
Full-Search-Equivalent Pattern Matching with
Incremental Dissimilarity Approximations

Federico Tombari, Student Member, IEEE, Stefano Mattoccia, Member, IEEE, and

Luigi Di Stefano, Member, IEEE

Abstract—This paper proposes a novel method for fast pattern matching based on dissimilarity functions derived from the Lp norm,

such as the Sum of Squared Differences (SSD) and the Sum of Absolute Differences (SAD). The proposed method is a full-search

equivalent, i.e., it yields the same results as the Full Search (FS) algorithm. In order to pursue computational savings, the method

deploys a succession of increasingly tighter lower bounds of the adopted Lp norm-based dissimilarity function. Such bounding

functions allow for establishing a hierarchy of pruning conditions aimed at rapidly skipping those candidates that cannot satisfy the

matching criterion. The paper includes an experimental comparison between the proposed method and other FS-equivalent

approaches known in the literature, which proves the remarkable computational efficiency of our proposal.

Index Terms—Pattern matching, IDA, SSD, SAD, efficient, full-search equivalent.

Ç

1 INTRODUCTION

PATTERN matching aims at locating the instances of a
given template into a reference set. This task occurs in

numerous image analysis applications and consists of
determining the regions of the reference image that are
similar to the template according to a given criterion and
discarding those that are dissimilar. The Full Search (FS)
pattern-matching algorithm relies on calculating, at each
position of the reference image, a function measuring the
degree of similarity or dissimilarity between the template
and the portion of the image currently under examination,
referred to as image subwindow. Once the chosen function is
computed for all subwindows, a threshold is usually adopted
so as to classify between matching and mismatching
patterns. Lp norm-based dissimilarity functions are widely
used in pattern-matching applications involving images of
the same modality, as thoroughly discussed in [1]. The most
popular Lp norm-based dissimilarity functions are the Sum
of Squared Differences (SSD) and the Sum of Absolute
Differences (SAD). For what concerns the SSD, though the
typical alternative to the naive FS algorithm is represented
by the FFT-based approach, a novel fast FS-equivalent
method [1], referred to here as Projection Kernels (PKs), was
recently proposed in the literature. This method was shown
to be much more efficient compared to the naive FS-
approach, as well as to the FFT. With regard to the SAD, a
well-known classical approach is the Sequential Similarity
Detection Algorithm (SSDA) [2].

In this paper, we propose1 a novel FS-equivalent method
that deploys a succession of sufficient conditions, charac-
terized by increasing effectiveness, for rapidly pruning
those image subwindows that cannot fulfill the matching
criterion. The novel method, referred to as the Incremental
Dissimilarity Approximations (IDAs) algorithm, is also
compared to the FS, FFT, PK, and SSDA algorithms.
Experimental results concerning more than 6,000 pattern-
matching instances prove that IDA significantly outper-
forms state-of-the-art approaches and can yield substantial
speedups with respect to the FS.

The paper is structured as follows: Section 2 reviews
previous work. Section 3 describes the IDA algorithm.
Section 4 proposes a variation of the basic IDA approach,
called Hybrid IDA (hIDA). Section 5 presents an experi-
mental comparison between our methods and the other
approaches considered throughout the paper. Conclusions
are drawn in Section 6. Finally, in the Appendix, we discuss
the issue of generalizing our approach to an arbitrary metric.

2 PREVIOUS WORK

The Lp norm of an M-dimensional vector X ¼ ½x1; � � � ; xM �T
is defined as

kXkp ¼
XM
i¼1

jxijp
 !1

p

; ð1Þ

where p is any positive real number [4].
Now, let X be the template vector and Y1; � � � ; YN be

the N candidates (corresponding to the image subwin-
dows) against whom X must be matched, each candidate
having the same cardinality as the template vector (i.e.,
Yj ¼ ½yj;1; � � � ; yj;M �T).

The generic function based on the Lp norm measuring
the dissimilarity between X and Yj can be written as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009 129

. The authors are with the Dipartimento di Elettronica, Informatica e
Sistemistica (DEIS), Advanced Research Center on Electronic Systems
(ARCES), University of Bologna, Viale Risorgimento, 2, 40136 Bologna,
Italy.
E-mail: {federico.tombari, stefano.mattoccia, luigi.distefano}@unibo.it.

Manuscript received 21 Feb. 2007; revised 26 Sept. 2007; accepted 16 Jan.
2008; published online 13 Feb. 2008.
Recommended for acceptance by W. Förstner.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0121-0207.
Digital Object Identifier no. 10.1109/TPAMI.2008.46. 1. Preliminary results of this research work appeared in [3].

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

kX � Yjkpp ¼
XM
i¼1

��xi � yj;i��p: ð2Þ

If p ¼ 1, then (2) coincides with the SAD function, while
p ¼ 2 yields the SSD function.

We will now briefly review the FFT-based, PK, and
SSDA approaches for fast FS-equivalent pattern matching
with Lp norm-based dissimilarity functions.

2.1 Fast Fourier Transform

A common approach for speeding up the FS pattern-
matching process based on the SSD function relies on the
Fast Fourier Transform (FFT). The SSD function can be
written as

kX � Yjk2
2 ¼ kXk

2
2 þ kYjk

2
2 � 2 ��ðX;YjÞ; ð3Þ

where

�ðX;YjÞ ¼
XM
i¼1

xi � yj;i ð4Þ

represents the dot product between X and Yj. In order to
achieve computational savings, the FFT approach calculates
� in the frequency domain according to the correlation
theorem. As it would be inefficient to compute kYjk2

2 in the
frequency domain, this term is usually calculated directly
by means of efficient incremental techniques [5], [6], [7], as
described in [8], while kXk2

2 is computed once and for all at
initialization time.

Compared to the FS algorithm, the FFT-based approach
is more efficient when the template size is large enough
compared to the image size. The FFT-based approach
cannot be adopted for SAD-based pattern matching since
the correlation theorem does not apply to the L1 norm case.

2.2 Projection Kernels

The PK method [1] carries out a fast FS-equivalent SSD-
based pattern matching in the signal domain. With PK, each
basis vector U of the Walsh-Hadamard transform is used as a
projection vector. Then, projecting the template vector X
and the candidate vector Yj onto each of these projection
vectors yields a projected distance Bj:

Bj ¼ UTX � UTYj; ð5Þ

which can be used to determine a lower bound of the SSD
function:

kX � Yjk2
2 �

B2
j

kUk2
2

: ð6Þ

Therefore, if D is the threshold that discriminates
between matching and mismatching candidates, it is
possible to establish the condition

D <
B2
j

kUk2
2

; ð7Þ

which allows for safely pruning Yj from the list of
candidates. Furthermore, the lower bound can be tightened
by using a collection of projection vectors along with the
corresponding projected distances. Hence, an iterative
algorithm is proposed in [1]: At each step, the lower bound
is tightened so as to increase the effectiveness of the current

pruning condition for those candidates that were not
pruned by the previous one.

According to [1], PK is almost two orders of magnitude
faster than the FS and FFT-based approaches, but it is more
demanding in terms of memory requirements. It is worth
pointing out that the size of the template is constrained to
be a power of 2. The experimental results reported in [1]
also show that PK is more effective with very small
templates (i.e., size 16 � 16 or 32 � 32).

2.3 Sequential Similarity Detection Algorithm

The SSDA [2] method is a classical approach originally
introduced to determine simple inequalities to speedup the
SAD-based pattern matching. Let D be a threshold and let
X;Yj be the template-candidate pair under evaluation.
During the computation of the SAD function, at each new
element pair xb; yj;b, condition

Xb
i¼1

��xi � yj;i�� > D ð8Þ

is tested. As soon as (8) is satisfied, the evaluation process is
terminated and the value of the last vector index, ~bj, is
recorded. Once this is done for all candidates, the best
matching candidates correspond to those having high ~bj.
Typically, D is much lower than the global minimum and
SSDA turns out to not be equivalent to the FS (i.e.,
nonexhaustive). In particular, the choice of D determines
a cost-performance trade-off: The higher D is, the higher the
mean number of calculations needed to evaluate the current
candidate and the higher the chance that the resulting
matching candidates will coincide with those yielded by FS.
In order to better deal with this issue, D is not kept constant,
but it increases along with b. Moreover, to obtain a more
regular behavior, the order of the processed vector elements
is randomly scrambled. However, it is practically unfeasible
to determine a varying D that yields an FS-equivalent
algorithm. Therefore, similarly to the other methods
considered throughout the paper, in our experiments, we
set D to a constant threshold higher than the global
minimum: This turns SSDA into an FS-equivalent method.

3 INCREMENTAL DISSIMILARITY APPROXIMATIONS

ALGORITHM

This section describes a novel signal domain method,
referred to as Incremental Dissimilarity Approximation
(IDA), aimed at speeding up the FS-equivalent pattern
matching based on the Lp norm. IDA relies on partitioning
the template vector, X, and each candidate vector, Yj, into a
certain number of subvectors in order to determine a
succession of pruning conditions characterized by increas-
ing tightness and computational weight.

Given an M-dimensional vector, we establish a partition
of the vector into r disjoint subvectors (not necessarily with
the same number of components) by defining a partition, P ,
of set S ¼ f1; 2; . . .Mg into r disjoint subsets:

P ¼ fS1; S2 . . .Srg; r 2 SSr
u¼1

Su ¼ S

Su \ Sv ¼ �; 8u 6¼ v; u; v 2 f1; 2; . . . rg:

8><
>:

130 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

The minimum number of subvectors is 1, that is, the
vector is actually not partitioned into smaller subvectors,
the maximum number is M, the vector partitioned into M
one-dimensional disjoint subvectors. Details concerning an
efficient implementation of such partitioning will be
discussed later.

Given P , we define the partial Lp norm of vectors X;Yj
restrained to the subvectors associated with St 2 P as

kXkp;St ¼
X
i2St

��xi��p
 !1

p

; ð9Þ

kYjkp;St ¼
X
i2St

��yj;i��p
 !1

p

; ð10Þ

and the partial Lp-dissimilarity between X and Yj restrained
to the subvectors associated with St 2 P as

kX � Yjkpp;St ¼
X
i2St

��xi � yj;i��p: ð11Þ

Then, by virtue of the triangular inequality applied on
corresponding subvectors, we establish the following
r inequalities:

kX � Yjkpp;St �
��kXkp;St � kYjkp;St ��p; t ¼ 1; . . . r; ð12Þ

and summing up both members of the inequalities attain a
lower bound of the function measuring the dissimilarity
between X and Yj:

kX � Yjkpp �
Xr
t¼1

��kXkp;St � kYjkp;St ��p: ð13Þ

This inequality provides a sufficient condition that
allows for pruning those candidates that cannot represent
a matching position. In fact, if the lower bound of the
dissimilarity function exceeds the threshold D that dis-
criminates between matching and nonmatching candidates

Xr
t¼1

��kXkp;St � kYjkp;St ��p > D; ð14Þ

then, from (13) and (14), Yj cannot be a matching pattern.
If (14) does not hold, rather than computing from scratch

the term kX � Yjkpp, we can obtain another pruning
condition based on a tighter lower bound by considering
a subvectors pair and replacing in the left-hand term of (14)
the difference between the partial norms with the corre-
sponding partial Lp-dissimilarity:

kX � Yjkpp;Si þ
Xr

t¼1;t 6¼i

��kXkp;St � kYjkp;St ��p > D: ð15Þ

Since the following relation holds as a consequence of the
triangular inequality

kX � Yjkpp �kX � Yjk
p
p;Si
þ
Xr

t¼1;t 6¼i

��kXkp;St � kYjkp;St ��p

�
Xr
t¼1

��kXkp;St � kYjkp;St ��p;
ð16Þ

the lower bound appearing at the left-hand side of (15) is
tighter compared to that of (14) and, hence, the associated
pruning condition is potentially more effective in skipping
nonmatching candidates.

Should condition (15) fail, the tightness of the lower
bounding function can be further increased by taking
another subvectors pair and, again, replacing the difference
between the partial norms with the corresponding partial
Lp-dissimilarity. This process can be iteratively applied to all
of the r subvectors pairs resulting from P so as to determine
up to r sufficient conditions that can be sequentially
checked when matching each candidate vector Yj. These
r conditions are based on the following succession of
increasingly tighter lower bounds:

Xr
t¼1

��kXkp;St � kYjkp;St ��p
� kX � Yjkpp;Si þ

Xr
t¼1;t 6¼i

��kXkp;St � kYjkp;St ��p
� kX � Yjkpp;Si þ kX � Yjk

p
p;Sk

þ
Xr

t¼1;t 6¼i;k

��kXkp;St � kYjkp;St ��p � � � �
� � � �

Xr
t¼1;t 6¼l

kX � Yjkpp;St þ
��kXkp;Sl � kYjkp;Sl ��p:

ð17Þ

Hence, throughout the matching process, each vector Yj
undergoes checking of a succession of sufficient conditions,
starting from (14), until either it is pruned or the following
last condition is reached:

Xr
t¼1;t 6¼l

kX � Yjkpp;St þ
��kXkp;Sl � kYjkp;Sl ��p > D: ð18Þ

Should the last condition not be verified, the process ends
up in computing the dissimilarity kX � Yjkpp by replacing
jkXkp;Sl � kYjkp;Sl j

p with kX � Yjkpp;Sl in the left-hand term of
(18). Then, Yj is classified as a valid pattern if

kX � Yjkpp < D: ð19Þ

The proposed method can be straightforwardly modified
to deal with the task of locating the most similar instance of
a template within a reference image (template matching). In
such a case, the term D is not a constant but represents the
best similarity score found so far. As proposed in [3], D
might be conveniently and rapidly initialized by selecting
an initial guess for the best matching candidate through a
fast nonexhaustive algorithm [9], [10]. Then, for each
candidate Yj, the algorithm is the same as described
previously, the only difference being that, if condition (19)
holds, then kX � Yjkpp is assigned to D (i.e., the best score
found so far is updated).

The key point of the IDA algorithm is that it achieves
computational savings since, compared to kX � Yjkpp;St , the
term jkXkp;St � kYjkp;St j

p can be computed much more
rapidly and independently from the subvectors cardinality
by calculating the partial norms using well-known fast
incremental calculation schemes [5], [6], [7]. Consequently,
since replacing the differences of partial norms with the
corresponding partial dissimilarities yields tighter bounding

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 131

functions, the tighter the bounding function is, the higher its
calculation time is. Therefore, as described in this section,
IDA establishes a succession of increasingly tighter bounding
functions, with the next computationally more demanding
function calculated only when required, i.e., when a
candidate has not been pruned by the previous condition.

In order to efficiently compute the partial norms by
means of incremental calculation schemes, the adopted
partitioning scheme for X and Yj must follow certain rules
of regularity [11]. In particular, we propose partitioning X
and Yj according to a splitting of template and image
subwindows into r rectangular regions and calculate the
partial norms by the one-pass box-filtering method proposed
in [6]. In our implementation, a box-filtering function fills in
an array of partial norms by computing the norm of each
rectangular region of given dimensions belonging to the
reference image. As described in [6], this is done by
exploiting a double recursion on the rows and columns of
the reference image, which requires only four elementary
operations per image point, independently of the sizes of
the rectangular region. Hence, to obtain the required partial
norms, we need to run as many box filters as the number of
differently sized regions corresponding to subvectors. In a
particular case of r equally sized regions, a single box filter
is needed by IDA. This results in a memory footprint on the
order of N , which compares favorably with the
PK technique, which requires a memory footprint on the
order of N logM [1].

It is worth pointing out that the idea of partitioning the
vectors in order to deploy tighter bounding functions has
been already proposed in other fields such as motion
estimation [12], [13] and vector quantization [14]. Never-
theless, our approach differs from these proposals since it
incorporates the idea of successively refining the bounding
functions by means of the partial dissimilarity concept and
it is not based on a multiresolution scheme.

4 HYBRID IDA ALGORITHM

The main drawback of techniques such as IDA, PK, and SSDA
is data dependency that results in unpredictable response
times. In fact, the computational efficiency of these techni-
ques relies on the ability to prune mismatching candidates by
means of the adopted sufficient conditions, which in turn
depends on the data. Conversely, with the FS approach,
response time depends only on the image and pattern sizes
and, with the FFT approach, only on the image size.
Moreover, as will be shown in Section 5, although IDA turns
out to be generally faster than the FS and FFT approaches, in
some cases, it happens to be slower than the FFT approach.

We observed that the overall behavior of the IDA
algorithm can be predicted with a high degree of reliability
by evaluating the pruning efficiency of its sufficient
conditions on a small subset of points uniformly distributed
over the image. This task requires a fixed and small
computation time and it is particularly meaningful when
images have high spatial similarity within large neighbor-
hoods, as occurs in most cases. Hence, in those pattern-
matching instances where IDA is predicted not to be
particularly effective, the matching process may be carried
out using the faster one between the FS and FFT approach;
this choice is made upon the image and template sizes. Such
an approach requires a small overhead with respect to the
basic IDA algorithm and, as, generally, the prediction turns

out to be correct, it guarantees a deterministic upper bound
on the response time in most cases.

Based on these considerations, we have devised the
following variation to the basic IDA algorithm, referred to
as hIDA. Given a fixed and small subset of points uniformly
distributed over the image, hIDA evaluates the percentage of
points within this subset where the first sufficient condition
(i.e., (14)) succeeds in pruning the corresponding candidate.
In case this percentage is higher than a certain threshold
(typically between 50 percent, for small images, and
85 percent, for bigger images), hIDA carries out the matching
process using the IDA algorithm; conversely, it switches to
the faster between the FS and FFT algorithms. As will be
shown in Section 5, thanks to the computational efficiency
and reliability of the prediction step, in most cases, hIDA
guarantees that, in problem instances favorable to the IDA
approach, the performance is substantially equivalent to that
of the basic IDA algorithm, while, in those few cases less
favorable to IDA, the performance is substantially equivalent
to that of the faster one between the FS and FFT.

5 EXPERIMENTAL RESULTS

This section is aimed at assessing the performance of IDA
and hIDA by comparing them with the FS algorithm as well
as with the fast exhaustive algorithms presented in
Section 2, i.e., the PK, FFT-based, and SSDA algorithms.
The IDA, hIDA, FS, and SSDA algorithms were implemen-
ted in C. As for PK, we compiled and ran the original
authors’ C code (available at their website [15]), which
refers to the case of the SSD function. With regard to the
FFT-based algorithm, we used the very efficient implemen-
tation (cvMatchTemplate function) provided by the OpenCV
library [16]. Hence, we compared IDA and hIDA to the FS,
PK, and FFT algorithms in the case of the SSD function
ðp ¼ 2Þ and then IDA to the FS and SSDA algorithms in the
case of the SAD function ðp ¼ 1Þ.2 The benchmarking
platform was an AMD Athlon processor with 3 Gbytes of
RAM running Windows XP.

Two different kinds of experiments were carried out. In
Experiment 1, we individually compare all of the speedup
values yielded by the considered algorithms on an indoor
sequence of three images acquired by means of a digital
camera. This data set is affected by real distortions since
each image was taken at a slightly different pose with
respect to that from which the templates were extracted.
Instead, Experiment 2 aims at evaluating the global
performance of the algorithms on a large data set of
120 images, with artificial noise at five different levels
added on each image. In this latter experiment, results are
shown by means of statistical indicators.

In order to evaluate the performance of the algorithms
with different image dimensions, for both experiments, four
different scales, S1; � � � ; S4, of patterns and images have
been used:

. S1. Images: 160 � 120; Templates: 16 � 16 ðM ¼ 256Þ.

. S2. Images: 320 � 240; Templates: 32 � 32 ðM ¼
1;024Þ:

. S3. Images: 640 � 480; Templates: 64 � 64 ðM ¼
4;096Þ:

132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

2. hIDA has not been considered in the case p ¼ 1 since it deploys the FFT.

. S4. Images: 1,280 � 960; Templates: 128 � 128 ðM ¼
16;384Þ:

This choice is suitable to both PK and FFT since PK
requires power of two dimensions for the template size and
the FFT optimally fits into power of two image sizes. Since
the proposed approach can be applied to any Lp norm-
based dissimilarity measure, although it is of limited
practical relevance, at the end of this section, we also
compare IDA to the FS in the case p ¼ 3 for S1.

5.1 Parameters of the Algorithms

For what concerns Experiment 1, for each pattern-matching
instance, the threshold D was set to two different values,
referred to as th and th2. The value th is chosen to be very
close to the global minimum, i.e., to the value kX � YWkpp,
where YW is the best matching image subwindow.

In the case p ¼ 2, since the authors’ code of the
PK algorithm requires the parameter Maximum Mean
Difference (MMD),

MMD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSDmin

M

r
ð20Þ

so that the threshold D is computed as

D ¼MMD2 �M; ð21Þ

we set th as

th ¼

ffi
kX � YWk2

2

M

s2
666

3
777: ð22Þ

The second value, th2, was chosen to be less selective
than th, i.e., 10 percent higher:

th2 ¼ th � 1:10: ð23Þ

In the case p ¼ 1, the threshold values th and th2 were set
as follows:

th ¼ kX � YWk1
1 þ 1; ð24Þ

th2 ¼ th � 1:05; ð25Þ

with th2 tighter than in (23) in order to compensate for the
reduced dynamics of the dissimilarity function.

Instead, in Experiment 2, only the case D ¼ th was
considered.

The parameters of the algorithms were kept constant
throughout all experiments. In particular, for what means
the PK algorithm, the number of Walsh-Hadamard kernels
was set to the default value suggested by the authors in
their code. As for IDA and hIDA, we partitioned templates
and image subwindows into r equally sized subvectors of
adjacent elements so that, as pointed out in Section 3, only a
single incremental calculation process is required by the
algorithms. With such a choice, r is the only parameter of
the IDA algorithm. In order to further limit the degrees of
freedom of the adopted partitioning scheme, we con-
strained r to be a power of 2 ranging from 2 up to the
template side (i.e., 16, 32, 64, and 128 in both experiments),
as described graphically in Fig. 1 in the case of a 64 � 64
pixels template. In both experiments, the results yielded by
the IDA algorithm with the choice of parameter r yielding
the best performance are referred to as IDA opt. We also
show the results yielded by the IDA and hIDA using some
given r values that can be regarded as generally good
default choices for the considered template sizes. In
particular, parameter r was set to {4, 4, 8, 8} for the template
side equal, respectively, to {16, 32, 64, 128}, since in most
cases the IDA approach is more efficient if a higher r is used
with bigger templates. For what concerns the hIDA
algorithm, it requires the setting of an additional parameter,
i.e., the threshold on the percentage of candidates pruned
within the prediction step that determines whether the
search process is carried out using IDA or the fastest
between the FS and the FFT. This parameter was set to
50 percent, 50 percent, 70 percent, and 85 percent for the
template side equal, respectively, to {16, 32, 64, 128}. The
prediction step analyzes a subset of points obtained by
selecting one point out of 20 along both of the directions
within the search area.

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 133

Fig. 1. The adopted partitioning schemes of vectors X and Yj as a function of parameter r in the case M ¼ 64� 64.

5.2 Experiment 1

In this experiment, we first extracted five templates from an
image and, then, we took three other shots of the same
scene from slightly different positions (templates and
images are shown in Fig. 2). All templates and images
were scaled according to scales S1, S2, S3, and S4. Hence,
for each of the four scales, we obtained five templates and
three images, resulting overall in 60 pattern-matching
instances. Hereinafter, each instance will be denoted by
the pair test image number-template number (e.g., the pair 1 �
2 denotes template 2 matched into test image 1).

Experimental results are given out as ratios of execution
times (i.e., speedups) measured on the benchmarking
platform.

Figs. 3 and 4 report the speedups yielded by IDA, hIDA,
PK, and FFT with respect to the FS SSD-based algorithm
setting, respectively, D ¼ th and D ¼ th2. For each pattern-
matching instance of each scale, the first two bars concern
IDA: The leftmost regards the value of parameter r
providing the highest speedup (i.e., IDA opt), the other,
tagged as IDA r, r 2 f4; 8g, the default value of r. Then, the
third bar, tagged as hIDA r, r 2 f4; 8g, regards hIDA, with r
set to the same default value as IDA. Finally, the last two
bars show the speedup yielded, respectively, by the PK and
FFT-based algorithm.

As far as Fig. 3 is concerned, the IDA algorithm, using
the optimal r and the default r, turns out to be very effective
in most instances of S1, S2, and S3. As a matter of fact, with
these scales, IDA opt and IDA r are both always much faster
than the FFT-based algorithm. Furthermore, IDA opt does
not outperform PK in only five instances out of 45 (i.e.,

1� 1, 2� 1 at S1 and 1� 1, 3� 1, 3� 4 at S2) while IDA r
does not outperform PK in only six instances out of 45 (the
previous 5 plus 3� 5 at S1).

For what concerns S4, though the computational
efficiency of the FFT algorithm is very high due to the
image and template sizes (speedup ¼ 20:5), IDA algorithms
run notably faster in nine instances out of 15 (reaching a
maximum speedup as high as 184.7 in instance 2 � 1). As
for hIDA, it is almost as fast as IDA in the former nine
instances and provides substantially the same speedup as
the FFT-based algorithm in the remaining 6. Hence, at this
scale, the effectiveness of the prediction step is clearly
shown since hIDA allows for deploying the template-
matching algorithm more suited to the data by correctly
selecting the faster one between IDA and the FFT. This is
also demonstrated in S1, S2, and S3, where IDA clearly
outperforms the FFT and hIDA provides substantially the
same computational savings as IDA. It is also interesting to
note that, at S4, the average speedup yielded by hIDA is
77.8, with a lowest speedup equal to 20.0, which is very
similar to the constant speedup yielded by the FFT. As a
result of these considerations, it turns out that IDA is
particularly suited to small size images, while hIDA
provides the best overall performance.

Moreover, for what concerns a comparison between IDA
opt and IDA r, it can be noticed that the choice of a default r in
most instances does not notably affect the performance
compared to the optimal choice, the speedups yielded by
IDA r being generally very close to those of IDA opt.

With regard to the PK algorithm, at S1 and S2, it turns
out slower than IDA and hIDA in most instances but always

134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 2. Experiment 1: The five templates (top, left) and the three test images.

notably faster than the FFT algorithm. At S3 and S4, PK is
significantly outperformed by FFT in most instances and
turns out to always be slower than IDA and hIDA.

The results reported in Fig. 4 substantially confirm the
outcomes of the previous comparative analysis. Focusing
our attention on S4, the hIDA algorithm also with the
threshold value th2 is able to yield, in the best cases,
speedups comparable to the IDA and, in the worst cases,
speedups similar to the FFT. Furthermore, also in Fig. 4, it
can be noticed that, at S3 and S4, PK is always slower than
IDA (30 out of 30) and, in most instances, slower than the
FFT (29 out of 30).

Finally, Fig. 5 shows the speedups yielded by IDA and
SSDA with respect to the FS SAD-based algorithm (i.e.,

p ¼ 1) with D ¼ th and D ¼ th2. For each instance of this
experiment, the first and third bars refer to IDA with the
optimal value of parameter r (respectively, for D ¼ th and
D ¼ th2), the second and fourth bars to IDA with the
default choice of r (respectively, for D ¼ th and D ¼ th2).
The last two bars refer to SSDA, respectively, for D ¼ th
and D ¼ th2. The figure shows that IDA is always much
faster than the FS algorithm, with speedups ranging from
about 5 (worst case) up to more than 500 (best case). It is
worth pointing out the ranges of the measured speedups
with the less favorable parameter settings (i.e., default r and
less selective threshold D ¼ th2, fourth bar of each
instance): from 5.2 to 34.9 at S1, from 8.4 to 116.6 at S2,
from 10.4 to 226.7 at S3, and from 9.0 to 346.4 at S4. For

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 135

Fig. 3. Experiment 1: Measured speedups in the SSD case, D ¼ th.

what means SSDA, the reported speedups are always

dramatically lower than those yielded by IDA algorithms,

with the algorithm sometimes being even slower than the

FS. This has to be ascribed to the significant number of test

operations (as high as M) performed by SSDA, which slow

down the method, particularly at large scales. Furthermore,

this is also due to the fact that, as explained in Section 2, in

order to guarantee the exhaustiveness of the search, the

pruning threshold for SSDA must be set to a constant value

higher than the global minimum (i.e., th or th2), while this

algorithm was originally conceived to perform best with a

varying D much lower than the global minimum (i.e., in a

nonexhaustive scenario).

5.3 Experiment 2

Experiment 2 was aimed at assessing the performance of the
examined algorithms on a larger data set. This experiment
includes a total of 120 images chosen between three
databases: MIT [17], medical [18], and remote sensing
[19]. The MIT database is mainly concerned with indoor,
urban, and natural environments, plus some object cate-
gories such as cars and fruits. The two other databases are
composed, respectively, of medical (radiographs) and
remote sensing (Landsat satellite) images. All images have
been subdivided into four groups of 30 images, each group
being characterized by a different scale and with scales
being the same as in Experiment 1 (i.e., S1; � � � ; S4). For each
image, 10 templates were randomly selected among those

136 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 4. Experiment 1: Measured speedups in the SSD case, D ¼ th2.

showing a standard deviation of pixel intensities higher
than a threshold (i.e., 45). Then, five different levels of
independent and identically distributed zero-mean Gaus-
sian noise, referred to as N1; � � � ; N5, were added to each
image. The five noise levels range from very low noise to
very high noise, the variances of the Gaussian distribution
being, respectively, 1.3, 2.6, 5.1, 7.7, and 10.2.3 Hence,
overall, each algorithm was tested against 6,000 pattern-
matching instances. Fig. 6 shows five images of the data set.
For each of them, the five corresponding images with
increasing (from left to right) noise levels are also shown.

Due to the large size of the data set, for each scale and
noise level, we provide a global indication (in terms of
mean � and standard deviation �) of the measured
speedups with respect to the FS algorithm on the same
benchmark platform as in Experiment 1. Moreover, in order
to better assess the behavior of the algorithms, we show two
additional descriptors that allow for measuring the asym-
metry of the distribution. These descriptors, referred to as
�� and �þ, represent the square root of the mean square
error with respect to � of the population, respectively,
below and above �.

Fig. 7 reports, for p ¼ 2 and D ¼ th, the performance of
IDA opt, IDA, hIDA, PK, and FFT. The figure shows that, at
S1 and S2, IDA, hIDA, and PK substantially yield

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 137

Fig. 5. Experiment 1: Measured speedups in the SAD case.

3. Corresponding to 0.005, 0.01, 0.02, 0.03, and 0.04 on normalized pixel
intensities ranging within [0, 1].

comparable speedups. The algorithms are always notably
faster than the FFT, although their efficiency decreases
significantly with increasing noise. Nevertheless, on aver-
age, IDA opt, IDA, and hIDA turn out to be more robust to
noise than PK. Furthermore, it is worth pointing out that, at
S2, IDA opt and IDA always provide mean speedups higher
than PK. Moreover, in both scales, IDA opt and IDA are
always slightly more efficient than hIDA. For what concerns
S3, IDA opt, IDA, and hIDA always yield much higher
speedups than PK, which in turn is also clearly out-
performed by the FFT. Conversely, our algorithms always
perform better than the FFT. However, though all data
dependent algorithms are significantly affected by noise,
our algorithms, according to the larger dynamic of the mean
speedup, show a more substantial decrease of the computa-
tional efficiency with increasing noise. The comparison
between our algorithms indicates that hIDA tend to
perform slightly better at higher noise levels. As for S4,
IDA opt and IDA always dramatically outperform PK and,
at noise levels N1, N2, and N3, they are much faster than
FFT. However, at higher noise levels (e.g., N5 for IDA opt
and N4 and N5 for IDA), the FFT turns out to be more
effective. Nevertheless, it is worth observing that hIDA
always outperforms PK and the FFT, resulting in the best
choice for large images.

Overall, the results of Experiment 2 confirm the trend

inferable from Experiment 1: At S1, IDA and PK perform

best; at S2, IDA is the best choice; at S3, IDA and hIDA are

comparable and yield the best results; at S4, hIDA is the

best performing algorithm.

The standard deviation, �, reported in Fig. 7 confirms, on

this larger data set, the notable data dependency of IDA opt,

IDA, hIDA, and PK highlighted in Experiment 1. Although,

for these algorithms, � is significantly high at high noise

levels, it is worth observing that, in all such cases, the

distribution of the speedup is clearly asymmetric, with the

right tail more pronounced (that is, �þ is sensibly greater

than ��). Hence, the values that differ most from the mean

occur for speedups above �, while speedups lower than the

mean show less dispersion with regard to �.

For what concerns p ¼ 1, Fig. 8 reports the speedups

yielded by IDA opt, IDA, and SSDA with respect to the

FS SAD-based algorithm with D ¼ th. Similarly to Experi-

ment 1, at each scale, IDA opt and IDA dramatically

outperform SSDA and FS, always yielding substantial

speedups, thus confirming the efficiency of the proposed

approach on this larger data set. Nevertheless, it is worth

observing that the speedups are significantly affected by

noise. The figure also confirms the significant data

dependency of IDA opt, IDA, and SSDA. Similarly to

p ¼ 2, the distributions of the speedup values are clearly

asymmetric and right tailed; this behavior gets more

pronounced as the noise level increases.

5.4 Experiment with p > 2

We report here the results of an experiment addressing the

case p ¼ 3. In particular, Table 1 shows the mean and

standard deviation of the speedups yielded by IDA opt and

IDA 4 with regard to the FS algorithm on the data set used

138 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 6. Five images of the data set used in Experiment 2. Each row shows the noise-free image (leftmost) from which templates were extracted,

together with the five corresponding noisy images.

in Experiment 2 at S1. As can be noted, also in this case,

both the considered algorithms run significantly faster than

the FS approach.

6 CONCLUSIONS

We have proposed a novel method for fast FS-equivalent

pattern matching with Lp norm-based dissimilarity func-

tions. The method relies on increasingly tighter sufficient

conditions capable of pruning many candidates at a small

computational cost. The proposed experiments, comprised of

thousands of pattern-matching instances, showed that, for

what concerns the SSD function, with images and templates

of small and medium size, the proposed algorithm, referred

to as IDA, overall performs better than the FFT and PK

algorithms, which are state-of-the-art FS-equivalent pattern-

matching approaches. As image and template sizes grow,

though IDA gets increasingly faster than the FS and PK, in

some cases it happens to be slower than the FFT. Hence, we

have proposed a further approach, referred to as hIDA, which

provides the best overall performance in such cases. Finally,

the experimental results with the SAD function show that

IDA yields substantial speedups (up to more than two orders

of magnitude) with respect to the standard FS algorithm and

to the SSDA algorithm.

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 139

Fig. 7. Experiment 2: Speedups yielded by the exhaustive techniques versus the FS algorithm at the four scales, SSD case ðp ¼ 2Þ.

APPENDIX ON THE GENERALIZATION OF THE

PROPOSED METHOD

An interesting issue raised by a reviewer concerned

whether the proposed approach could be generalized to

an arbitrary metric. According to the notation adopted

throughout the paper, we indicate the arbitrary metric used

to evaluate dissimilarities as dðX;YjÞ and the corresponding

partial distances induced by P as dðX;YjÞSt . Though the

triangular inequality can still be applied to subvectors

dðX;YjÞSt �
��dðX; 0ÞSt � dðYj; 0ÞSt ��; t ¼ 1; . . . r; ð26Þ

140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 8. Experiment 2: Speedups yielded by the exhaustive techniques versus FS algorithm at the four scales, SAD case ðp ¼ 1Þ.

TABLE 1
Speedups Yielded by IDA versus FS in the Case p ¼ 3,

Measured on the Images of Experiment 2 at S1

summation of both members now yields

Xr
t¼1

dðX;YjÞSt �
Xr
t¼1

��dðX; 0ÞSt � dðYj; 0ÞSt ��: ð27Þ

Therefore, a sufficient condition for the right-hand side

of (27) to be a lower bound of dðX;YjÞ is

dðX;YjÞ �
Xr
t¼1

dðX;YjÞSt : ð28Þ

Unfortunately, the above inequality does not hold for an

arbitrary metric (e.g., for the Lp-distance when p > 1).
Interestingly, though perhaps of rather limited practical

relevance, it is possible to define at least one class of metrics

that allows for the generalization of our method. Letting

each of dtð�Þ, t ¼ 1; . . . r, and ~dð�Þ be a metric, we define

�dðX;YjÞ ¼
Xr
t¼1

dtðX;YjÞSt

 !
þ ~dðX;YjÞ; ð29Þ

with distances between subvectors denoted according to the

usual notation. It is straightforward to prove that function
�dðX;YjÞ is a metric and that (29) defines a class of distances

satisfying sufficiently condition (28), with

�d0ðX;YjÞ ¼
Xr
t¼1

dtðX;YjÞSt ð30Þ

being the smallest of such distances.

ACKNOWLEDGMENTS

The authors wish to thank Professor Massimo Ferri in the

Department of Mathematics at the University of Bologna for

his valuable suggestions concerning the material presented

in the Appendix, Professor Antonio Torralba and CSAIL at

the Massachusetts Institute of Technology for the use of the

MIT database, Professor Rainer Koster and the Institute for

Clinical Radiology and Nuclear Medicine of the Lukas

Hospital Neuss for the use of the medical image database,

and NASA for the use of the remote sensing image

database.

REFERENCES

[1] Y. Hel-Or and H. Hel-Or, “Real-Time Pattern Matching Using
Projection Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.

[2] D.I. Barnea and H.F. Silverman, “A Class of Algorithms for Digital
Image Registration,” IEEE Trans. Computers, vol. 21, no. 2, pp. 179-
186, Feb. 1972.

[3] F. Tombari, S. Mattoccia, and L. Di Stefano, “Template Matching
Based on the lp Norm Using Sufficient Conditions with
Incremental Approximations,” Proc. IEEE Int’l Conf. Advanced
Video Surveillance Systems, Nov. 2006.

[4] H.L. Royden, Real Analysis, third ed. Prentice Hall, 1988.
[5] F. Crow, “Summed-Area Tables for Texture Mapping,” Computer

Graphics, vol. 18, no. 3, pp. 207-212, 1984.
[6] M. McDonnel, “Box-Filtering Techniques,” Computer Graphics and

Image Processing, vol. 17, pp. 65-70, 1981.
[7] P. Viola and M.J. Jones, “Robust Real-Time Face Detection,” Int’l J.

Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
[8] J.P. Lewis, “Fast Template Matching,” Proc. Conf. Vision Interface,

pp. 120-123, May 1995.

[9] B. Zitová and J. Flusser, “Image Registration Methods: A Survey,”
Image and Vision Computing, vol. 21, no. 11, pp. 977-1000, 2003.

[10] A. Goshtasby, 2-D and 3-D Image Registration for Medical, Remote
Sensing and Industrial Applications. John Wiley & Sons, 2005.

[11] C. Sun, “Moving Average Algorithms for Diamond, Hexagon, and
General Polygonal Shaped Window Operations,” Pattern Recogni-
tion Letters, vol. 27, no. 6, pp. 556-566, 2006.

[12] C.H. Lee and L.H. Chen, “A Fast Motion Estimation Algorithm
Based on the Block Sum Pyramid,” IEEE Trans. Image Processing,
vol. 6, no. 11, pp. 1587-1591, 1997.

[13] X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel Successive
Elimination Algorithm for Block Matching Motion Estimation,”
IEEE Trans. Image Processing, vol. 9, no. 3, pp. 501-504, 2000.

[14] Z. Pan, K. Kotani, and T. Ohmi, “Fast Encoding Method for Vector
Quantization Using Modified l2-Norm Pyramid,” IEEE Signal
Processing Letters, vol. 12, no. 9, pp. 609-612, 2005.

[15] www.faculty.idc.ac.il/toky/Software/software.htm, 2008.
[16] http://sourceforge.net/projects/opencvlibrary, 2008.
[17] http://people.csail.mit.edu/torralba/images, 2008.
[18] www.data-compression.info/Corpora/LukasCorpus, 2008.
[19] http://zulu.ssc.nasa.gov/mrsid, 2008.

Federico Tombari received the BEng and
MEng degrees from the University of Bologna,
Italy, in 2003 and 2005, respectively. In 2006, he
joined the Dipartimento di Elettronica, Informa-
tica e Sistemistica (DEIS) at the University of
Bologna as a PhD student and the Advanced
Research Center on Electronic Systems
(ARCES) at the University of Bologna as a
collaborator. His research interests concern
computer vision and pattern recognition. He is

a student member of the IEEE and a member of the IAPR-IC.

Stefano Mattoccia received the MS degree in
electronic engineering and the PhD degree in
computer science engineering from the Univer-
sity of Bologna, Italy, in 1997 and 2002,
respectively. He joined the Dipartimento di
Elettronica Informatica e Sistemistica (DEIS)
and the Advanced Research Center on Electro-
nic Systems for Information and Communication
Technologies (ARCES) at the University of
Bologna, where he is currently a research

associate on the Faculty of Engineering. His research interests include
computer vision, image processing, and computer architectures. He is
the author of more than 30 refereed papers and two patents. He is a
member of the IEEE and the IAPR.

Luigi Di Stefano received the degree in
electronic engineering from the University of
Bologna, Italy, in 1989 and the PhD degree in
electronic engineering and computer science
from the Department of Electronics, Computer
Science and Systems (DEIS) at the University of
Bologna in 1994. In 1995, he spent six months at
Trinity College Dublin as a postdoctoral fellow.
He is currently an associate professor at DEIS.
He also joined the Advanced Research Centre

on Electronic Systems “Ercole De Castro” (ARCES), a research center
instituted at the University of Bologna in 2001. His research interests
include computer vision, image processing, and computer architecture.
He is the author of more than 70 papers and five patents. He is a
member of the IEEE and the IAPR-IC.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TOMBARI ET AL.: FULL-SEARCH-EQUIVALENT PATTERN MATCHING WITH INCREMENTAL DISSIMILARITY APPROXIMATIONS 141

