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Abstract

This paper proposes a novel representation space for multimodal information, enabling fast and

efficient retrieval of video data. We suggest describing the documents not directly by selected multimodal

features (audio, visual or text), but rather by considering cross-document similarities relatively to their

multimodal characteristics. This idea leads us to propose a particular form of dissimilarity space that

is adapted to the asymmetric classification problem, and in turn to the query-by-example and relevance

feedback paradigm, widely used in information retrieval. Based on the proposed dissimilarity space, we

then define various strategies to fuse modalities through a kernel-based learning approach. The problem

of automatic kernel setting to adapt the learning process to the queries is also discussed. The properties

of our strategies are studied and validated on artificial data. In a second phase, a large annotated video

corpus, (ie TRECVID-05), indexed by visual, audio and text features is considered to evaluate the overall

performance of the dissimilarity space and fusion strategies. The obtained results confirm the validity

of the proposed approach for the representation and retrieval of multimodal information in a real-time

framework.

Index Terms

H.2.4.e Multimedia databases, H.5.1 Multimedia Information Systems, H.5.1.f Image/video retrieval,

I.2.6.g Machine learning, I.2.6.b Concept learning

I. INTRODUCTION

Determining semantic concepts by allowing users to iteratively and interactively refine their

queries is a key issue in multimedia content-based retrieval. The Relevance Feedback loop allows

to build complex queries made out of documents marked as positive and negative examples. From

this training set, a learning process has to create a model of the sought concept from a set of data

features to finally provide relevant documents to the user. The success of this search strategy

relies mainly on the representation spaces within which the data is embedded as well as on

the learning algorithm operating in those spaces. These two issues are also intrinsically related

to the problem of adequately fusing information arising from different sources. Various aspects

of these problems have been studied with success for the last few years. This includes works

on machine learning strategies such as active learning [6], imbalance classification algorithms

[41], automatic kernel setting [40] or automatic labelling of training data [37]. Theoretical and

experimental investigations have been achieved to determine optimal strategies for multimodal
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fusion: Kittler et al and R. Duin studied different rules for classifier combination [18], [11]; Wu

et al propose the super-kernel fusion to determine optimal combination of features for video

retrieval [35]. In [16], Maximum Entropy, Boosting and SVM algorithms are compared to fuse

audio-visual features. A number of further relevant references may be found into the Lecture

Notes series on Multiple Classifier Systems [25].

All these studies have in common the fact to consider feature spaces to represent knowledge

on the multimedia content. This representation requires to deal in parallel with many high-

dimensional spaces expressing the multimodal characteristics of the documents. This mass of

data makes retrieval operations computationally expensive when dealing directly with features.

For instance, the simple task of computing the distance between a query element and all other

elements becomes infeasible in a reasonable time when involving hundred of thousands of

documents and thousands of feature space components. This problem is even more sensible

when similarity measures are complex functions or procedures such as prediction functions

for temporal distances [4] or graph exploration for semantic similarities [28]. The diversity of

the features involved is also a difficulty when dealing with fusion and learning. Indeed, the

multimedia descriptors may be extracted from visual, audio or transcript streams using various

operators providing outputs such as histograms, filter responses, statistical measures or symbolic

labels. This heterogeneity imposes building complex learning setup that need to take into account

all the variety of the features’ mathematical and semantic properties [29][38].

An alternative solution is to represent documents according to their similarities (related to

one or several features) to the other documents rather than to a feature vector. Considering a

collection of documents, the similarity-based representation, stored in (dis)similarity matrices

or some distance-based indexing structures [7], characterizes the content of an element of the

collection relatively to a part of or the whole collection. Recent studies have been published for

document retrieval and collection browsing by using pre-computed similarities. In [2], Boldareva

et al proposed to index elements relatively to their closest neighbors, i.e. those who have the

best probabilities to belong to the same class. This provides them with a sparse association

graph structuring the multimedia collection and allowing fast retrieval of data. In [15], the

idea of nearest neighbor networks is extended by creating edges for every combination of

features. The resulting graph, called NNk, allows to browse the data collection from various

viewpoints corresponding to the multiple features. As pointed out by authors, the similarity
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approach provides a convenient way for multimodal data fusion, since adding new features

simply consists in adding new distances to the same representation framework. It is also noted

that the off-line computation of similarities enables fast accesses and scalable content-based

multimedia retrieval systems.

Keeping the advantages offered by similarity-based representations, we wish to go further and

propose solutions that go beyond the classical nearest neighbor approaches. As user’s judgements

are supposed to be taken into account, it is indeed crucial to let this feedback modify inter-

document similarities accordingly. Our goal is then to introduce adequate non-linear learning

techniques (such as SVM or boosting) in order to benefit from their good ability to adapt low-

level representation spaces to semantic concepts ([30], [31]).

In [27], Pekalska et al introduced the idea of dissimilarity spaces where objects are no longer

represented by their features but by their relative dissimilarities with respect to a set of selected

objects. This set actually defines a new basis where dissimilarities are considered as features.

As a consequence, standard machine learning techniques, originally designed for features, are

also available in dissimilarity spaces. The technique has been already used for object recognition

[26] or image retrieval [22]. In [3], we proposed to use dissimilarity spaces to fuse multimodal

information and to retrieve video documents. This communication constitutes a preliminary

study of the work reported here. Precisely, we investigate here more deeply various aspects of

the design of a dissimilarity-based multimedia retrieval system. These aspects may be divided

into three main contributions:

1) definition of low-dimensional dissimilarity spaces. We aim at deriving from the general

definition of dissimilarity spaces a specific construction adapted to the retrieval problem.

In particular, we concentrate on the Small Sample Learning and Asymmetric Learning

problems while maintaining the low dimensionality of the representation to allow fast

retrieval.

2) learning in dissimilarity spaces. We consider the user queries being formulated in terms of

positive and negative examples that then form a training set. A machine learning, a kernel-

SVM in our case, is used to learn the sought concepts from this training set. A major

difficulty arises from the fact that the proposed dissimilarity space is query-dependent,

which implies to adapt SVM parameters online (particularly the kernel parameters). We

propose an empirical scale measure automatically tuning the kernel parameters to the user
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query content.

3) multimodal fusion strategies. Dealing with multimedia objects leads to building a set of

dissimilarity spaces related to the multimodal signals composing them (eg visual, audio and

textual signals). The optimal fusion of these spaces is an open issue. We develop several

strategies that combine both dissimilarities and SVM outputs to effectively determine which

of the fusion schemes provides an effective multimodal search engine.

All these points are developed in detail organized by the following outline: Section II exposes

the general idea of the dissimilarity spaces and our solution to adapt it to the problem of

content-based retrieval of multimodal data. In section III we address more specifically the

machine learning issue. After having observed how linear and non-linear learning behave both

in dissimilarity and feature spaces, kernel-based SVM is proposed to solve the retrieval task.

Consequently, an automatic kernel parameter setting is derived to enable the SVM to adapt on-

line to the user feedback. In section IV, various strategies for multimodal fusion are detailed.

Section V proposes an evaluation of the strategies on both artificial data and real videos, eg the

TRECVID 2005 corpus, and assesses the usability of the algorithms for video retrieval. Finally,

section VI opens perspectives on the newly proposed techniques.

II. DISSIMILARITY REPRESENTATION FOR INTERACTIVE RETRIEVAL

In a query by example retrieval system, users formulate complex queries by iteratively provid-

ing positive and negative examples in a Relevance Feedback (RF) loop. From this training data,

the aim is to perform, at each step of the RF loop, a real-time dissimilarity-based classification

that will select the most relevant documents from within the entire collection.

In this section, we recall the dissimilarity space initially introduced by Pekalska et al in [27]

and show how it may be adapted to provide us with a low-dimensional approximation of the

original feature space where an efficient classification may be performed.

A. Dissimilarity space

Let d(xi,xj) be the distance between elements i and j according to their descriptors x ∈ F .

The space F expresses the original feature space. The dissimilarity space DΩ is defined relatively

to a set of elements Ω = {x1, . . . ,xN} by the mapping d(x, Ω) : F → RN

d(x, Ω) = [d(x,x1), d(x,x2), . . . d(x,xN)]. (1)
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The representation set Ω is a subset of N objects against which any element of the entire

collection will be evaluated. The new “features” of an input element are now the values of

dissimilarity with the representation objects Ω. As a consequence, learning or classification tools

for feature representations are also available to deal with the dissimilarities.

The dimensionality of the dissimilarity space is equal to N (the cardinality of Ω) and controls

the quality of the approximation made on the original feature space. For instance, assuming

an Euclidean dissimilarity measure, it is possible to recover up to a rotation the original m-

dimensional space F from DΩ whenever N ≥ m [9]. On the contrary, the representation is

incomplete when N < m in the sense that only an approximation of F can be recovered. In our

problem however, we are interested in detecting relevant documents and not in computing exactly

F from DΩ. A well-chosen space of low dimension would be probably more effective for learning

processes as it avoids the curse of dimensionality problem and reduces the computation load.

The selection of a “good” representation set may be driven by considerations on the particular

learning problem we are dealing with, as shown in the next section.

B. A query-based representation set

As mentioned before, the RF strategy consists in gathering user’s judgements indicating, for

some documents, whether they are relevant or irrelevant to the user request. This set, denoted

T , is called the query and is composed of positive and negative subsets, respectively

P = {x+
i , i = 1, . . . , p} and N = {x−i , i = 1, . . . , n}.

The query T is used to train a machine that will produce a ranking of documents relatively to

their relevance to the query. This ranking is then presented to the user who, in turn, enriches

the training set by adding new positive and negative examples chosen among the hit-list. These

two steps are iterated until the search converges to a satisfactory result.

At first glance, the training stage at each step of the RF strategy seems to consist in solving

a traditional learning problem. However, as mentioned by Zhou et al [41], specific difficulties

arise from the RF protocol:

a) Asymmetric learning: The class configuration in feature space is generally asymmetric.

This situation is known as the (1 + x) class setup where the one class, presumably well-

clustered in the feature space, corresponds to the sought documents (positive class), while an
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unknown number x of classes, partially represented by negative examples, is supposed to model

all irrelevant documents. Classical learning approaches, by applying a symmetric treatment to all

classes are not really efficient for such a setup. As displayed in figure (1.a), learning the negative

classes, while being feasible using traditional non-linear learning machines, becomes challenging

when only few samples are available. Facing this particular situation then leads to developing

dedicated algorithms, such as the Biased Discriminant Analysis (BDA) [41] or one-class SVM

[8]. These approaches take into account that only the positive class is of interest, and involve

discriminant criterion enforcing only the positive class compactness while just keeping negative

samples away.

b) Small Sample Learning: The training set fedback by the user is generally small and

incomplete. The given examples are more likely to be only partially representative of the class

distributions. This especially concerns the negative classes which might be severely under-

sampled. In that context, generalizing the learning over unlabeled areas of the space is quite

hazardous and should encourage us to enforce precision rather than recall, i.e. to prevent from

false positive rather than miss-detections so as to minimize the number of negative documents

populating the top of the hit list.

We now show how these two problems may be addressed by using dissimilarity representation.

The mapping of data in a dissimilarity space offers us the possibility to turn the asymmetric

configuration into a more classical binary setup. By selecting the representation set Ω as the set

of positive examples P , we obtain a representation space DP where elements are only considered

from the point of view of their distances to the positive class representatives

d(x,P) = [d(x,x+
1 ), d(x,x+

2 ), . . . d(x,x+
p )]. (2)

We can easily show that a built-in property of DP is to transform the asymmetric classification

setup such that it becomes linearly separable. Let us consider the Fisher class separability

criterion measuring how well P and N are linearly separable in the original feature space F ,

JF =
trSb

trSw

=
||x̄− − x̄+||2

trSw

,

where covariances Sb and Sw = S+
w + S−w are respectively between- and within-scatter matrices

for the positive and negative classes, while x̄−, x̄+ are negative and positive class centroids.

For a given covariance Sw, the criterion JF trivially says that the data are linearly separable

whenever the two classes do not overlap ( JF > 1). Alternatively, when the two centroids tend
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to coincide (JF → 0), we either face an asymmetrical setup (in that case trS+
w ¿ trS−w ), or a

non-separable problem (trS+
w ≈ trS−w ) where any classification based on second order statistics

will fail. In the following, the asymmetric setup (trS+
w ¿ trS−w ) is always assumed.

Let us now consider the same criterion in the dissimilarity space DP , where class centroids

are denoted d̄+ and d̄−, and within scatter matrices Σw = Σ+
w + Σ−

w

JD =
||d̄− − d̄+||2

trΣw

.

Considering the triangle inequality, JD is lower bounded by

JD ≥
[||d̄−|| − ||d̄+||]2

trΣw

. (3)

The separability criterion JD increases as ||d̄+|| decreases and/or ||d̄−|| increases. Then, noting

that in feature space F

||d̄+|| = 1

p


∑

i∈P

(∑
j∈P

d(x+
i ,x+

j )

)2



1/2

,

measures the compactness of P , while

||d̄−|| = 1

n


∑

i∈N

(∑
j∈P

d(x−i ,x+
j )

)2



1/2

,

measures the spread of N around P , an asymmetric configuration (||d̄−|| À ||d̄+||) is linearly

separable in the corresponding dissimilarity space DP as much as P has a compact distribution

and/or the negative samples are spreaded around positive samples in the original feature space

(Figure 1.b).

Another interesting feature of the space DP is its dimensionality. As the positive examples

are provided by the user, their number is inherently limited to few dozens of documents.

Consequently, it readily induces to work in a low dimensional space of p = |P| components,

more suited for Small Sample Learning.

Finally, from an implementation point of view, it worth noting that DP was to be rebuild for

every new user query. One may think this on-line indexing is prohibitive for real-time retrieval.

However, as long as the complete dissimilarity matrix is known, the re-indexing consists only in

reading all dissimilarity entries associated with elements from P . This operation is linear in the

size of the database whenever those dissimilarities are contiguous in memory. The storage space

August 30, 2007 DRAFT



9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 1. The (1 + x) class problem in feature space (a) and 2D dissimilarity space (b) where the representation objects are

two points from the central class (stars). The asymmetric setup in F becomes linearly separable in DP . Euclidean distance is

considered as a dissimilarity measure.

required for the dissimilarity matrix is however effectively quadratic. While we clearly look at

reducing this cost, empirical calculations show that it still permits indexing for approximatively

500’000 entries using current standard HD. Beyond this size, distance-approximating embedding

such as FastMap [12], MetricMap [34] or BoostMap [1] may be considered as a potential solution

to dramatically reduce the size of the dissimilarity indexes. Metric trees, such as M-trees [39],

might be also of interest whenever the triangle inequality applies to the dissimilarity measures.

How to couple these techniques with our dissimilarity spaces and the potential negative or positive

effects on the retrieval efficiency has not been yet investigated and thus will not be reported in

this article.

III. CLASSIFICATION IN DISSIMILARITY SPACE

We have shown that linear machine learning is able to solve the (1 + x) setup when data are

projected in the dissimilarity space DP . However, the (1 + x) setup is an ideal case, while a

more realistic configuration is rather that positive instances are distributed over several clusters

surrounded by negative elements. We may note this configuration as (c + x), where c is the

unknown number of positive clusters (though strictly speaking there is only one positive class

distributed over the c clusters). The following section displays various class configuration setups
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(linear, (1 + x), (c + x)) and show how linear and non-linear SVM algorithms behave in feature

and dissimilarity spaces.

A. Linear and non-linear SVM learning

For any input vector z, the SVM decision function is the following weighted sum over the

support vectors zi [32]

f(z) =
sv∑

i=1

αik(z, zi) + b. (4)

The kernel k defines the non-linearity of the classifier (simplified to a dot product for the linear

case). For non-linear kernels, we restrict our study to the generic RBF kernel, k(x,y) = e−
|x−y|2

2σ2 .

A mere classification task would involve to take the sign of f(z), but because we are dealing

with retrieval and are interested in obtaining a ranked list, the decision function is directly used

to sort data according to their relevance to the positive class.

As shown by the Fisher criterion JD (3), a linear classifier is sufficient to separate data

when we assume a strict (1 + x) setup. The figure 2 displays a toy example depicting such

a configuration. The decision function estimated with a linear SVM in the dissimilarity space

(figure 2.a) is similar to that obtained with a RBF-SVM in feature space. Both approaches are

able to separate the positive cluster from the negative examples. Let us now have a look to

situations differing from the (1 + x) configuration.

Figure 3 presents results on a linearly separable problem. The decision functions obtained with

a linear SVM in dissimilarity space and a RBF SVM in feature space show again similarities

(figure 3.a and b). In both cases, the positive area is localized around the positive examples,

restricting relevance to regions close to the positive examples (over-fitting behavior). Unsur-

prisingly, the optimal hyperplane generalizing the learning over the whole space is estimated

through a simple linear SVM operated in feature space (figure 3.c). However, the decision

function actually predicts the most relevant areas at infinity within the positive half space, which

is not satisfactory from a retrieval point of view.

The (c+x) configuration, more representative to real cases, is depicted in figure 4. In this setup,

the positive examples are located in c distinct clusters. A linear discrimination in dissimilarity

space assumes only one positive cluster, providing a decision function miss-interpreting the real

distribution of the positive elements (Figure 4.a). It is worth noting that, contrary to the two
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Fig. 2. Toy example: Decision function for the cross configuration in 2D feature space. Circles are negative examples, stars

are the positive samples. The gray level indicates relevance to the positive class (black = relevant, white = irrelevant). Black

line indicates the separating hyperplane.

previous examples, this last result differs totally with the one obtained through a RBF SVM in

feature space (Figure 4.b). In this case, the two positive classes are effectively distinguished. A

similar result might be obtain in dissimilarity space by learning with a RBF SVM (Figure 4.c).

In that case the one positive class assumption is alleviated by the non-linearity of the classifier.

In the light of these three examples, it appears that non-linear SVM is a reasonable choice

to learn in dissimilarity space real-world distributions that do not conform to the (1 + x) setup.

In the following, we expose our motivations to use RBF kernel and propose solution for its

automatic setting.

B. Automatic scale setting

A major consequence of the query-induced dissimilarity space is its variability: query after

query, the data representation changes as the set P is augmented by the user. From a machine

learning point of view, this requires to set algorithm parameters every time a new dissimilarity

space is generated, that is to say, on the fly at each RF loop.

In the following, we define how to automatically adapt the RBF kernel scale parameter to

the dissimilarity space modifications. This parameter has a direct geometric interpretation as it

fixes the scale of integration of information within the feature space. This property allow us to
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Fig. 3. Toy example: Decision function for the linear configuration in 2D feature space. Circles are negative examples, stars

are the positive samples. The gray level indicates relevance to the positive class (black = relevant, white = irrelevant). Black

line indicates the separating hyperplane.

determine a heuristic strategy for kernel setting from training data, as explained below.

The kernel selection and setting is a critical issue to successfully learn semantic models from

queries. It actually decides upon the classical trade-off between over-fitting and generalization

properties of the classifier and hence is very dependent of the considered representation space.

This difficulty has sparked growing interest in last years and several methods have been proposed

to automatically select optimized kernel, such as Kernel Alignment [10], Hyperkernel [23] or

Empirical Feature Space [36]. These methods rely on the optimization of criteria (called quality
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Fig. 4. Toy example: Decision function for the XOR configuration in 2D feature space. Circles are negative examples, stars

are the positive samples. The gray level indicates relevance to the positive class (black = relevant, white = irrelevant). Black

line indicates the separating hyperplane.

functionals in [23]) in kernel spaces according to the given training set. Therefore, they impose

a non-negligible computational overhead for a result strongly dependent on the size and the

quality of the training set. In the RF framework, these optimization-based approaches are thus

prohibited because of the small number of training examples and the real-time constraint, but

may inspire some empirical approximation of the quality functional objectives.
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Directly derived from the Kernel Alignment is the Kernel Partial Alignment (KPA), specifically

designed to cope with the class asymmetry problem [40]. It can be viewed as a measurement of

the clusterization of the positive class in the kernel-induced space,

AP w 1

p2

∑
i,j∈P

k(xi,yj)− 1

np

∑
i∈P,j∈N

k(xi,yj). (5)

The KPA criterion has two objectives: first, it enforces generalization within positive class

by maximizing
∑

i,j∈P k(xi,yj). In that sense, it favors the recall of the retrieval. The second

objective consists in separating clearly the positive from the negative elements by minimizing
∑

i∈P,j∈N k(xi,yj), which, in turn, should enhance the precision of the search. However, as

already said, optimizing directly (5) implies a computational effort not compatible with the RF

protocol. In place, an empirical scale setting may be derived that follows the same goals as the

KPA criterion.

Assuming the kernel k be a RBF function, the KPA criterion (5) tell us that a “good” scale

magnitude is upper-bounded by a value proportional to the class margin. The bound ensures that

kernels centered on positive samples would not overlap over negative elements. Thus setting

the scale to this bound provides us with a kernel width as large as possible to cover positive

examples without overlapping the negative class.

A possible approximation of this margin may be

ξ = mediani(min
j
||d+

i − d−j ||), (6)

where {d+
i , i = 1, . . . , p} denotes the positive examples and {d−i , i = 1, . . . , n} the negative

examples in DP . This measure considers the median of all distances separating each positive

sample to its closest negative. The median operator is preferred to the mean as it introduces

robustness against positive or negative outlier elements. A small value of ξ means that the two

classes are close to each other or overlap . Therefore, the scale parameter has to be reduced so

as to minimize the right hand term in eq. (5). On the other hand, a large value of ξ indicates a

large separation between the two classes, meaning that the kernel has to be broaden to maximize

the within term in (5).

From the class margin measurement ξ, an empirical scale may be derived

σemp = C · ξ, (7)
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where the parameter C controls the trade-off between over-fitting and generalization, i.e. precision

versus recall. As stated before, we would like to enforce precision. We fix C = 1/2 so as to

impose that the majority of negative samples remains out of the bandwidth of kernels centered

on positive examples and thus are pushed away in the rank list.

IV. MULTIMODAL DISSIMILARITY SPACE

A multimodal description of multimedia data provides a number of feature spaces (one or

more per modality). Each of them leads to a dissimilarity matrix containing pairwise distances

between all documents, which are now referred by several dissimilarity measures that could

be partially dependent. The success for interpreting a user query relies on the effective use

of all information sources as well as their inter-dependencies. In the following, we discuss the

different strategies to design a multimodal representation of data based on the dissimilarity spaces

previously introduced.

We note dfk the distance measure applied to the feature space Fk and assume that dissimi-

larity matrices are known for M feature spaces. Then, given a set of positive examples P , M

monomodal spaces Dfk

P are built. The vector dfk denotes an element in the space Dfk

P ,

dfk(x,P) = [dfk(x,x+
1 ), dfk(x,x+

2 ), . . . dfk(x,x+
p )].

A. SUM strategy

A first way to fuse modalities would be to make the summation of all monomodal distances

resulting in building a multimodal dissimilarity space. A SVM classification could then be

directly applied in that space. However, the individual dissimilarity spaces need first of all to be

properly scaled in order to sum homogeneous data. Following the discussion in section III, the

multimodal dissimilarity vector d is defined as

d =
M∑

k=1

dfk

√
2σfk

∈ Rp, (8)

where σfk
is the empirical scale (see equation 7) computed in dissimilarity space dfk . Conse-

quently to rescale all monomodal spaces, the scale of the RBF kernel embedding d is set to

1.

It is worth noting that the dissimilarity space dimension is independent from the number of

original feature spaces as it is always equal to p = |P|. This is a definite advantage when M is
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large, but, on the other hand, one can object that the linear sum does not make sense for fusing

features, especially when it deals with many sources of information. Moreover, the sum operator

is sensitive to noisy and uninformative modalities, which will corrupt any further classification

operations.

B. CONC strategy

To overcome these difficulties, we can consider that the fusion is carried out a posteriori

through the classifier, which operates directly on the various multimodal components. The

multimodal space is then formed by concatenating all monomodal spaces, each element being

represented by a multimodal dissimilarity vector

d =
[
df1

T
,df2

T
, . . . ,dfM

T
]T

∈ RpM . (9)

Again, a SVM with RBF kernel is used, but considering the heterogeneity of the multimodal

components, the scalar scale parameter is replaced with a covariance matrix, eg k(x,y) =

e−(x−y)T A−1(x−y), with A the diagonal matrix

A =




Σ1 0

Σ2

. . .

0 ΣM



∈ RpM , where Σk =




σfk
0

σfk

. . .

0 σfk



∈ Rp,

so as to allow independent scaling for each p-dimensional dissimilarity space. The scale σfk
is

estimated in Dfk

P with equation (7).

This solution has the advantage of leaving the fusion decision to the training process. However,

it imposes to work in a higher-dimensional space where the estimation of the class distributions

from a small training set may be less reliable.

C. HIER strategy

Finally, we can adopt a more general fusion scheme where the input of the multimodal space is

made of outputs of base classifiers. This hierarchical solution is known as the general combining

classifier [11], [35].

d =
[
g1(d

f1), g2(d
f2), . . . , gM(dfM )

]T ∈ RM , (10)
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where gk(·) denotes the decision function of the base classifier for the kth modality. The fusion

algorithm is then split into two steps. First, individual classifiers are trained on their respective

dissimilarity spaces: a RBF SVM with automatic scale selection computed with (7) is used.

The real-valued classifier outputs are then used as input of a super classifier which takes the

final fusion decision. Its role consists in combining the monomodal classifiers so as to extend the

learning function according to all the soft decisions taken within each modality. Here, a Gaussian

kernel is used again. Setting dynamically the scale parameter remains an issue not addressed

in this study. However, as the output of each monomodal classifier ranges from around −1 to

1, we consider in a first approximation that the training examples’ distribution is not varying

drastically from a query to an other. In that respect, the scale adaption is less crucial and might

be set to a fixed value. We choose σ = 1 as we empirically observe that such a setting provides

an average satisfactory performance, though results may not be optimal individually.

For the completeness of evaluation, we also propose a linear variation of the HIER strategy,

called HIERLin, where the base classifiers are linear SVM. This restrict the classification problem

to be (1+x) in each monomodal space, but avoids the empirical scale setting. The super-classifier

however remains a RBF-SVM as the fusion of modalities does clearly not conform to a linear

setup.

The general combining classifier presents the advantage to work in low-dimensional spaces,

where decisions are first taken independently without being polluted by possible uninformative

features and then combined to aggregate multimodal information. However, it imposes M +

1 classifications, leading to a non-negligible computational overhead which may penalize the

workflow during the on-line interactive retrieval.

V. EXPERIMENTATIONS

The following experiments have been carried out to evaluate all aspects of the proposed

strategies for Relevance Feedback multimodal information retrieval. For that purpose, we have

considered artificial feature and dissimilarity spaces in order to evaluate and assess the algorithms

in a controlled setup. In a second stage, the algorithms were confronted to a real and difficult

video retrieval benchmark, namely the TRECVID 05 benchmark (detailed in next section).

The experimentation section is composed of two parts: First, the monomodal query-based

dissimilarity representation is compared to the classical feature representation in term of learning
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ability using standard classifiers. The automatic kernel setting is evaluated as well. Then, the

multimodal fusion strategies are evaluated, so as to determine for each of them their effectiveness,

learning efficiency and robustness.

A. Video database and features

Evaluations on real data are based on the international benchmark for video information

retrieval TRECVID. Year after year, the TRECVID workshops propose large corpora of video

that are manually annotated so that shot and story segmentations and labelling are available. In the

sequel, TRECVID-05 is considered [24]. This corpus is composed of 169 hours of multilingual

TV broadcast news (English, Chinese, Arabic), roughly equally divided into a development set

and a test set. The development set comes with annotations at the shot level, drawn from a list of

semantic concepts (listed on table I). The two sets are used to perform various tests such as shot

segmentation, low level and high level semantic feature extraction, or searching for particular

topics (ad-hoc search).

In our setup, video documents are segmented into around 89’500 segments using the common

shot reference. These shots are considered as individual and independent documents. This means

that no contextual information is taken into account and that shot description is restricted to its

audiovisual content (eg visual, audio and speech1 information).

The Search Task, as defined in TRECVID-05, consists in retrieving shots that are relevant

to some predefined queries (called topics). There are 24 topics concerning people (person-X

queries), objects (specific or generic), locations, sports and combinations of the former. For each

topic, keywords, pictures and several video shots (4-10) from the development set are provided

as positive examples, while the groundtruth (obtained by pooling) concerns only documents from

the test set. Further details about the Search Task may be found in [24].

During the experimentations, we only considered video shots of the development set as positive

examples (keywords and additional pictures were not used). The positive examples are completed

with ten negative examples randomly selected from within the test set. Starting with this initial

query, a relevance feedback loop is initiated by adding to the query up to 10 new positive

and negative examples returned in the 1000-entries hit-list. The process is repeated ten times.

1the English transcripts extracted by Automatic Speech Recognition (ASR) are provided by NIST.
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Following the TRECVID evaluation protocol, the performance was measured at every iteration

by Average Precision (AP) at 1000. The Average Precision is the sum of the precision at each

relevant hit in the retrieved list, divided by the minimum between the number of relevant docu-

ments in the collection and the length of the list (1000 in our case). The Mean Average Precision

(MAP) is the AP averaged over several topics, and is used when appropriate. Additionally to

the algorithm performance, a baseline consisting in retrieving randomly documents is always

provided.

The multimodal feature and dissimilarity spaces are derived from the six following textual

and audiovisual features:

• Color histogram, 4× 4× 4 bins in HSV space

• Motion vector histogram, 66 bins quantization of the MPEG block motion vectors [17]

• Local features, SIFT descriptors extracted around the Lowe salient points [19],

• Face detection [33],

• Word occurrence histogram (vector space model),

• Dominant audio features [13].

The distance measure used over color and motion histograms is the Euclidean distance. An

approximation of the minimal matching distance is applied over local features to determine

partial similarities [20]. Euclidean distance in the 30-dimensional eigenface space provides the

similarity between the detected faces. Cosine distance is used for the vector space model and

finally the audio similarity measure proposed in [13] is used for audio features.

B. Monomodal dissimilarity space evaluation

This section concentrates on evaluating the dissimilarity space in itself. We have considered

both artificial and real data to test various learning machines in dissimilarity spaces, to compare

with feature space and to evaluate the automatic scale selection for RBF SVM.

1) Artificial data: Two baseline learning techniques (ie k-NN and linear SVM) are compared

both in the original space and in the derived dissimilarity space. For that purpose, a 10-dimension

feature space is generated with a positive class drawn from a centered Gaussian distribution

N(0, σP) and a negative class uniformly distributed around the positive class (see figure 5 for

2D view). The queries are made of the same number of positive elements x+
i and negative

elements x−i randomly picked from the two classes. Figure 6 displays the average precision
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Fig. 5. Artificial data: Blue crosses represent positive elements drawn from N (0, σP), while red circles represent the negative

samples uniformly distributed around the center of the space.

obtained for every method in each space and for a growing number of examples. The curves

support the discussion in section (III): in the original space, the problem cannot be solved using

a linear classifier (linear SVM in feature space), and requires a large number of examples to be

solved with k-NN. On the other hand, learning in dissimilarity space may be efficiently done

using either linear SVM or k-NN and few training samples as the nature of the classification

problem has changed to a simpler binary one.

Next, we consider a RBF SVM to learn the query in dissimilarity space. Our goal now

is to evaluate the empirical scale setting strategy proposed in section III-B. Several feature and

dissimilarity spaces are generated by varying the spread σP of the positive class to make the data

more and more intricate. Figure 7 compares retrieval performances and scale values for various

automatic scale setting strategies: Kernel partial alignment (σKPA), leave-one-out cross-validation
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Fig. 6. Artificial data: Average precision for linear-SVM and k-NN in dissimilarity and feature space for a growing train set.

A 10-dimension artificial space with σP = 80 is used.

(σCV ), empirical scale measure σemp (7) and fixed scale (σ = 100). The queries are composed of

10 positive and 10 negative examples. Unsurprisingly, the performance decreases as the classes

overlap, and the time consuming leave-one-out crossvalidation yields better results in difficult

situations (Figure 7.a). We observe however that empirical scale estimation and cross-validation

provide similar performance, and outperform kernel alignment or fixed scale. Moreover, we notice

in Figure 7.b that σemp and σCV have a similar decreasing trend as the two classes become less

and less separable. In contrast, σKPA takes into account both the effective spread of the positive

class (width increases as σP grows) and the positive/negative class separation (decreases as class

separation becomes tight). This results in a less effective scale estimation of lower magnitude.

2) Real data: Finally, we propose to evaluate the approaches on the TRECVID-05 Search

Task. Among the six video descriptors listed in section V-A, we consider the 64-bin color

histogram to evaluate monomodal dissimilarity space. Though color information in itself is

obviously inadequate to retrieve efficiently the high level topics of the benchmark, it is however

sufficiently meaningful to retrieve fractions of the relevant documents and to figure out trends

and behaviors of the proposed learning methods. Moreover, the use of color histogram allows to

compare easily feature and dissimilarity space since a simple RBF kernel may be directly used

in feature space.

The real data evaluation is conducted in two stages: First we assess RBF SVM learning in

August 30, 2007 DRAFT



22

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

σP

AP

 

 

σemp

σKPA

σCV

Fi xed (σ =100)

(a) Retrieval performance

10 20 30 40 50 60 70 80 90 100

100

200

300

400

500

σP

 

 

σCV

σKPA

σemp

(b) Estimated scale magnitude

Fig. 7. Artificial data: Automatic scale setting of the RBF kernel using kernel partial alignment (σKPA), cross validation

(σCV ) and empirical estimation (σemp)

dissimilarity space using automatic scale selection. Then we compare this method to a linear

SVM in dissimilarity space and a RBF SVM in feature space.

Figure 8 shows MAP performance when the scale of the kernel is set to σemp (7) or to

some fixed value. This result clearly indicates that adapting the scale to the queries (and to the

derived dissimilarity space) permits to keep high precision results whatever the query. On the

other hand, fixing σ to predefined values does not allow to reach such level of precision for

all RF iterations: In some configurations (σ = 10 and σ = 0.01) and after several iterations,
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Fig. 8. TRECVID 05 Search Task, color dissimilarity space. Automatic scale setting: Comparison of adapted vs. fixed scale

value.

the performance drops to a level equal or even below the random guess baseline, making the

retrieval process completely inefficient.

In the next experiment (Figure 9), we compare the dissimilarity-based approach with linear

and RBF kernel, to the feature-based method with RBF kernel. In both spaces, the RBF kernel

parameter is set to σemp. To calculate σemp in feature space, d+ and d− are replaced with the

corresponding feature vectors x+ and x− in equation (7).

The three approaches behave similarly for the first iterations (up to iteration 3), when few

examples are available. At the first iteration (no feedback provided), we observe that linear SVM

performs slightly better (MAP= 0.012) than RBF SVM (MAP= 0.010) and RBF SVM in feature

space (MAP=0.008). These results confirm the fact that a simple linear learning in dissimilarity

space is able to handle a complex asymmetric setup in feature space, and even outperforms

feature-based non-linear SVM when scarce training samples are provided. As the training set

grows, non-linear learning performance increases. We note that RBF SVM in dissimilarity space

clearly outperforms both the linear learning and the feature-based approach. It is interesting also

to note that linear learning in dissimilarity space tends to provide results comparable to the RBF

SVM in feature space as the number of RF loops increases.

To sum up this evaluation section, all results obtained seem to confirm the advantage of

using dissimilarity spaces to learn asymmetrical setup rather than feature space. Moreover, we
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Fig. 9. TRECVID 05 Search Task, color dissimilarity space. Dissimilarity vs. feature space: Linear and RBF SVM in dissimilarity

space compared to RBF SVM in feature space.

validated the fact that adapting the kernel to the dissimilarity space is crucial when learning with

RBF SVM, and we validated the proposed empirical scale setting as an effective and tractable

adaptive solution.

C. Multimodal fusion evaluation

The next step of the evaluation consists in studying in detail how the combination of modalities

might improve the retrieval efficiency. In particular, we study how fusion algorithms behave when

the number of modalities varies, when classes become less and less separable, when corrupted

modalities are mixed to informative source channels and finally what their respective performance

are when faced to a real video retrieval problem.

1) Artificial Data: To better understand the implemented fusion processes in various situa-

tions, tests are first performed on artificial data. Using the toy example described in figure 5, M

monomodal feature spaces are produced with various width values of the positive class extent

(σP). Recalling that the magnitude of σP determines the separability of the two classes, we can

modulate the amount of information carried by the different spaces.

For the following experiments, the training set is always composed of 5 positive and 5 negative

examples. It is worth noting that the three above definitions, denoted respectively as (8) SUM,

(9) CONC and (10) HIER, become clearly equivalent when only one modality is considered.
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Fig. 10. Artificial data: Average precision of multimodal fusion when the number of modalities is growing.

We first compare the efficiency of the algorithms to fuse more and more channels. Each

monomodal space is generated with different class configurations. This is achieved by randomly

setting σP from a gaussian distribution N(120, 10) so that spaces are more and less informative

relatively to the positive class. Figure 10 gives the AP performance. The HIER and SUM

strategies are effectively able to gain from the addition of information sources, whereas the

learning within the CONC space suffers from the increase of the dimensionality induced by the

concatenation of new modalities.

The second test consists in judging the ability to discriminate positive elements when classes

overlap. For that purpose, the width σP is drawn from sliding probability distribution N(σ̄P , 10),

with the average width σ̄P going from 90 to 160. The number M of modalities involved is set

to 10. The HIER strategy exhibits the best discriminative behavior when the data becomes hard

to separate. These results are followed by the SUM approach which finally gives an acceptable

performance compared to the CONC space. The reasons of the CONC’s under-performance could

be again attributed to the problem of the curse of dimensionality, which is even more sensitive

for the SVM classification in case of low signal-to-noise ratio [14].

The last test concerns the robustness of the fusion algorithms to corrupted modalities. This

problem is simulated by replacing more and more modalities by totally uninformative feature

spaces (where the data samples are drawn from the same uniform distribution). For the remaining

non-corrupted spaces, the classes are set to be separable (small σP). As expected, only the HIER
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Fig. 12. Artificial data: Effect of corrupted modalities on the retrieval performance.

algorithm is robust to corrupted channels, whereas the performance of the others drop quickly

as the number of uninformative spaces become the majority of the available sources (Figure 12).

As pointed out in section IV-A, this result confirms that the SUM space is particularly sensitive

to unreliable information.

2) Real data experiments: We now report experiments conducted on the TRECVID videos.

For the completeness of the report, both high level (semantic) feature extraction1 and topic

1though the high-level feature extraction task as defined in TRECVID guideline is strictly speaking considered as a classification

task and not a retrieval one.
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search tasks are considered. Performance comparison with approaches proposed by TRECVID-

05 participants may be found in [24].

We consider to retrieve the 39 concepts (defined in [21]) used to annotate video shots of

development set (see the list on table I). The queries are composed of twenty positive and

twenty negative examples. For a given concept, the AP is averaged over 10 randomly selected

query instances. The MAP is then computed by taking the mean AP over all concepts. The

fusion strategies are compared together and against monomodal searches. Results are presented

in table (I).

Comparing first the monomodal search performance, we observe that the visual features (color,

faces and salient features) are more informative than the others. This confirms that the TRECVID

concepts are mainly correlated to visual content. The face feature performs surprisingly well but

it is essentially due to some concepts strongly correlated to the presence of people in the scene

(”Face”, ”Person”, and ”Studio”) . On contrary, the color information is in general more reliable.

Finally, we can note that none of the features goes below the random guess baseline which in

this case may indicate a counterproductive effect on the overall system.

The MAP estimated over the 39 concepts indicates clearly that the HIER strategy is the

best way to fuse modalities. Its performance is globally far better than HIERLin, CONC and

SUM. Moreover, its behavior is quite stable since it outperforms others fusion techniques for 28

concepts, and best monomodal search for 31 concepts (out of 39). We observe also that CONC

and SUM fusion strategies have globally equivalent performance and outperforms monomodal

searches. Careful inspection of these results reveal that the fusion processes are in general not

reliable since both CONC and SUM underperform the best monomodal searches for respectively

27 and 21 concepts (out of 39). As for HIERLin (hierarchical fusion with linear monomodal

classifiers), the performance largely remains low compared to other strategies and moreover

it never benefits from multimodality, with a notable exception for the ”Face” concept. This

result indicates that in a realistic configuration, the (1 + x) assumption underlain by the linear

learning does not hold in general. When the assumption holds however (as for the ”Face”

class characterized with a low visual intra-class variance), the linear implementation performs

effectively.

The next evaluation is conducted on the TRECVID-05 Search Task. We follow the protocol

detailed in section V-B.2. In particular, documents are incrementally retrieved through a Rele-
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TABLE I

SEMANTIC FEATURE RETRIEVAL. FOR EVERY CONCEPT, THE TRAINING SET IS COMPOSED OF 20 POSITIVE AND 20

NEGATIVES EXAMPLES.

HIER HIERLin CONC SUM Text Color Motion Audio Sal. Ft. Face Random

Airplane 0.037 0.000 0.002 0.020 0.001 0.053 0.001 0.000 0.004 0.001 0.0003

Animal 0.060 0.001 0.047 0.060 0.001 0.023 0.012 0.012 0.009 0.001 0.0004

Boat, Ship 0.015 0.002 0.008 0.023 0.001 0.020 0.002 0.002 0.003 0.000 0.0003

Building 0.025 0.009 0.020 0.025 0.012 0.045 0.023 0.017 0.024 0.022 0.0154

Bus 0.003 0.000 0.011 0.034 0.000 0.002 0.002 0.000 0.000 0.000 0.0002

Car 0.016 0.001 0.008 0.012 0.001 0.015 0.008 0.007 0.004 0.003 0.0034

Charts 0.013 0.002 0.008 0.011 0.005 0.005 0.002 0.002 0.002 0.000 0.0002

Computer, screen 0.133 0.040 0.042 0.114 0.017 0.064 0.025 0.022 0.007 0.092 0.0031

Corporate-Leader 0.010 0.008 0.007 0.018 0.008 0.007 0.003 0.003 0.001 0.004 0.0005

Court 0.009 0.002 0.002 0.001 0.004 0.007 0.001 0.001 0.000 0.006 0.0002

Crowd 0.191 0.037 0.084 0.054 0.011 0.087 0.106 0.056 0.109 0.030 0.0278

Desert 0.010 0.000 0.003 0.004 0.001 0.004 0.001 0.001 0.006 0.001 0.0004

Entertainment 0.177 0.039 0.113 0.002 0.002 0.086 0.050 0.140 0.028 0.033 0.0085

Explosion, Fire 0.019 0.001 0.006 0.002 0.001 0.002 0.001 0.001 0.013 0.001 0.0005

Face 0.816 0.83 0.714 0.712 0.574 0.367 0.346 0.335 0.475 0.711 0.2301

Flag-US 0.023 0.004 0.005 0.011 0.009 0.005 0.004 0.002 0.002 0.010 0.0004

Gvt-Leader 0.067 0.028 0.036 0.013 0.029 0.019 0.012 0.019 0.015 0.060 0.0083

Maps 0.148 0.010 0.072 0.106 0.008 0.035 0.007 0.010 0.003 0.047 0.0005

Meeting 0.035 0.007 0.032 0.018 0.003 0.030 0.013 0.011 0.020 0.012 0.0039

Military 0.027 0.000 0.013 0.006 0.002 0.013 0.012 0.007 0.008 0.000 0.0028

Mountain 0.008 0.000 0.002 0.023 0.000 0.005 0.001 0.002 0.011 0.000 0.0004

Natural-Disaster 0.008 0.000 0.001 0.012 0.000 0.001 0.000 0.000 0.003 0.001 0.0004

Office 0.009 0.001 0.007 0.005 0.001 0.004 0.001 0.004 0.004 0.001 0.0008

Outdoor 0.534 0.033 0.338 0.315 0.062 0.360 0.324 0.193 0.345 0.188 0.1319

People-Marching 0.038 0.000 0.016 0.008 0.002 0.005 0.010 0.004 0.011 0.001 0.0009

Person 0.979 0.947 0.965 0.983 0.781 0.767 0.620 0.602 0.798 0.965 0.5237

Police, Security 0.003 0.000 0.002 0.005 0.000 0.002 0.002 0.001 0.001 0.000 0.0004

Prisoner 0.018 0.001 0.003 0.026 0.000 0.006 0.003 0.002 0.001 0.020 0.0012

Road 0.016 0.001 0.011 0.010 0.002 0.021 0.008 0.007 0.009 0.005 0.0046

Sky 0.189 0.006 0.052 0.029 0.008 0.147 0.020 0.023 0.091 0.006 0.0202

Snow 0.014 0.000 0.026 0.023 0.001 0.007 0.001 0.005 0.007 0.000 0.0001

Sports 0.039 0.001 0.024 0.006 0.002 0.039 0.006 0.006 0.003 0.002 0.0007

Studio 0.735 0.494 0.637 0.667 0.314 0.473 0.178 0.234 0.060 0.615 0.0179

Truck 0.004 0.000 0.002 0.002 0.000 0.002 0.001 0.001 0.002 0.000 0.0003

Urban 0.021 0.002 0.016 0.022 0.004 0.024 0.015 0.010 0.014 0.006 0.0068

Vegetation 0.068 0.013 0.026 0.019 0.005 0.104 0.011 0.015 0.017 0.003 0.0110

Walking, Running 0.088 0.006 0.054 0.007 0.002 0.050 0.071 0.017 0.011 0.003 0.0107

Waterscape 0.047 0.005 0.011 0.020 0.000 0.032 0.002 0.003 0.010 0.000 0.0005

Weather 0.254 0.056 0.159 0.157 0.116 0.069 0.012 0.022 0.009 0.021 0.0003

MAP 0.1258 0.0663 0.0919 0.0920 0.0510 0.0772 0.0492 0.0461 0.0549 0.0736 0.0269
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vance Feedback loop. The MAP is measured at each RF loop and monomodal searches (Figure

13.a) are compared with fusion strategies to measure the benefit raised from the combination of

all modalities (Figure 13.b).

Examining monomodal results first, the figure is radically different from the previous exper-

iment. We note now that text (ASR) is the most reliable information source. We also note that

low-level audiovisual information (color, motion and audio) permits also to retrieve a significant

fraction of relevant documents. On the other hand, high level visual features, eg face similarities

and visual saliency, provide contrasted results: Though they perform comparably to motion or

audio features for the first iterations, their global performance falls under the random guess

precision as the number of examples grows. This behavior indicates that the retrieval model

converges to a specific class of content (eg faces and objects) that excludes a significant part

of relevant documents from the hit-list. This data remains unseen from the SVM during all RF

loops, thus preventing retrieval model to generalize to all visual aspects of the sought topics.

We now look at fusing modalities. Figure 13.b displays the results obtained with the 3

strategies. Additionally, we also report random guess curve as a low baseline and the ASR

curve as a high baseline. Fusion has an interest whenever it outperforms the best monomodal

results (ASR in our case).

The results obtained are particularly clear. Compared to the ASR curve, only the HIER strategy

provides significant improvement. Slight improvement is measured using HIERLin, while CONC

and SUM remain below the “ASR only” MAP. This experiment seems to indicate that CONC

and SUM are not robust to underperforming modalities, contrary to HIER, and to a lesser extent

HIERLin. To definitively confirm this fact, the same experiment is conducted by removing the

two corrupted modalities and fusing only reliable information (Figure 13.c). We now note that

all strategies really benefit from the fusion, though HIER and HIERLin still outperform the

SUM and CONC strategies. It worth noting also that surprisingly HIERLin outperforms HIER

after iteration 5, indicating that the problem is linearly solvable as the dimensionality of the

dissimilarity spaces increases (the growth is induced by the training set expansion). Finally, the

most important observation is made by comparing the HIER performance in Figure 13.b and

13.c. Fusing the 6 modalities (with two corrupted) is more effective than using only the reliable

channels. This shows that HIER is able to add only positive contributions from each modality,

even when this contribution is very moderate.
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Fig. 13. TRECVID 05 Search Task: a) Relevance feedback simulation for every modality, b) when fusing 6 modalities and

c) when fusing only the 4 best modalities (ASR, Color, Motion and Audio). At each iteration, up to 10 positive and negative

examples are added to the query. SVM with automatic scale setting is used (where appropriate).
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Fig. 14. TRECVID 05 Search Task: Comparison of HIER fusion strategy operated in feature spaces and in corresponding

dissimilarity spaces. The six modalities are used.

Finally, we compare the HIER fusion strategy when applied directly in feature spaces and in the

corresponding dissimilarity spaces (let us note that this hierarchical approach for fusing feature

spaces has been already proposed in [35] and is considered as a baseline technique). For the six

feature spaces, RBF-kernels of base classifiers are adapted to their respective distance measures,

kd(x, y) = e−
d(x,y)

2σ2 , as suggested in [5]. Similarly to dissimilarity space, the scale parameter is

estimated for each query by equation (7). The results shown in Figure 14 indicate that the HIER

strategy is also performing well in the original feature spaces (it actually largely outperforms the

ASR search). However the MAP curve stays below the one obtained in dissimilarity space. In

fact, this result generalizes to the multimodal case what we observed for monomodal learning

(section V-B.2, Figure 6): For an asymmetric setup and with a similar learning scheme, it is

actually more effective to work in dissimilarity space than in feature space.

D. Real time constraint

We finally provide the computation load of each algorithm (Table II) for various training sets

and for 3 and 10 modalities. These times have been obtained on a standard PC PIV 2GHz (Matlab

implementation). We see that the SUM strategy is effectively the fastest while the computation

load of the hierarchical classification increases linearly with the number of modalities used.
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TABLE II

COMPUTATION LOAD (IN SECOND)

Training set Algorithms

|P| |N | SUM CONC HIER

3 modalities 10 10 0.3 0.4 1.2

20 10 0.5 0.8 1.9

40 10 1.4 1.7 5.9

10 40 1.2 1.3 4.2

10 modalities 10 10 0.3 0.6 3.4

VI. DISCUSSION

In this paper, we have presented a novel dissimilarity-based approach providing an original

well-founded solution to the problem of multimodal fusion in interactive content-based retrieval

setup. Data are projected in query-dependent dissimilarity spaces. We have shown that this

representation transforms the asymmetric learning problem into a binary one, which in turn

enhances the performance. By construction, those spaces are inherently of low dimension, thus

simplifying further the complexity of the data representation as well as the processing of the

queries. The processing of the queries consists in incrementally training a kernelized SVM from

examples provided by users through relevance feedback loops. In addition, we have also proposed

and validated a way of automatically setting the kernel scale to adapt the learning to each RF

loop.

On the basis of the proposed dissimilarity space, we have designed three fusion strategies

allowing to combine dissimilarities coming from various feature spaces/modalities. Exhaustive

evaluations on both artificial and real video data allow us to better understand the behavior

and to rank the efficiency of the three approaches for retrieval tasks. Tests on artificial data

have demonstrated the superiority of the HIER strategies in terms of class discrimination and

robustness to corrupted modalities. Experiments carried out on a large scale video retrieval

benchmark further confirm this superiority. The HIER algorithm appears to be the only fusion

scheme able to benefit from multimodality whenever some channels appear to be corrupted or to

be uninformative with respect to the sought topics. As a consequence, this strategy is definitively

to be considered for implementing multimodal retrieval, even if the computation overhead is not
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negligible compared to CONC and SUM.

However, further improvements should be added to overcome various shortcomings such

as specific learning algorithm for imbalance data, strategies for active learning or fast access

to the dissimilarity data. As stated in the introduction, state-of-the art indexing and machine

learning techniques are already available to solve these problems. On the basis of the proposed

dissimilarity space, these techniques could easily be incorporated at different stages of the

algorithm (indexing structure, machine learning algorithms, RF paradigm) so as to offer a scalable

and effective multimedia retrieval system.
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