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Robust wavelet-based super-resolution
reconstruction: Theory and Algorithm

Hui Ji, Cornelia Fermüller Member, IEEE

Abstract— We present an analysis and algorithm for the
problem of super-resolution imaging, that is the reconstruction
of HR (high-resolution) images from a sequence of LR (low-
resolution) images. Super-resolution reconstruction entails solu-
tions to two problems. One is the alignment of image frames.
The other is the reconstruction of a HR image from multiple
aligned LR images. Both are important for the performance
of super-resolution imaging. Image alignment is addressed with
a new batch algorithm, which simultaneously estimates the
homographies between multiple image frames by enforcing the
surface normal vectors to be the same. This approach can handle
longer video sequences quite well. Reconstruction is addressed
with a wavelet-based iterative reconstruction algorithm with an
efficient de-noising scheme. The technique is based on a new
analysis of video formation. At a high level our method could
be described as a better-conditioned iterative back projection
scheme with an efficient regularization criteria in each iteration
step. Experiments with both simulated and real data demonstrate
that our approach has better performance than existing super-
resolution methods. It can remove even large amounts of mixed
noise without creating artifacts.

Index Terms— Perfect reconstruction filter banks, Super-
resolution, Multiple frame alignment, Wavelet denoising

I. OVERVIEW

The problem of super-resolution reconstruction, which is
defined as restoring a high-resolution (HR) image from a
sequence of low-resolution (LR) images (see Fig. I), has
been studied by many researchers in recent years. Most
super-resolution algorithms formulate the problem as a signal
reconstruction problem. Essentially these algorithms differ in
two aspects: one is in how the image frames of the sequence
are aligned in a common coordinates system; the other is
in how the high-resolution image is reconstructed from the
aligned low-resolution image frames. The accuracy of the im-
age alignment and the robustness of the signal reconstruction
determine the algorithmic performance. The two aspects are
related. Thus the imperfectness of the image alignment has to
be considered in the later stage of image restoration.

In this paper we propose a complete super-resolution re-
construction system which addresses both the problems of
frame alignment and image restoration. Our contributions are
twofold. The first is a theoretical analysis of video formation
from the view of filter banks, which leads to a new wavelet-
based reconstruction scheme for image reconstruction. The
second is a batch algorithm for image alignment, which
computes the projective flow (planar homographies) across all
frames in the sequences.
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Fig. 1. Illustration of super-resolution imaging.

Using a sequence of similar but not identical image frames
makes it is possible to increase the spatial resolution of one
still image. However, it is difficult since this is an ill-posed
inverse problem. Despite the difficulties, researchers have
made great progress towards stable algorithms. Iterative back-
projection methods ( [14], [23]) have been shown to be an
effective tool for high-resolution image reconstruction. It is
known, however, that the de-blurring process, which is part of
this approach, makes it very sensitive to the noise. Thus, the
requirement of very accurate image alignment estimates limits
its practical use. Various regularization methods have been
proposed to deal with the noise. However, these methods either
are very sensitive to the assumed noise model (Tikhonov reg-
ularization) or are computationally expensive (Total-Variation
regularization). See [10] for more details.

Our contributions to the reconstruction process are two-
fold. First, we model the image formation procedure from the
point of view of filter bank theory. Then, based on this new
formulation, we analyze the limits of high-resolution recon-
struction. Our conclusion is that in general full recovery is not
possible without enforcing some constraints on the recovered
images. At best we could reconstruct the image convolved
with a specific low-pass filter (namely 1

4 (1, 1) ⊗ (1, 1) for
the case of the Box-type PSF). Second, based on our new
formulation, we present a robust wavelet-based algorithm for
image reconstruction. The iteration scheme in our algorithm
is inherently more robust to noise than that of classic back-
projection methods ( [14], [23]), because the projection matrix
of our back-projection scheme has a better condition number.
We will show that, both in theory and experiments, it has better
performance in suppressing the error propagation than other
back-projection iteration schemes.

Furthermore, our algorithm allows us to include a wavelet-
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based de-noising scheme in each iteration of the reconstruction
which effectively removes the noise without creating smooth-
ing artifacts. The advantage of our de-noising scheme over
regularization methods is that it is nearly optimal with respect
to the risk bound. That is, it has the theoretical minimal error
in removing noise of unknown models. Its effectiveness in
removing mixed noise and relatively large amounts of noise
is demonstrated in experiments. It is worth mentioning that
our de-noising scheme adds very little computational burden
compared to other complicated regularization methods. Briefly,
our method could be described as a generalized iterative
back-projection method with a fast and optimal regularization
criteria in each iteration step.

Wavelet theory has previously been used for image de-
noising and de-blurring from static images ( [5], [6]). However,
it has not been studied much with respect to the super-
resolution problem. In recent work wavelet theory has been
applied to this problem [21], but only for the purpose of
speeding up the computation. Our contribution lies in an
analysis that reveals the relationship between the inherent
structure of super-resolution reconstruction and the theory of
wavelet filter banks. This relationship is fully exploited by
using various techniques from wavelet theory in the iterations
of the reconstruction.

For the process of image frame alignment, the flow-based
approach is the most popular choice because of its flexibility.
The difficulty in accurate estimation of general non-parametric
image flow makes the reconstruction of higher-resolution
images not very meaningful. Thus, some assumption on the
underlying flow model has to be enforced. Such assumption, of
course, makes the algorithm less general, but more practical.
The most frequently used flow models are the affine transform
and the more general projective transform ( [2], [9], [14], [27]).
The most popular reconstruction procedure is the iterative back
projection method ( [14], [23], [28]).

In this paper, we propose a new algorithm for computing
projective flow (planar homographies) simultaneously on all
frames in the sequence. The most closely related studies are
[12], [26] and [15], which all provide algorithms for the
estimation of planar motion between multiple frames based on
some rank constraint. However these studies either are limited
to short image sequences ( [12], [26]), or compute relative
motion only between neighboring frames ( [15]), which could
lead to accumulative errors in the image alignment. Our ap-
proach is an extension of [15] to the more general estimation of
homographies (as opposed to planar flow). Briefly, the motion
between the reference frame and any other frame is modeled as
a homography. Then, the shape constraint proposed in [15] is
directly incorporated into the estimation of the homographies.
This leads to accurate alignment for longer sequences. As a
result, we have more frames available for the reconstruction.

II. FORMULATION OF HIGH-TO-LOW IMAGE FORMATION

We first formulate the high-to-low image formation process.
To simplify the exposition, in the following we only discuss
1D signals with resolution enhancement by a factor 2. Later,
without much difficulty, the analysis will be extended to the 2D

case with arbitrary resolution enhancement. Adopting Farsiu’s
notation ( [10]), the image formation process in the pixel
domain can be modeled as

y = σ[H ∗X(F (t))] + N, (1)

where t is the spatial variable; X(t) is the continuous signal
and y is the discrete signal; H is the blurring operator (either
optical blurring or motion blurring or both); F is the geometric
transform (affine, perspective, etc); N is the noise in the
low-resolution image; σ is the decimation operator; and “∗”
is the convolution operator. Not considering the noise for
the moment, the high-resolution (HR) signal x and the low-
resolution (LR) signal y can be defined as:

x = σ[X], y = [σ[H ∗X(F (t))]] ↓2, (2)

where ↓2 is the downsampling operator with rate 2.
Next we derive the relationship between the LR signal y and

the HR signal x. Denote the velocity of the signal as ε(t) =
F (t) − t, which is also called the optical flow in Computer
Vision. For simplicity of notation, here we assume a sub-pixel
flow model with 0 < ε(t) < 2 on the denser grid of the HR
image x (Larger flow could always be reduced to the case of
sub-pixel flow by re-assigning the pixel value). Thus, in the
LR image the flow values are all sub-pixel shifts (Recall a
1-unit shift on the coarse grid of y equals a 2-unit shift on the
fine grid of x).

Let {j} be a fine grid for the spatial coordinates x. Then for
point j of y on the coarse grid (its coordinate is 2j on the fine
grid) with 0 ≤ ε(2j) < 1, the first-order Taylor approximation
of Equation (2) at point 2j can be written as

y(j) = [H ∗X(F (t))]t=2j

= [H ∗X(ε(t) + t)]t=2j

= [H ∗X(t)]t=2j + ε(2j)[H ∗X ′(t)]t=2j

= [H ∗X(t)]t=2j + ε(2j)[H ′ ∗X(t)]t=2j .

For all other points j′ of y with 1 ≤ ε(2j′) < 2, a similar
argument yields

y(j′) = [H ∗X(t)]t=2j′+1 + (ε(2j′)− 1)[H ′ ∗X(t)]t=2j′+1.

Thus, a LR sequence y could be expressed in the pixel
domain as a sub-sequence of the following two sequences:

[a ∗ x] ↓2 +ε ·∗[b ∗ x] ↓2

a ∗ x(·+ 1)] ↓2 +(ε− 1) ·∗[b ∗ x(·+ 1)] ↓2,
(3)

where a, b are discrete versions of the convolution kernels H
and H ′ respectively, and ·∗ denotes the component-wise mul-
tiplication operator. Having available the optical flow values
εk for multiple low-resolution images yk, we can by solving
an over-determined system of linear equations obtain the four
components:

[a∗x] ↓2, [a∗x(·+1)] ↓2, [b∗x] ↓2, [b∗x(·+1)] ↓2 . (4)

As will be shown in the next subsection, the two filters a
and b (which are determined by the blurring kernel H and its
derivative H ′) characterize the super-resolution reconstruction.

Let us next look at some examples of filters a and b for
different blurring kernels.
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Example 1 Consider the box-type blurring kernel H =
1
2nχ[−n,n], where χ[−n,n] is the characteristic function on
[−n, n]. Let ε(t) = ε ≤ 1. Then we have

y(j) =
∫ ∞

−∞
H(2j − t)X(F (t))dt

=
1
2n

∫ 2j+n

2j−n

X(F (t))dt =
1
2n

∫ 2j+n

2j−n

X(t + ε)dt.

Approximating the integration by quadrature rules, we obtain

y(j) =
1
2n

(
1
2
(1− ε)x(2j − n)

+
n−1∑

i=−n+1

x(2j − i) +
1
2
(1 + ε)x(2j + n)).

Equivalently, we can write

y = [a ∗ x + ε(b ∗ x)] ↓2, (5)

where a and b are the following low-pass and high-pass filters,
respectively:

a =
1
4n

(1, 2, · · · , 2, 1), b =
1
4n

(−1, 0, · · · , 0, 1).

The same observation was shown also in [4], [7] and [8].

Example 2 Consider a Gaussian-type blurring kernel H .
Using the Cubic Cardinal B-spline B(t) as approximation to
the Gaussian function ( [3]), we have

y(j) =
∫ ∞

−∞
B(2j − t)X(F (t))dt.

Again, by the quadrature rule, we have the approximation

y =
∑

i

x(2j − i)(a(i)− ε · b(i)),

where {
a = 1

96 (1, 8, 23, 32, 23, 8, 1);
b = 1

48 (3, 12, 15, 0,−15,−12,−3).

III. ANALYSIS OF THE HR RECONSTRUCTION

Given multiple LR signals yk with different motions εk,
theoretically we can obtain two complete sequences a ∗x and
b ∗ x from (4). An interesting question arises. Without any
assumption on the given finite signal x, can we reconstruct
the signal sequence x exactly from the two sequences a ∗ x
and b ∗ x?

To answer this question, let us write the sequence in another
form, namely, as its Z-transform. The Z-transform of a signal
sequence x = {x(i)} is defined as

x(z) =
∑

i

x(i)z−i.

It is easy to see that this transform is a one-to-one mapping
between sequence space and polynomial space. Let a(z) and
b(z) denote the Z-transforms of the filters a and b, then the
Z-transforms of a ∗ x and b ∗ x are a(z)x(z) and b(z)x(z)
respectively.

Now the question can be addressed by checking whether
the polynomial equation

(a(z)x(z))u(z) + (b(z)x(z))v(z) = x(z) (6)

is solvable for the two unknowns u(z) and v(z). Eliminating
x(z) from both sides of (6) yields

a(z)u(z) + b(z)v(z) = 1. (7)

From the theory of Diophantine equation ( [19]) we know the
following:

Lemma 3 Given two polynomials a(z) and b(z), (7) is
solvable if and only if the greatest common divisor of a(z)
and b(z) is a scalar, that is, if a(z) and b(z) are co-prime.

It is observed that a(z) and b(z) in our two examples
(Example 1 and Example 2) both have a common divisor

c(z) = (1 + z).

This can be seen from the fact that a(−1) = b(−1) = 0,
and therefore z = −1 is the root of both a(z)and b(z). Thus,
for these blurring kernels we cannot reconstruct x(z) from
a(z)x(z) and b(z)x(z) exactly. This observation is not an
incident. The same holds true for general blurring kernels, as
we will show next.

We follow Baker’s modeling of the blurring kernel H ( [1]).
The blurring kernel (Point spread function) can be decomposed
into two components:

H = Ω ∗ C,

where Ω(X) models the blurring caused by the optics and
C(X) models the spatial integration performed by the CCD
sensor. Typically Ω is modeled by a Gaussian-type function
and C is modeled by a Box-type function. Notice that

H ′ = Ω′ ∗ C.

Thus we can express the corresponding discrete filters as:

a = ` ∗ c; b = τ ∗ c,

where c is the discrete version of the spatial integration kernel
C, and ` and τ are the discrete versions of Ω and Ω′.
Since a(z) and b(z) have a common divisor c(z), we cannot
reconstruct x(z) for general x(z), unless C is a Dirac function,
which generally is not true. Based on Lemma 3, we then have
the following result.

Theorem 4 Given multiple LR finite signals yk, we can not
perfectly reconstruct the HR finite signal x without any as-
sumptions on x. At most we can reconstruct c ∗ x for some
low-pass filter c. The corresponding Z-transform c(z) of c is
the greatest common divisor of a(z) and b(z), which includes
the spatial integration filter.

Notice that c is a low-pass FIR (finite impulse response)
filter. To recover x from c ∗ x, we have to apply a high-pass
filter on c ∗ x and impose some boundary condition on the
signal x. Such a de-blurring process generally is sensitive to
the noise and creates artifacts in the recovered image. A good
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Fig. 2. The two-channel filter bank.

strategy then is to modify our reconstruction goal during the
intermediate iterative reconstruction process: Instead of trying
to reconstruct x, we reconstruct c ∗ x in the iterative process,
and we leave the recovery of x from c ∗ x to the last step,
after finishing the iterative reconstruction.

Thus, the modified HR signal to be reconstructed is x̃ =
c ∗ x. The LR sequence {yk} can be expressed as a subset of
the following two sequences:

[` ∗ x̃] ↓2 +εk[τ ∗ x̃] ↓2 (8)

and
[` ∗ x̃(·+ 1)] ↓2 +(εk − 1)[τ ∗ x̃(·+ 1)] ↓2,

where the Z-transform of ` and τ are a(z) and b(z) divided by
their greatest common divisor, c(z), respectively. It is worth
mentioning that we model the blurring procedure from HR to
LR by a first-order Taylor approximation. But our reasoning
could easily be extended to a modeling by higher-order Taylor
approximations, leading to the same conclusion.

IV. RECONSTRUCTION BASED ON PR FILTER BANKS

A. Introduction to PR filter banks

Before presenting our algorithm, we first give a brief intro-
duction to 2-channel PR (perfect reconstruction) filter banks,
also called wavelet filter banks (see [18] for more details). A
two-channel filter bank consists of two parts: an analysis filter
bank and a synthesis filter bank. In our case, the signal x̃ is
first convolved with a low-pass filter ` and a high-pass filter
h and then subsampled by 2. In other words, we analyze the
signal by an analysis filter bank. Then a reconstructed signal
x̂ is obtained by upsampling the signal by zero interpolation
and then filtering it with a dual low-pass filter g and a dual
high-pass filter q. In other words, we reconstruct the signal by
synthesizing the output from the analysis bank with a synthesis
filter bank. See Fig. 2 for an illustration.

Such a filter bank is called a PR filter bank if x̂ = x̃ for
any input x̃. The question then is, what makes {`, h, q, g} a
PR filter bank. It is easy to see that the process illustrated in
Fig. 2 could be expressed using Z-transforms as follows:

x̂(z) =
1
2
(x̃(z) + x̃(−z))

(
l(z) h(z)

l(−z) h(−z)

)(
g(z)
q(z)

)
.

Thus, the sufficient and necessary condition for x̂(z) = x̃(z)
is (

2zm

0

)
=
(

l(z) h(z)
l(−z) h(−z)

)(
g(z)
q(z)

)
,

or equivalently,(
g(z)
q(z)

)
=
(

l(z) h(z)
l(−z) h(−z)

)−1( 2zm

0

)
.

Then in order to obtain the FIR filters g and q, we require that

det(H(z)) = det(
(

l(z) h(z)
l(−z) h(−z)

)
) = czn.

In summary, the analysis filters {`, h} of a perfect recon-
struction filter bank have to satisfy the following condition:

l(z)h(−z)− l(−z)h(z) = zm for some integer m, (9)

and the corresponding synthesis filters amount to

g(z) = h(−z); q(z) = −(l(−z)).

Thus, given a low-pass filter l(z), we can find the correspond-
ing high-pass filter h(z) such that we have an analysis filter
bank and thus a PR filter bank by solving the linear system
(9).

Example 5 For the well-known “Haar” wavelet filter bank,
the synthesis and analysis filters amount to:

` =
1√
2
(1, 1), h =

1√
2
(1,−1);

g =
1√
2
(1, 1), q =

1√
2
(−1, 1).

B. Iterative reconstruction scheme

We have available a number of signals yk and the cor-
responding estimates of the optic flow values εk. We also
have estimates of the convolution kernels ` and τ . Obviously,
estimating `∗x and τ ∗x directly from Equation (3) would not
be wise. For reasons of numerical stability special attention is
necessary. Fortunately, the scheme of PR filter banks provides
us with an iterative scheme.

Let `, which corresponds to the blurring kernel, be the low
pass filter of a PR filter bank. Then the corresponding high-
pass filter h is computed by solving (9). Note, h may be
different from τ .

Recall that for each LR signal yk, we have

yk = [` ∗ x̃] ↓2 +εk ·∗[τ ∗ x̃] ↓2 .

(If the original signal is incomplete, this can be overcome by
a simple interpolation.) From the above equation [` ∗ x̃] ↓2 is
obtained as

[` ∗ x̃] ↓2= yk − εk ·∗[τ ∗ x̃] ↓2 . (10)

The process of a signal x̃ passing through a PR filter bank as
shown in Fig. 2 can be expressed as:

x̃ = g ∗ [(` ∗ x̃) ↓2] ↑2 +q ∗ [(h ∗ x̃) ↓2] ↑2 . (11)

Combining (10) and (11), we obtain the iterative reconstruc-
tion of x̃ from K LR signals yk as follows: At step n + 1

x̃n+1 = q∗[(h∗x̃n) ↓2] ↑2 +g∗
( 1

K

K∑
k=1

[yk−εk·∗(τ∗x̃n) ↓2] ↑2

)
.

(12)



5

Theorem 6 The iteration of Equation (12) converges to the
true value x under the condition that

‖g ∗ τ‖ ≤ 1
2
. (13)

Proof: As in [14] for simplicity we omit the down-
sampling and upsampling process, as well as the fusion
process. That is, we write

y = ` ∗ x̃ + ε ·∗(τ ∗ x̃).

Then the iteration amounts to

x̃(n+1) = g ∗ (y − ε ·∗(h ∗ x̃(n))) + q ∗ (τ ∗ x̃(n)). (14)

Subtracting x̃ on both sides of (14) yields

x̃(n+1) − x̃ = g ∗ (y − ε ·∗(τ ∗ x̃(n))) + q ∗ (τ ∗ x̃(n))− x̃
= g ∗ (` ∗ x̃ + ε ·∗(τ ∗ (x̃− x̃(n))))

+q ∗ (τ ∗ x̃(n))− x̃.

Recall that we have

x̃ = g ∗ (` ∗ x̃) + q ∗ (h ∗ x̃).

Then

x̃(n+1) − x̃ = −g ∗ (ε ·∗((τ ∗ (x̃(n) − x̃))
+q ∗ h ∗ (x̃(n) − x̃)

= (g ∗ (−ε ·∗τ∗) + q ∗ h∗)(x̃(n) − x̃).

Let A denote the operator which represents

g ∗ (−ε · ∗τ ∗+q ∗ h∗).

Then the above equation can be rewritten as

x̃(n+1) − x̃ = A(x̃(n) − x).

Since we have (See [18] for more details):

‖q ∗ h‖ = ‖g ∗ `‖ =
1
2
,

from the fact that ‖ε‖∞ < 1, we obtain

‖A‖ < ‖g ∗ τ‖+ ‖q ∗ h‖ ≤ ‖g ∗ τ‖+
1
2
.

Thus ‖g ∗ τ‖ ≤ 1
2 is sufficient for the convergence of the

iteration.

C. Relationship to other back-projection methods

Applying (11), we can rewrite (12) in the form

x̃n+1 = (x̃n − g ∗ [` ∗ (x̃n) ↓2] ↑2

+g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)
= x̃n + g ∗

( 1
K

K∑
k=1

[yk

−(` ∗ x̃nεk · ∗(τ ∗ x̃n)) ↓2] ↑2

)
.

From this we can see that the iteration scheme presented
here falls in the class of back-projection methods. But it has
advantages over the usual back-projection iterations. Consider

the well-known method by Irani and Peleg [14]. Its iteration
can be described as:

xn+1 = xn +
1
K

K∑
k=1

T−1
k

(
((yk − [` ∗ Tk(xn)] ↓2) ↑2) ∗ p

)
,

(15)
where Tk is the geometric transform between yk and x̃, and
the high-pass filter p is the de-blurring kernel. Notice that the
two methods differ in the de-blurring kernel: one uses g with
g(z) = h(−z) defined in (9); the other uses p in (15), the
approximate inverse filter of `.

The requirement on p in (15) is

||δ − ` ∗ p|| < 1, (16)

where δ is the ideal unit impulse response filter. In other words,
p should be a good approximation for the inverse of `. In
comparison, g in our iteration only needs to be a companion
filter for the smooth filter ` with sufficient decay, such that
condition (13) holds. This difference makes g more desirable
than p. Let’s investigate this in more detail.

The noise will be propagated exponentially as O(‖p‖n)
in (15) and as O(‖g‖n) in (12). Generally the flexibility of
g(z) makes it possible to design a g that has much smaller
norm than p. This leads to much better resistance to noise
propagation. Here is an example.

Example 7 Consider ` = 1
4 (1, 2, 1). Then

g = (−1/8,−1/4, 3/4,−1/4,−1/8)

is a dual PR filter for ` with

l(z)g(−z) = −1 + 9z−2 + 16z−3 + 9z−4 − z−6.

It is easy to check that ‖g‖2 is around 0.85. The minimum
for the norm of all filters with the same length as g is around
1.1. The corresponding p is

p = (
1
2
,−2

3
,
4
3
,−2

3
,
1
2
).

In order to make the norm of p close to the norm of g, a
lengthy p with much slower decay is necessary. Such a filter
is not desirable since it causes artifacts, like the “ring” effect.
This clearly indicates that our iteration scheme is more robust
to noise and causes less artifacts in the reconstructed image.

V. ROBUST ALGORITHM ON 2D IMAGES WITH DE-NOISING

Next we generalize the algorithm to 2D images. Then we
introduce a de-noising process during the iterative reconstruc-
tion to suppress the noise in the optical flow estimation.
Furthermore, the algorithm is adjusted to handle outliers.

A. Extension to 2D images with a built-in de-noising process

All the previous analysis can be generalized using the
tensor product. By an argument similar to the 1D case, we
approximate the LR image ILR with the HR image IHR as
follows:

ILR = [(a⊗a)∗IHR+u·∗((a⊗b)∗IHR)+v·∗((b⊗a)∗IHR)] ↓2,
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where “⊗” is the Kronecker tensor product and (u, v) is the
2D optical flow vector. Then the 2D analysis bank is

Low-pass filter: L = `⊗ `,
High-pass filters: H1 = `⊗ h, H2 = h⊗ `,H3 = h⊗ h,

and the 2D synthesis filter bank is

Low-pass filter: G = g ⊗ g,
High-pass filters: G1 = g ⊗ q, G2 = q ⊗ g,G3 = q ⊗ q.

It is easy to verify that the 2D filter bank defined above is
a perfect reconstruction filter bank with the analysis filter
bank {L,Hi} and the reconstruction filter bank {G, Qi}. Then
generalizing (12), the iterative equation for the reconstruction
of the HR image Ĩ from LR images ILR

k amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

(∑K
k=1[Ĩ

LR
k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2

−v ·∗((τ ⊗ `) ∗ Ĩ(n)) ↓2] ↑2 )

Recall that here Ĩ is the blurred version of the true I with
Ĩ = (c ⊗ c) ∗ I, where c ⊗ c is the spatial integration kernel.
A similar iterative equation has been derived in the work
of [6] on static imaging arrays. Here we push the algorithm
further by including the high frequency information from other
frames.

There always is noise in the estimated flow u, v, and the
deconvolution operator could make the HR image reconstruc-
tion very sensitive to this noise. It is known that the noise
variance of the solution will have hyperbolic growth when the
blurring low-pass filter has zeros at high frequency. Thus, de-
noising is necessary to suppress the error propagation during
the iterative reconstruction.

To suppress the noise, we introduce a wavelet de-noising
scheme which subtracts some high-frequency components
from Ĩn. Briefly, we first do a wavelet decomposition of
the high-pass response, then apply a shrinkage of wavelet
coefficients to the decomposition, and then reassemble the
signal.

Our iteration scheme with built-in de-noising operator
amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [Ψ(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

(∑K
k [ĨLR

k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2

−v ·∗((τ ⊗ `) ∗ I(n)) ↓2] ↑2

)
.

The de-noising operator Ψ defined in the equation above is

Ψ(Hi ∗ Ĩn) = G ∗ [
(
L ∗ (Hi ∗ Ĩn)

)
↓2] ↑2

+
3∑

i=1

[Qi ∗
(
Γ[Hi ∗ (Hi ∗ Ĩn)]

)
↓2] ↑2,

where Γ is the threshold operator.

B. Shrinkage operator and robust regression

The basic idea of wavelet de-noising is to reduce the
noise by shrinking the wavelet coefficients where typically
most noise exists. Two popular shrinkage schemes are hard
shrinkage and soft shrinkage. The hard threshold operator

removes all wavelet coefficients below a threshold value µ
as follows

Γ(ν) =
{

ν if |ν| ≥ µ;
0 Otherwise. (17)

The soft threshold operator shrinks the wavelet coefficients
above the threshold µ and removes the wavelet coefficients
below the threshold µ as follows

Γ(ν) =
{

ν − µ · sgn(ν) if |ν| ≥ µ;
0 Otherwise. (18)

Here we take a hybrid shrinkage approach. The hybrid thresh-
old operator Γ is defined as:

Γ(ν) =


ν if |ν| ≥ µ1;
sign(ν)µ2

|ν|−µ1
µ2−µ1

if µ1 > ν ≥ µ2;
0 Otherwise.

(19)

This hybrid shrinkage scheme is used to remove the noise
efficiently by combining both hard shrinkage and soft shrink-
age. The heuristic goes as follows: First, in order to keep the
edges and remove noise in image formation, we keep the large
wavelet coefficients and remove the small wavelet coefficients
using hard shrinkage. Then a soft shrinkage is applied on
wavelet coefficients in the middle range to reduce the noise
introduced by the displacement error. Outliers will be handled
by the median operator when fusing multiple frames.

In summary, our algorithm is as follows: Given an initial
HR image I(0) we have

I(n+1) = G ∗mediank{[ILR
k − uk ·∗(`⊗ γ ∗ I(n)) ↓2

− vk ·∗(γ ⊗ ` ∗ I(n)) ↓2] ↑2}
+

(∑3
i=1 Qi ∗ [Φ

(
Hi ∗ I(n)

)
↓2] ↑2

)
.

(20)
The algorithm above could easily be adapted to different
blur filters. We only need to adjust the dual filters G, Qi to
make a new perfect reconstruction filter bank. Also, here we
only considered a doubling of the image resolution. But any
other resolution increase could be achieved by changing the
2-channel perfect reconstruction filter bank to an M-channel
perfect reconstruction filter bank.

C. Relation to regularization methods

One popular de-noising technique used for robust recon-
struction is regularization ( [24]). Recall that back-projection
methods basically find x̃ by minimizing

∑K
k=1 ‖yk− ỹk(x̃)‖2

2,
where ỹk(x̃) is the LR signals derived from our estimated
x̃. Such a least squares estimation problem usually is ill-
conditioned. One way to increase the stability is to enforce
a regularization term and solve:

min
ex

K∑
k=1

‖yk − ỹk(x̃)‖2
2 + α‖Φ(x̃)‖,

where Φ is some regularization function and α is some
pre-defined smoothing factor. If the regularization is a least
squares problem, we call it a Tikhonov-type regularization.
The advantage is its simplicity and efficiency, the disadvantage
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is its relatively poor performance. A nonlinear diffusion regu-
larization, like Total Variation regularization usually performs
better, but is computationally expensive.

Wavelet de-noising is closely related to nonlinear diffusion
regularization. [20] discussed the relationship of wavelet de-
noising to Total Variation regularization for two simple cases.
More specifically, consider a wavelet de-noising scheme based
on Haar wavelets (` = 1√

2
(1, 1), h = 1√

2
(1,−1)). Then for

the case of the threshold operator in the wavelet de-noising
being a soft thresholding operator defined as in (18), it was
shown that the wavelet de-noising process is equivalent to
Total Variation based nonlinear diffusion (Φ(x̃) = ‖x̃‖1) for a
two-pixel signal.

Although [20] only showed the equivalence between Total
Variation regularization and a simplistic wavelet de-noising
scheme for a signal with 2 pixels, these results still demon-
strate that the wavelet de-noising process in our reconstruc-
tion is comparable to some nonlinear diffusion regularization
schemes in its ability to suppress the error propagation.
However, it doesn’t have the computational burden of most
nonlinear diffusion regularizations, since it only needs a linear
wavelet decomposition over one level. In comparison, nonlin-
ear regularizations need to solve a nonlinear optimization.

VI. FLOW ESTIMATION FOR SUPER-RESOLUTION

A. Basic notations

We consider here the planar motion model. In other words,
we assume that the underlying 3D structures of the interesting
image regions are planar surfaces. Let I0, I1, I2, · · · , IK be the
image frames in the sequence. Fix frame I0 as the reference
image. We need to estimate the homographies between the
reference frame I0 and the frames Ik. There is the following
constraint on the planar homography Pk from reference frame
I0 to frame Ik:

Pk = Rk + ~vk~n
t, (21)

where Rk is a rotation matrix, ~vk is the translation and ~n is
the normal of the plane. For two frames close by, the optical
flow ~u at a point ~r is constrained by the brightness consistency
constraint ( [13])

(
dI

d~r
)t~u(~r) = −dI

dt
. (22)

Let ~pk = vec[Pk] = (p1k
, p2k

, · · · , p9k
)t be the vectorized

version of the homography Pk. Assume Ik very close to
I0, then under the small motion assumption, the brightness
consistency constraint becomes

(
dI

d~r
)t(~pk(~r)− ~r) =

dI

dt
, (23)

with

~pk(~r) =

(
p1x+p2y+p3
p7x+p8y+p9
p4x+p5y+p6
p7x+p8y+p9

)
.

~pk(~r) is a 2D linear rational polynomial. Thus, multiplying
the denominator of ~pk(~r) on both sides of (23) yields a linear
homogeneous equation system on ~pk:

Ak~pk = 0.

B. Multi-frame homography estimation

We need to simultaneously estimate all homographies be-
tween the reference image I0 and the frames Ik. The Pks are
not independent. They share the same plane normal. Using the
expression for homographies from [22], we have the following
expressions for all homographies which share the same plane
normals:

Pk = Rk + ~vk~n
t, for k = 1, · · · ,K.

In order to improve the estimation of the Pks, this constraint
on the surface normal has to be incorporated into a batch
algorithm. Furthermore we need to deal with frames Ik with
large displacement to the reference frame I0.

Here we take an iterative approach to estimate the ho-
mographies Pk. Suppose that at the jth step we are given
the approximate solution P j

k = Rj
k + vj

k · (nj)t for the true
homography Pk. Then Equation (23) can be applied to Pk as
follows:

(
dI

d~r
)t(~pk(~r)− ~pj

k(~r)) = Ik(~r)− I0(p
j
k(~r)).

In other words, we apply the differential brightness con-
sistency constraint between the frame I0(p

j
k(~r)) (the image

obtained by warping I0 from the homography pj
k) and Ik(~r).

The differential motion is due to the difference between the
actual homography and its estimation in the current stage.

We write these linear equations on ~pk as

Ak(P j
k )~pk = 0.

Then the minimization across all homographies Pk can be
written as

min
Rk,~n,vk

∑
k

‖Ak(P j
k )vec[Rk + ~vk~n

t]‖2 (24)

subject to the constraints that the Rks are rotation matrices
and ‖~n‖ = 1. This is a constrained minimization, bilinear in
Rk, ~vk and ~n. In the remainder of this section we show how
to robustly solve the minimization (24) using an alternative
two-steps optimization.

Given P j
k at step j, we compute P j+1

k = Rj+1 +
~vj+1

k (~nj+1)t at step j + 1.
Given P j

k = Rj
k +~vj

k(~nj)t, we first update ~nj+1. This min-
imization of (24) is just a regular least squares minimization
over the sphere of ~nj+1 and can be written as:

min
~nj+1

∑
k

‖Ak(P j
k )vec[Rj

k + ~vj
k(~nj+1)t]‖2 (25)

subject to ‖~nj+1‖ = 1. The minimization of (25) can easily
be solved by SVD decomposition. The algorithm is as follows:
Given A and ~b, the following procedure computes a vector ~n
such that ‖A~n − ~b‖2 is minimum, subject to the constraint
‖~n‖ = 1. Run SVD on A such that A = UΣV t and save

V = {v1, v2, · · · , vn}, b = U tb, Σ = diag(σi).

Find λ∗ such that ∑
i

(
σibi

σ2
i + λ∗

)2 = 1.
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Then
~n =

∑
i

(
σibi

σ2 + λ∗
)vi.

Then, given P j
k , ~nj+1, we estimate {Rj+1

k , vj+1
k } for k =

1, · · · ,K. We need to solve the following minimization: For
each k

min
Rj+1

k ,vj+1
k

‖Ak(P j
k )vec(Rj+1

k + ~vj+1
k (~ni+1)t)‖2

subject to
(Rj+1

k )tRj+1
k = I3.

This is not a trivial task. Here we present a fast linear method
to obtain an approximate solution. Let Rj+1

k be approximated
by (I + [ω]×)Rj

k, where [ω]× is the skew-symmetric matrix
of the rotation vector ~ω. Using the observation that

P j+1
k = Rj+1

k + ~vj+1
k (~nj+1)t

we perform the following decomposition

P j+1
k = (I + [ωj

k]× + ∆vj
k · (R

j
knj+1)t)P j

k ,

with

vj+1
k = (I + [ω]x)vj

k + (1 + (Rj
knj+1)tvj

k)∆vj
k. (26)

Then the minimization (26) is simplified to a standard least
squares minimization on ωi

k and ∆vi
k:

min
ωj

k,∆vj
k

‖Ak(P j
k )vec[(I+[ω]×+∆vj

k ·(R
j
k~n

j+1)t)P j
k ]‖2. (27)

Thus Rj+1
k and vj+1

k can be derived from ∆vj
k and ωi

k after
solving the least squares minimization of (27).

We adopt the procedure in [12] to compute initial values for
the homographies P 0

k from multiple relative motions Pk1,k2

between frames Ik1 and Ik2 related by a small displacement.
Briefly, the P 0

k s are determined by an overdetermined linear
system:

Pk1,k2P
0
k1
− P 0

k2
= 0.

(See [12] for more details.) The iteration algorithm is as
follows: Given P j

k = Rj
k + ~vj

k(~nj)t at Step j,
1) The minimization (25) is solved by SVD to obtain ~nj+1.
2) The minimization (27) is solved by least squares to

obtain ωj
k,∆j

k.
3) ~vj+1

k is obtained from (26) and the rotation matrix is
obtained as:

Rj+1
k = I + [ωj

k]× + (1− (1− ‖ω‖2)
1
2 )([ωj

k]×)2.

The iteration is terminated when the pj+1
k s are close enough

to the pj
ks.

At a quick glance, it seems that decomposing Pk is an
overkill since we don’t need motion and structure. But actually,
in terms of computational cost, it doesn’t make much differ-
ence. It is known that the decomposition of P = R +~t · ~nt is
unique up to two solutions. By enforcing consistency between
the Pks, the decomposition becomes unique, and it is not
difficult to obtain this decomposition.

(a) Original image (b) Noisy LR image

(c) Wavelet method (d) Tikhonov regularization
Fig. 3. The HR images (c) and (d) are reconstructed from four LR images
by five iterations. (c) is reconstructed by our method. (d) is reconstructed by
the back-projection method with Tikhonov regularization. The motion noise
is local Gaussian noise with σ = 0.2. The image formation noise is Gaussian
noise with γ = 0.01. The approximation ˆ̀in (28) is used in the reconstruction
instead of the true PSF `.

VII. EXPERIMENTS AND CONCLUSION

We compared our algorithm’s high-resolution reconstruction
to standard methods using both simulated and real data.

A. Simulated data

The first experiment evaluates the wavelet-based reconstruc-
tion. We simulated 4 low-resolution images (16× 16) from a
high resolution image by shifting, blurring and downsampling.
The blurring filter is

` =
1
16

 1 2 1
2 4 2
1 2 1

 .

Three kinds of noise were simulated:
1) Error in motion estimation. This error is modeled by

local Gaussian white noise with parameter σ. The local
covariance matrix is due to the magnitudes of the image
gradients.

2) Noise in pixel formation. We added Gaussian white
noise with parameter γ to the pixel values.

3) Error in PSF modeling. We also checked how error
in the PSF modeling influences the performance. The
approximated PSF ˆ̀ used in the reconstruction was

ˆ̀=
1
16

 1 1 1
1 8 1
1 1 1

 . (28)

We compared our wavelet-based method to the popular
“POCS” back-projection method ( [25]) enforced by Tikhonov
regularization (See Fig. 3). It may be possible that another
scheme, namely Total Variation regularization would give a bit
better results. However, this would require solving a nonlinear
minimization over each iterative step during the reconstruction,
which is computationally expensive. In our implementation the
regularization term is the 2-norm of the Laplacian smoothness
constraint with roughly tuned regularization parameter α.

Fig. 4 demonstrates the performance of the wavelet-based
method for various noise settings. Performance is measured by
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(a) Comparison for motion noise

(b) Comparison for image formation noise

(c) Comparison for PSF error
Fig. 4. Comparison between our method and POCS with Tikhonov regu-
larization for various amounts of noise. The reconstructed image has been
obtained in 5 iterations. The x-axis denotes the variance of the noise, the
y-axis denotes the SNR of the reconstruction.

the SNR (Signal-to-Noise ratio) of the reconstructed image to
the true image, which is defined as:

SNR = 20 log10

‖x‖2

‖x− x̂‖2
,

where x̂ is the estimate for the true image x. Fig. 4 clearly
indicates the advantage of our wavelet-based method in sup-
pressing the noise. Especially when noise is large, the boost
in performance is significant.

B. Real data

We used an indoor sequence depicting 13 image frames of a
paper box (Fig. 5). The sequence was taken with a hand-held
camera. An interesting planar region was chosen manually.
Fig. 6 and Fig. 7 show a comparison of the results from four
different methods for different regions. Here the reconstructed
HR images double the resolution of the LR images. In Fig. 6-
7 (a) we upscaled all LR images using bilinear interpolation,
followed by averaging all aligned images using an affine
motion model. In Fig. 6-7(b) we used the POCS method,
and estimated the flow field using an affine motion model.
In Fig. 6-7(d) we used the POCS method, and estimated the
flow field with the Homography model. Fig. 6-7(d) show the

(a) Reference frame (b) LR planar image region
Fig. 5. Reference image frame of first indoor video and its selected region.

(a) Interpolation + Affine (b) POCS + Affine

(c) POCS + Homography (d) Wavelet + Homography
Fig. 6. Comparison of one reconstructed HR region for various methods.

results from our reconstruction scheme. The difference can be
evaluated visually. As can be seen, there is improvement from
(b) to (c) and from (c) to (d) in Fig. 6 and Fig. 7. The letters in
Fig. 6(d) and Fig. 7(d) are the clearest, and there are minimal
artifacts around the edges.

A second indoor sequence depicting a box wrapped in news-
paper (Fig. 8) was tested. We compared our method against
Irani’s method [14]. See Fig. 9 for a visual comparison. The
same conclusion holds as for the previous experiment; both our
homography-based motion estimation and our reconstruction
method lead to improved results.

In the third indoor sequence (Fig. 10), we simultaneously
captured both HR frames and LR frames of a moving box on a
table. (Our digital camera averages the CCD charge in a 2×2

(a) Interpolation+Affine (b) POCS + Affine

(c) POCS + Homography (d) Wavelet + Homography
Fig. 7. Comparison of another reconstructed HR region from Fig. 5 for
various methods.
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Fig. 8. Reference frame from the second indoor video.

(a) Interpolation + Affine (b) Irani’s + Affine

(c) Irani’s + Homography (d) Wavelet + Homography
Fig. 9. Comparison of one reconstructed HR region from Fig. 8 for various
methods.

pixel neighborhood in the HR image to obtain a pixel in the
LR image.) Totally 19 frames were used in our reconstruction
algorithm. It is seen that the image reconstructed from our
super-resolution method can recover the lost details of low-
resolution image in most cases. Furthermore, the reconstruc-
tion HR image even has some visual improvement over the
true HR image.

We also used an outdoor sequence of 11 frames containing
a warning sign in the scene. We compared the reconstructions
from different methods for a manually selected region. Since
the regions are too small to provide enough information for
the homography flow model, here instead we used an affine
flow model. See Fig. 12 for a visual comparison.

Fig. 10. Reference frame from the third indoor video.

(a) Low-resolution (b) Super-resolution (c) High-resolution
Fig. 11. Comparison of various regions from Fig. 10. Images in Column (a)
are from the LR frames; images in Column (b) are from our super-resolution
method and images in Column (c) are true HR images.

(a) (b)

(c) (d)
Fig. 12. (a) The key frame in the video. (b) The reconstruction from the
interpolation. (c) The reconstruction from Irani’s method using affine flow.
(d) The reconstructed image from the wavelet method with de-noising using
affine flow.

C. Summary

In recent years an effort started combining geometric con-
straints with Signal Processing [11], [16], [17]. Along these
lines we have presented an algorithm for the problem of
super-resolution reconstruction. We presented a new method
for estimating the homography between multiple frames in a
sequence, and a new wavelet-based reconstruction algorithm.
We demonstrated both in theory and experiments that the pro-
posed method is very robust to noise without sacrificing effi-
ciency. The reconstruction scheme allows for super-resolution
reconstruction from general video sequences, even when the
estimated optical flow is very noisy, and it outperforms existing
methods.
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