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Human Motion Tracking by Registering an
Articulated Surface to 3-D Points and Normals

Radu Horaud, Matti Niskanen, Guillaume Dewaele, and Edmond Boyer

Abstract—We address the problem of human motion tracking by registering a surface to 3-D data. We propose a method that iteratively
computes two things: Maximum likelihood estimates for both the kinematic and free-motion parameters of a kinematic human-body
representation, as well as probabilities that the data are assigned either to a body part, or to an outlier cluster. We introduce a new
metric between observed points and normals on one side, and a parameterized surface on the other side, the latter being defined
as a blending over a set of ellipsoids. We claim that this metric is well suited when one deals with either visual-hull or visual-shape
observations. We illustrate the method by tracking human motions using sparse visual-shape data (3-D surface points and normals)
gathered from imperfect silhouettes.

Index Terms—model-based tracking, human motion capture, articulated implicit surface, shape from silhouettes, robust surface
registration, expectation-maximization.

✦

1 INTRODUCTION

We address the problem of recovering articulated
human-motion parameters using 3-D data gathered from
multiple image sequences. We advocate that this type
of data has several advantages over 2-D data: it is less
ambiguous and it is less sensitive to self-occlusions. 3-D
features may be obtained by stereo [12], [5], [6]. Alterna-
tively one can capitalize on 3-D shape from silhouettes.
In general, 2-D silhouettes are explicitly associated with
a 3-D smooth surface [12], [9], [10]. Another way to use
silhouettes is to infer volumetric representations and to
fit articulated models to the voxels thus obtained [4],
[13], or to extract skeletal representations from these
voxels [3]. It is also possible to infer 3-D surfaces from
silhouettes, namely the visual hull [2] or the visual shape
[8]. The advantage of surface-from-silhouettes is that
it allows the recovery of both 3-D surface points and
surface normals. Moreover, there is no matching process
associated with the reconstruction algorithm. Visual hull
algorithms have been proved to be extremely useful for
recovering 3-D meshes which, in turn, are very useful
for surface rendering. The drawback is that they need
perfect silhouettes. Alternatively, visual shape methods
(such as the one described in [8]) produce sparse surface
descriptions (points and normals) and can operate on
imperfect silhouettes.

In this short paper we present a new method for
tracking human motion based on fitting an articulated
implicit surface to 3-D points and normals. There are
two important contributions. First, we introduce a new
distance between an observation (a point and a normal)
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and an ellipsoid. We show that this can be used to define
an implicit surface as a blending over a set of ellipsoids
which are linked together to from a kinematic chain.
Second, we exploit the analogy between the distance
from a set of observations to the implicit surface and
the negative log-likelihood of a mixture of Gaussian dis-
tributions. This allows us to cast the problem of implicit
surface fitting into the problem of maximum likelihood
(ML) estimation with hidden variables. We argue that
outliers are best described by a uniform component that
is added to the mixture, and we formally derive the
associated EM algorithm.

Casting the data-to-model association problem into
ML with hidden variables has already been addressed
in the past within the framework of point registration
[14], [11], [6]. In [5] observations are deterministically
and iteratively assigned to each individual body part.
We appear to be the first to apply a probabilistic data-
to-model association framework to the problem of fitting
a blending of ellipsoids to a set of 3-D observations and
to explicitly model outliers within this context.

The remainder of the paper is organized as follows.
Section 2 describes how to compute a distance between
a 3-D observation (point and normal) and an ellipsoid,
and how to build an implicit articulated surface based
on this distance. Finally, it introduces the concept of a
probabilistic implicit surface. Section 3 describes the formal
derivation of the EM algorithm in the case of implicit
surface fitting. Section 4 describes experiments with
simulated data and with multiple-camera video data.

2 MODELING ARTICULATED OBJECTS

In order to model articulated objects such as human
bodies we must define a number of open kinematic chains
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that link the various body parts. We will use ellipsoids
for modeling these parts. Since we measure 3-D data
(point and orientation vectors) we must properly define
a metric that measures the discrepancy between the
data and the model. This metric will be used to define
a distance function as well as a probabilistic implicit
surface.

2.1 The distance from a 3-D datum to an ellipsoid

One convenient way to describe 3-D ellipsoids is to use
an implicit equation and to embed the 3-D Euclidean
space into the 3-D projective space. This yields a 4×4
full-rank symmetric matrix Q:

Q =

[
Q q
q⊤ q44

]
=

[
RDR⊤ −RDR⊤t

−t⊤RDR⊤ t⊤RDR⊤t− 1

]
(1)

where D = Diag [a−2, b−2, c−2] is a 3×3 diagonal matrix,
R is a 3 × 3 rotation matrix and t is a 3-D translation
vector. In practice b = c and we choose a ≥ b. We denote
by X the homogeneous coordinates of a point x lying
onto the surface of the ellipsoid, X⊤QX = 0. The adjoint
matrix Q⋆ = Q−⊤ defines the dual ellipsoid. The family
P of planes which are tangent to the ellipsoid Q satisfy
the constraint P⊤Q−1P = 0 since Q⊤ = Q. We denote
by p the 3-D vector which is orthogonal to the plane
P (therefore p is normal to the ellipsoid at point x):
p = Qx+ q, where the notations of eq. (1) are used.

The algebraic distance from a 3-D point Y to the surface
of an ellipsoid was used in [12], defined by q(Y ) =
Y ⊤QY . The value of q varies from −1 at the center
of the ellipsoid, to 0 on its surface, and then to +∞
outside the ellipsoid as the point is farther away from
the surface. The Euclidean distance from a point to an
ellipsoid requires to solve a six-degree polynomial. In
[6] an approximation of the Euclidean distance is used,
i.e, a pseudo-Euclidean distance, as shown on Figure 1.

An observation will be refered to as a 3-D datum and
consists of both a 3-D point and a 3-D vector. We define
a metric between such a 3-D datum and an ellipsoid as
follows. Let Y ⊤ = (y⊤ 1) be the homogeneous coordi-
nates of an observed point, and let n be a 3-D observed
vector. An observation or a 3-D datum is denoted by
Y = (y,n). We seek an ellipsoid point X = (x⊤ 1) under
the constraint that the vector p (normal to the ellipsoid
at x) is aligned with n, e.g. Figure 1. In other words, we
seek an association between X = (x,p) and Y = (y,n).
Figure 2 compares the distance used in this paper with
the Euclidean distance from a point to an ellipsoid.

Let dE(Y,X ) be the Euclidean distance from the
datum-point y to the ellipsoid-point x under the con-
straint that the datum-vector n and the ellipsoid-vector
p are parallel:

dE(Y,X ) = ∥x− y∥2 with n× p = 0 (2)

Fig. 1. The distance from the datum Y = (y,n) to the
ellipsoid Q is estimated by seeking the point x ∈ Q such
that the normal p at x is aligned with vector n.

where ∥a∥2 denotes the Euclidean norm. We seek a
solution for x under the constraints that p and n are
parallel and yield the same orientation. Using eq. (1) we
obtain the following set of constraints:

x⊤Qx+ 2x⊤q + q44 = 0 (3)
Qx+ q = λn (4)

Fig. 2. The classical Euclidean distance from a point to
an ellipsoid (left) does not assign a point to an ellipsoid
in an unambiguous way. The 3-D datum distance (right)
assigns without ambiguity a to A and b to B.

From eq. (4) we obtain x = Q −1 (λn− q). By sub-
stitution in eq. (3) we obtain two solutions for λ. From
p⊤n > 0 we have λ > 0 and λ = (n⊤RD−1R⊤n)−1/2.
Therefore, the point onto the ellipsoid where its normal
p is aligned with n is given by:

x = λ RD−1R⊤n+ t (5)

It will be convenient to use the Mahalanobis distance:

d2M(y,x) = (y − x(R, t,n))⊤Σ−1(y − x(R, t,n)) (6)

2.2 Kinematic chains and human-body modeling

Articulated motion has a long history in mechanics,
biomechanics, robotics, and computer vision. A human
body can be described by a number of open kinematic
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chains that share a common root. Such an open chain
is composed of a number of rigid objects and two
consecutive rigid objects in the chain are mechanically
linked to form a joint. Rotational (or spherical) joints are
the most convenient representations and they are well
suited for human body modeling. Each such joint may
have one, two, or three rotational degrees of freedom.
Therefore, within such a chain, a body part Q is linked
to a root body part Qr through a constrained motion, i.e.,
a kinematic chain with a number of rotational degrees
of freedom. Since each joint may have several degrees of
freedom, the total number of rotational parameters of a
chain is larger than the number of rigid parts composing
the chain. Moreover, the root body part undergoes a free
motion itself, i.e., a rigid displacement with up to six de-
grees of freedom: three rotations and three translations.

Therefore the motion of a body-part (or ellipsoid) Q
is composed of the root’s free motion followed by the
chain’s constrained motion. We will denote the motion
of Q by the 4×4 homogeneous matrix T which in turn
is parameterized by the joint and free-motion parameter
vector Λ:

T(Λ) =

[
R(Λ) t(Λ)
0 1

]
(7)

A complete human-body model may be described
with five kinematic chains that share a common root
body-part. In this paper we use the following simplified
human-body model. There are 14 body parts and 11
joints (2 ankles, 2 knees, 2 hips, 2 elbows, 2 shoulders,
and a neck) with 22 rotational degrees of freedom (there
are two degrees of freedom for each joint). We also con-
sider 3 rotations and 3 translations for the free motion.
Hence, there is a total of 26 degrees of freedom.

As detailed above, body parts are described by one
or several ellipsoids: The feet and the thighs are de-
scribed by two ellipsoids, the torso is described by three
ellipsoids, and all the other body parts are described
by a single ellipsoid, hence there are 21 ellipsoids, e.g.,
Figure 3. The body parts are denoted by Qp, 1 ≤ p ≤ P ,
where, for convenientce, Q1 corresponds to the common
root body part.

2.3 Articulated implicit surfaces

In addition to using a collection of kinematically linked
ellipsoids, we will fuse them in order to define a smooth
surface S over the entire body. This surface will be
described by the implicit equation f(y) = C with C = 1.
The contribution of an ellipsoid Qp is defined by:

fp(y) = exp

(
−d2M(y,xp)

ν2p

)
(8)

where dM is the Mahalanobis distance from y to the
ellipsoid defined by eq. (6), the point xp lies onto the

Fig. 3. From left to right: The set of 21 ellipsoids used to
model 14 body parts with 11 joints and 2 rotations per
joint. The implicit surface defined as a blending of these
ellipsoids. A set of 3-D “surface” observations (points and
normals) and the articulated implicit surface that has been
fitted to these observations.

ellipsoid, and ν2p is a parameter that tunes the spatial
influence of the ellipsoid.

An implicit surface is defined as a level set of the
following implicit function which is the fusion (or blend-
ing) of P ellipsoids verifying:

f(y) =

P∑
p=1

fp(y) (9)

The class of implicit surfaces defined as above, i.e., y ∈
S ⇔ f(y) = C, has successfully been used in computer
graphics and in computer vision in conjunction with the
algebraic distance [12] and with the pseudo-Euclidean
distance [6]. Within this paper we extend this concept to
the distance defined above. As it will be detailed below,
this is well suited to cast the problem of implicit surface
fitting into the framework of maximum likelihood in the
presence of outliers.

In order to track articulated objects, the task at hand
consists of fitting the articulated implicit surface just
described to a set of observations. For this purpose,
we first define a distance from a set of observations
to the implicit surface. We have to solve the equation
f(y) = 1, where y is, as before, an observed 3-D point.
One may notice that the first order Taylor expansion of
ln a at a = 1 is: ln a = a − 1 + O(a2). We retain the
following approximation of the distance from a set of I
observations to the articulated implicit surface formed
by P ellipsoids and parameterized by the kinematic
variables Λ:

F (Λ) = −ν2
I∑

i=1

ln

P∑
p=1

exp

(
−
d2ip
ν2

)
(10)

where:

d2ip = (yi − xip(Λ,ni))
⊤Σp

−1(yi − xip(Λ,ni))

For convenience, we set ν = ν1 = . . . = νP . The notation
xip means that the 3-D point x lies on ellipsoid p and is
associated with observation i. It is worthwhile to notice
that, whenever a set of observations is closed to one
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of the ellipsoids, the distance function is strictly equal
to the sum of Mahalanobis distances from each such
observation to the ellipsoid.

2.4 Probabilistic implicit surfaces

In this section we introduce a probabilistic interpretation
of eq. (10). For this purpose we denote by zi a random
variable that assigns an observation i to an ellipsoid
p, namely the notation zi = p means that the ith ob-
servation is assigned to the pth ellipsoid. There are as
many hidden variables zi as observations: i ∈ {1, . . . , I}.
The set of all the hidden variables is denoted by Z =
{z1, . . . , zI}.

The likelihood of an observed 3-D point, given its
assignment to an ellipsoid and given an observed 3-D
normal, is drawn from a Gaussian distribution:

P (yi|zi = p,ni) = N (yi|xip(Λ,ni),Σp) (11)

In practice the data are corrupted by noise and by errors
and therefore there are observations which should not be
assigned to an ellipsoid. For this reason we introduce an
outlier class denoted by P + 1, and we assume that the
likelihood of an observation given that is classified as an
outlier is a uniform distribution over the volume V of
the working space:

P (yi|zi = P + 1,ni) = U(yi|V, 0) =
1

V
(12)

Therefore, one can write the likelihood of an observation
as a mixture of P Gaussian components and one uniform
component:

P (yi|ni) =

P+1∑
p=1

πpP (yi|zi = p,ni) (13)

The notation:
πp = P (zi = p|ni) (14)

denotes the priors, the proportions, or the mixing param-
eters, and they obey the obvious constraint

∑P+1
p=1 πp = 1.

Notice that this prior probability depends on the ob-
served vector ni. In this paper we do not treat these
observed vectors as random variables. By assuming in-
dependent and identically distributed observations one
can write the joint likelihood of all the observations as:

P (Y1, . . . ,YI) = P (y1,n1, . . . ,yI ,nI) =

I∏
i=1

P (yi|ni)P (ni)

Using Bayes’ formula and the equations above, the neg-
ative log-likelihood writes:

− lnPΛ(Y1, . . . ,YI) =

−
I∑

i=1

ln

(
P∑

p=1

πpN (yi|xip(Λ,ni),Σp)

+ πP+1U(yi|V, 0)

)
(15)

Notice that there is a strong analogy between eqs. (10)
and (15): the former is a distance between a set of I
observations and an articulated implicit surface while
the latter is the joint likelihood of the same observation
set, where the likelihood is a mixture of P normal
distributions plus a uniform distribution that captures
the bad observations. This analogy will be exploited in
the next section in order to cast the estimation of the
kinematic parameters in the framework of maximum
likelihood with hidden variables via the EM algorithm.

3 ROBUST TRACKING WITH THE EM ALGO-
RITHM

Because of the presence of the hidden variables, Z =
{z1, . . . , zI}, the maximum-likelihood estimation prob-
lem, i.e., eq. (15) does not have a simple solution. The
most convenient way to maximize the likelihood of a
mixture of distributions is to use the EM algorithm.
The latter has been thoroughly studied in the context of
data clustering [7]. In this paper we formally derived
an expectation-maximization scheme in the particular
case of robustly fitting an implicit surface to a set of 3-D
observations. It is worthwhile to notice that the formulae
below are valid independently of the distance function
being used, i.e., Figure 1.

First we derive the posterior class probabilities condi-
tioned by the observations, namely:

P (zi = p|yi,ni) =
P (zi = p,yi,ni)

P (yi,ni)

We denote these posteriors by tip and with the notations
introduced in the prevous section we obviously obtain:

tip =
πpP (yi|zi = p,ni)

P (yi|ni)
(16)

Second we consider the joint probability of the set of
observations Y = {Y1, . . . ,YI} and of their assignments
Z which yield the following expression:

P (Y,Z) =

I∏
i=1

P+1∏
p=1

(
P (yi|zi = p,ni)P (zi = p|ni)

)δp(zi)
P (ni)

with the following definition for the function δp(zi):

δp(zi) =

{
1 if zi = p
0 otherwise

Third we derive the expression of the conditional expec-
tation of the log-likelihood taken over Z , which in this
case yields:

E[lnP (Y,Z)|Y] =
I∑

i=1

P+1∑
p=1

E[δp(zi)|Y](lnP (yi|zi = p,ni)

+ lnπp) + (P + 1)

I∑
i=1

lnP (ni)
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One may notice that:

E[δp(zi)|Y] =

P+1∑
p=1

δp(zi = p)P (zi = p|yi,ni) = tip

By using the expressions of the normal and uniform
distributions, and by grouping constant terms we obtain:

E[lnP (Y,Z)|Y] =

− 1

2

I∑
i=1

(
P∑

p=1

tip
(
(yi − xip)

⊤Σp
−1(yi − xip)

+ ln detΣp − lnπp

)
+ tiP+1 lnπP+1

)
+ const(17)

The maximization of eq. (17) (or equivalently the
minimization of its negative) will be carried out via
the EM algortihm (expectation-maximization). There are,
however three notable differences between the standard
EM for Gaussian mixtures [1] and our formulation:

• We added a uniform-noise component to the mixture.
The role of this component is to “capture” outliers
and hence to avoid that they influence the estima-
tion of the model parameters;

• The means of the Gaussian components, xip are
parameterized by the kinematic parameters that
control the articulated motion of each ellipsoid;
This has an important consequence because the M-
step of the algorithm will incorporate a non-linear
minimization procedure over the kinematic joints.

• At the start of the algorithm each observation is
associated with all the ellipsoids. As the algorithm
proceeds, each observation is eventually associated
with one of the ellipsoids. Due to occlusions, miss-
ing data, etc., there may be ellipsoids with no asso-
ciated observation. Therefore, there is a risk that the
corresponding covariance becomes infinitely small.
To overcome this problem we use a unique covariance
matrix common to all the densities in the mixture.

Since we formally derived eq. (17), the EM algorithm
outlined below guarantees likelihood maximization. To
summarize, the advantages of this formulation are (i) fast
convergence properties of EM and (ii) the fact that it
minimizes the negative log-likelihood given by eqs. (15) and
(17). In practice, the following EM procedure can be used
for robust tracking of an articulated implicit surface:

1) Initialization. Compute the locations of the ellip-
soid points x

(q)
ip from the current kinematic pa-

rameters Λ(q) using eq. (5). Similarly, initialize the
covariance matrix Σ(q) common to all the ellip-
soids. Initialize the priors, or the mixing parameters
π
(q)
1 = . . . = π

(q)
P+1 = 1/(P + 1);

2) E step. Evaluate the posterior probabilities t
(q)
ip us-

ing the current parameter values, through eq. (16);

3) M step. Estimate new values for the kinematic
parameters Λ(q+1):

argmin
Λ

1

2

I∑
i=1

P∑
p=1

t
(q)
ip (yi − xip(Λ))⊤Σ(q)−1

(yi − xip(Λ))

Update the covariance matrix and the priors:

Σ(q+1) =

1∑P
p=1 Tp

I∑
i=1

P∑
p=1

t
(q)
ip (yi − xip(Λ

(q+1)))

(yi − xip(Λ
(q+1)))⊤

π(q+1)
p =

1

I

I∑
i=1

t
(q)
ip

4) Maximum likelihood. Evaluate the log-likelihood,
i.e., eq. (15) and check for convergence.

4 EXPERIMENTAL RESULTS

The tracking algorithm described in the previous section
is not tight to any particular method for extracting the
3-D data. In practice we used 3-D points and normals
that lie on the visual shape [8]. Notice that the visual-
shape algorithm does not require perfect silhouettes
and provides as output a sparse set of 3-D points and
normals, not a 3-D mesh. The visual-shape method uses
multiple-view epipolar geometry in conjunction with the
assumption that the object’s surface is locally continuous
and twice differentiable (see [8] for details).

4.1 Experiments with simulated data

We used an animation package to build a human body,
to simulate various human motions, and to render image
silhouettes. The simulator uses its own shape represen-
tation, that is different than ours, but it allows the user
to define her/his own kinematic model. Therefore we
used the same kinematic model with the same number
of degrees of freedom as the one described in section 2.2.
Nevertheless, we have not attempted to finely tune the
shape parameters of our model to the simulated data.
We simulated a setup composed of seven calibrated
cameras. Sequences of image silhouettes were generated
from the 3-D model and rendered with the cameras’
parameters. We computed 3-D points and normals from
these silhouettes and then we applied our method to
these data sets. The articulated-motion parameters were
recovered using our tracker. In order to assess the merits
of the data-to-model fitting process, we added 20%
of outliers uniformly distributed in the volume of the
working space. These simulations allowed us to (i) assess
the quality of the tracker with respect to ground-truth
joint trajectories, (ii) analyse the behavior of the method
in the presence of various perturbations that alter the
quality of the data, (iii) quantify the merit of using both
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Fig. 4. The error between simulated angle values and
estimated ones (measured in radians), from left ot right:
Ground-truth and measured trajectories over 100 frames.
Average angle error as a function of silhouette noise for
points and for points and normals. Average angle error as
a function of frame rate. Average angle error as a function
of the number of observations being used.

3-D points and normals instead of using only points,
and (iv) determine the optimal number of observations
needed for reliable estimation of articulated motion.

We simulated a running sequence that involves both
kinematic and free-motion parameters. The graphs of
Figure 4 illustrate the average error between the simu-
lated angle values and their estimated values (measured
in radians) for the kinematic parameters but not for
the free-motion parameters. The first graph compares
the ground-truth (simulated) joint trajectories of the left
knee and of the right elbow (dashed curve) with the
trajectories estimated with our method (solid curve) over
100 frames. The second graph illustrates the behavior
of the method in the presence of silhouette noise. The
results of using both 3-D points and normals (dashed
curve) are plotted against the results obtained using 3-
D points and the algebraic distance (solid line). The
relative large error corresponds to the fact that the shape
model used by the animation package is not the same
as our shape model. Hence, there is a systematic offset
between the ground-truth kinematic parameters and the
estimated parameters.

The third graph shows the average angle error as
a function of the number of frames per second. The
last graph shows the influence of the number of ob-
servations, where the latter varies from 50 to 550. The
average angle error drops as the number of observations
increases and our method (dashed) performs better than
using 3-D points alone (solid). From all these experi-
ments one may conclude that tracking is improved when
both points and normals are used instead of just points.

4.2 Experiments with multiple-video data

The experimental data that we used for validating the
human motion tracker was gathered with six calibrated
and finely synchronized cameras. Each camera delivers
780×580 color images at 28 frames per second with
a synchronization accuracy within 1 mili-second. The
figures below show these image sequences sampled at
14 frames per second.

We applied articulated human motion tracking to
two multiple-image sequences, the taekwendo sequence
shown on Figure 5 and the leaning sequence shown of
Figure 7. The first data set is composed of 6×700 frames
while the second one is composed of 6×200 frames. We
used the same body-part dimensions for the two char-
acters. One may notice that the silhouettes have holes
and missing pieces, which results in the presence of 3-D
outliers. The top row in Figure 6 shows the 3-D points
and normals that were reconstructed from the imperfect
silhouettes; The middle row shows the articulated im-
plicit surface resulting from application of our method,
while the bottom row shows the same surface resulting
from application of our method in conjunction with the
algebraic distance. Obviously, in this last case, there is a
discrepancy between the data and the fitted model: the
recovered motion of the right feet and the right thigh
are incorrect. Similarly, figure 7 shows a sample of the
leaning sequence, the corresponding silhouettes, and the
fitted model using the proposed method.

5 CONCLUSIONS

In this paper we described a method for tracking ar-
ticulated motion with several cameras. We introduced
a new metric that measures the discrepancy between
observations (composed of both 3-D points and 3-D
normals) and an articulated implicit surface. This metric
is more powerful than previously used distance func-
tions because it allows for less ambiguous associations
between the data and the model. Moreover, it is well
suited when one deals with either visual-hull or visual-
shape representations of the data.

We cast the data-to-model fitting process into a ro-
bust probabilistic framework. We showed that there is
a strong similarity between the mathematical represen-
tation of an implicit surface and a mixture of Gaus-
sian distributions. We explored this similarity and we
showed that the articulated motion tracking problem
can be formulated as maximum likelihood with hidden
variables. We added a uniform component to the mixture
to account for outliers. We formally derived an algorithm
that computes ML estimates for the motion parame-
ters within the framework of expectation-maximization
(EM). Therefore, the tracker may well be interpreted
in the framework of robust data clustering, where the
observations are assigned to one of the ellipsoids, or to
an outlier component.
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Fig. 5. The taekwendo sequence. The images and the associated silhouettes are from the first and fourth cameras.
Imperfect silhouettes generate outlier data which are properly handled by our method.

There are many questions that remain open and that
we plan to investigate in the near future: The algorithm
may be trapped in local minima if it is not properly ini-
tialized; There are some similarities between our robust
tracker and the use of M-estimators and these similarities
diserve further investigation. There are other interesting
issues such as: A thorough and quantitative evaluation
of the results and their comparison with marker-based
motion capture systems and the possibility to capture
several articulated motions at once.
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Fig. 6. The 3-D visual hull (top), the implicit surface fitted to the taekwendo sequence using points and normals
(middle), and using points alone (bottom).

Fig. 7. The leaning sequence: Images and silhouettes associated with the first camera, and the fitted implicit surface.
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