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Abstract—This paper proposes a novel method for robustly recovering the

camera geometry of an uncalibrated image sequence taken under circular motion.

Under circular motion, all the camera centers lie on a circle and the mapping from

the plane containing this circle to the horizon line observed in the image can be

modeled as a 1D projection. A 2 � 2 homography is introduced in this paper to

relate the projections of the camera centers in two 1D views. It is shown that the

two imaged circular points of the motion plane and the rotation angle between the

two views can be derived directly from such a homography. This way of recovering

the imaged circular points and rotation angles is intrinsically a multiple view

approach as all the sequence geometry embedded in the epipoles is exploited in

the estimation of the homography for each view pair. This results in a more robust

method compared to those computing the rotation angles using adjacent views

only. The proposed method has been applied to self-calibrate turntable sequences

using either point features or silhouettes, and highly accurate results have been

achieved.

Index Terms—1D projective camera, homography, self-calibration, circular

motion.

Ç

1 INTRODUCTION

A turntable is commonly used for showcasing a 360-degree view of
an object in museums, exhibitions, and retail stores. It also
provides a convenient way for acquiring images around an object.
In both computer vision and graphics, such a sequence is often
exploited to reconstruct a 3D model of the object. The most critical
step to a successful reconstruction is camera calibration, which
estimates the relative pose and intrinsic parameters of the camera,
as well as the rotation angles of the turntable. Note that turntable
motion (a.k.a. circular motion and single axis motion) is a
particular case of critical motions [1] which often cannot be solved
by a more general algorithm. Nonetheless, by explicitly taking the
special properties of the motion into account, it is possible to
estimate the motion with relative ease.

Many studies have been conducted in the recovery of circular
motion. Early works [2], [3] obtained the sequence geometry using
special calibration patterns and/or mechanical measurements. In
[4], Fitzgibbon et al. studied the projective geometry of turntable
motion and developed a method for the case of an uncalibrated
camera with unknown rotation angles. Their method depends on
the fundamental matrix and trifocal tensor between adjacent views
for recovering the image invariants and rotation angles, respec-
tively. In [5], Jiang et al. showed that the image invariants can be

recovered from the conic trajectories of the tracked points. Their

method then applies Laguerre’s formula to recover the rotation

angle from the tracked points in two views. In order to fit a conic to

the tracked points, their method requires tracking at least two

points in five images. In [6], Jiang et al. showed that the image

invariants can be recovered from the homography relating two

points tracked in four images. Although their new method reduces

the number of images in which a point must be tracked from five

to four, this requirement still cannot be easily satisfied, especially

when the rotation angles are large (e.g., for a rotation step of

20-30�, it means that a point must stay visible after a rotation of

60-90�). In [7] and [8], the authors considered the problem of

recovering circular motion from silhouettes by exploiting outer

epipolar tangents. Their methods involve nonlinear optimizations

to locate the epipolar tangents and require the prior information of

the camera intrinsics to recover the rotation angles. In [9], Zhang

et al. extended the work in [7] by performing self-calibration. Note

that all the aforementioned methods estimate the image invariants

using multiple views, but the recovery of the rotation angle

depends only on the information provided by adjacent views.

Hence, the solution is often not optimal. In [10], Hernández et al.

proposed a silhouette coherence constraint which uses the joint

effort of all the silhouettes to recover the camera motion as well as

the focal length. In [11] and [12], the authors considered the

problem of general motion recovery from silhouettes of a dynamic

object. A RANSAC approach [11] was proposed for initializing the

nonlinear optimization in locating the epipolar tangents. None-

theless, such methods are not suitable for static objects.
This paper proposes using a 1D geometry to solve the circular

motion problem from either point correspondences or silhouettes.

Under circular motion, all the camera centers lie on a circle, which

is the trajectory of the rotating camera center. The projection of the

plane containing the camera centers onto the image plane gives a

line known as the horizon. It follows that the images of the camera

centers (i.e., the epipoles) must all lie on this line. This results in a

1D projective geometry. A 2 � 2 homography is introduced to

relate the projections of the camera centers in two 1D views. It will

be shown that both the imaged circular points of the motion plane

and the rotation angle between the two views can be obtained

directly from this homography. Unlike previous methods [4], [5],

[6], [7], [8], [9], which only depend on adjacent views for

recovering the rotation angle, the proposed method exploits the

information provided by all views to obtain an optimal solution for

the homography and, hence, the rotation angle. Like [4], the

proposed method only requires point correspondences across

three views, which is a more relaxed requirement than that in [5]

and [6]. In [10], the authors considered the recovery of the focal

length, which was estimated simultaneously with other motion

parameters via an optimization in a high-dimensional space. In

this work, we consider recovering three camera intrinsic para-

meters, namely, the focal length and the coordinates of the

principal point. We also decouple the estimation of the camera

intrinsic parameters from the extrinsic parameters and demon-

strate that the intrinsic parameters can be recovered from the

image invariants. This avoids potential problems of local minima

often encountered in high-dimensional optimizations. Preliminary

results of this work have been published in [13].

2 1D PROJECTIVE CAMERA

This section gives a brief review on the 1D camera model (see [14]

for details). Similar to a 2D projective camera, which projects a

point in P3 to a point in P2, a 1D camera maps a point in P2 to a

point in P1. A 1D camera can be modeled by a 2 � 3 matrix [14] in

the following form:
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P ¼ KRð�Þð I �t Þ; ð1Þ

where K ¼ ð f u0

0 1
Þ is the calibration matrix with focal length f and

principal point u0, t is the position vector of the camera center, and

Rð�Þ ¼ ð cos � sin �

� sin � cos �
Þ is a rotation matrix describing the orientation

of the camera with respect to the world coordinate system. The

scene space for a 1D camera is a projective plane and the two

circular points I and J on the line at infinity L1 are invariant

under any similarity transformation. The imaged circular points i

and j can be expressed in terms of the intrinsic parameters of a 1D

camera as

i; j � Pð�j 1 0 ÞT � e�j� u0 � jf
1

� �
; ð2Þ

where j2 ¼ �1.

3 1D HOMOGRAPHY IN CIRCULAR MOTION

Without loss of generality, consider a camera located along

the negative Z-axis of the world coordinate system, with its

image plane arbitrarily tilted with respect to the Y -axis (see

Fig. 1a). By considering the image of the XZ-plane, the

camera can be simplified to a 1D camera with a projection

matrix P ¼ KRð�ÞðI � tÞ, where t ¼ ð0 �tÞT. Note that t

determines the scale of the scene. Without loss of generality,

let t ¼ 1. If the camera is now being rotated about the Y -axis,

its projection matrix can be written as Pi ¼ KRð�ÞðRð�iÞ � tÞ,
where �i denotes the rotation angle. The trajectory of its

center will be a unit circle lying on the XZ-plane and

centered at the origin O.

Proposition 1. The 2D points X and X0 and the camera center are on a

circle, as shown in Fig. 1a. The rotation angle between the two points

with respect to the center of the circle is �. Their projections u and u0

on the image are related by a 1D homography H as u0 � Hu, where

H ¼ KRð�=2ÞK�1. If either X or X0 overlaps with the camera

center, as illustrated in Fig. 1b, the corresponding projection will

become the vanishing point v of the tangent direction at the camera

center.

Proof. Point X has coordinates ðsin� cos� 1ÞT, and its image u is

given by

u �KRð�Þð I �t Þð sin� cos� 1 ÞT

�KRð�Þð sin� cos�þ 1 ÞT

�KRð�Þ tan �
2 1

� �T
:

ð3Þ

Similarly, point X0 has coordinates ðsinð�þ �Þ cosð�þ �Þ 1ÞT

and its image u0 can be expressed as

u0 �KRð�Þ tan �þ�
2

� �
1

� �T

�KRð�Þ
tan �

2þ tan �
2

1� tan �
2 tan �

2

 !

�KRð�Þ
1 tan �

2

� tan �
2 1

 !
tan �

2

1

 !

�KRð�Þ
cos �2 sin �

2

� sin �
2 cos �2

 !
tan �

2

1

 !

�KRð�ÞRð�=2Þ tan �
2 1

� �T
:

ð4Þ

Substituting (3) into (4) gives

u0 � KRð�ÞRð�=2ÞR�1ð�ÞK�1u � Hu; ð5Þ

where H ¼ KRð�=2ÞK�1. The special case where X or X0

overlaps with the camera center can be proven in a similar

manner. tu
Note that H has only three degrees of freedom (DOF). Its

eigenvalues are fe�j�=2g, which are functions of the rotation angle

�, and its eigenvectors are the two imaged circular points i and j.
Now, consider the projection of a camera center X0 onto two

views i and j, as shown in Fig. 2a. The rotation angle between the

two views is �ij. It is easy to see that the projection of X0 in view i in

Fig. 2a is equivalent to the projection of X in view j in Fig. 2b, where

the rotation angle between X and X0 is �ij. From Proposition 1, u

and u0 satisfies u0 � Hiju, where Hij ¼ KRð�ij=2ÞK�1. It indicates

that one such pair of u and u0 induced by a camera center X0

provides one constraint on the homography Hij relating the two

views. Given N images taken under circular motion, there will be

N constraints for estimating Hij and the rotation angle �ij and the

imaged circular points fi; jg can be obtained from the eigenvalues

and eigenvectors of Hij, respectively. Note that Hij is different for

a different view pair as it depends on the rotation angle �ij.

Algorithm 1 summarizes the procedure for recovering camera

intrinsics and the rotation angle between two views using the

proposed 1D geometry.
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Fig. 1. (a) The relative positions of a 1D camera and the points X and X0 in the coordinate system. (b) Special case where X0 overlaps with the camera center.



Algorithm 1. Recovering camera intrinsics and the rotation angle

between view i and view j

for each view k in the circular motion sequence do

Compute the projections feki; ekjg of its camera center

onto views i and j;

end for

Compute the homography Hij relating views i and j using the

constraints ekj � Hijeki;

Compute the eigenvalues fe�j�ij=2g and eigenvectors fi; jg of Hij;

Compute the camera intrinsics from fi; jg;
Compute the rotation angle �ij from fe�j�ij=2g;

Given two views, if the vanishing point v as illustrated in
Proposition 1 is known, the epipoles feij; ejig of the two views and
v together can provide two independent constraints on Hij. Under
this situation, one more constraint provided by another view is
enough to determine Hij. The computation of Hij therefore
requires a minimum of three views, which is the same as in [15].
Practically, Hij relating a view pair can be computed more
accurately by incorporating constraints induced by as many views
as possible.

4 CIRCULAR MOTION ESTIMATION

The previous section describes how the proposed 1D homography
can be used to solve the circular motion problem. The key step is
the computation of epipoles from all view pairs, which is
equivalent to computing the associated fundamental matrices. In
this section, we will summarize the methods for computing the
fundamental matrices from either point correspondences or
silhouettes.

Fig. 3 shows the image invariants under circular motion: ls is
the image of the rotation axis, lh is the vanishing line (horizon) for
the plane �h containing the camera centers, c (given by the
intersection of ls and lh) is the image of the intersection point
between the rotation axis and �h, vx is the vanishing point for the
normal direction of the plane defined by the camera center and the
rotation axis, and i and j are the two imaged circular points of �h.
The fundamental matrix Fij associated with views i and j can be
parameterized in terms of these image invariants as [4], [7]

Fij ¼ ½vx�� þ �ij lsl
T
h þ lhl

T
s

� �
; ð6Þ

where �ij ¼ � tan
�ij
2 , with �ij being the rotation angle between the

two views and � being an unknown fixed scalar accounting for the
different scales used in the homogeneous representation of these

features. Hence, for different view pairs, the fundamental matrices
only differ by the scalar �ij, which depends on the rotation angle.

Given point correspondences in a view pair, a fundamental
matrix F can be estimated robustly using a RANSAC method. The
image invariants can be obtained from F as follows [4]: vx can then
be recovered from the skew-symmetric part of F, lh can be
obtained as a line passing through the two epipoles, and ls can be
extracted from the symmetric part of F. Note that, due to noise and
wrong correspondences, the image invariants computed from
different view pairs will in general be different. To assess the
quality of the image invariants recovered from a particular view
pair, the fundamental matrices for all other view pairs are
estimated by fixing these invariants and the mean symmetric
transfer error [16] of the fundamental matrices is computed. For
each view pair, a set of the image invariants is computed and the
one that produces the smallest mean symmetric transfer error is
then chosen.

Alternatively, given a set of silhouettes, vx and ls can be
obtained from the harmonic homography W associated with the
envelope of the silhouettes [7]. This harmonic homography also
allows the location of outer epipolar tangents to silhouettes in view
pairs. lh can then be obtained as a line robustly fitted to a set of
epipoles obtained as the intersections of the epipolar tangents (see
[7] for details).

The invariants vx, ls, and lh thus obtained are used to initialize a
nonlinear optimization, which minimizes the symmetric transfer
errors of the fundamental matrices for all view pairs. The
parameters of the optimization are vx (two DOF), ls (two DOF),
lh (one DOF as vT

x lh ¼ 0), and the scalars �ij. For point
correspondences, the transfer error is given by the distance

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008 2245

Fig. 2. (a) Two views and one point configuration. View j is obtained by rotating view i by an angle of �ij. (b) One view and two points configuration. The setup of X0 and

the camera is the same as in (a).

Fig. 3. Image invariants under circular motion.



between a point and the epipolar line defined by its correspondent

point. For silhouettes, the transfer error is given by the distance

between an epipolar tangent point and the epipolar line defined by

its correspondent epipolar tangent point. After the optimization

converges, the fundamental matrices for all view pairs can be

obtained and the 1D homographies relating adjacent views can be

computed.

5 METRIC RECONSTRUCTION

The imaged circular points i and j obtained from the eigenvectors

of the 1D homography are 1D points lying on the horizon lh. Their

2D image coordinates can be recovered from their 1D coordinates

using the parameterization of lh. They completely encode the

metric information of the horizontal plane on which they lie and

provide two independent constraints on the imaged absolute

conic !! in the form of [16]

iT!!i ¼ jT!!j ¼ 0: ð7Þ

The vanishing point vx and the imaged axis ls have a pole-polar

relationship with respect to !! and they provide another two

constraints on !! in the form of

ls ¼ !!vx: ð8Þ

Note, however, that these two constraints are not completely

independent of those induced by the imaged circular points. This

is because vx and ls also encode metric information on the

horizontal plane in the form of

cT!!vx ¼ 0; ð9Þ

where c is the intersection of ls and lh. Hence, vx, ls, i, and j

altogether provide only three independent constraints on !!.

Nonetheless, by assuming that the camera has unit aspect ratio

and zero skew, !! will only have three DOF and can thus be

estimated. The 3 � 3 camera calibration matrix K can then be

recovered from !! using Cholesky decomposition.
With the estimated K, vx, lh, ls, and the set of rotation

angles f�i;jg between adjacent views, the set of projection matrices

compatible with the image sequence can be written as

Pi ¼ K r1 r2 r3ð Þ
cos �i 0 sin �i 0

0 1 0 0
� sin �i 0 cos �i t

0
@

1
A; ð10Þ

where �1 ¼ 0 and �i ¼
Pi�1

n¼1 �n;nþ1 for i ¼ 2; 3; . . . ; N . The scalar t
only affects the scale of the reconstruction and can therefore be
chosen arbitrarily. The rotation matrix ð r1 r2 r3 Þ describes the
orientation of the camera and its columns can be recovered as

r1 ¼
K�1vx

jK�1vxj
; r3 ¼

K�1c

jK�1cj
; r2 ¼ r3 � r1; ð11Þ

where c ¼ lh � ls.

6 EXPERIMENTAL RESULTS

The first experimental sequence (see Fig. 4a) is the popular
dinosaur sequence from the University of Hannover (obtained
from the University of Oxford along with a file of point
correspondences). It contains 36 images taken under circular
motion with a constant rotation angle of 10 degrees. The angular
accuracy is about 0.05 degree [2]. Using the method described in
Section 4, the image invariants obtained from the fundamental
matrix relating views 22 and 23 were chosen automatically to
initialize the nonlinear optimization for recovering the funda-
mental matrices of all view pairs. The homographies relating
adjacent view pairs were then estimated using Algorithm 1. For
each homography, the imaged circular points fi; jg were obtained
from its eigenvectors. Histograms for the real and imaginary
components of the imaged circular points were constructed from
the set of fi; jg obtained from all the homographies (see Fig. 5). The
mean values of those in the bins with the highest frequency were
then used to form the best estimate for fi; jg. Note that the
distributions of the two histograms are close to a Gaussian
distribution and one observes that the best solutions (denoted by
the dashed lines) are very distinct. Fig. 6a shows the recovered
rotation angles, and the RMS error is just 0.073 degree.

Note that, in [4], Fitzgibbon et al. achieved an RMS error of
0.040 degree in the rotation angles for the same sequence. Their
method first recovered the image invariants and rotation angles
from the fundamental matrices and trifocal tensors of adjacent
views, respectively, and used these values to initialize a bundle
adjustment that minimized the reprojection errors. The RMS error
achieved here is of the same order as in [4], which approaches the
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Fig. 4. Turntable sequences used in the experiments. (a) Dinosaur sequence (image courtesy of the University of Hannover). (b) Head sequence.



mechanical accuracy of the turntable. This demonstrates that, by

exploiting multiple view information in every step of the

estimation as in the proposed method, a highly accurate solution

can be obtained without carrying out any bundle adjustment. A

visual hull model was constructed from the silhouettes using

octree carving (see [8] for details) and a triangulated mesh was

extracted from the octree using the standard marching cubes

algorithm. Fig. 7 shows three views of the reconstructed model.
The second experimental sequence (see Fig. 4b) consists of

36 images of a head model rotating on an electronic turntable with

a constant rotation angle of 10 degrees. The angular accuracy is

about 0.1�. The silhouettes of the head model were extracted using

a Cubic B-spline snake [17]. The fundamental matrices of all view

pairs were estimated from the silhouettes using the method

described in Section 4. The remaining steps of the estimation

procedure were identical to those in the first experiment. Fig. 6b

shows the recovered rotation angles, and the RMS error is 0.087�,

which approaches the mechanical accuracy of the turntable. Note

that, in [9], Zhang et al. achieved a much larger RMS error of 0.233�

in the rotation angles for the same sequence. This is expected as

they only considered adjacent views for the recovery of rotation

angle. In order to improve the solution, Zhang et al. resorted to

carrying out a bundle-adjustment-like approach to optimize all the

image invariants and rotation angles simultaneously by minimiz-

ing the transfer errors of the epipolar tangents, and achieved a

slightly improved RMS error of 0.171�. This again demonstrates

that the proposed multiple-view approach can produce a highly

accurate solution using silhouettes. Table 1 shows the camera

intrinsic parameters estimated from the head sequence and the

ground-truth values obtained by the classical camera calibration

technique [16] using an L-shape calibration pattern. It can be seen
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Fig. 6. Estimated rotation angles. (a) The RMS error for the dinosaur sequence is 0.073�. (b) The RMS error for the head sequence is 0.087�.

Fig. 5. Histograms for the real and imaginary components of the 1D imaged circular points ða� jb; 1ÞT estimated from the homographies of the dinosaur sequence. The

dashed lines indicate the best solutions computed.

Fig. 7. Reconstructed dinosaur model using the camera geometry estimated from point correspondences.

TABLE 1
The Camera Intrinsic Parameters Estimated from the Head Sequence



that the focal length f and the u0 coordinate of the principal point
were both precisely estimated, while v0 was not. This is due to the
high uncertainty in the estimated coordinates of vx, which was far
away from the image center for a camera looking at a direction
close to the rotation axis. Note that, under the assumption of a
natural camera, any error in the location of vx in a direction
parallel to ls will result in the same error in the location of the
principal point. Fig. 8 shows different views of the reconstructed
model.

7 CONCLUSION

In this paper, we have investigated the circular motion estimation
problem from a new viewpoint. By considering the horizon line,
which is the projection of the plane containing the camera centers,
a 2D projective camera can be simplified to a 1D projective camera.
We have shown that there exists a 1D homography relating the
images of any two 1D projective cameras in the sequence. The
eigenvectors of such a homography are shown to be the imaged
circular points and the eigenvalues are functions of the rotation
angle between the two cameras.

We have demonstrated that this 1D geometry can be nicely
applied to circular motion estimation. To compute the rotation
angle between two particular views in the sequence, the images of
all other camera centers (i.e., the epipoles) are computed first. They
are exploited to compute a homography relating the two views
robustly. The eigenvectors and eigenvalues of the homography
then give the imaged circular points and the rotation angle,
respectively. Experiments using both point correspondences and
silhouettes, respectively, demonstrate that the recovered rotation
angles achieve a very high precision. This is because the algorithm
efficiently and effectively exploits the underlying multiple view
information. The high quality of the reconstructed models
demonstrates the practicality of the proposed algorithm.
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Fig. 8. Reconstructed head model using the camera geometry estimated from the

silhouettes.


