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Abstract—Transformation invariance is an important property in pattern recognition, where different observations of the same object

typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum

distance between the transformation manifolds spanned by patterns of interest. Since these manifolds are typically nonlinear, the

computation of the manifold distance (MD) becomes a nonconvex optimization problem. We propose representing a pattern of interest

as a linear combination of a few geometric functions extracted from a structured and redundant basis. Transforming the pattern results

in the transformation of its constituent parts. We show that, when the transformation is restricted to a synthesis of translations,

rotations, and isotropic scalings, such a pattern representation results in a closed-form expression of the manifold equation with

respect to the transformation parameters. The MD computation can then be formulated as a minimization problem whose objective

function is expressed as the difference of convex functions (DC). This interesting property permits optimally solving the optimization

problem with DC programming solvers that are globally convergent. We present experimental evidence which shows that our method

is able to find the globally optimal solution, outperforming existing methods that yield suboptimal solutions.

Index Terms—Transformation invariance, pattern manifolds, sparse approximations.

Ç

1 INTRODUCTION

WITH the ever-increasing amounts of digital information
content created by different sources, efficient analysis

and processing algorithms are becoming crucial to identify-
ing meaningful information in high-dimensional and
heterogenous data sets. In particular, pattern recognition
and data mining algorithms have to be able to identify
relevant objects in different representations or descriptions
and transformation invariance certainly becomes key in the
design of efficient data analysis methods. For example, in
applications involving classification of visual objects, the
classification function should be invariant to the geometric
transformations of the objects, such as scalings, rotations,
and translations. At the same time, the efforts toward
defining features that support transformation invariance are
aligned with bridging the so-called semantic gap, which
refers to the shortcomings of low-level features to address
high-level content analysis tasks. Transformation invariance
is therefore a very important property of any learning
algorithm and can have a big impact on its success in the
context of various mining tasks.

The comparison of two patterns is generally meaningful

if they are aligned first so that their distance reflects their

structural and geometric differences. Alignment consists of

estimating the relative transformation between patterns.

The transformed version of a pattern can be described as a
point of a (possibly nonlinear) manifold in a high-dimen-
sional space, which is usually called the transformation
manifold. If the distance between two patterns is truly
invariant to transformations, it becomes equivalent to the
distance between their corresponding transformation mani-
folds. This is called the two-sided manifold distance (MD)
or the one-sided MD when one of the patterns is fixed.
Observe that the MD between a pattern and its transformed
version is zero; hence, MD is close to the semantic distance
between any two patterns. The minimum manifold distance
thus corresponds to the distance between patterns after
proper alignment.

In this paper, we introduce a method for pattern
alignment and MD computation which is able to find the
globally optimal solution and provide global invariance to
transformations. We represent the pattern of interest as a
linear combination of geometric primitives, called atoms,
which are chosen from a structured and possibly redundant
basis or dictionary. A dictionary is called structured when it
is built by atoms that are constructed by applying geometric
transformations on a mother function (e.g., Gaussian
functions [1]). When the pattern is transformed, the
transformation is essentially applied on each constituent
atom individually, resulting in a synthesis of transforma-
tions. Using the group theory of transformations, we build
on [2] and show that the proposed representation allows for
a closed-form expression of the manifold equation with
respect to the transformation parameters. Next, we for-
mulate the pattern alignment problem as a DC program by
showing that the objective function is DC, i.e., that it can be
written as a difference of convex functions. DC programs are
nonconvex problems that can be globally solved by
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exploiting their special structure. In order to solve the DC
program, we employ an outer approximation-cutting plane
method which converges to the globally optimal solution.
The algorithm allows to estimate jointly the translation,
rotation, and scaling parameters, and ensure convergence to
the global minimum manifold distance. We finally provide
experimental results which show the effectiveness of the
proposed algorithm in robust pattern recognition and
image alignment applications, where it outperforms exist-
ing solutions typically based on suboptimal manifold,
tangent, or euclidean distance computation.

The rest of this paper is organized as follows: In Section 2,
we review the related work about introducing transforma-
tion invariance in pattern recognition. Next, in Section 3, we
discuss the representation of transformation manifolds
using sparse geometric expansions and, in Section 4, we
formulate the optimization problem. We show in Section 5
that the objective function is DC. We present its solution
with an outer approximation-cutting plane algorithm in
Section 6. Finally, the experimental results are presented in
Section 7.

2 RELATED WORK

In this section, we review the main research efforts on
introducing transformation invariance in pattern recogni-
tion. One possible approach to introduce invariance into
pattern recognition algorithms is to use transformation-
invariant features. However, there are two main disadvan-
tages with this approach: 1) Crucial information may be
discarded and 2) it is hard to evaluate the impact of feature
extraction on the classification error [3].

For this reason, a lot of research efforts have concen-
trated on seeking for invariance by the computation (or the
approximation) of appropriate distance measures in the
pattern space. The computation of the MD requires the
alignment of the involved patterns. However, alignment is a
hard optimization problem, mostly due to the nonconvexity
of its objective function. One solution consists of the local
linearization of the manifold, in order to compute the
distance between tangent spaces instead of the true
manifold distance. Simard et al. in [4] introduced the notion
of the tangent distance (TD) of a reference pattern p from
the manifold T s spanned by the transformed versions of the
pattern s. The TD has been successfully applied in digit
image recognition [5]. The main idea is to use a locally
linear approximation of T s around s. The linear approx-
imation is constructed using the tangent vectors @T

@� , where �
denotes the transformation parameters. The tangest dis-
tance is defined as the distance of p from the tangent space
(see Fig. 1 for a schematic illustration). The effectiveness of
this approach is highly sensitive to the nonlinearity of the
manifold. Since the obtained linear approximation using the
tangent space is accurate only locally, this method provides
local invariance to transformations.

The smallest distance of p from the manifold T s is called
the MD (shown in Fig. 1) and is truly transformation
invariant. Unfortunately, these manifolds have no analytic
expression in general and they are typically nonlinear.
Hence, the computation of MD involves the solution of a
hard (typically nonconvex) optimization problem with an

unknown number of local minima. One approach in

computing the MD is to use a traditional method such as

Newton’s method or steepest descent. However, this will

yield a suboptimal solution due to the presence of local

minima. Along the same lines, in [6], the authors use

probabilistic pattern models and they introduce priors both

on the transformation parameters as well as the pattern that

generates the manifold. They introduce the so-called joint

manifold distance, defined as the distance between the two

pattern manifolds that is optimized over the transformation

parameters and the pattern themselves. The resulting

optimization problem is solved using Levenberg-Marquardt

and they apply their method to cluster faces in video.
To alleviate the problem of local mimima, Vasconcelos

and Lippman [3] proposed the multiresolution manifold

distance, which attempts to compute the MD by using a

multiresolution decomposition of the involved images and

then employ Newton’s method in each resolution level.

Starting from the coarsest level, Newton’s method is used in

order to converge to a local minimum solution, which is

used as the initial guess to Newton in the next level. This is

iterated until the finest image resolution is reached. The

intuition is that, at the coarsest level, the MD objective

function will be less “bumpy” with less local minima. Thus,

the hope is that Newton’s method will be less susceptible to

them. Although this methodology provides robustness to a

wider range of transformations relative to TD and MD,

there is no guarantee that it will converge to the global

minimizer.
Another approach is to introduce invariance by learning

from transformed examples, the so-called virtual examples.

Typically, one applies various transformations on the

training examples resulting in an expanded training set.

This has the advantage that can be readily combined with

any classification algorithm. However, the training set

usually becomes huge and this approach is very costly in

terms of memory requirements. Motivated by this short-

coming, DeCoste and Burl [7] introduced the concept of

jittered queries. The main idea is to apply various

transformations on the test samples resulting in an

expanded set of transformed test samples. Shifting the

responsibility of the invariance from the training to the
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Fig. 1. Manifold distance is the distance from a reference point p to the

transformation manifold of s. The tangent distance is the distance from p

to the tangent space of the manifold with respect to s.
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testing phase has certain advantages in terms of computa-

tional cost and memory usage.
A lot of research efforts have focused on introducing

transformation invariance into Support Vector Machines

(SVMs). This can be attempted by the following approaches

(see [8] for more details and references): 1) design of

invariant kernels [9] and 2) introduction of virtual support

vectors [10], [11]. In particular, Schölkopf et al. introduced

invariance into SVMs by generating virtual examples from

the support vectors, rather than the whole training set. This

yielded a training phase that is more computationally

efficient since the training set size is controlled now.

3) Kernel jittering [7], where the main idea is the following:

Instead of performing the transformations on the training

examples before training, they are performed on-demand

during kernel evaluation.
In the context of maximum margin classifiers, Graepel and

Herbrich [12] proposed the semidefinite programming

machines (SDPM). They represent the transformation mani-

fold of each training sample by a polynomial trajectory (using

Taylor expansion) and then formulate the margin maximiza-

tion as a semidefinite program. Experimentally, SDPM

performed slightly better than the virtual SVM. However,

extending their methodology to more generic transforma-

tions consisting of more than one parameter is complex.
Another approach toward invariance in pattern recogni-

tion is to encode invariance into the classification algorithm

itself. For example, Simard et al. in [4] modified the error

function of neural networks in order to make it invariant to

transformations. In particular, they included an additional

term in the error function, which captures the magnitude of

the gradient of the classifying function with respect to the

transformation parameters. Thus, minimizing the total error

function results in a classification function that is smooth

with respect to the desired transformations.
Finally, it is important to stress [3] that the problem of

computing the manifold distance is closely related to the

problem of image alignment or registration. For instance,

the article in [13] proposes the use of multiresolution

decomposition combined with Levenberg-Marquardt for

image registration, which is close to the idea proposed in

[3]. The authors in [14], [15] propose a maximum likelihood

(ML) approach for translation, rotation, and scale estima-

tion. The idea is to loop over the pixels and for each pixel to

estimate scale and rotation by maximizing an approxima-

tion of the log-likelihood using quasi-Newton. The latter

approximation is obtained by expanding the images in the

Laguerre-Gauss transform domain. This approach does an

exhaustive search over the possible translation parameters

and solves the scale-rotation problem for each pixel. On the

contrary, our methodology solves the full problem all at

once. Due to lack of space, we will not elaborate more on

the related work in image registration. The reader is

referred to [16] for a survey on this topic.

3 TRANSFORMATION MANIFOLDS BUILT ON

SPARSE GEOMETRIC EXPANSIONS

3.1 Visual Pattern Representation

We introduce here a pattern representation based on sparse
geometric expansions, which yields a parametric model of
the pattern. Such a geometric pattern representation leads
to a closed-form expression of the transformation manifold
equation with respect to the transformation parameters,
which is later used for efficient computation of the manifold
distance.

We propose representing the pattern of interest as a
linear combination of geometric functions (usually called
atoms), taken from a structured and possibly redundant
dictionary D ¼ f��; � 2 �g spanning the input space. This
representation generally allows us to capture the most
prominent features of the pattern of interest that are
generally also meaningful components. The atoms in a
structured dictionary are constructed by applying geometric
transformations to a generating mother function denoted by
�. A geometric transformation � 2 � can be represented by
a unitary operator Uð�Þ so that a structured dictionary takes
the following form:

D ¼ f�� ¼ Uð�Þ�; � 2 �g: ð1Þ

With digital images, the simplest transformation �i,
applied to the ith atom, may be one of the following
three types:

. Translation by bi ¼ ½bix biy�>. UðbiÞ moves the
generating function across the image, i.e.,
UðbiÞ�ðx; yÞ ¼ �ðx� bix; y� biyÞ.

. Rotation by !i. Uð!iÞ rotates the generating func-
tion by angle !i, i.e., Uð!iÞ�ðx; yÞ ¼ �ðcosð!iÞxþ
sinð!iÞy; cosð!iÞy� sinð!iÞxÞ:

. Anisotropic scaling by ai ¼ ½aix aiy�>. UðaiÞ scales the
generating function anisotropically in the two direc-
tions, i.e., UðaiÞ�ðx; yÞ ¼ �ð xaix ;

y
aiy
Þ.

Composing all of the above transformations yields a
transformation with parameters �i ¼ fbi; ai; !ig 2 �, which
denotes a synthesis of translations, anisotropic scalings, and
rotations. It can be observed that applying a transformation
on the mother function is equivalent to transforming the
coordinate system from fx; yg to f~x; ~yg before applying �ð�Þ.
When the ith atom in the structured dictionary (1) is built as
��i ¼ Uð�iÞ�ðx; yÞ, where �i ¼ fbi; ai; !ig 2 �, it forms the
same 2D function as �ð~x; ~yÞ, where

~x

~y

� �
¼

1
aix

0

0 1
aiy

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

A

cos!i sin!i

� sin!i cos!i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rð!iÞ

x� bix
y� biy

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

t

¼ARð!iÞt:

ð2Þ

The approximation of the pattern of interest s with atoms
from the dictionary D can be obtained in different ways.
Even if finding the sparsest approximation of s is generally
a hard problem, effective suboptimal solutions are usually
sufficient to capture the salient semantic and geometric
structure of a pattern with only a few atoms. In this work,
we have chosen to use Orthogonal Matching Pursuit (OMP)
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[17, Section 9.5.3], which is a simple and effective algorithm
for computing sparse approximations in practice.

Initially, OMP sets the residual r0 ¼ s and then proceeds
iteratively by selecting in the jth step the atom ��j that best
matches the residual rj�1, i.e., �j ¼ arg�2� max jhrj�1; ��ij. At
each step, it updates the residual by orthogonal projection on
the span of the selected atoms (i.e., rj ¼ ðI � P Þrj�1, where P
is the orthogonal projector on the spanf��1

; . . . ; ��jg). After
K steps of OMP, the pattern s is approximated by a sparse
linear combination of a few atoms, i.e.,

s ¼
XK
k¼1

�k��k þ rK; ð3Þ

where rK is the residual of the approximation. We should
mention that, besides OMP, there are several approaches for
computing sparse approximations, such as the Sparse Greedy
Matrix Approximation [18], [19] and Tree-based Pursuit [20],
to name just a few. The two latter methods represent fast
alternatives to the traditional Matching Pursuit algorithm by
expediting the search in the dictionary.

We then propose building the dictionary using 2D atoms
that can efficiently capture the geometrical information in
natural images. The generating function � of D could be, for
instance, a Gaussian function, i.e.,

�ðx; yÞ ¼ 1

�
exp �ðx2 þ y2Þ
� �

; ð4Þ

or an Anisotropic Refinement (AR) function, i.e.,

�ðx; yÞ ¼ 1

�
exp �ðx2 þ y2Þ
� �

ð4x2 � 2Þ; ð5Þ

where � is a normalization factor which ensures that the
atom is of unity norm. The latter is an edge-like function
that is Gaussian in one direction and second derivative of
the Gaussian in the orthogonal direction. Fig. 2 shows the
progressive approximation of the digit “5” from a Gaussian
dictionary using OMP. Observe that only a few atoms are
sufficient to capture the main geometric characteristics of
the pattern and the representation (3) does not need to be
very accurate before it is useful for alignment purposes.

3.2 Transformation Manifolds

When a pattern s undergoes a geometric transformation �, it
spans a high-dimensional manifold T in the ambient space.
Assume that the transformation is � ¼ ð�; �; 	Þ; that is, it
consists of a synthesis of translations � ¼ ½�x; �y�, isotropic

scaling �, and rotation 	. The manifold T can be expressed

mathematically as follows:

T ¼ sð�Þ ¼ Uð�Þs; � ¼ ð�; �; 	Þf g: ð6Þ

Although the manifold is high dimensional, its intrinsic

dimension is rather small and equal to the number of

transformation parameters, which is 4. Fig. 3 shows a few

samples from the transformation manifold of the digit “5,”

when the transformation is a simple rotation.
The transformations � form a group, namely, the

similitude group SIM(2) on the 2D plane. Let us denote by

Rð!Þ ¼ cos! sin!
� sin! cos!

� �
; 0 � ! < 2
;

the rotation matrix by angle ! in the 2D plane. If ðb; a; !Þ
and ðb0; a0; !0Þ are two elements of the SIM(2) group, then the

group law is

ðb; a; !Þ � ðb0; a0; !0Þ ¼ ðbþ aRð!Þb0; aa0; !0 � !Þ: ð7Þ

Using (3) and dropping the residual term rK , it turns out that

applying the transformation � on the pattern s, results in

sð�Þ ¼ Uð�Þs ¼
XK
k¼1

�kUð�Þ��k ¼
XK
k¼1

�k����k ; ð8Þ

where � � �k is a product of transformations. In words, the

transformation is applied on each constituent atom indivi-

dually. The group law (7) indeed applies [1] and can be

further employed to determine the updated parameters of

the transformed atoms. Equation (8) is of great importance

since it expresses the manifold equation (6) in closed form

with respect to the transformation parameters �. This is very

valuable for the computation of the MD and, in particular,

for the applicability of the DC programming methodology

that is proposed in the next section.

4 PROBLEM FORMULATION

In this paper, we are interested in computing the distance

between visual patterns under transformation invariance.

Suppose that we want to compute the MD from a reference

pattern p to the transformation manifold T described by (6).

This is equivalent to estimating the optimal transformation

parameters ��. We formulate the parameter estimation

problem as follows:

�� ¼ arg max
�¼ð�;�;	Þ

fð�Þ; where fð�Þ ¼ sð�Þ; ph ij j: ð9Þ

Recall that sð�Þ 2 T denotes the transformed pattern s when

it is subject to transformation � ¼ ð�; �; 	Þ. We assume that

the pattern of interest s has been well approximated with a

sparse expansion over D, i.e.,
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Fig. 2. Progressive OMP approximation of the digit “5” (leftmost) with 10,

20, 30, 40, and 50 Gaussian atoms (from left to right).

Fig. 3. Samples from the transformation manifold of the digit “5.” From left to right, the samples correspond to rotation angles from 0 to 2
 with

step 
=4.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 29, 2009 at 07:57 from IEEE Xplore.  Restrictions apply.



s ¼
XK
k¼1

�k��k ; ð10Þ

which results from (3) by dropping the residual term. When
the atom parameters �k are fixed, the transformed pattern
sð�Þ in (8) provides a parametric pattern model with respect
to �. Note that, in the above optimization problem, only the
pattern s is expanded in the redundant basis, i.e., the
reference pattern p is used as is.

The purpose of the optimization problem is to compute
the exact transformation parameters ��. This is typically a
nonconvex nonlinear optimization problem [21] which is
hard to solve using the traditional methods, such as steepest
descent or Newton-type methods due to their local
convergence property and the presence of an unknown
number of local minima. However, it can be shown that the
above objective function is a DC function or, equivalently,
that it can be expressed as the difference of two convex
functions.

Proposition 1. The objective function

fð�Þ ¼ sð�Þ; ph ij j ¼
XK
k¼1

�kh��k ; pi
�����

�����; ð11Þ

where �k ¼ � � �k is DC.

We show in the next section that this proposition is true.
We first recall basic properties of DC functions. Then, we
show that the geometric transformation of an atom by
translation, scaling, and rotation is equivalent to a change in
the coordinate system. The transformed coordinate system
ð~x; ~yÞ of the kth atom ��k depends on the transformation
parameters �. With this transformation in the coordinate
system, we can demonstrate that ~xð�kÞ2 þ ~yð�kÞ2 is a DC
function of �, which in turn will allow us to express the
pixels of each atom ��k in a DC form. Then, we prove that
the inner product h��k ; pi between the pattern p and each of
the atoms is also DC. Finally, we obtain the DC formulation
of the objective function jhsð�Þ; pij.

Due to Proposition 1, the optimization problem can
therefore be formulated as a DC program and globally
solved by a fast cutting plane method [22, Theorem 5.3]. To
the best of our knowledge, this is the first globally optimal
algorithm that is proposed in the context of transformation-
invariant distance computation.

5 DC DECOMPOSITION

5.1 Properties of DC Functions

We show in this section that the objective function f in (9) is
DC, in several steps. We start with some definitions and
background material about DC functions [22], [23], [24] and
their properties.

First, let X be a convex subset of IRn. A function f : X �
IRn ! IR is called DC on X, if there exist two convex
functions g; h : X ! IR such that f is expressed as

fðxÞ ¼ gðxÞ � hðxÞ: ð12Þ

A representation of the above form is called the DC
decomposition of f . The DC decomposition is clearly not

unique, since if cðxÞ is a convex function, then fðxÞ ¼
ðgðxÞ þ cðxÞÞ � ðhðxÞ þ cðxÞÞ is another DC decomposition

of f . In what follows, the notations 	 0 and 
 0 denote

positive definiteness and positive semidefiniteness accord-

ingly. We present now a few properties of DC functions.

Proposition 2 [23, Section 4.2]. Properties of DC functions. Let

f ¼ g� h and fi ¼ gi � hi, i ¼ 1; . . . ;m be DC functions.

Then, the following functions are also DC:

1.

Xm
i¼1

�ifi ¼
X
fi:�i�0g

�igi �
X
fi:�i<0g

�ihi

2
4

3
5�

X
fi:�i�0g

�ihi �
X
fi:�i<0g

�igi

2
4

3
5:

2. jf j ¼ 2 maxfg; hg � ðgþ hÞ.
3. If f1 and f2 are DC functions, then the product f1 � f2

is DC. Moreover, if f1 and f2 have nonnegative convex
parts, the following DC decomposition holds:

f1 � f2 ¼
1

2
ðg1 þ g2Þ2 þ ðh1 þ h2Þ2
h i
� 1

2
ðg1 þ h2Þ2 þ ðg2 þ h1Þ2
h i

:

ð13Þ

In addition, it can be shown that the synthesis of a

convex function and a DC function is also DC, which is

particularly relevant for our particular objective function, as

shown below.

Proposition 3. Let fðxÞ : IRn ! IR be DC and q : IR! IR be

convex. Then,

1. the composition qðfðxÞÞ is DC [23, Section 4.2] and
2. qðfðxÞÞ has the following DC decomposition:

q fðxÞð Þ ¼ pðxÞ �K gðxÞ þ hðxÞ½ �; ð14Þ

where pðxÞ ¼ qðfðxÞÞ þK½gðxÞ þ hðxÞ� is a convex

function and K is a constant satisfying K � jq0ðfðxÞÞj
[25].

Note that, in part 2 of the above proposition, we use

slightly different conditions than those in [25]. For this

reason, we provide a proof of part 2 in Appendix A.

5.2 DC Decomposition of Transformed Atoms

We show here that the transformed atom ��k can be

expressed in a DC form. For notational ease, we drop the

subscript k since it is clear from the context that we refer to

the kth atom. Note first that the transformation of an atom

by scaling, rotation, and translation is equivalent to a

change in the coordinate system.

Lemma 1. The transformed coordinates of an atom in (11) have

the following form:

~x
~y

� 	
¼ �1

cos 	
� þ �2

sin 	
� þ �3


x
� þ �4


y
� þ �5

�1
cos 	
� þ �2

sin 	
� þ �3


x
� þ �4


y
� þ �5

� 	
; ð15Þ

KOKIOPOULOU AND FROSSARD: MINIMUM DISTANCE BETWEEN PATTERN TRANSFORMATION MANIFOLDS: ALGORITHM AND... 1229

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 29, 2009 at 07:57 from IEEE Xplore.  Restrictions apply.



where the �is and �is are constants depending on the atom

parameters which are fixed and 
x and 
y are related to �x and

�y by the following relation:


x

y

� 	
¼ �Rð�	Þ �x

�y

� 	
: ð16Þ

Proof. The proof is given in Appendix A. tu

With the change of variables in (16), the optimization

variables become 
x, 
y, �, and 	. This representation of the

transformation parameters is equivalent to the previous one

since, from the 
s, we can recover the �s and vice versa

(using (16)). Hence, for notational ease, we will continue

using � for denoting the transformation parameters with

respect to 
x, 
y, �, and 	.
The above lemma implies that

~xð�Þ2 ¼�2
1

cos2 	

�2
þ �2

2

sin2 	

�2
þ �2

3


2
x

�2
þ �2

4


2
y

�2
þ �2

5

þ 2�1�2
cos 	 sin 	

�2
þ 2�1�3

cos 	
x
�2

þ 2�1�4
cos 	
y
�2

þ 2�1�5
cos 	

�
þ 2�2�3

sin 	tx
�2

þ 2�2�4
sin 	
y
�2

þ 2�2�5
sin 	

�
þ 2�3�4


x
y
�2
þ 2�3�5


x
�

þ 2�4�5

y
�

ð17Þ

and similarly for ~yð�Þ by replacing the �s by �s. In order to

show that �� is DC, we need to show that every single term

in the above equation is DC as well. In other words, we

have the following proposition:

Proposition 4. The expression corresponding to the transformed

coordinate system ~xð�Þ2 (and, similarly, ~yð�Þ2) in (17) is DC.

In what follows, we provide a few lemmas that will

help us show that this is true. In particular, we show that

several of the constituent functions are DC: fð	Þ ¼ cos 	,

fð	Þ ¼ sin 	, fð	; �Þ ¼ 	
� , fð	; �Þ ¼ cos 	

� , and fð	; �Þ ¼ sin 	
� .

Lemma 2. The following functions are DC:

1. f1ð	Þ ¼ cos 	; 	 2 ½0; 2
Þ.
2. f2ð	Þ ¼ sin 	; 	 2 ½0; 2
Þ.

Proof.

1. From Taylor’s theorem, it is known that

cos 	 ¼
X1
n¼0

ð�1Þn	2n

ð2nÞ! ¼ 1� 	
2

2!
þ 	

4

4!
� 	

6

6!
þ 	

8

8!
� . . . :

By grouping the terms of the same sign, we have

that

cos 	 ¼ 1þ 	
4

4!
þ 	

8

8!
þ 	

12

12!
þ . . .

� �

� 	2

2!
þ 	

6

6!
þ 	

10

10!
þ . . .

� �
:

ð18Þ

Since 	 2 ½0; 2
Þ, all of the powers of the form of

	n, n � 0, are convex [26, Chapter 3]. Thus, the

above equation provides a DC decomposition of

the cosine function when 	 2 ½0; 2
Þ.
2. Similarly, the sine function is written in the

following form:

sin 	 ¼
X1
n¼0

ð�1Þn	2nþ1

ð2nþ 1Þ!

¼ 	þ 	
5

5!
þ 	

9

9!
þ 	

13

13!
þ . . .

� �

� 	3

3!
þ 	

7

7!
þ 	

11

11!
þ . . .

� �
;

ð19Þ

which is DC using similar arguments as above.tu

Lemma 3. The function fð	; �Þ ¼ 	
� : IR� IRþ ! IR is DC with

the following DC decomposition:

fð	; �Þ ¼ 	

�
¼ gð	; �Þ � hð	; �Þ ¼ 1

2

ð	þ 1Þ2

�
� 1

2

ð	2 þ 1Þ
�

:

ð20Þ

Proof. We need to show that both parts are convex. The first

part gð	; �Þ ¼ ð	þ1Þ2
� is convex since

r2gð	; �Þ ¼ 2

�3

�2 �ð	þ 1Þ�
�ð	þ 1Þ� ð	þ 1Þ2
� �

¼ 2

�3

�

�ð	þ 1Þ

� �
�

�ð	þ 1Þ

� �>

 0;

when � > 0. For the second part hð	; �Þ ¼ ð	
2þ1Þ
� , we have

that

r2hð	; �Þ ¼ 2

�3

�2 �	�
�	� 	2 þ 1

� �

 0;

since � > 0 and v>r2hð	; �Þv � 0, for every

v ¼ ½v1 v2�> 6¼ 0. To see why this is true, observe that

½v1 v2�
�2 �	�

�	� 	2 þ 1

" #
v1

v2

" #

¼ �2v2
1 � 	�v1v2 � 	�v1v2 þ 	2v2

2 þ v2
2

¼ ð	v2 � �v1Þ2 þ v2
2 � 0:

ut

Lemma 4. The function fð	; �Þ ¼ 	k

� : ½0; 2
Þ � IRþ ! IR,

k � 2, is convex.

Proof. The Hessian matrix of f is

r2fð	; �Þ ¼ 	
k�2

�3

kðk� 1Þ�2 �k	�
�k	� 2	2

� �
:

Observe that the term 	k�2

�3 is positive, so we only need to

prove that the remaining matrix is positive semidefinite.

Call �1 and �2 its eigenvalues. Then, observe that its

determinant is
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�1�2 ¼ 	2�2½2kðk� 1Þ � k2� ¼ 	2�2kðk� 2Þ � 0

since k � 2. Thus, �1 and �2 have always the same sign.

Now, observe also that the trace of this matrix is

�1 þ �2 ¼ kðk� 1Þ�2 þ 2	2 > 0:

Thus, we conclude that both eigenvalues are nonnega-

tive. Therefore, the Hessian matrix is positive semidefi-

nite and f is convex. tu

Lemma 5. The following functions are DC:

1. f1ð	; �Þ ¼ cos 	
� : ½0; 2
Þ � IRþ ! IR.

2. f2ð	; �Þ ¼ sin 	
� : ½0; 2
Þ � IRþ ! IR.

Proof.

1. Using (18), we have that

cos 	

�
¼ 1

�
þ 	4

�4!
þ 	8

�8!
þ 	12

�12!
þ . . .

� �

� 	2

�2!
þ 	6

�6!
þ 	10

�10!
þ . . .

� �
:

Each of the individual parts is convex because it

consists of a sum of convex functions according to

Lemma 4.
2. Similarly, using (19), we have that

sin 	

�
¼ 	

�
þ 	5

�5!
þ 	9

�9!
þ 	13

�13!
þ . . .

� �

� 	3

�3!
þ 	7

�7!
þ 	11

�11!
þ . . .

� �
:

The second part of the sine is convex, again due to

Lemma 4. Unfortunately, this is not the case for

the first part since the function 	
� is not convex.

However, we know from Lemma 3 that it is DC. If

we substitute the DC decomposition of 	
� into the

above formula, we get

sin 	

�
¼ 1

�

ð	þ 1Þ2

2
þ 	

5

5!
þ 	

9

9!
þ 	

13

13!
þ . . .

" #

� 1

�

ð	2 þ 1Þ
2

þ 	
3

3!
þ 	

7

7!
þ 	

11

11!
þ . . .

� �
:

ð21Þ

The above formula now yields a DC decomposi-

tion of sin 	
a since both parts are convex.

Note in passing that, in the DC decompositions of both
cos 	
a and sin 	

a , the convex parts are nonnegative. This

property will be used later on. tu

Lemma 6. The following functions:

cos 	 sin 	

�2
;
cos 	
x
�2

;
sin 	
x
�2

;
cos 	
y
�2

;
sin 	
y
�2

;

cos2 	

�2
;
sin2 	

�2
;

2
x

�2
;

2
y

�2
;

x
y
�2

�
;

defined on 	 2 ½0; 2
Þ, � 2 IRþ, 
x 2 IR, 
x 2 IR, are DC.

Proof. According to Lemma 5, the functions cos 	
� and sin 	

� are
DC with nonnegative convex parts. Also, the functions 
x

�

and

y
� are DC with nonnegative convex parts, due to

Lemma 3. The fact that all of the above functions are DC
results from property 3 of Proposition 2, which states
that the product of two DC functions (with nonnegative
convex parts) is also DC. tu

Coming back to the transformed coordinates axes of the
kth atom ��k in (11), we can now show that the transformed
coordinates system is represented by DC functions.

Proof of Proposition 4. According to Lemma 6, ~xð�Þ2 (and
similarly ~yð�Þ2) in (17) is DC since it is a linear combination
of DC functions (property 1 of Proposition 2). Thus, zð�Þ ¼
~xð�Þ2 þ ~yð�Þ2 is also DC and suppose that zð�Þ ¼
gzð�Þ � hzð�Þ is its DC decomposition. tu

5.3 DC Form of the Objective Function

Now, we are ready to prove the main result of our paper,
namely Proposition 1, which claims that the objective
function of the optimization problem (9) is DC. The
construction of a geometric atom by transformation of the
generating function is equivalent to apply the generating
functions on the transformed coordinates computed above.
Given the above developments, it finally remains to show that
the transformed generating functions are DC and that the
inner products between the atoms and the pattern of interest p
are also DC functions. We prove these properties for the two
different generating functions � used in this paper.

Proof of Proposition 1.

. If � is Gaussian, then

�� ¼4 � ~xð�Þ; ~yð�Þð Þ ¼ e
� ~xð�Þ2þ~yð�Þ2ð Þ
�k�k ¼ e

�zð�Þ

�k�k
¼ e�zð�Þ�ln��ln k�k ¼ e� zð�Þþln�þln k�k½ �

¼ e�wð�Þ;

where we have introduced the function

wð�Þ ¼ zð�Þ þ ln�þ ln k�k
¼ gzð�Þ þ ln k�k½ � � hzð�Þ � ln�½ �
¼ gwð�Þ � hwð�Þ;

ð22Þ

which is also DC since ln� is a concave
function of � and, therefore, � ln� is convex.
In the above formulas, k�k denotes the norm
of the nontransformed atom and �k�k is the
norm of the transformed atom. Putting these
pieces together, we conclude that �� is DC
with the following decomposition e�wð�Þ ¼
½e�wð�Þ þ Kðgwð�Þ þ hwð�ÞÞ� � ½Kðgwð�Þ þ hwð�ÞÞ�,
according to Proposition 3, part 2.

. If � is AR, then

�� ¼
4
� ~xð�Þ; ~yð�Þð Þ ¼ e

� ~xð�Þ2þ~yð�Þ2ð Þ
�k�k � 4~xð�Þ2 � 2

h i
¼ 4~xð�Þ2 e

�zð�Þ

�k�k � 2
e�zð�Þ

�k�k ;
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which is also DC since it is a linear combination of
two DC terms (the first term is DC since it is the
product of two DC functions (property 3 of
Proposition 2)).

Next, we need to show that the inner product �ð�Þ ¼4
h��; pi is also DC. Assume that M is the number of pixels
of the images and �m ¼ gm � hm is the DC decomposi-
tion of the mth pixel of ��. Then, �ð�Þ is DC with the
following decomposition:

�ð�Þ ¼ h��; pi ¼
XM
m¼1

�mpm

¼
X

fm:pm�0g
pmgm �

X
fm:pm<0g

pmhm

2
4

3
5

�
X

fm:pm�0g
pmhm �

X
fm:pm<0g

pmgm

2
4

3
5;

based on property 1 of Proposition 2.
Assume now that h��k ; pi ¼ gkð�Þ � hkð�Þ is the DC

decomposition of the inner product of the kth atom with
p. In the sequel, we again use property 1 of Proposition 2
to come up with the DC decomposition of

PK
k¼1 �kh��k ; pi

which reads

XK
k¼1

�kh��k ; pi ¼
X
fk:�k�0g

�kgk �
X
fk:�k<0g

�khk

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g

�
X
fk:�k�0g

�khk �
X
fk:�k<0g

�kgk

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h

¼ gð�Þ � hð�Þ:

Finally, the objective function in (11) is DC with the
following decomposition, following from the property 2
of Proposition 2:

fð�Þ ¼
XK
k¼1

�kh��k ; pi
�����

����� ¼ 2 maxfg; hg � ðgþ hÞ:

ut

Algorithm 1. Outer approximation cutting plane

1: Initialization: Set !0 ¼ gðy0Þ � hðy0Þ, the first upper
bound of the optimal value !� of the Problem (23).

2: Compute a subgradient s 2 @gðy0Þ and construct the

affine function lðxÞ ¼ ðx� y0Þ>sþ gðy0Þ.
3: Construct a simplex S0 
 X with vertex set

V ðS0Þ ¼ fv1; . . . ; vnþ1g. Choose �! and �t such that
�! ¼ minflðxÞ : x 2 V ðS0Þg �maxfhðxÞ : x 2 V ðS0Þg
�t > maxfgðxÞ : x 2 V ðS0Þg � �!:

4: Construct a polytope P 0 ¼ fðx; tÞ : x 2 S0; t � �t; lðxÞ �
t� !0 � 0g 
 fðx; tÞ : x 2 X; t 2 IR; gðxÞ � t� !� ¼ 0g
and compute its vertex set V ðP 0Þ ¼ fðvi; �tÞ; i ¼ 1;

. . . ; nþ 1 and ðvi; lðviÞ � !0Þ; i ¼ 1; . . . ; nþ 1g.
5: Set k ¼ 0.

6: Iteration:

7: Compute an optimal solution ðxk; tkÞ of the problem
minf�hðxÞ þ t : ðx; tÞ 2 V ðPkÞg

8: if �hðxkÞ þ tk ¼ 0 then

9: yk is the optimal solution with optimal value !k.

10: else

11: Compute sk 2 @gðxkÞ
12: Compute the improved upper bound

!kþ1 ¼ minf!k; gðxkÞ � hðxkÞg.
13: Update ykþ1 such that gðykþ1Þ � hðykþ1Þ ¼ !kþ1.
14: Construct the cutting plane

lkðx; tÞ ¼ ðx� xkÞ>sk þ gðxkÞ � !kþ1 � t
15: Set Pkþ1 ¼ Pk \ fðx; tÞ : lkðx; tÞ � 0g and compute

V ðPkþ1Þ.
16: end if

17: Set k ¼ kþ 1 and go to step 7.

The objective function is therefore a DC function, which
permits the application of DC programming methods for
finding the global minimum to the MD computation. Note
that the DC decomposition of f is both inefficient and
complicated to be obtained in closed form with respect to �.
On the contrary, the values of g and h can be obtained in
practice by sequentially applying the above properties.
Actually, this can be done at the cost of evaluating only one
of them (that is, the evaluation of g yields the corresponding
value of h for free and vice versa).

6 SOLUTION OF THE DC PROGRAM

6.1 The Cutting Plane Algorithm

After showing that our objective function is DC, we discuss
in this section how one can solve a DC program. A global
optimization problem is called a DC program if it has the
following form:

min
x

fðxÞ ¼ gðxÞ � hðxÞ;

s:t: x 2 X ¼ x 2 IRn : �ðxÞ � 0f g;
ð23Þ

where g; h : X ! IR are convex functions and � : IRn ! IR is
a convex function. Assume that the DC Problem (23) is
solvable and denote by !� its global minimum. The next
proposition gives an optimality condition for Problem (23).

Proposition 5 [22]. The point x� 2 X is an optimal solution to

Problem (23) if and only if there exists a t� 2 IR such that

0 ¼ inf �hðxÞ þ t : x 2 X; t 2 IR; gðxÞ � t � gðx�Þ � t�f g:
ð24Þ

In this work, we have chosen to solve the DC Program
(23) by the outer approximation cutting plane algorithm
proposed in [22, Section 5.3], for its simplicity and also due
to the fact that the parameter space in our problem is 4D.
However, we should mention that our framework could
also be combined with other DC solvers such as Branch-
and-Bound schemes [22, Sections 5.1 and 5.2] and DCA [27].

The cutting plane algorithm, as well as any DC solver,
needs an explicit DC decomposition of the objective
function before it can be employed in practice. In the
sequel, we briefly discuss the basics of the cutting plane
algorithm, illustrated in Algorithm 1. The cutting plane
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algorithm seeks a point x� that will satisfy the optimality
condition (24). Each iteration involves the minimization of
the concave function �hðxÞ þ t under the convex con-
straints gðxÞ � t � !k, where !k is the best upper bound for
!� as of iteration k. Thus, the right-hand side of the convex
constraint changes over the iterations. The algorithm starts
with an initial feasible point y0 which yields an initial upper
bound !0. As soon as this bound improves, the convex
constraint is refined. In the first iteration, the cutting plane
method starts with a simple polyhedron P 0, which is
required to contain the feasible set. The polyhedron P 0 is
defined by the intersection of several halfspaces, i.e., linear
inequalities of the form a>i xþ bi � 0, i ¼ 1; . . . ;m.

It is known that a concave function defined over a
convex polyhedron is minimized at one of its vertices [23,
Theorem 1.19]. In iteration k, the vertex xk which minimizes
�hðxÞ þ t over Pk (see Line 7) is used to define a cutting
plane lkðx; tÞ which updates the polytope, by excluding
points that do not satisfy the linear constraint lkðx; tÞ � 0.
The intersection of Pk with the cutting plane defines a new
polytope Pkþ1 of smaller volume (see Line 15). The
minimization of �hðxÞ þ t is repeated on the updated
Pkþ1 and the algorithm continues by repeating the same
process. The objective function f is evaluated on each vertex
of Pk and, whenever a better bound of !� is found, !k is
updated (see Line 12) and the convex constraint is updated
as well. This process is repeated until !k reaches !� and, in
this case, the vertex which achieves �hðxÞ þ t ¼ 0 will
satisfy the optimality condition (24). The cutting plane
algorithm always converges to the global minimizer of
Problem (23) [22, Theorem 5.3].

The cutting plane algorithm is an efficient algorithm
which typically reaches the vicinity of the global minimizer
quickly. Each step involves only function and subgradient
evaluations, as well as vertex updates of the current
polytope Pk. The latter process is called vertex enumeration
and the reader is referred to [23, Section 3.3.4] for further
details. We have chosen to omit the details of vertex
enumeration due to lack of space.

6.2 Computational Cost Analysis

Let us provide an analysis of the computational complexity
of the proposed methodology. Notice that each step of a DC
solver, such as the cutting plane, calls for function and
subgradient evaluations. Since each subgradient evaluation
calls for two function evaluations, it is sufficient to study
the cost of function evaluations alone. Before delving into
the cost analysis, it is important to differentiate between the
complexity of evaluating the DC decomposition of f and
the complexity of the DC solver. The latter depends on the
particular characteristics of the DC solver that is employed
and it is beyond the scope of the present work.

We turn our attention now to the cost of evaluating the
convex parts g and h of the objective function f in (11).
Recall that the evaluation of g yields the corresponding
value of h for free and vice versa. This is due to the fact that
the values of gð�0Þ and hð�0Þ at a certain point �0 of the
parameter space are obtained simultaneously by applying
sequentially the properties described in Section 5. Overall,
the computational complexity of each function evaluation is

Ccomp ¼ OðK � n1 � n2Þ;

where K is the number of atoms and M ¼ n1 � n2 is the
number of pixels of the image. This arises from the fact that
a pattern is represented by K atoms and every pixel of each
atom is expressed in DC form. Note that K is typically small
(e.g., less than 100) and it is independent of the image size.
It solely depends on the geometric complexity (shape) of the
pattern and the properties of the dictionary. Therefore, we
observe that the sparsity of the pattern and the image
resolution are the main factors affecting the cost of function
evaluations.

7 EXPERIMENTAL RESULTS

In this section, we compare the proposed method, called
MDDC (i.e., manifold distance measure using DC program-
ming) with related methods from the literature. We have
observed in practice that our method quickly reaches the
vicinity of the global minimizer, but then the convergence
rate drops before it computes the global minimizer with
high accuracy. This is a common characteristic of cutting
plane methods in general. On the other hand, Newton is a
very accurate and fast method, but it requires an initial
guess that is close to the global one. For this reason, we
combine both methods to get the best of both worlds. Thus,
what we call MDDC is essentially a hybrid method which
first employs the cutting plane method to reach the vicinity
of the global minimizer and then switches to Newton with
the initial parameters that are obtained from the cutting
plane algorithm.

7.1 Comparison of Different Methods

In the first experiment, we compare MDDC with ED, TD,
and MD (using Newton’s method). For our comparison, we
use a facial image from the ORL database [28] (see
Section 7.2 for more details on this database). Fig. 4a shows
how this face transforms in the scale-rotation transforma-
tion space. Since the MD (semantic) between all these facial
images is zero, we would like our methods to give a
distance between them which is as small as possible. Hence,
the smaller the obtained distance, the better the method.

We build a parametric model of the facial image with
K ¼ 50 Gaussian atoms (see (10)) using OMP. We sample the
transformation parameter space by sampling the rotation
angle 	 uniformly in ½0; 2
Þ with step 
=5 and the scale � in
½0:5; 1:5� with step 0.1. For each combination of scale and
rotation values, we build a transformed image sð�Þ using (8)
and employ it as the reference image p. Then, we compute
the distance between s and p using all methods and
compare the results. In the TD method, the tangent vectors
are computed by finite differences using (8) and the
manifold is linearized around 	 ¼ 0 and � ¼ 1 (which
corresponds to the nontransformed pattern). In the case of
MD and MDDC, we report the distance ksð�̂Þ � sð��Þk2,
where �� and �̂ is the exact and estimated transformation,
respectively. Note that, in MDDC, we use 100 iterations of
the cutting plane method before switching to Newton.

Fig. 4b shows the obtained distance surfaces from all
methods. First observe that the ED surface is nonconvex,
which reveals the difficulty of the problem in practical
scenarios. Notice that ED and TD have comparable
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performance, with the latter bringing a minor improvement
over the former. Next, observe that Newton’s method
provides a dramatic improvement over the previous
methods. We see also that its local convergence property
is also verified in practice, i.e., for small transformations it is
able to converge to the global minimizer. However, for
transformations of larger magnitude it gets trapped in local
minima. Finally, MDDC seems to provide superior results
compared to the other methods. It provides almost zero
distance over all pairs of scale and rotation, verifying its
ability to converge to the globally optimal solution. Thus, it
corresponds indeed to a close approximation of the
semantic distance between the transformed faces.

7.2 Transformation-Invariant Face Recognition

In the second experiment, we compare all methods in the
context of transformation-invariant face recognition. We use
the ORL (formerly Olivetti) database [28], which contains
40 individuals and 10 different images for each individual,
including variation in facial expression (smiling/nonsmil-
ing) and pose. We form the training set by picking the first
seven facial expressions/poses per subject and use the
remaining three as a test set. This results in 280 training
samples and 120 test samples. Our evaluation metric is the
classification error rate which is the percentage of test
samples that are misclassified.

First, we compute the pattern model of all training
images using K ¼ 50 Gaussian atoms in OMP. This is an
offline step and is performed once and for all. Then, each
method is combined with the nearest-neighbor (NN)

classifier yielding a transformation-invariant classifier. In
particular, each test face image is first geometrically
transformed and then compared to each training face
image. The test sample is given the class label of the
“closest” training image. The distance between the test and
the training image is computed according to the method
that is tested: 1) For ED, it is the euclidean distance between
the two, 2) for TD, it is the tangent distance, and 3) for MD
and MDDC, it is the euclidean distance obtained after
alignment. In the latter case, alignment is accomplished by
estimating the transformation parameters first and then by
image warping using the estimated parameters. For
computational ease, the test image is aligned with only
one representative image per subject, namely, the first facial
expression/pose. Then, the same transformation is used for
aligning the test image with the remaining images of the
same subject.

Note that this experiment is more challenging than the
previous one because the training and the test images
(which are to be aligned) correspond to different expres-
sions/poses of the same person or to different persons. In
MDDC, we use 30 iterations of the cutting plane method
before switching to Newton. In the testing phase, each test
facial image is scaled by a random �, uniformly distributed
in ½0:5; 1:5� and rotated by a random 	, uniformly
distributed in ½0; 2
Þ. Each test image is transformed
independently from its peers. Observe that the testing
phase scales linearly with the training set size. Fig. 5 shows
the transformed versions of the test facial images.
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Fig. 4. Invariance of various methods with respect to scale and rotation. (a) Transformed faces. (b) Distance surfaces (from top to bottom) ED, TD,

MD, and MDDC.

Fig. 5. The transformed test face images used for face recognition.
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For the sake of completeness, we also include in our

comparisons the virtual samples (VS) method. The latter is

employed as a baseline method in order to show that

expanding the training set with transformed samples can be

helpful in robust recognition against the presence of

transformations in the test set. In particular, for each

training image, we build a set of VS by applying geometric

transformations corresponding to each possible pair ð	i; �jÞ,
i ¼ 1; . . . ; n	, j ¼ 1; . . . ; ns. We discretize the rotation space

½0; 2
Þ with n	 ¼ 10 points and the scale space [0.5, 1.5] with

ns ¼ 5 points. In the VS method, the size of the training set

is expanded by n	 � ns times, which is 50 in our case. This

makes it memory intensive, which is one of the main

pitfalls of this method. Note that one may discretize even

more finely the transformation space, but we should bear in

mind that in practice this may not be always feasible. This

method typically bridges the gap between local methods

(i.e., that are built for small transformations) and global

methods, like ours.

Table 1 shows the classification error rates of all methods,

under both L1 and L2 metrics. Notice that ED, TD, and MD

break down due to the presence of large transformations.

However, MDDC yields a satisfactory performance, which

shows its truly transformation-invariant properties. The VS

method has comparable performance to MDDC, though at

the cost of highly increased memory requirements.
We also discuss the alignment performance of Newton

and MDDC. We compute the histogram of the absolute errors

of both scale and rotation using 50 bins. In particular, we

report the absolute errors j	� 	̂j and j�� �̂j, where 	̂ and �̂

denote the estimated transformation parameters of rotation

and scale, respectively. We observed that, in many cases, the

global minimizer in the alignment between different persons

does not coincide with the exact transformation parameters.

For this reason, in the histogram computation, we include

only the alignment performance of the pairs corresponding to

different expressions/poses of the same subject. Fig. 6 shows

the results of both Newton and MDDC. Notice that, as

expected, Newton is not able to converge to the true

transformation parameters, due to its local convergence

property. On the other hand, MDDC is successful in the vast

majority of the cases. The very few outlier cases are due to the

fact that we run only 30 iterations of the cutting plane

algorithm (before switching to Newton).

KOKIOPOULOU AND FROSSARD: MINIMUM DISTANCE BETWEEN PATTERN TRANSFORMATION MANIFOLDS: ALGORITHM AND... 1235

TABLE 1
Transformation-Invariant Face Recognition Results

Fig. 6. Histogram of the absolute error of the rotation angle (first row) and of the scale (second row). (a) j	� 	̂j, Newton. (b) j	� 	̂j, MDDC.

(c) j�� �̂j, Newton. (d) j�� �̂j, MDDC.
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7.3 Application to Image Registration

Finally, we provide an illustrative example of the applica-
tion of our method to medical image registration. In this
example, we consider � to be a synthesis of translations,
scalings, and rotations. We consider a typical brain MRI
image s as shown in Fig. 7a. We build a pattern model of s
using OMP with K ¼ 500 Gaussian atoms. Fig. 7b shows
the obtained successive approximations while increasing
the number of atoms from 100 to 500 with step 100. Observe
that a few atoms are sufficient to capture the main
geometric structure of the pattern. Hence, in the context
of alignment, one does not need to compute a very accurate
and expensive approximation of s. In other words, it is
possible to estimate the transformation parameters using
only a crude pattern approximation, provided that it
captures its salient geometric characteristics. For this
reason, we use only K ¼ 100 atoms in the following
alignment experiments.

We perform two experiments with two different
transformations. First, we apply a geometric transforma-
tion �1 ¼ ð�1; �1; 	1Þ on s, where �1 ¼ ½3; 2�>, �1 ¼ 0:8, and
	1 ¼ 
=3 ’ 1:047. The transformed image after image
warping with �1 is shown in Fig. 8a. We apply the cutting
plane method and, after 500 iterations, the estimated
transformation parameters are: �̂1 ¼ ½3:15; 0:61�>, �̂1 ¼ 0:8,
and 	̂1 ¼ 1:08. Fig. 8b shows the warped image using the
estimated transformation parameters �̂1. Also, in Fig. 8c, we

show the transformed pattern sð�̂1Þ (see (8)) using 500 atoms

(for illustration purposes).
In the second experiment, we test with a new transfor-

mation �2 ¼ ð�2; �2; 	2Þ, with �2 ¼ ½1; 4�>, �2 ¼ 1:2, and

	2 ¼ 5
=4 ’ 3:93. The transformed image after image

warping with �2 is shown in Fig. 8d. After 500 iterations

of the cutting plane algorithm, the estimated transformation

parameters are �̂2 ¼ ½1:54; 4:33�>, �̂2 ¼ 1:19, and 	̂2 ¼ 4. In

Figs. 8e and 8f, we show the warped image with �̂2 and

sð�̂2Þ, respectively. Observe that, in both cases, the cutting

plane algorithm is able to converge very close to the global

minimizer. Therefore, if it is combined with more accurate

local convergence methods, it can potentially yield a very

accurate and robust method for image registration.

7.4 Discussion

The above experimental results indicate that our algorithm

converges to the global minimizer in the presence of large

transformations when they consist of synthesis of transla-

tions, rotations, and scalings. In this section, our goal is to

show that our method is applicable to robust pattern

classification and image registration problems, while at the

same time enjoying theoretical merits of convergence to the

globally optimal solution. These examples are, however,

mostly illustrative and do not permit to extrapolate that the

proposed framework alone will provide state-of-the-art
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Fig. 7. The MRI brain image and its successive approximations. (a) MRI image. (b) OMP approximations using 100, 200, 300, 400, and 500 atoms,

respectively (left to right).

Fig. 8. The transformed MRI brain images and their estimated transformed images. The first row corresponds to �1 and the second row to �2.

(a) Transformed image with �1. (b) Estimated transformed image. (c) sð�̂1Þ. (d) Transformed image with �2. (e) Estimated transformed image. (f) sð�̂2Þ.
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performances in more generic problems, like image registra-
tion in the presence of occlusion or background noise.

Also, we can note that the proposed framework has
targeted transformations that can be represented as a
composition of rotation, translation, and isotropic scaling.
While such transformations represent a wide range of
image processing applications, the proposed framework
could also be applied to more generic transformations
models, such as fully affine, nonrigid, etc., as long as the
effect of the transformation on a set of atoms can be
properly expressed in a DC form. In our future work, we
plan to pursue the above problems and explore the
potential of our method for specific image processing
applications.

8 CONCLUSIONS

We have proposed a globally optimal method for computing
a transformation-invariant distance measure. When a pattern
is geometrically transformed, it spans a manifold in the high-
dimensional space. We use sparse geometric expansions to
represent the transformation manifold. A few atoms are
sufficient to capture the main geometric structure of the
pattern, which is further used for alignment. We formulate
the minimization of the distance of the reference pattern from
the manifold, as a DC program, by proving that the objective
function is DC. We solve the DC program using an outer
approximation-cutting plane method which converges to the
globally optimal solution. The experimental results show that
the proposed method is successful in finding the global
minimizer in practice, with applications to robust face
recognition and image alignment.

APPENDIX A

A.1 Proof of Proposition 3, Part 2

Proof. Let fðxÞ ¼ gðxÞ � hðxÞ be the DC decomposition of f .
Then, the second part of (14) is convex since g and h are
convex. Hence, we need to show that pðxÞ is convex.
Note that the ði; jÞ entry of the Hessian of pðxÞ is

Hij ¼
@2p fðxÞð Þ
@xi@xj

¼ @
2q fðxÞð Þ
@f2

� @fðxÞ
@xi

� @fðxÞ
@xj

þ @q fðxÞð Þ
@f

� @
2fðxÞ
@xi@xj

þK @2gðxÞ
@xi@xj

þ @
2hðxÞ
@xi@xj

� �

¼ q00ðfðxÞÞ � @fðxÞ
@xi

� @fðxÞ
@xj

þ q0 fðxÞð Þ � @
2fðxÞ
@xi@xj

þK @2gðxÞ
@xi@xj

þ @
2hðxÞ
@xi@xj

� �

¼ q00ðfðxÞÞ � @fðxÞ
@xi

� @fðxÞ
@xj

þ K þ q0 fðxÞð Þ½ � @
2gðxÞ
@xi@xj

þ K � q0 fðxÞð Þ½ � @
2hðxÞ
@xi@xj

:

Therefore,

H ¼r2
p ¼ q00 fðxÞð Þrfr>f
þ K þ q0 fðxÞð Þ½ �r2

g þ K � q0 fðxÞð Þ½ �r2
h:

ð25Þ

The convexity of q implies that q00ðfðxÞÞ � 0. Also, the

convexity of g and h implies that r2
g and r2

h are positive

semidefinite. Hence, when K � jq0ðfðxÞÞj, we conclude

that H is positive semidefinite and pðxÞ is convex. tu

A.2 Proof of Lemma 1

Proof. Suppose that the atom has parameters � ¼ ðb; a; !Þ,
with a ¼ ½ax; ay� and b ¼ ½bx; by�. If we denote by � ¼
ð�; �; 	Þ the transformation parameters, then, according

to the group law, the transformed parameters of the

atom will be

ð� � �Þ ¼ ð� þ �Rð	Þb; �a; !� 	Þ:

If we denote

A ¼
1
�ax

0

0 1
�ay

 !

and

Rð!Þ ¼ �1 �2

�3 �4

� 	
;

then the transformed axes ~x
~y

� 

will be

ARð!ÞRð�	Þ
x

y

� 	
�

�x

�y

� 	
� �Rð	Þ

bx

by

� 	� �

¼ ARð!Þ Rð�	Þ
x

y

� 	
�Rð�	Þ

�x

�y

� 	
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

½
x 
y�>

��
bx

by

� 	
2
66664

3
77775

¼ ARð!Þ Rð�	Þ
x

y

� 	
þ
��bx þ 
x
��by þ 
y

� 	� �

¼ ARð!Þ
cos 	 � sin 	 ��bx þ 
x
sin 	 cos 	 ��by þ 
y

� � x

y

1

2
64
3
75

¼ A
�1 �2

�3 �4

� �
cos 	 � sin 	 ��bx þ 
x
sin 	 cos 	 ��by þ 
y

� � x

y

1

2
64
3
75

¼
�1

cos 	
� þ �2 sin 	

� ��1 sin 	
� þ �2 cos 	

� �3 þ �4 
x� þ �5

y
a

�1
cos 	
� þ �2

sin 	
� ��1

sin 	
� þ �2

cos 	
� �3 þ �4


x
� þ �5


y
a

" #

�
x

y

1

2
64
3
75;

where we have introduced �1 ¼ �1

ax
, �2 ¼ �2

ax
, �3 ¼ �bx�1�by�2

ax
,

�4 ¼ �1, �5 ¼ �2, a n d , s i m i l a r l y , �1 ¼ �3

ay
, �2 ¼ �4

ay
,

�3 ¼ �bx�3�by�4

ay
, �4 ¼ �1, and �5 ¼ �2. Then, the above

formula reads

~x
~y

� 	
¼ ð�1xþ�2yÞ cos 	

� þð�2x��1yÞ sin 	
� þ�4


x
�þ�5


y
�þ�3

ð�1xþ�2yÞ cos 	
� þð�2x��1yÞ sin 	

� þ�4

x
�þ�5


y
�þ�3

� 	
;

which yields (15). tu
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