject’s head is assumed to be at neutral position. angle vectord,_;, which defines the rotation between franieand

1) 3D Point Tracking: For video recording, we use a rectified; 1 are computed. Then, the Euler angle vector with respecteto th
stereo camera system with two identical cameras, and astahe oference frame:,. is given by
the intrinsic camera parameters are knosvpriori. For each frame
k, we initially detect a rectangular head region from one efstereo er=ep-1+ 0,1

®)
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Fig. 1. Overview of the proposed synthesis-by-analysis system.

3) Smoothing of the Feature Vector by Kalman Filtering/e unit variance Gaussian noise. The intensity features ameeadtracted
finally employ a Kalman filter for post smoothing of the congalit over the active utterances. The squared sound intensigeseighted
(estimated) Euler angles, which are input as observatignto the with a 32 ms Kaiser-20 window, and the speech signal intgrisit
Kalman filter. The measurement noise models the estimation calculated as the sum of these weighted samples. The 32 rdswin
errors in the Euler angles. The head gesture feature vetto(the is shifted by 10 ms for each frame to extract intensity valaie$00
superscripty is omitted for ease of notation), consisting of the EuleHz frame rate. The intensity features are also mean removed o
angles and their first differences, is selected as the s&®i The active utterances and between-utterance regions are \iildzero
state-space representation of the Kalman filter is given by mean unit variance Gaussian noise. The first order der&ativ;,

¥ — Ff +Gux of the post-processed pitch frequency at fraimis calculated using
k+1 - k

zn = Hf, +rs (6) the following regression forgmula:
where AV, = 2 izt WWti = Viei) ®)
2572 a2
| ek F_ I3xs Isxs ) ] = )
fr= Aer |’ T | 033 TIsxs Finally, the pitch frequency, its derivative and the inignsare
Isys (7) " concatenated to form the 3 dimensional prosody featureowgtd} at
G=Iexs, H=| g frame k:
3x3 .

b= Vi AVk L))" 9)

The 3 x 1 vector Aey, denotes the first differences of the Euler
angles. The model noise;, and measurement noisg, are assumed

to be uncorrelated, zero-mean white Gaussian processesouput ) ) .
of the Kalman filter gives the final feature vector for the head !N this section, we propose a two stage HMM-based unsugefvis
gestures. analysis framework, where the first stage aims to separatehact

elementary gesture and prosody patterns for a speaker, fend t
second stage determines a correlation model between thes® h
gesture and prosody patterns. In the first stage analysissrieg

The prosodic speech events can be described by the tempeilamentary gesture and prosody patterns are determinachsely by
variations of loudness/intensity and pitch as well as palmtween unsupervised temporal clustering of individual gesturd prosody
phrases, phoneme durations, timing, and rhythm. Amongethiee feature streams, respectively. The extracted elementagody and
most expressive one is the pitch, which is the rate of voolal-f gesture patterns are analogous to phonemes and viseme® in th
cycling. In this study, pitch frequency/, and speech intensity,, speech and lip motion modeling. However, the elementaryuges
are considered as prosody features. and prosody patterns are not well established as in the chse o

The pitch contour is extracted at a rate of 100 Hz from the dpeephonemes and visemes, since the nature and strength of bstanley
signal using the autocorrelation method as described ih [PBe and prosody patterns may vary from person to person and ie. tim
mean of all pitch contours over all active utterances is redato Hence, the need for unsupervised stage | analysis in ordexttact
emphasize local variations [27], and then the resultingmreanoved these patterns for each speaker. Furthermore, the joumtrneg nature
contours are low-pass filtered to reduce discontinuitidee flegions of these patterns are also not well established as in the afse
between utterances without a valid pitch are filled with zerean phoneme-viseme association; hence, the need for stagealysén

I11. HEAD GESTUREPROSODYPATTERN ANALYSIS

B. Extraction of Prosody Features



for joint modeling of correlations between head gesture @odody probability of feature sequencE given the trained parallel HMM
patterns. In order to find a mapping between prosody and rgesti,

patterns, unsupervised temporal segmentation of jointugesand L
prosody pattern labels is performed, which defines the b:{hr_me P(F|A) = max PSP Fopy -1t Am)
between gesture and prosody pattern streams and relatesering PP
head gesture and prosody patterns. L
We note that if a multi-stream HMM structure were directly = g?a’iHP(SlP\"w) (11)
—

employed for joint analysis of gesture and prosody feattneams,
as commonly used for event detection [18], instead of th@gsed wheree; is thel-th temporal segment, which is modeled by theth
two-stage analysis, the resulting joint gesture-prosaebture seg- branch of the parallel HMMA. One can show thak,,, is the best
ments would not necessarily correspondirtdependenmeaningful match for the feature sequeneg that is,

elementary gesture and prosody patterns. As a result, tithesized
gesture sequence might contain poorly defined gestural eslsm
\;vr:ir(;]r;tiv(\)/guld degrade the quality of prosody-driven head west Since, the temporal segmest from frame &,

my = argmax P(g;|Am) (12)

to (tl+1 — 1) is
associated with segment label;, we define the sequence of frame

) labels based on this association as,
A. Stage-l: Extraction of Elementary Head Gesture and Rigso

Patterns by =my for t=t;,,ti +1,..., 41401 —1 (13)
The first stage analysis defines recurrent elementary hestdrge where/; is the label of the-th frame and we have a label sequence
and prosody patterns separately using unsupervised teingoster- ¢ = {¢;, (>, ..., ¢r} corresponding to the feature sequerf¢eThe

ing over individual feature streams. The gesture and proseature first stage analysis extracts the frame label sequedéeand ¢7
streamsF'? and F'* are separately used to train two HMM structuregjiven the head gesture and prosody feature streAthsand F?.
Ay and A, which capture recurrent head gesture segmefitand  While mapping the gesture and prosody features to discrataef
prosody segments”. For ease of notation, we use a generic notatioabels, the mismatch between the frame rates of gesture rasdgy
to represent the HMM structure which is identical for thetges s eliminated by downsampling the frame rate of prosodyllatream
and prosody streams. The HMM structurg which is used for to the rate of gesture label stream.
unsupervised temporal segmentation, Wdsparallel branches and  The parallel HMM structure has two important parameterseto s
N states as shown in Fifll 2. In the HMM structuke observation before training the model. The first parameter is the number of
probability densities are modeled by a single Gaussian eiitgonal states in each branchy. It should be selected by considering the
covariance for both gesture and prosody streams. The sédteled minimum duration of temporal patterns. Selecting a smalimay
as ss and s. are non emitting start and end states of the parallabmper modeling long term statistics for each branch of tralfel
HMM structure. Fig[R clearly illustrates that the paralldM A HMM. The extreme cas&V = 1 reduces to K-Means unsupervised
is composed of\/ parallel left-to-right HMMs,{A1, A2,..., Ax )}, clustering. We select the number of states in each brandmedfi¢ad
where each\,,, is composed ofV states,{sy,1,8m,2,...,sm,n}. gesture HMMA, as Na, = 10, corresponding to the minimum
The state transition matrid,,, of each),, is associated with a sub- gesture pattern duration of 10 frame§, 6éec assuming 30 video
diagonal matrix ofA,. The feature stream is a sequence of featufeames/sec). Note that the gesture patterns can be longerlth
vectors,F = {f,, fo,..., fr}, Wheref, denotes the feature vectorframes since the HMM structure allows self-state transgioOn
at framet. Unsupervised temporal segmentation using HMM maddel the other hand, the prosody patterns are expected to folloaoth
yields L number of segments = {e1,¢2,...,er}. Thel-th temporal pitch frequency movements over several syllables. Corisigldhe
segment is associated with the following sequence of featectors, average syllable durations and smoothness of the pitcloem)twe
set Ny, = 5 in each branch of the prosody HMM modé),.

&= {ffl’ftl+l7"'7ftl+1—l} l=12...,L (10) Thepsecond parameter is the nFL)meer of temporal l|E)atteims,
where f, is the first feature vectorf, and ftLH,1 is the last Since the number of head gesture and prosody patterns igespea
feature vectorf . dependent, we propose selection\dfby using two fithess measures.
The first fitness measure, which is inversely related to in-class
variance, is defined as the frame average of the log-pratyaloi
model match,

o= 7 log(P(F|A) (14)

The o measure is expected to saturate with increasing number
of parallel branches im\, since the training database is expected
to contain limited number of temporal patterns. Howeveralsm
variations within temporal patterns are also expected,céetie
number of branches\/ can be more than the actual number of
temporal patterns in the training corpus. Consequently, siacond
fithness measure, which is the average statistical separbgtween
two similar temporal patterns, increases with the decngasumber

of temporal patterns. The second fithess meagliis considered
as the average statistical separation between two singtaparal
Fig. 2. Parallel HMM structure patterns, and it is defined as

L
The segmentation of the feature stream is performed usitegbvi 8= 1 Zlog( P(ei[Am,) ) (15)
decoding to maximize the probability of model match, whistttie T = " Plefdm;)”



where ), is the second best match for the temporal segnagnt IV. PROSODY-DRIVEN GESTURESYNTHESIS

that is, . In this section, we address prosody-driven gesture syisthes
mp = irE?EXP(sle) (16) ing the proposed gesture-prosody pattern model. A detdiledk
! diagram of the proposed prosody-driven gesture synthgsiem is
In general, thea: measure increases with the number of patterngown in Fig[lh. The system takes speech as input and produces
M, while 5 measure decreases. Hence, a good valueMoran gequence of head gesture features, i.e., Euler angle seetbich
be selected such that is high enough, whilex reaches a certain 4re naturally correlated with the input speech. The detditse sub-
value. blocks are described in the following.
1) Prosody Feature ExtractionThe prosody featuresF”, are
extracted from the input speech signal as described in GHHHEL
In the second stage, unsupervised segmentation of thegestitire- ~ 2) Prosody Feature SegmentatioriTemporal segmentation of
prosody label stream is performed to detect recurrent jEibel prosody feature sequendg” is performed using the HMM model
patterns. Note that this task is similar to the task of stagex¢ept A, which is trained in the stage | analysis in Secflonll-A.riDg
in the second stage we have a multi-stream discrete ob&ervatthe temporal segmentation, the conditional probabiRfF?|A,) is
sequence. For this task, the parallel HMM structure in Higs @sed maximized using Viterbi decoding to extract the temporaispdy
with discrete multi-stream HMM branches. In multi-strearMMs,  segment sequence?, and the sequence of prosody frame labéls,
all streams share the same state transition structure leoweevission  3) Gesture Segment Label Estimatiofihe aim of this step is to
probabilities are determined independently for each strea predict the sequence of gesture frame labéls,given the prosody
The joint gesture-prosody frame label stream, denoted®Byis frame labelst?. To this effect, temporal segmentation of the prosody
defined such that for every franie ({7 = [¢f, (7]". We represent frame labels,¢” is performed using the HMM model',, which
the discrete multi-stream parallel HMM structure By, and itsm-  is extracted by splitting the jointly trained gesture-mrdg HMM
th branch by~;?. The discrete HMMI'y, is trained over the joint modelT,,. As a result of this temporal prosody label segmentation,

B. Stage-ll: Joint Modeling of Prosody-Gesture Patterns

gesture-prosody label stream. Each branghi, associated with a a state sequence? = {s},s},...,sh.} associated witht? =
joint gesture-prosody temporal label pattern, is then rissd by {€8,¢65,..., (%} is extracted. Then, the gesture frame label sequence
NP — (A gr,[Bg By, Tl ) a7 £ is predicted by maximizing the probability of observing tues

label on the state sequence path over the gesture HMM model
where A_¢r denotes a state transition matrig.s and B.» are T, such that,

discrete observatlon probability distributions for gestand prosody ¢ = arg max P(m|st,Ty) (19)
label streams, andlL ¢» is an initial state probability matrix. The
distributions B_ ¢ and B,y define the probability of observing awhere k is the frame indexyn runs over all possibleV/ gesture

gesture- prosody label at stateand framek, given by patterns and the conditional probabilify(m/|s,I') is defined by
o - . the discrete observation probability distributid s .
P(7]s) = P(Li]s)"™ P(€§]s)"™ (18)  4) Generation of Euler AnglesThis step computes the gesture
where the exponents;,, andr,, are the stream weights, which maysegment sequencg’, consisting of the Euler angle features, given
be set to unity. the gesture frame label sequere First, we find the segment frame

For the purpose of synthesis, each multi-stream discreteVHMboundaries{t,};;, by merging the same gesture frame labels in
branch, v97, can be split into two individual single-stream dls-the sequencé’. Then, the Euler angle features for thth segment,
crete HMM models g, = (A,or,B.o ILor) and 45, = & ={fi,fi1,-o fi, 1}, are generated from the HMM;,

(A o», B.» ,TI or), respectively for gesture and prosody streamavhich is thel;, -th branch of the parallel HMM model, (computed
These single stream HMM models share the same state tmamsitin stage ).

and initial state probability matrices but their discreteservation ~ Note that the segment duration for the¢h segment is extended
probability distributions are different. The individuabservation asd; = (ti+1 + A — (& — A)) frames, whereA is the number of
distributions are then given b (¢7|s) and P(¢%|s) for gesture and overlapping frames at the segment boundaries to smoothesggm
prosody models, respectively. to-segment transitions. The state sequesgeor equivalently the

Unsupervised temporal segmentation of joint label streasns state occupancy durations for tiieéh segment is calculated using
demonstrated by the following example, which also illustsahow the diagonal terms of thé;-step state transition matrix of the HMM
the asynchrony between gestures and prosody is handled rin 8, - Having the state sequenag¢ and the continuous observation
scheme. pI‘ObabllltyP(fq|sl) which are modeled using a Gaussian distribu-

ExampleLet us have two label streard$ and¢®, where each label tion, the Euler angle features are generated along the sggteence
can assume values 1, 2, or 3. When temporal segmentatior jufithh  associated with the distributioR(f?|s]). The segment boundaries
label stream is performed using the HMM structiiyg, with M = 2 have2A + 1 number of frame overlaps, where the overlapped and
patterns andV = 3 number of states for each pattern, we obtain thaveraged features generate smoother segment-to-segaesitions.
result shown in Figd3. One can observe that the recurrent fabel 5) Smoothing of Euler AnglesAs the final step of the gesture
patterns are captured and the asynchrony between individbal synthesis, the Euler angles are smoothed using medianinijter
streams is modelled by the first and the last states of the HMidIlowed by a Gaussian low pass filter to remove motion jezkm
branches. The median filtering is performed over 11 visual frames ang th

The number of statesvr,, for each branch of’y, should be Gaussian smoothing is performed over 15 visual frames. Hig.
selected according to the number of head gesture and prpsogyns depicts the samples generated from the HMM, and outputs ef th
determined by the stage | analysis, sifitg, models the recurrent median and Gaussian filters. The figure clearly shows thangdian
joint gesture-prosody label pairs. Similarly, the numb&bnches filter removes jitters within a state and the Gaussian lows fater
Mr,, in I'y, should be selected by considering the two fitnessmooths the state-to-state transitions.
measuresy and as defined in[[l14) and{IL5). The selectionMdf,, There are two main advantages of using HMMs for gesture
and Mr, is further discussed in SectlghV. synthesis. The first is the random variations in the syntieelsgesture
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Fig. 3. Example for unsupervised joint label segmentation.
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g. 4. The proposed prosody-driven gesture synthesis system.
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A. Database and Experimental Setup

Gen.era'ted Sample!s
M e Sutar We have conducted experiments using the MVGL-MASAL
gesture-speech database. The database includes foudingsoof
two subjects telling stories in Turkish. The subjects asgrircted to
tell stories to children audience. All gestures are spauas within
this context. Each story lasts approximat&lyminutes. The audio-
visual data is synchronously captured from the stereo caraed
the sound card. The stereo video includes only upper bodyrgss
with 30 frames per second whereas the audio is recorded \gith 1
-15 kHz sampling rate and 16 bits per sample. The detailed spatitfn
10 20 30 40 50 60
Frames of the stereo camera can be found on [28]. The performancheof t
proposed analysis and synthesis system is evaluated iit detthe
Fig. 5. The effect of filtering in the synthesis of Euler andleThe dashed recordings of the first speaker, whereas the recordingseoé¢icond
circles represent the states of a single branch HMM modet Vértical gpeaker are used to investigate the speaker dependendgrprdor
g?;']t'eorl'za';? Zﬁ;é’; ?scsgccig?e%?,Liﬁ%;i;fé?;ydemgmn and variance y o firo speaker, the database is partitioned into two fsaith that
three stories are used for training of the models and ong sarsed
for testing. For objective evaluation of the synthesis, Eléer angles
patterns for each segment. This variation yields more ahtooking ~€Xtracted from the test sequence are considered as thedgtauh
synthesis results than using a fixed gesture dictionargesiimans for the synthesized head motion.
produce slightly varying gestures at different occasiansttie same
semantics. The second advantage is generating gestutesaming B, Analysis Results
durations in accordance with prosody of the speaker.

10 A

Angle (°)

The head gesture and prosody correlation analysis includes
supervised temporal segmentation of the individual feasireams
as well as the joint gesture-prosody label stream. The tigeand

In this section, we present experimental results and etialua subjective evaluation of these tasks are presented in tlwving.
of the proposed system. Sectifi_V-A describes the audiabis Segmentation of Head Gesture Patterrihe parallel HMM A,
database, which is used in the experimental evaluation nergee is trained with features extracted from the training videsing
objective and subjective results. The evaluation of théugegporosody Expectation-Maximization (EM) algorithm. The resultingM¥
pattern analysis is presented in SectlonV-B, and the dhgect structure provides a probabilistic cluster model for ursuised
and subjective performance results for synthesis are miEgein  segmentation of head gestures into recurring elementatgrpa.
SectiofV=C. Speaker dependency of the prosody-driven gestdire The number of branches, or equivalently the number of gestur
synthesis system is evaluated in SecfionlV-D. patterns My, is a critical model parameter. In order to ety , the

V. EVALUATION AND RESULTS



7.8 ; T T T 4.2 in Fig.[d. Note that the first pitch trajectory (upper-lef)dassociated

. cé ------- 4 4 with the no-pitch segments that we filled with zero mean anitl un
_— {33 variance Gaussian noise. The noise filling is necessaryufressful
-8.2 1 36 modeling of those segments with continuous density HMMse Th
e . other four prosody patterns can be classified using the gioso
e e ! 34 = transcription conventions introduced by the American BEhgTones
86 132 and Break Indices (ToBl) standard [29]. The two prosody quag
] ; * 3 on the upper right are both falling boundary tones (L%); thtgyn
88 1 28 on the lower left is a falling boundary tone, which makes akpea
9 26 before the last syllable (HL%), and the pattern on the lowgitr
3 4 5 6 7 8 9 10 is a rising-falling boundary tone, which rises within thstlayllable
m (LHL%). We should note that these prosody patterns are rdxdai

Fig. 6. Thea and g fitness measures for varying number of head gestudSINg unsupervised clustering over the training datatese they do
not define a complete prosodic transcription conventionTiankish.

Segmentation of Joint Gesture-Prosody Patterimsthe first stage
analysis, we obtain two independent HMM structurag, and A,
two fitness measuresandg, as respectively defined ii{j14) afidi15)respectively for recurrent head gesture and prosody pattane
are calculated for varying number of gesture patterns aotlgol in  then extract two independent and parallel streams of heatlige
Fig.[d. Thea value, which measures the probability of model matcland prosody pattern labels via temporal segmentation usiage
increases with increasing number of patterns as expecte@.tNat3 HMM structures. In the second stage, the discrete mukiastr
measures the statistical separation between patternsod\gdue for HMM structure T'y,, is trained using EM over the joint gesture-
My, is such thats is high enough, whilex reaches a certain value. prosody pattern label stream to perform unsupervised seigtien.
Therefore,M,, can be selected in the vicinity wheseand 3 curves  The number of states for each branchg}, is selected agvr,, = 4
(normalized with their minimum and maximum values) intetsén to model possible label pair transitions. These four stateslel
Fig. @, 8 reaches the maximum au,, = 5, which is near the four different gesture-prosody label pair combinationhimi a joint
intersection point. Hence, we set the number of gesturempatd/,,  gesture-prosody label pattern. Note that the extreme désg, = 1,
to 5. can only model a single co-occurrence pattern of gesturseply

Consequently, when the training head gesture sequencegis dabels.
mented usingA,, the segments belonging to the same gestural The two fitness measures and 3 for I'y,, and also the number
patterns are observed to be visually alike. The mean Eulgteanof gesture patterns if,, are considered for selection of the number
vectors and the typical thumbnails for the five gesture padtere of joint gesture-prosody label patterdsr,,. The number of joint
depicted in Figl7. patternsMr,, is expected to be larger than or equal to the number

Segmentation of Prosody Pattern§he speech prosody featureof gesture patternd/,,, since in a robust synthesis process all the
sequence is extracted from the audio part of the traininghdese. gesture patterns need to be generated for some temporabigriabel
As defined in stage I, the HMM modé, is trained with prosodic pattern. Hence, for the selection dfr,,,, we present the two fitness
features to obtain unsupervised temporal segmentatioheofitidio measuresy and 3 together with the normalized Euclidean distance
measuree,, as defined in[[d0) for varying number of joint gesture-

patterns.

stream.
prosody label patterns in FiE110. The parameéiér,, is selected as
6.5 T T 5 6, since this value, which is near the intersectiomand 3 curves, is
-6.55 B s 1 4s greater thanV/, ., and the distance, has a minimum atMr,, = 6.
6.6 [N ’
6.65 | 4 -1.55 = . . T 13
N e T ——e o
-6.7 S -1.6 X B --ooet 1 12
5 435 «
-6.75 / -1.65 \; 11
6.8 3 17 10
-6.85 -1.75 R 9
S 4 25 5 .y @
6.9 . -1.8 Y 8
-6.95 2 -1.85 ~TT — 7
3 4 5 6 7 8 / 1 " \
-1.9 s o % 6
m / 0.9 TN B N\
-1.95 e
Fig. 8. Thea andg fithess measures for varying number of prosody patterns. 2 08 i
2 3 4 5 6 7 8 9 10
m

The two fitness measures a_nd f are calculated for varyl_ng Fig. 10. Thexa andp fitness measures and the normalized Euclidean distance
number of prosody patterns using HMM modeg}, and plotted in  measure:,, for varying number of joint gesture-prosody label patterns

Fig.[d. Thea value, which measures the probability of model match,
increases and th@ value, which measures statistical separation Observation probability distributions of the joint mufiream

between patterns, decreases with increasing number afrpsitas HMM are plotted in Fig[IlL. It can be seen that each branch of
expected. The number of prosody patteffs,, can thus be set to the HMM structureI’y, models a temporal sequence of identical
a value in the vicinity wherex and 3 curves intersect. Hence, weelementary gesture patterns. That is, in each of the sixetasa
selectM,, as 5 in our experiments. distribution of prosody patterns co-occurs with a singlenentary
The means and standard deviations of the normalized ityessil gesture pattern. Note that this association between texhporsody
pitch frequency trajectories for the five prosody pattemesdepicted label patterns and a single gesture pattern is very berlefizia
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Fig. 7. The mean Euler angles with standard deviations apidalythumbnails for the five gesture patterns: (a) Turn L@ Turn Right, (c) Tilt Left, (d)
Tilt Right, and (e) Nod

obtain smooth prosody-driven head gesture animationsh&umore, prosody-driven head gesture synthesis process. The &Gealsiare
boundaries of the prosody patterns within the co-occurgegture performed over the test database, which is defined in SelgE&h
pattern are determined by the state transition probadsliof T',,
and hence, the asynchrony problem is handled through theeléa
statistics of the joint multi-stream HMNIg,,.

The objective evaluations compare the difference betweiginal
and synthesized Euler angles. Furthermore, A-B compartgpa
subjective evaluations are performed using the talkingd heezatar
of Momentum Inc[30], where the Euler angles that we deliver are
C. Synthesis Results used to drive head gestures/motion of the speech-drivkmgahead
. aanimation. The subjective tests are used to measure opimiorthe
naturalness of the synthesized head gestures using thehsgeeen
alking head animations.

Prosody-driven head gesture synthesis generates an Eng
sequence, which is naturally correlated to a given testcépsignal.
The details of the synthesis process is given in Sedich H/. f
this section, we present objective and subjective evalnstof the We have adopted the Input-Output Hidden Markov Model
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co-occurs with a single elementary gesture pattern.

(IOHMM) structure [8], [31] as a possible alternative scleefior

Observation probability distributions of the jpmulti-stream HMM. The discrete prosody and gesture labheéson the y-axis, states are on the
x-axis. Dark and white regions represent low and high priibalvalues, respectively. Note that in each of the six sk a distribution of prosody patterns

The IOHMM implementation of the Torch Machine Learning laby

the joint analysis of gesture and prosody label streamseasd¢bond- [32] is used in our experiments.

stage. In that case, the IOHMM structure replaces the HNVJJ to

Objective ResultsThe objective evaluations compare the distance

predict gesture segment labels from prosody labels. Tmesshathe between original and synthesized Euler angles. In our atials
IOHMM are fully connected and the nL_meer of states IS s_edbtme we have used three different distance measures. Let thimalrignd
be the same as the number of states inlthe model, which is24. synthesized Euler angles at frarhere represented with,, andéx,



TABLE |
THE MEAN AND STANDARD DEVIATION OF THE DISTANCE MEASURES
BETWEEN THE ORIGINAL AND THE TWO SETS OF SYNTHESIZEEULER
ANGLES, FROM THE PROPOSED’;;, AND IOHMM MODELS.

[ Model ] Typ | IOHMM |
[en,0cn] 0.817896, 0.010981 0.890652, 0.012861
e Term] 1.946043, 0.020871 2.290755, 0.073021

[fte,, 0c.] | [13.694374,0.158944] | [16.427827, 0.525493]

respectively. The first distance measuyeis a normalized Euclidean
distance measure, which penalize Euler angles in wrongtéres

[61, .
_ > (@r —en)” (er —ex)
SR (e +en)T(er + ex)

The second measurs, is the Mahalanobis distance, which is th
Euclidean distance weighted with the inverse covariandeixn& !,
of the original Euler angleg,

(20)

n

K
€m = %Z\/(ék —ek)TE’l(ék —ek) (21)
k=1

The third distance measure is the standard Euclidian distap =

% Zf:l V(éx —er)T(ér — ex).

The original Euler angles are extracted from the visual ért

10

randomized across conditions and pairwise. The subjet#sts are
performed overl5 subjects. The average preference scores for the
three comparison sets are presented in Tble 1. Note tkasdbres
of the three random start-up pairs are ignored in calcigatire
final preference scores. As expected, the subjective A-Bpemnisons
indicate a preference for the talking head animations vi¢hariginal
Euler angles. On the other hand, animations synthesizeld thé
proposed joint gesture-prosody correlation modg} are preferred
over animations generated using the IOHMM correlation rhadth
an average preference score-a.56. Also note that the preference
for the animations with the original Euler angles is strangethe
case of IOHMM driven animations as compared to the propasgd
driven animations. This is expected, since the output aadsition
probabilities in the IOHMM structure are conditional ditlgoon the
input sequence, whereas in the joint multi-stream HMM, thgot
gesture patterns are affected by the states only and nattlglitey

She input. Hence, use of parallel multi-stream HMM in the et

stage is more robust to any noise in the input stream.
Samples of the audio-visual sequences for the prosodgsriv

talking head animations are available online [33]. Thesaptes

are selected to demonstrate three possible related aipmhisaThe

first one is the speaker dependent prosody-driven gestunthesis
application, where gesture-prosody correlation model aipaaker

is used to animate the same speaker with her/his speech. The
second application is head gesture transplant, wherergestasody

the test database to be used as the ground truth in the ebjectorrelation model of speakek is used to animate speakBrfrom
evaluations. Two sets of synthesized Euler angles are gkuer speakeA's speech. Furthermore, the prosody transplant is coresider

using the audio part of the test database. The first set isratede

as the third application, where gesture-prosody coraathodel of

with the proposed head gesture synthesis system based drythe speakerA is used to animate speakarfrom speakeB’s speech. In
model. The second set is generated by replacing the secagd sthe demonstration of the prosody transplant we used spegh i

joint gesture-prosody correlation mode},, by IOHMM. The error
measure statistics for the three distance meassres:,, and e.
between the original and synthesized Euler angles arectetleover

from audio-book recordings in English, where the gestuosqdy
correlation model is performed over the story telling redogs in
Turkish. Although one should expect differences in prospditerns

synthesis trials repeated a hundred times. The mean andastin across different languages, the naturalness of the aminsatis

deviation of the distance measures are given in THble |. tuie
all three distance measures favor the proposed joint geptasody
correlation modely,,.

TABLE Il
THE SUBJECTIVEA-B COMPARISONRESULTS

| A-B pair | Preference Scorg
Original - I'g,, -0.23
Original - IOHMM -0.83
Lyp - IOHMM -0.56
Identical pairs 0.04

observed to be acceptable. We also note that the talkingdspke
these two speakers are different, where the native Turkisialer
has a faster rate than the native English speaker. As expécia
the proposed correlation model, we observe slower headurgest
animations for the native English speaker.

D. Speaker Dependency

The proposed analysis method is capable of providing patizeal
elementary head gesture and prosody patterns and a pézednal
prosody to gesture mapping model. To demonstrate this, we ha
repeated the experiments with a second speaker. The segeakes

Subjective ResultsSubjective A-B comparisons are performeds also instructed to tell the same four stories to an audieofc

using the speech-driven talking head animations to meamingons
on the naturalness of the synthesized head gestures. Tjeetsudre
asked to evaluate the naturalness of the speech-drivehesipéd
head gestures for an A-B test pair on a scal¢-e2, —1, 0, 1, 2),
where the scale corresponds to (A much better, A better, efepr
ence, B better, B much better).

The whole test database is manually partitioned into meguin
15 segments, where each segment is approximdt2lgeconds. For

children. The system is then trained using the recordingshef
speaker. At the end of the two-stage analysis for modelirsgjuge-
prosody correlation, we have observed that the resultisgnehtary
patterns for both prosody and head gestures significarffigr diom
those of the first speaker.

In order to set the number of gesture patteris,,, and prosody
patterns,My,, the two fitness measures and § are calculated for
varying number of gesture and prosody patterns, respégtivlich

each evaluatior8 segments out of5 are randomly selected. Threeare plotted in Figll2 and Fi§_1L3. In both plots, the probigbibf

sets of A-B comparison pairs, each including theésesegments,
are considered for the speech-driven talking head animatising
the original and two sets of synthesized Euler angles. Eurtbre,
three random startup A-B test pairs and another three tést wéih
identical synthesis algorithms are also included to thejestibe
test set. Hence, the total number of A-B pairs in a tesB3(is
Apart from the three random start-up A-B pairs, all the pare

model matchg, increases and the statistical separation between pat-
terns,3, decreases with increasing number of patterns. The numbers
of gesture and prosody patterns are selected in the vioivtigre o
and 3 curves intersect, ad/y, = 4 and My, = 5. The mean Euler
angle vectors and typical thumbnails for the four gesturgepas

are plotted in FiglZl4. Similarly, the means and standardatiens

of the normalized intensity and pitch frequency traje@srfor the
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Fig. 14. The mean Euler angles with standard deviations ygridal thumbnails from the second speaker for the four gegpatterns: (a) Tilt Left, (b) Nod
with Tilt Right, (c) Nod, (d) Tilt Right.
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Fig. 15. The means and standard deviations of the normailitedsity (dB) and pitch frequency (Hz) trajectories foe five prosody patterns of the second
speaker.

five prosody patterns are plotted in Higl 15. Note that thenelgary second speaker. Three of the prosody patterns are fallingdaoy
gesture patterns for the second speaker is distinctivéigreint than tones (L%), and the other one is a rising boundary tone (H¥o)hf®
the ones for the first speaker (see Hily. 7 for comparison).pamsecond speaker.

vidgo s.treams of the typical elementary gesture pattemg\milable At the second stage analysis, the joint gesture-prosodgrpdabel
online in [33]. The elementary prosody patterns also difter the stream is segmented in an unsupervised manner using thetdisc



12

5.1 T T T 4.2 tary gesture and prosody patterns are extracted using enssed
52 /‘ér", 4 segmentation for a speaker, and in the second stage, aatimmnel
gj Y 133 model between head gesture and prosody patterns is degielope
55 d 36 The proposed two-stage analysis framework offers the \iatig
56 -4 advantages: i) Meaningful elementary gesture and prosadherms
RS 3 T 13 = are defined for a speaker at the first stage. ii) A mapping Eiwe

5.8 - 32 these elementary prosody and head gesture patterns is@dbtaith
‘5_-2 P . 43 .l_J_nsupervised segmentation of the joint ggstu_re-prosdx_@ .h;{ream.
o1 b T O R 128 iii) The HMM-based analysis and synthesis yields flexipilit mod-
62 ) il 26 eling structural and durational variations within gestard prosodic

4 5 6 7 8 9 10 patterns. iv) Automatic generation of the elementary gespatterns

m

produces natural looking prosody-driven head gesturehsgid.
Fig. 12. Thea and 3 fitness measures for varying number of head gesture [N addition to successful demonstration of speaker depende

patterns of the second speaker. speech-driven head gesture synthesis system, differgiicaions,
such as head gesture transplant and prosody transplan@lsoe
-5.75 . . 7 demonstrated. After extracting a gesture-prosody cdioelanodel
5.8 N %/ for speakerA, head gesture transplant animates spedkeirom
585 [ 168 speakerA’'s speech, and prosody transplant animates speakem
59 M 5 speakemB’s speech. In the prosody transplant demonstration, gestur
sos LT . prosody correlation model is trained with audio-visual orelings
© 6 / 14« in Turkish, and prosody-driven gesture synthesis is peréat with
.05 3 speech input recordings in English. The naturalness of theoply
61 e R . transplant is found to be acceptable. Also in this demotisirawe
615 92 observe slower head gesture animations for the native &Engieaker
o2 1 whose talking speed is slower.
3 4 5 6 7 8 9 10 The proposed HMM based two-stage head gesture and speech

m prosody analysis system can be utilized to model the cdivala
Fig. 13. Thea and 3 fitness measures for varying number of prosodypetweer_] any other loosely correlated modalities, such gealfa
patterns of the second speaker. expressions and speech prosody, arm gestures and speeatitisem
etc. Furthermore, the proposed speaker dependent speeeh-dead
gesture synthesis system can be tailored to model spea@moton
multi-stream HMM structurel'y,. The two fitness measures forand mood. We also note that prosody patterns obtained ubking t
'y, are plotted in Fig[Zll6. In the unsupervised segmentatiom, throposed stage | analysis over a multi-speaker phonaticith
number of joint gesture-prosody patterns is sebdp,, = 5. As for  Turkish (or any other language) training database, can ke ts
the demonstration of synthesis results, to better emphagizaker define a complete ToBI-like prosodic transcription coni@mtfor
dependency, we have used the same audio-book recordingglistt:  Turkish (or any other language) intonation.
and the same face model to derive the head gesture animdtions
the two different speakers. A sample animation video is lalvbd
online in [33], where the video stream resulting from theosec ) )
speaker’s gesture-prosody correlation model, is predentparallel ~ 1he authors would like to thanklomentum Incfor making the
with the video stream generated from the first speaker’s infade talking head avatar available and for their collaboratiorbtild the
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visual evaluation of the speaker dependency performance. MVGL-MASAL gesture-speech database.
-1.45 T T T 13 APPENDIX
15 . 1 12 RIGID MOTION PARAMETER ESTIMATION BY CONSTRAINED
411 OPTIMIZATION
-1.55 N 4 10 i ) ) ) i
-------- 19 This appendix summarizes the method used for estimating the
. -16 / ls w rotation matrix, R, and translation vectot, that describe the rigid
-1.65 . motion between the world point coordinate matrid&s, and W,
17 e . I N (see Sectio D).
N N . 45 Let m, denote the mean of the column vectors in the mai¥i,
-1.75 = ] 4 such that
™ N
-1.8 3 1 :
3 4 5 6 7 8 9 10 me = Z wy, (22)
m =1

Fig. 16. Then and fitness measures and the normalized Euclidean distan@®d m«, be defined similarly. Then, the translatiorbetweenW
measure:,, for varying number of joint gesture-prosody label patteiorsthe  and W, is given by
second speaker.

t = mE — Mg, (23)

Furthermore, letW, and W/, represent the mean-removed

. coordinate matrices such that
We proposed a new two-stage joint head gesture and speech

prosody analysis framework. In the first stage of the anslydemen- Wi =Wy —mil”, and Wi, =Wy, — my, 17 (24)

VI. CONCLUSIONS



Then, the rotation matri¥? can be found by minimizing the cost
function

f(R) = ||E||z = tr(EE") (25)

where || - || and tr(-) denote the Frobenius-norm and the matrix
trace, respectively, and

E=W) - RW,|_ (26)

The minimization of the cost functiofi( R), f : R**3 — R, is a non-
linear optimization problem, under the unitary constraRft R = I,
which can be solved by the algorithm proposed in [34], wheastdn
describes a modified Newton method for optimization on thmamex
Stiefel manifold which defines the space related with thetampi
constraint.

We simplified this method to minimize the cost functif(R) for
a square and real matriR subject to the constrainR’ R = I as
follows:

1) Choose initialR such thatR” R = I.

For small rotations,R can be approximated in terms of a 5)

parameter vectots = [u., u,, u.]* such that [35]

0 —U, Uy
Rx=I+S=1+ U 0 — Uy 27)
— Uy Uy 0

Equating the residual defined iEC]26) to zero, we obtain the
following equation to solve foiS:

Wi — Wi, =SWj, (28)
which can be expressed in termswfas
K,
vee(W), — W, )=Ku= : u [1]
Ky (29)
0 Zn -V [2]
X, Y, 0

13
[4]

—_

where operatorec(.) obtains a column vector by stacking the
columns of the operand matrix and eack3 sub-matrixk ,, is
constructed using theth point (X, Y., Z,) from W, . The
least squares solution di29) can then be used to direhd
to constructS. The initial guess fotR can finally be obtained
by projection onto the unitary spad@ = 7(I + S) (described
in step 5 below).

(5]

6l

2) Compute the derivativd r and the HessiatH r of f given 1
by
Dr = —2EW;. (30)
8
Hp= —2((W§€7Wg) ® I3x3) (31) ]
where® denotes Kronecker product. [9]
3) If \/tr(DhDr — R"DrR"Dy) < c, then stop,
4) Compute the Newton step size:= Z (P,

The Newton step size is defined as the valueAf Z <
R3*3, confined to the tangent spat& at which the quadratic
approximationg(Z) has its critical point:

[20]

9(Z) ~ f(R) +tr(Z" D) + (1/2) vec(Z)" H vec(Z) (32) "
where -
D =Dg, H=Hz—(1/2)(R"Dr+DLR)" 1] (33)

[12]

The tangent spac# is defined as a subset @**3 such
that Z = RA where A is skew-symmetric. The critical point

13

ZP) ¢ Vv, ie. the Newton step size, satisfies the following
linear constraint:

tr(Z" D) + [Vec(Z)TH] vee(ZP)) =0 (34)
By writing Z asZ = 3.°_, a;RA;, whereA; (i =1,2,3)

is an arbitrary basis for skew-symmetric matrix, the caitic
point Z(?) can be found by solving the following linear
equation fora; (i =1,2,3)

% = tr((RA:)" D) +vec(RA;)" H vec(Z) = 0 (35)
Note 'Zhat the above equation can be put into a matrix form:
K"HKa = K" vec(D) (36)
where
K = (I ® R)[vec(A1),vec(As),vec(As)] (37)

a::[a1,a2,aﬂ

SetR' := (R + Z).
The projectionw(R), = : R**® — St, onto the Stiefel
manifold, St = {R € R***: RTR = I}, is defined as

7(R) = argmin | R — Q|°.
est

(38)

If the singular value decomposition @ is U V7, then the
projection is simply given by [34]

7(R) = Ul3x3V" (39)

6) If f(R) < f(R') then abort.
7) SetR := R'. Go to StefdP.
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