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80 million tiny images: a large dataset for
non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

Abstract— With the advent of the Internet, billions of images on really large datasets means that the chosen image represe
are now freely available online and constitute a dense samply  tation is often relatively simple, e.g. color [17], waveldi2]

of the visual world. Using a variety of non-parametric methals, or cryde segmentations [9]. This enables very fast refriefa
we explore this world with the aid of a large dataset of 79,30217 images similar to the query, for example the Cortina system

images collected from the Web. Motivated by psychophysical : . S
results showing the remarkable tolerance of the human visua [33] demonstrates real-time retrieval from a 10 million gea

system to degradations in image resolution, the images in ¢h collection, using a combination of texture and edge histogr
dataset are stored as 32x 32 color images. Each image is features. See Datta et al. for a survey of such methods [12].
loosely labeled with one of the 75,062 non-abstract nouns in  The key question that we address in this paper is: How big
English, as listed in the Wordnet lexical database. Hence # dpes the image dataset need to be to robustly perform remgni
image database gives a comprehensive coverage of all object,qing simple nearest-neighbor schemes? In fact, it is anchat

categories and scenes. The semantic information from Wordst the size of the dataset required is at all practical sincestage an
can be used in conjunction with nearest-neighbor methods to q P

perform object classification over a range of semantic level €ffectively infinite number of possible images the visuateyn

minimizing the effects of labeling noise. For certain classs that can be confronted with. What gives us hope is that the visual

are particularly prevalent in the dataset, such as people, @ are  world is very regular in that real world pictures occupy omly

able to demonstrate a recognition performance comparableat relatively small portion of the space of possible images.

class-specific Viola-Jones style detectors. Studying the space occupied by natural images is hard due to

Index Terms— Object recognition, tiny images, large datasets, the high dimensionality of the images. One way of simplifyin

Internet images, nearest-neighbor methods. this task is by lowering the resolution of the images. When we
look at the images in Fig. 6, we can recognize the scene and its
constituent objects. Interestingly though, these pistinave only

l. INTRODUCTION 32 x 32 color pixels (the entire image is just a vector 3172

With overwhelming amounts of data, many problems can t_giémensions withs bits per dime_nsion), yet at this resoll_Jtio_n, the
solved without the need for sophisticated algorithms. Omere IMages already seem to contain most of the relevant infoomat
ple in the textual domain is Google’s “Did you mean?” tool athi "€eded to support reliable recognition. _ _
corrects errors in search queries, not through a complesingar AN important benefit of working with tiny images is that it
of the query but by memorizing billions of query-answer pair?®comes practical to store and manipulate datasets orders o
and suggesting the one closest to the users query. In thiar,paf@gnitude bigger than those typically used in computeruisi
we explore a visual analog to this tool by using a large datade®rrespondingly, we introduce, and make available to resess,
of 79 million images and nearest-neighbor matching schemes@ dataset of79 million unique 32 x 32 color images gathered

When very many images are available, simple image indexifiem the In'Fernet. Each image is loosely labeled with one of
techniques can be used to retrieve images with similar obje062 English nouns, so the dataset covers a very largeenshb
arrangements to the query image. If we have a big enou&ﬁ‘ual object classes. This is in contrast to existing adgawhich

database then we can find, with high probability, imagesatigu Provide a sparse selection of object classes. In this papewiil
close to a query image, containing similar scenes with a-lm”study the impact on having very large datasets in combinatio

objects arranged in similar spatial configurations. If theages With simple techniques for recognizing several common aibje
in the retrieval set are partially labeled, then we can pyafm and scene classes at different levels of categorization.

the labels to the query image, so performing classification. The paper is divided in three parts. In Section 2 we establish

Nearest-neighbor methods have been used in a variety of cdfie minimal resolution required for scene and object reitiogn

puter vision problems, primarily for interest point matedi[5], In Sections 3 and 4 we introduce our dataset®mmillion images

[19], [28]. They have also been used for global image mag:hiﬁmd explore some of its_ _prope_rties. In _Section 5 we att_empt
(e.g. estimation of human pose [36]), character recognili, scene and object recognition using a variety of nearesgfber

and object recognition [5], [34]. A number of recent papeageh methods. V_\/e_ measure _performance at a _numper of semantic
used large datasets of images in conjunction with purely- nol§vels, obtaining impressive results for certain objeesses.

parametric methods for computer vision and graphics agipdios
[22], [39]. II. LOw DIMENSIONAL IMAGE REPRESENTATIONS
Finding images within large collections is the focus of the

; . : . . A b f h ist f ting thist of
content based image retrieval (CBIR) community. Their easjzh number of approaches exist for computing tist of a

image, a global low-dimensional representation that captthe
The authors are with the Computer Science and Artificiallligence Lab scene and its C(_)nstltuent ObJeCtS. [18], [32], [24]. We Sh.bm t.

(CSAIL) at the Massachusetts Institute of Technology. very low-resolution 3232 color images can be used in this
Email: {torralba,fergus,billf @csail.mit.edu role, containing enough information for scene recognitioiject
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Fig. 1. a) Human performance on scene recognition as a &mafi resolution. The green and black curves show the pedoce on color and gray-scale
images respectively. For col@2 x 32 images the performance only drops B% relative to full resolution, despite having 1/64th of thegds. b) Car
detection task on the PASCAL 2006 test dataset. The colootsl show the performance of four human subjects classiftimgversions of the test data.
The ROC curves of the best vision algorithms (running on ffedlolution images) are shown for comparison. All lie beltw performance of humans on
the tiny images, which rely on none of the high-resolutioesexploited by the computer vision algorithms. ¢) Humamsaarectly recognize and segment
objects at very low resolutions, even when the objects itaigm can not be recognized (d).

detection and segmentation (even when the objects occgpyjuB. Object recognition

few pixels in the image). Recently, the PASCAL object recognition challenge evadat

a large number of algorithms in a detection task for sevesgdab

categories [13]. Fig. 1(b) shows the performances (ROCax)rof
A. Scene recognition the best performing algorithms in the car classificatiok ta®.

is there a car present in the image?). These algorithmsresqui

Studies on face perception [1], [21] have shown that d6lyx  access to relatively high resolution images. We studiedatikity
16 pixels are needed for robust face recognition. This renideka of human participants to perform the same detection taskding
performance is also found in a scene recognition task [31]. very low-resolution images. Human participants were shown
We evaluate the scene recognition performance of humanscator images from the test set scaled to hagepixels on the

the image resolution is decreased. We used a datagétsufenes smallest axis, preserving their aspect ratio. Fig. 1(bshsome
that was taken from [14], [24], [32]. Each image was shown axamples of tiny PASCAL images. Each participant classified
one of 5 possible resolutions?, 162, 322, 64> and 2562 pixels) between200 and400 images selected randomly. Fig. 1(b) shows
and the participant task was to assign the low-resolutictupe the performances of four human observers that participated
to one of the 15 different scene categories (bedroom, saehurbthe experiment. Although around %0of cars are missed, the
industrial, kitchen, living room, coast, forest, highwagside performance is still very good, significantly outperforigithe
city, mountain, open country, street, tall buildings, afiand computer vision algorithms using full resolution imagesisT
store}. Fig. 1(a) shows human performance on this task whesmows that even though the images are very small, they contai
presented with grayscale and color imagekvarying resolution. sufficient information for accurate recognition.
For grayscale images, humans need aroid 64 pixels. When Fig. 1(c) shows some representat#? images segmented by
the images are in color, humans need offyx 32 pixels to human subjects. Despite the low resolution, sufficient rimfo-
achieve more than 80% recognition rate. Below this resmiutie tion remains for reliable segmentation (more than 80% of the
performance rapidly decreases. Therefore, humans neeedrosegmented objects are correctly recognized), althoughuather
3000 dimensions of either color or grayscale data to perfordecrease in resolution dramatically affects segmentatienfor-
this task. In the next section we show ti3atx 32 color images mance. Fig. 1(d) shows crops of some of the smallest objects
also preserve a great amount of local information and thatymacorrectly recognized when shown within the scene. Note ithat
objects can still be recognized even when they occupy justva fisolation, the objects cannot be identified since the réigolus
pixels. so low, hence the recognition of these objects within thasde

almost entirely based on context.

1Experimental details: 6 participants classified 585 cotoages as be- Clearly, not all visual tasks can be solved using such low

longing to one of the 15 scene categories from [14], [24],][3thages resolution images. But the experiments in this section esgthat
were presented at 5 possible resolutiond, (87, 322, 64%> and 256). Each 32 x 32 color images are the minimum viable size for recognition
image was shown at 5 possible sizes using bicubic inteipolab reduce tgsks — the focus of the paper.
pixelation effects which impair recognition. Interpotati was applied to the
low-resolution image with 8 bits per pixel and color chandetages were
not repeated across conditions. 6 additional particippetéormed the same I11. A LARGE DATASET OF32 x 32 IMAGES
experiment but with gray scale images. . . . . .
2100% recognition rate can not be achieved in this dataset as thare As discussed in the previous sectiod®x 32 color images con-

perfect separation between the 15 categories. tain the information needed to perform a number of challeggi



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

@
o

3000 T T T T T T B gtavista el'lalty
Total. uni 70\ = ask physical \
otal, unique, c flickr > / abstract
. ! n
» 2500 | non-uniform images: ° A e e entity, entity
-8 79,302,01 7 g 60 Il webshots \ 15
g & subgtance 51object thing
2000
> Total number of words: 50 A = cological
5 0| 7% 0 Jany e g8 g
8 1500 material [00"‘90“":/ water
S Mean # images per word:| p) 0 Recall?i?‘nage rze(x)gk) PPl B g 'y ] o
€ 1,056 00 52 38 54 stream 39 g pai
S 1000 / \\ oo g/w} / \\lam ‘
z 80 s ) _ skucture ared digtric\ areq pers animal P river
c instrumentality 53 45 59 41 39 A4, 71 70 87
500 o xozvelng a{\\u vasgular
20 JJ o “é’% & B P 3‘ i
6 . . . . . a&_) 40 J J clothing T"g%?%g" € créator communlcarr ‘ %1#
0 1000 2000 3000 \nslrumsgt Vﬁ;"de 37co‘|:4try . jl/(g:igr & vertebrate herga p;;' spermatophyte
Images per keyword 205 70 12 77 76 18 whebleg Municipally  sgat artis performer \
vehicle mammal bird h t
c) Wordnet level d) % S @

Fig. 2. Statistics of our database of tiny images. a) A histogof images per keyword collected. Around’®f keywords have very few images. b)
Performance of the search various engines (evaluated alabeled ground truth). c) Accuracy of the labels attacheéach image as a function of the
depth in the Wordnet tree (deeper corresponds to more speaifids). d) Accuracy of labeling for different nodes of ator of the Wordnet tree.

recognition tasks. One important advantage of very lowlutism were gatheret The dataset fits onto a single hard disk, occupying
images is that it becomes practical to work with millions o760Gb in total. The dataset may be downloaded frio p:
images. In this section we will describe a dataseti@f tiny \\people.csail.mt.edu\torral ba\tinyi mages.
images. Fig. 2(a) shows a histogram of the number of images per class.
Around 10% of the query words are obscure so no images can be

images spread over a few different classes: the largesiablei found on the Internet, but for the majority of words a readdma

dataset being one with 256 classes[20]. Other fields, such %E“bef of images are found. We place an upper limis@i0

speech, routinely use® data points for training, since they havelmageslword to keep the total collection time to a reasankeviel.

found that large training sets are vital for achieving lowoes Although the gathered dataset is very large, it is not necigs

rates in testing [2]. As the visual world is far more compleart representative of all natural images. Images on the Intevaee

the aural one, it would seem natural to use very large set %‘F'r own biases (e.g. objects tend to be centered and fane

training images. Motivated by this, and the ability of hursaa in the image). However, web images define an interestingaisu

recognize objects and scenes3inx 32 images, we have collected world for developing computer vision applications [16]/13
a database of nearlyo® such images.

Current experiments in object recognition typically ugé-10*

B. Characterization of labeling noise

Despite a number of recent efforts for image annotation,[35]
[43], collecting images from the web provides a powerful mec
anism to build large image databases orders of magnituderlar
than is possible with manual methods. However, the images
A. Collection procedure gathered by the engines are loosely labeled in that the lvisua
content is often unrelated to the query word (for example, se
. . ) . Fig. 10). In this section we characterize the noise presetité
We use Wordr_let [15] I|kely to have any kind of visual CONSiSyypels. Among other factors, the accuracy of the labels ipe
tency. We do this by extra(?tlng all non-abstract nouns f_rhm Lthe engine used, and the specificity of the term used for qugery
databa_s_e, 75,062 of the_m in total. In contrast tg existingatb |, Fig. 2(b) we quantify the labeling noise using 3526 hand-
recognition datasets which use a sparse selection of slabge |5pajed images selected by randomly sampling images otteof t
cgllectlng images for all nouns, we have a dense coveragé of g.o; o5 images returned by each online search engine fdr eac
visual forms. word. A recall-precision curve is plotted for each searcie in
We selected 7 independent image search engines: Altavistdaich the horizontal axis represents the rank in which thagen
Ask, Flickr, Cydral, Google, Picsearch and Webshots (sthave was returned and the vertical axis is the percentage of isntge
outputs correlated with these). We automatically downladid corresponded to the query. Accuracy drops after the 100dgém
the images provided by each engine for all 75,846 non-atistrand then stabilizes at around%4correct on average.
nouns. Running oves months, this method gathered 97,245,098 , ) ) o ) o
. . . . . . Further comments: (i) Wordnet is a lexical dictionary, megrthat it gives
|mages n .tOIal' Once. intra-word duplicates .and unlformgm the semantic relations between words in addition to theriéion usually
(images with zero variance) are removed, this number iscettiu given in a dictionary.; (i) The tiny database is not just abobjects. It is
to 79,302,017 images from 75,062 words (arourfd af the about everything that can be indexed with Wordr]et and thikidtes scene-
keywords had no images). Storing this number of images at flfl.2, Z528es SO 20 Lot TR, T e opjects
resolution is impractical on the standard hardware useduin O;ng Abyssinian cats.; (jii) At present we do not remove imterd duplicates
experiments so we down-sampled the image82tx 32 as they since identifying them in our dataset is non-trivial.
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The accuracy of online searchers also varies depending the first 19 principal components of th@.9 x 107 images (9
which terms were used for the query. Fig. 2(c) shows that tl@the maximum number of components per image such that the
noise varies for different levels of the Wordnet tree, baimgre entire index structure can be held in memory). TH¢? property
accurate when getting close to the leaves of the tree. Fi). 20f the power spectrum of natural images means that the distan
shows a subset of the Wordnet tree used to build our datdmet (petween two images can be approximated using few principal
full tree contains>40,000 leaves). The number and color at eactomponents (alternative representations using waveléipuld
node corresponds to the percentage of images correctlgrassi also be used in place of the PCA representation). We compute
to the leaves of each node. The more specific are the terms, tine approximate distancBZ,= 2 — 22521 v1(n)va(n), where
more likely are the images to correspond to the query. v;(n) is then™ principal component coefficient for th& image

Various methods exist for cleaning up the data by removingormalized so tha}”, v;(n)> = 1), and C' is the number of
images visually unrelated to the query word. Berg and Fbrsytomponents used to approximate the distance. We dsfines
[7] have shown a variety of effective methods for doing thithw the set of N exact nearest neighbors antl; as the set of\/
images of animals gathered from the web. Berg et al. [6] sdoweapproximate nearest neighbors.
how text and visual cues could be used to cluster faces ofl@eop Fig. 3(a) shows the probability that an image, of indefrom
from cluttered news feeds. Fergus et al. [16] have shown $ke uhe setSy is also insideS,;: P(i € Syli € Sy). The plot
of a variety of approaches for improving Internet image sear corresponds taVv = 50. For the experiments in this section, we
engines. Li et al. [26] show further approaches to decredsivel used 200 images randomly sampled from the datasets and for
noise. However, due to the extreme size of our dataset, iblis which we computed the exact distances to allti9e< 107 images.
practical to employ these methods. In Section 5, we show thaany images on the web appear multiple times. For the plots in
reasonable recognition performances can be achievedteléspi these figures, we have removed manually all the image paits th
high Iabeling noise. were duplicates_

Fig. 3(b) shows the number of approximate neighbarg that
need to be considered as a function of the desired numbeof ex

Despite32 x 32 being very low resolution, each image lives imeighbors {V) in order to have a probability of.8 of finding
a space oB072 dimensions. This is a very large space — if eachv exact neighbors. As the dataset becomes larger, we need to
dimension has bits, there are a total afo”® possible images. collect more approximate nearest neighbors in order to tiawe
This is a huge number, especially if we consider that a humandame probability of including the firs¥ exact neighbors.

a 100 years only gets to see'"' frames (at 30 frames/second). For the experiments in this paper, we use the following proce
However, natural images only correspond to a tiny fractibthis  dure. First, we find the closest 16,000 images per image. From
space (most of the images correspond to white noise), ared itFig. 3(a) we know that more than B0of the exact neighbors
natural to investigate the size of that fraction. A numbestafiies will be part of this approximate neighbor set. Then, withite t
[10], [25] have been devoted to characterize the space ofalat set of 16,000 images, we compute the exact distances todgrovi
images by studying the statistics of small image patcheweier, the final rankings of neighbors. Exhaustive search, usedlin a
low-resolution scenes are quite different to patches etdtaby our experiments, take30 seconds per image using the principle
randomly cropping small patches from images. components method. This can be dramatically improved tirou

Given a similarity measure, the question that we want to @nswhe use of a kd-tree t0.3 seconds per query, if fast retrieval
is: how many images are needed so that, for any given quei¥rformance is needed. The memory overhead of the kd-tree
image, we can always find a neighbor with the same class labghgans that only17 of the 19 PCA components can be used.
Note that we are concerned solely with recognition perfaiwea Devising efficient indexing methods for large image databas
not with issues of intrinsic dimensionality or the like aplaxed [30], [19], [40] is a very important topic of active researitt it
in other studies of large collection of image patches [1B][ s not the focus of this paper.

In this section, we explore how the probability of finding ea  Fig. 4 shows several plots measuring various propertiebes t
with a similar label nearby increases with the size of th@siett sjze of the dataset is increased. The plots use the normalize

In turn, this tells us how big the dataset needs to be to givecgyrelation p between images (note thddZ, = 2(1 — p)). In

IV. STATISTICS OF VERY LOW RESOLUTION IMAGES

robust recognition performance. Fig. 4(a), we show the probability that the nearest neightas
S ) ) ) a normalized correlation exceeding a certain value. Eachecu
A. Distribution of ne|ghb0rs as a function of dataset size Corresponds to a different dataset size. F|g 4(b) showstaake

As a first step, we use the sum of squared differences (SSEction through Fig. 4(a) at the correlatian8 and 0.9, plotting
to compare two images. We will define later other similarityhe probability of finding a neighbor as the number of images i
measures that incorporate invariances to translationssealthg. the dataset grows. From Fig. 4(b) we see that a third of thgésia
The SSD between two imagés and I (normalized to have zero in the dataset are expected to have a neighbor with cowelati
mean and unit norr)is: > 0.8.
2 2 In Fig. 4(c) we explore how the plots shown in Fig. 4(a) & (b)
Dssa= IZ (I(z,9,¢) = B2, ¢)) (1) relate to recognition performance. Three human subjebiléd
e pairs of images as belonging to the same visual class or not
Computing similarities among.9 x 107 images is computa- (pairs of images that correspond to duplicate images areved).
tionally expensive. To improve speed, we index the imagé@syus The plot shows the probability that two images are labeled as
4Normalization of each image is performed by transformirg ithage into belonging to the same clas_s as a function of |mage_ .Slm”arlty
a vector concatenating the three color channels. The nizatieh does not AS the normalized correlation exceedss, the probability of
change image color, only the overall luminance. belonging to the same class grows rapidly. Hence a simple K-
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Each curve represents a different human labeler.

nearest-neighbor approach might be effective with our size o We allow for additional distortion in the images by shifting

dataset. We will explore this further in Section V. every pixel individually within a5 by 5 window to give

minimum SSD. This registration can be performed with

more complex representations than pixels (e.g., Berg and

Malik [5]). In our case, the minimum can be found by
We can improve recognition performance using better measur ~ exhaustive evaluation of all shifts, only possible due te th

of image similarity. We now introduce two additional sinmitg low resolution of the images.

measures between a pair of normalized imagesnd I», that

incorporate invariances to simple spatial transformation

B. Image similarity metrics

D= min > (I1(z,y,¢) — Io(x + Da,y + Dy, ))?

o In order to incorporate invariance to small translations, | Dy Sw S
scaling and image mirror, we define the similarity measure: o ©)
In order to get better matches, we initialize with the
D\%,arp: mein Z(Iﬂ:gy,c) —Tg[]g(:c7y7c)])2 2) vyarping parameters obtained after optimization @farp,
z,y,C _[2 = Tg[]g].

In this expression, we minimize the similarity by transferm Fig. 5 shows a pair of images being matched using the 3 metrics
ing I (horizontal mirror; translations and scaling up® and shows the resulting neighbor images transformed by the
pixel shifts) to give the minimum SSD. The transformatiooptimal parameters that minimize each similarity measitife

parameter® are optimized by gradient descent [29]. figure shows two candidate neighbors: one matching the ttarge
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Fig. 5. a) Image matching using distance metr@ssq Dwarp and Dspirr. Top row: after transforming each neighbor by the optimahsformation; the
sunglasses always results in a poor match. However, forahex@ample on the bottom row, the matched image approxintagepose of the target car. b)
Sibling sets from 79,302,017 images, found with distancérioseDssg and Dgpist. Dshise provides better matches thdbssg

Target 7,900 790,000 79,000,000

Fig. 6. As we increase the size of the dataset fidm to the 108 images, the quality of the retrieved set increases draaiigtitHowever, note that we need
to increase the size of the dataset logarithmically in otdenave an effect. These results are obtained ugigg: as a similarity measure between images.

semantic category and another one that corresponds to aywroeturns closer images at the semantic level. This observatill
match. For Dwarp and Dghirt We show the closest manipulatedbe quantified in Section V. Fig. 6 shows examples of query @sag
image to the targetDwarp lOOks for the best translation, scalingand sets of neighboring images, from our dataset of 79,302,0
and horizontal mirror of the candidate neighbor in order sich images, found usin@spj.
the target.Dghir further optimizes the warping provided Ywarp
by allowing pixels to move in order to minimize the distanciéhw
the target.

Fig. 5(b) shows two examples of query images and the retiev@- Wordnet voting scheme
neighbors gibling sej, out of 79,302,017 images, usitigssg and We now attempt to use our dataset for object and scene
Dshitr. FoOr speed we use the same low dimensional approximaticetognition. While an existing computer vision algorithmoutd
as described in the previous section by evaluatingsp and be adapted to work 082 x 32 images, we prefer to use a simple
Dshirt only on the first 16,000 candidates. This is a good indexingearest-neighbor scheme based on one of the distance snetric
scheme foDwarp, but it results in slightly decrease of performancéssq, Dwarp OF Dghirt. INstead of relying on the complexity of
for Dgnir Which would require more neighbors to be considerethe matching scheme, we let the data to do the work for us:
Despite this, both measures provide good matches, hyk the hope is that there will always be images close to a given

V. RECOGNITION
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Fig. 7. This figure shows two examples. (a) Query image. (B§tHi6 of 80 neighbors found usindgpir. () Ground truth Wordnet branch describing
the content of the query image at multiple semantic levely.Sub-tree formed by accumulating branches from all 80himigs. The number in each node
denotes the accumulated votes. The red branch shows the ndttiethe most votes. Note that this branch substantialleesywith the branch for vise and
for person in the first and second examples respectively.

query image with some semantic connection to it. The goal biftle use in classificatior.

this section is to show that the performance achieved caohmat Our classification scheme uses the Wordnet tree in the fellow

that of sophisticated algorithms which use much smallénittg ing way. Given a query image, the neighbors are found using

sets. some similarity measure (typicallpsni) . Each neighbor in turn
votes for its branch within the Wordnet tree. Votes from thére

An additional factor in our dataset is the labeling noisecdpe Sibling set are accumulated across a range of semanticsjevel
with this we propose a voting scheme based around the WordHéh the effects of the labeling noise being averaged outr ove
semantic hierarchy. Wordnet [15] provides semantic refestiips  many neighbors. Classification may be performed by assignin
between the 75,062 nouns for which we have collected imagéi¢ query image the label with the most votes at the desired
For simplicity, we reduce the initial graph-structurecatinships height (i.e. semantic level) within the tree, the number ofes
between words to a tree-structured one by taking the md@ting as a measure of confidence in the decision. In Fig. 7(a)
common meaning of each word. The result is a large semaatc twve show two examples of this procedure, showing how precise
whose nodes consist of the 75,062 nouns and their hypernyigssifications can be made despite significant labelingenand
with all the leaves being nouns Fig. 7(c) shows the uniquedtra spurious siblings. Using this scheme we now address theofask
of this tree belonging to the nouns “vise” and “chemist”. &th classifying images of people.
work making use of Wordnet includes Hoogs and Collins [23]
who use it to assist with image segmentation. While not using person detection
Wordnet explicitly, Barnard et al. [3] and Carbonetto et [8].

learn models using both textual and visual cues. In this experiment, our goal is to label an image as contginin

a person or not, a task with many applications on the web and
ewhere. A standard approach would be to use a face detecto

t this has the drawback that the face has to be large enough t
be detected, and must generally be facing the camera. Wigige t
limitations could be overcome by running multiple detest@ach
tuned to different view (e.g. profile faces, head and shas|de
torso), we adopt a different approach.

As many images on the web contain pictures of people, a large
fraction (23%) of the 79 million images in our dataset have people
in them. Thus for this class we are able to reliably find a highl
consistent set of neighbors, as shown in Fig. 8. Note thatt mos
of the neighbors match not just the category but also thetitota

If classification is performed at some intermediate sernantig size of the body in the image, which varies considerably i
level, for example using the noun “person”, we need not onlye examples.
consider images gathered from the Internet using “perddsihg To classify an image as containing people or not, we use

the Wordnet hierarchy tree, we can also draw on all imag@ss scheme introduced in Section V-A, collecting votes from

belonging to nouns whose hypernyms include “person” (for

example, “arithmetician”). Hence, we can massively inseethe  5The use of Wordnet tree in this manner implicitly assumes seanantic

number of images in our training set at higher semantic $evehnd visual consistency are tightly correlated. While thightbe the case for

Near the top of the tree, however, the nouns are so gen tain nouns (for example, “poodle” and “dachshund”)s inot clear how true
e . ’ . . . this is in general. To explore this issue, we constructedngeractive poster

(e.g. “object”) that the child images recruited in this manhave  ihat may be viewed aht t p: \ \ peopl e. csai | . ni t . edu\ t or r al bal

little visual consistency, so despite their extra numbeay lve of ti nyi mages.

Given the large number of classes in our dataset (75,0
and their highly specific nature, it is not practical or dakie
classify each of the classes separately. Instead, using/oheénet
hierarchy, we can perform classification at a variety ofedéht
semantic levels. So instead of just trying to recognize thenn
“yellowfin tuna”, we may also perform recognition at the leve
of “tuna” or “fish” or “animal”. This is in contrast to current
approaches to recognition that only consider a single, mignu
imposed, semantic meaning of an object or scene.
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Fig. 8. Some examples of test images belonging to the “pé&nsode of the Wordnet tree, organized according to body dgaeh pair shows the query
image and the 25 closest neighbors out76fmillion images usingDspist With 32 x 32 images. Note that the sibling sets contain people in sinpizses,
with similar clothing to the query images.
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Fig. 9. (a) Examples showing the fraction of the image ocedifiy the head. (b)—(d): ROC curves for people detection Igmatization) in images drawn
randomly from the dataset of 79 million as a function of (badhesize; (c) similarity metrics and (d) dataset size udingis.

the 80 nearest neighbors. Note that the Wordnet tree all@vs u?2) Evaluation using Altavista imageDur approach can also
make use of hundreds of other words that are also relatedb® used to improve the quality of Internet image search esgin
“person” (e.g. artist, politician, kid, taxi driver, etc.Jo evaluate We gathered 1018 images from Altavista image search usig th
performance, we used two different sets of test images. Tsie fikeyword “person”. Each image was classified using the agproa
consisted of a random sampling of images from the dataset. Tdescribed in Section V-A. The set of 1018 images was then
second consisted of images returned by Altavista using tieeyq re-ordered according to the confidence of each classifitatio
“person”. Fig. 10(a) shows the initial Altavista ranking while Fig. (bp
1) Evaluation using randomly drawn imaged:125 images shows the re-ordered set, showing a significant improveriment
were randomly drawn from the dataset of 79 million (Fig. @uality.
shows 6 of them, along with some of their sibling set). For To quantify the improvement in performance, the Altavista
evaluation purposes, any people within the 1125 images wemgages were manually annotated with bounding boxes arooyd a
manually segmenté&d people present. Out of the 1018 images, 544 contained people
Fig. 9(b) shows the classification performance as the size #iid of these, 173 images contained people occupying more tha
the person in the image varies. When the person is large in %@ of the image.
image, the performance is significantly better than whersit i Fig. 10 shows the precision-recall curves for the people de-
small. This occurs for two reasons: first, when the persoargel tection task. Fig. 10(c) shows the performance for all At
the picture become more constrained, and hence finding gqathges while Fig. 10(d) shows the performance on the subset
matches becomes easier. Second, the weak labels assauitited\where people occupy at least 20of the image. Note that the
each image in our dataset typically refer to the largestathje raw Altavista performance is the same irrespective of theques’
the image. Fig. 9(c)&(d) show precision-recall curves fifledent  sjze (in both plots, by % recall the precision is at the level
similarly measures and varying dataset size respectivélli,the  of chance). This illustrates the difference between inugxan
full 79 million images andDspi yielding the best performance. jmage using non visual vs. visual cues. Fig. 10 also shows the
6The images and segmentations are availablehat:p: / /| abel ne. .reSUItS Obtained when running a frontal face detector (aenQpyY
csail.mit.edul browselLabel Me/static_web_tinyimages_ implementation of Viola and Jones boosted cascade [27]).[41
testset. htm We run the face detector on the original high-resolutiongesa
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Fig. 10. (a) The first 70 images returned by Altavista whemgighe query “person” (out of 1018 total). (b) The first 70 ireagafter re-ordering using
our Wordnet voting scheme with the 79,000,000 tiny images Comparison of the performance of the initial Altavistaking with the re-ordered images
using the Wordnet voting scheme and also a Viola & Jones-$tghtal face detector. (c) shows the recall-precisiorvesifor all 1018 images gathered from
Altavista, and (d) shows curves for the subset of 173 imagesrevpeople occupy at least0of the image.

Note that the performance of our approach working3anx 32  “river”, “field” and “mountain” by counting the votes at the
images is comparable to that of the dedicated face detector anrresponding node of the Wordnet tree. Scene classific&io
high resolution images. For comparison, Fig. 10 also shdws tthe 32x32 images performs surprisingly well, exploiting targe,
results obtained when running the face detector on lowluden weakly labeled database.
images (we downsampled each image so that the smallestasxis h

32 pixels, we then upsampled the images again to the origir-! = iy
resolution using bicubic interpolation. The upsamplingrapion S Qe
was to allow the detector to have sufficient resolution to ble a | IR A s /"
to scan the image.). The performance of the OpenCV detecl m““’ e cof -
drops dramatically with low-resolution images. =0
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C. Person localization
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While the previous section was concerned with an obje
detection task, we now address the more challenging probl
of object localization. Even though the tiny image datasest iot
been labeled with the location of objects in the images, weusa
.the weakly labeled (Ie Only. a single label is provided ffl[:h} Fig. 12. Scene classification using the randomly drawn 1fh®2ige test set.
image) dataset to localize objects. Much the recent workojaa  Note that the classification is “mountain” vs all classesspre in the test set
recognition uses explicit models that labels regions ofgesa (which includes many kinds of objects), not “mountain” vselti”, “city”,
as being object/background. In contrast, we use the tin)gdma;fiverf]" Only-_Et”I‘Ch quadrant shows lsome ?Eammeggf h!i’%ciz\t;;ohnaggg

. . . ) . . or that particular scene category, along with an R cu =7,
_dataset to localize Wl_thout Iearn_mg an e>_(pI|c_|t object elodt IS image training set; red = 790,000 images: blue = 79,000,06Qes).
important to emphasize that this operation is performedhauit
manual labeling of images: all the information comes frora th

loose text label associated with each image. E. Automatic image annotation and dataset size

The idea is to extract multiple putative crops of the high ) . .
resolution query image (Fig. 11(a)~(c)). For each crop, egize Here we examine the cla55|f|c§t|on performance at a.varlety
it to 32 x 32 pixels and query the tiny image database to obtafﬁ semanﬂc levels across many d|ﬁereqt classes as weasere
it's siblings set (Fig. 11(d)). When a crop contains a pervoa the size of the database._ FOT evaluatlo_n we use the tesF set
expect the sibling set to also contain people. Hence, thet m§ 1125 randomly drawn tiny Images, W'th each image being

ully segmented and annotated with the objects and regioats t

prototypical crops should get have a higher number of vates hi To ai distinctive test set "
the person class. To reduce the number of crops that needCgg'POSE €ach image. 10 give a distinclive test set, we orey us

be evaluated, we first segment the image using normalized c'ﬁ?;ge? ft(;r Wh'Ch the.ta:getuopjectﬂ:s absfent (:r OCZUp'eS,ﬂle,
[11], producing around 10 segments (segmentation is pagdr 20 Ot,o V?A |mage| p|x$. S('j thSIng € vo_lng ree hbescn te n
on the high resolution image). Then, all possible combamesti ection v-A, we classine em using = 80 neighbors at a

of contiguous segments are considered, giving a set ofiwtatvariety of semantic levels. To simplify the presentatiorresfults,

crops for evaluation. Fig. 11 shows an example of this proced we collapsed the Wordnet tree by hand (which hadlevels)

Fig. 11(d) shows the best scoring bounding box for images: frodown to 3 levels (see Fig. 13 for the list of categories at each

: level).
the Altavista test set. .
In Fig. 13 we show the average ROC curve area (across words

N at that level) at each of the three semantic leveldiggand Dgpist
D. Scene recognition as the number of images in the dataset is varied. Note that (i)
Many web images correspond to full scenes, not individuéthe classification performance increases as the numberazfam
objects. In Fig. 12, we attempt to classify the 1125 randomiycreases; (ii)Dshirr outperformsDssg (iii) the performance drops

drawn images (containing objects as well as scenes) intg”,ci off as the classes become more specific. A similar effect tafsga
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Fig. 11. Localization of people in images. (a) input image), Nlormalized-cuts segmentation, (c) three examples oflidate crops, (d) the 6 nearest
neighbors of each crop in (c), accompanied by the number svior the person class obtained using 80 nearest neighibdes similarity measur®gpjt.
(e) Localization examples.
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Fig. 13. Classification at multiple semantic levels usin@3 ¥andomly
drawn tiny images. Each plot shows a different manually @efisemantic

level, increasing in selectivity from left to right. The ees represent the
average (across words at that level) ROC curve area as adiuraftnumber
of images in the dataset (reflfissg blue=Dgpirt). Words within each of the
semantic levels are shown in each subplot, accompanied bR@C curve
area when using the full dataset. The red dot shows the egeerformance
if all images in Google image search were used (billion), extrapolating Fig. 15. Distribution of labels in image datasets. The eaftaxis gives the
linearly. percentage of polygons in the two datasets containing ehgttocategory
(objects are sorted by frequency rank). The plot is in lag-dxis.

160
Class rank (sorted by frequency)

1000

THE IMPORTANCE OF SOPHISTICATED METHODS FOR

size has already been shown by the language understandiné{"
RECOGNITION

community[2].

By way of illustrating the quality of the recognition achéggll  The plot in Fig. 15 shows the frequency of objects in the
by using the 79 million weakly labeled images, we show itiny images database (this distribution is estimated ughmg
Fig. 14, for categories at three semantic levels, the imagleand labeled set of 1148 images). This distribution is sintid
that were more confidently assigned to each class. Note thaird frequencies in text (Zipf's law). The vertical axis sfwothe
despite the simplicity of the matching procedure preseht@, percentage of annotated polygons for each object categosy.
the recognition performance achieves reasonable levels far horizontal axis is the object rank (objects are sorted byueacy).
relatively fine levels of categorization. The four most frequent objects are people%29plant (16%), sky
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Fig. 14. Test images assigned to words, ordered by confiddiee number indicates the total number of positive examipleébe test set out of the 1148
images. The color of the bounding box indicates if the imags worrectly assigned (black) or not (red). The middle roamshthe ROC curves for three
dataset sizes (yellow = 7,900 image training set; red = T@Dithages; blue = 79,000,000 images). The bottom row showvsdiresponding precision-recall
graphs.

(9%) and building (5%). In the same plot we show the distributionitself can help to solve the problem. We feel the results ia th
of objects in the LabelMe dataset [35]. Similar distribngoare paper warrant further exploration in this direction.

also obtained from datasets collected by other groups [88the

distribution from Fig. 15 reveals, even when collectingrextely VIIl. A CKNOWLEDGMENTS

large databases, there will always be a large number of @agsg Funding for this research was provided by NGA NEGI-1582-

with very few training samples available. For some classésge 04-0004, Shell Research, Google, ONR MURI Grant NO0014-06-
amount of training data will be available and, as we discnsbis  1_3734 and NSF Career award (11S0747120).

paper, nearest neighbor methods can be very effective. Wowe
for many other classes learning will have to be performed wit
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