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Abstract—This paper addresses the problem of recovering both the intrinsic and extrinsic parameters of a camera from the silhouettes

of an object in a turntable sequence. Previous silhouette-based approaches have exploited correspondences induced by epipolar

tangents to estimate the image invariants under turntable motion and achieved a weak calibration of the cameras. In order to recover

the rotation angles and obtain a euclidean reconstruction, these approaches require the prior knowledge of the camera intrinsics. In

this paper, we propose a novel approach for recovering the rotation angles precisely in the absence of the camera intrinsics. It is known

that the fundamental matrix relating any two views in a turntable sequence can be expressed explicitly in terms of the image invariants,

the rotation angle, and a fixed scalar. It will be shown that the imaged circular points for the turntable plane can also be formulated in

terms of the same image invariants and fixed scalar. This allows the imaged circular points to be recovered directly from the estimated

image invariants. The imaged circular points and the image invariants provide constraints for the estimation of the imaged absolute

conic, and the camera calibration matrix can thus be recovered. A robust method for estimating the fixed scalar from image triplets is

introduced, and a method for recovering the rotation angles by using the estimated imaged circular points and epipoles is presented.

Using the estimated camera intrinsics and extrinsics, a euclidean reconstruction can be obtained. Experimental results on real data

sequences are presented which demonstrate the high precision achieved by the proposed method.

Index Terms—Self-calibration, circular points, silhouettes, turntable motion.

Ç

1 INTRODUCTION

THREE-DIMENSIONAL object reconstruction from image
sequences has always been a hot research topic in both

computer vision and computer graphics. Due to its ease of
operation, a turntable has commonly been used with a fixed
camera for acquiring images around an object in the
modeling process. The most important and difficult step
in object reconstruction from a turntable sequence is the
recovery of the relative pose of the camera, the camera
intrinsic parameters, and the rotation angles. Traditional
approaches accomplish this task by attaching some special
calibration patterns to the turntable to calibrate the camera
[1], [2]. In [3], Fitzgibbon et al. introduced a point-based
method for handling the case with an uncalibrated camera
and unknown rotation angles. Their method is based on the
projective geometry of single axis motion and it involves the
computation of both fundamental matrices and trifocal
tensors from point correspondences. Jiang et al. [4], [5]
further extended this approach by making use of the conic
trajectories of the rotating point features, and developed an
algorithm that requires neither the computation of funda-
mental matrices nor trifocal tensors. Note that all of the

above approaches require the matching of point correspon-
dences across the sequence, and would therefore not be
applicable to smooth objects with sparse surface textures.

For smooth objects like sculptures, silhouettes are the
predominant stable image features. Silhouettes are the
projections of contour generators [6] which are viewpoint
dependent. For two distinct viewpoints, the contour
generators of an object are, in general, two distinct space
curves. Hence, they provide no point correspondences
between the corresponding silhouettes, except for the
frontier points [7], which are the points of intersection
between the two contour generators. Silhouette-based
methods for motion estimation generally exploit epipolar
tangents [8], [9], [10], [11] to locate the images of the frontier
points to derive point correspondences between images.
However, such an approach requires the presence of at least
seven pairs of epipolar tangents, which may not be always
available for objects with a simple shape. Besides, the
location of epipolar tangents in a pair of uncalibrated
images involves a nonlinear optimization with a nontrivial
initialization. In [12], Sinha et al. proposed avoiding the
problem of insufficient frontier points by using silhouettes
of a dynamic object, and they also proposed a RANSAC
approach for initializing the nonlinear optimization in
locating the epipolar tangents. Nonetheless, such a method
is not suitable for a static object.

In [13], Mendonça et al. developed a multistep algorithm
for recovering the turntable motion. The number of
required epipolar tangents per image pair is only two,
which can be easily satisfied in almost all situations. By
exploiting the symmetry properties exhibited in the image
of a surface of revolution (SoR) generated by the rotating
object, a simple method for locating epipolar tangents based
on a one-dimensional search is introduced. Note that this
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method requires a dense turntable sequence in order to
approximate the image of the SoR by the envelope of the
silhouettes. In [14], Wong and Cipolla further extended the
work in [13] to handle the case of sparse sequences, and
their method also allows the incorporation of general views.
The trade-off is the involvement of a high-dimensional
optimization. Note that, in both [13] and [14], the recovery
of the rotation angles and, furthermore, the euclidean
reconstruction still require the knowledge of the camera
intrinsics. In [15], Hernández et al. considered the problem
of recovering both the turntable motion and the camera
focal length from silhouettes. Rather than using the epipolar
tangency constraint as in [13] and [14], they proposed a
novel silhouette coherence constraint and developed a method
that optimizes both the camera poses and the focal length
simultaneously by maximizing the coherence between the
silhouettes and the projections of the visual hull built from
the silhouettes and the current estimate of the camera
parameters. Like [14], their method involves a high-
dimensional optimization. It surpasses [14] by exploiting
all the information contained in the contours of the
silhouettes (rather than just the epipolar tangent points),
and can handle incomplete silhouettes. Experimental
results reported improvement over those obtained using
epipolar tangents. In [16], Furukawa et al. proposed a
RANSAC-based method for recovering general motion
from silhouettes. They simplified the problem of locating
potential epipolar tangents by restricting the viewing
geometry to orthographic projection, under which all epipolar
lines are parallel, and used signature representation of the
dual image outlines to facilitate the matching of epipolar
tangents. Although they also outlined how their method
can be extended to handle the weak-perspective affine case,
only results for the orthographic case were reported.

In this paper, we propose a novel algorithm for
recovering both the intrinsic and extrinsic parameters of a
camera from the silhouettes of an object in a turntable
sequence. The proposed method follows the same approach
as in [13], which first estimates the image invariants by
using epipolar tangents and recovers the fundamental
matrices in terms of these invariants. Based on the fact that
the epipoles in one view are the images of the other camera
centers, a simple method is proposed for precise estimation
of the image invariants and rotation angles in the absence of
the camera intrinsics. Such a method can also handle the
degenerate case as described in [17] and [18], where the
baseline passes through the scene object. Besides, it will be
shown that the imaged circular points for the turntable
plane can be obtained directly in terms of the image
invariants and a fixed scalar used in the formula of the
fundamental matrix. This allows the imaged circular points
to be recovered directly from the estimated image invar-
iants. The imaged circular points, together with the image
invariants, provide constraints for the estimation of the
imaged absolute conic, and the camera calibration matrix
can thus be recovered. This can be used to upgrade the
weakly calibrated cameras to fully calibrated ones, and a
euclidean reconstruction follows. Preliminary results of this
work have been published in [19].

The work presented here is most closely related to the
work of Hernández et al. [15]. In [15], the authors
considered the recovery of the focal length, which was
estimated simultaneously with other motion parameters via
an optimization in a high-dimensional space. In this work,
we consider recovering three camera intrinsic parameters,
namely, the focal length and the coordinates of the principal
point. We also decouple the estimation of the camera
intrinsic parameters from the extrinsic parameters and
demonstrate that the intrinsic parameters can be recovered
from the image invariants derived directly from the
estimated motion parameters. This avoids potential pro-
blems of local minima often encountered in high-dimen-
sional optimizations.

The remainder of this paper is organized as follows:
Section 2 rehashes the image invariants under turntable
motion and a special parameterization of the fundamental
matrix in terms of the image invariants. Section 3 briefly
reviews two existing algorithms for recovering the turntable
motion from silhouettes upon which the algorithm pro-
posed in this paper is based. Section 4 derives a novel
formula for the imaged circular points expressed in terms of
the image invariants and a fixed scalar, and presents an
algorithm for recovering the imaged circular points from
the estimated fundamental matrices. Besides, a robust
method for computing the rotation angles, in the absence
of the camera intrinsics, is also introduced. Section 5 shows
the experimental results, followed by the conclusions in
Section 6.

2 THEORETICAL BACKGROUND

The geometry of a stationary camera viewing an object on a
rotating turntable is equivalent to that of a camera rotating
about the same axis and viewing a stationary object. For the
sake of clear notations, we will refer to the geometry of the
latter in the rest of this paper.

2.1 Image Invariants under Turntable Motion

Consider a reference camera C1 lying on the negative Z-axis
of a world coordinate system and rotating about the Y -axis
(see Fig. 1). The relative positions of the camera center
describe a circle on a plane �h orthogonal to the rotation
axis. The image of �h is the line lh, which is the vanishing
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Fig. 1. Turntable motion. The reference camera C1 is initially lying on the

negative Z-axis of the world coordinate system and it rotates about the

Y -axis. The plane �h is defined by the positions of the rotating camera

center, and the plane �s is defined by the Y -axis and the camera center.



line (i.e., the horizon) for the turntable plane (see Fig. 2).

Since all of the camera center positions lie on �h, all of the

epipoles eij that are images of the rotating camera center

must lie on lh, i.e.,

lTh eij ¼ 0 8i; j: ð1Þ

Let the plane defined by the camera center and the

rotation axis be �s, and consider three orthogonal direc-

tions, Nx, Ny, and Nz, given by the normal direction of �s,

the Y -axis, and Nx �Ny, respectively (see Fig. 1). These

three directions will have vanishing points vx, vy, and vz,

respectively. The image of �s is ls, which is also the image

of the rotation axis (see Fig. 2). Since Nx is orthogonal to �s,

it follows that vx and ls form a pole-polar relationship with

respect to the image of the absolute conic (IAC) !! [20], i.e.,

ls � !!vx: ð2Þ

Similarly, Ny is orthogonal to �h, and vy and lh also form a

pole-polar relationship with respect to the IAC !!, i.e.,

lh � !!vy: ð3Þ

By construction, Nx is parallel to �h, Ny is parallel to �s,

and Nz is parallel to both �h and �s. Hence, vx and vy must

lie on lh and ls, respectively, and vz must lie on both lh and

ls, i.e.,

lTh vx ¼ 0; ð4Þ

lTs vy ¼ 0; and ð5Þ

vz � lh � ls: ð6Þ

Every circle on a plane will intersect the line at infinity at

the circular points with canonical coordinates I ¼ ½1; j; 0�T
and J ¼ ½1;�j; 0�T (where j2 ¼ �1) [21]. The coordinates of

these two conjugate complex points are invariant (as a pair)

under any similarity transformation. The pair of imaged

circular points i and j for the plane �h must lie on its

vanishing line lh, i.e.,

lh � i� j: ð7Þ

Since a plane will intersect the absolute conic at the two

circular points, it follows that the imaged circular points

will lie on the IAC, i.e.,

iT!!i ¼ jT!!j ¼ 0: ð8Þ

If the intrinsic parameters of the camera are kept

constant, due to symmetry in the configuration, the

aforementioned vanishing points (vx, vy, and vz), vanishing

lines (lh and ls), and the imaged circular points (i and j) will

remain unchanged throughout the sequence.

2.2 Fundamental Matrix under Turntable Motion

The fundamental matrix relating a view pair under turn-

table motion can be expressed explicitly in terms of the

image invariants, and is given by [22], [3], [17]:

Fij ¼
1

detðKÞ ½vx�� þ tan
�ij
2

lsl
T
h þ lhlTs

� �
; ð9Þ

where K is the 3 � 3 calibration matrix of the camera and �ij
is the rotation angle between the two views. Since Fij is

expressed as a sum of a skew-symmetric part and a

symmetric part, the scales used in the homogeneous

representations of the image invariants are important and

cannot be ignored. In (9), vx, ls, and lh must have the

following forms:

vx ¼ KR½ 1 0 0 �T; ð10Þ

ls ¼ ðKRÞ�T½ 1 0 0 �T; and ð11Þ

lh ¼ ðKRÞ�T½ 0 1 0 �T; ð12Þ

where R is a 3 � 3 rotation matrix transforming vectors

from the world coordinate system to the reference camera

coordinate system. Given only the image invariants in an

uncalibrated sequence (i.e., without the knowledge of K

and R), a scale factor � has to be introduced into the above

formula to account for the different scales used in the

homogeneous representations of the image invariants and

the expression becomes

Fij � ½vx�� þ � tan
�ij
2

lsl
T
h þ lhlTs

� �
ð13Þ

� ½vx�� þ � lsl
T
h þ lhlTs

� �
; ð14Þ

where � ¼ � tan
�ij
2 . If the scales used in the homogeneous

representations of the image invariants are kept constant,

the scale factor � will remain unchanged and will be

independent of the particular view pair being considered.

From (14), it is easy to see that a fundamental matrix

relating a pair of views under turntable motion has only six

degrees of freedom (DOF): two DOF for ls, three DOF for lh

and vx (due to the constraint imposed by (4)), and one DOF

for �. If the image invariants have been recovered, only one

DOF is needed to fix � and, hence, Fij.
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Fig. 2. Image invariants under turntable motion. The lines lh and ls are
the images of �h and �s, respectively. The points vx, vy, and vz are the
vanishing points for the normal direction of �s, the normal direction of
�h, and a direction orthogonal to both the former two directions,
respectively. The points i and j are the imaged circular points for �h.



3 WEAK CALIBRATION FROM SILHOUETTES

In this section, two recent approaches for estimating
turntable motion from silhouettes will be reviewed. Both
methods estimate the fundamental matrices associated with
the views under turntable motion by minimizing the
symmetric transfer errors of the epipolar tangents to the
silhouettes, and successful solutions have been developed
by exploiting the special parameterization of the funda-
mental matrix. Note that, in order to recover the rotation
angles between different views and achieve a euclidean
reconstruction, the camera calibration matrix is needed in
both methods to upgrade the weak calibration to a full
calibration. In the next section, a novel method will be
introduced to recover the camera calibration matrix from
the estimated fundamental matrices. A robust method for
recovering the rotation angles in the absence of the camera
intrinsics will also be presented. These enhance the current
algorithms by removing the requirement of known camera
intrinsics, and allow a euclidean reconstruction from
silhouettes in an uncalibrated turntable sequence.

3.1 Dense Sequence

Given a dense sequence, Mendonça et al. [17] introduced a
multistep algorithm for estimating the turntable motion.
Their method first recovers the imaged rotation axis ls and
the vanishing point vx from the image profile � of an SoR
generated by the rotating object. They approximate such an
image by the envelope of the deforming silhouettes. By
exploiting the symmetry exhibited in �, ls and vx can be
easily obtained by locating bitangents to � (see Fig. 3). Since
� is invariant to the transformation induced by a harmonic
homology W with axis ls and vertex vx, defined as

W ¼ I� 2
vxl

T
s

vT
x ls

; ð15Þ

ls and vx can be further optimized by minimizing the
transformation error of � brought about by W.

In the second step, the fact that corresponding epipolar
lines are being mapped by W�T is exploited to locate the
outer epipolar tangents to the silhouettes. The objective is to

locate a line l tangent to the silhouette in one view, which

will be transformed by W�T to a line l0 ¼W�Tl tangent to

the silhouette in the second view (see Fig. 4). This process

can be carried out as a one-dimensional search in which the

single search parameter is the angle that defines the

orientation of the line l. The epipoles can then be obtained

as the intersection point of the two outer epipolar tangents

in each view, and the horizon lh is recovered as a line

robustly fitted to the set of epipoles obtained from some

randomly sampled image pairs (see Fig. 5).
After the first two steps, the image invariants vx, ls, and

lh have been recovered. The only missing term in the

parameterization of the fundamental matrix Fij given in

(14) is � ¼ � tan
�ij
2 . In the final step, a one-dimensional

search along the parametric direction � is performed to

optimize Fij by minimizing the symmetric transfer errors of

the epipolar tangents. After this optimization, the set of

epipoles obtained from the resulting fundamental matrices

will all lie on the horizon lh.
With known camera intrinsics, the essential matrix can

be formed from the fundamental matrix. The rotation

angles of the camera can then be recovered by decomposing

the essential matrices. A euclidean reconstruction can be

obtained using the silhouettes and the set of projection

matrices resulting from the decompositions.
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Fig. 3. (a) The image profile of the SoR generated by the rotating object
can be approximated by the envelope of the deforming silhouettes of the
object. (b) The image invariants vx and ls can be obtained from the
intersections of the bitangent lines and lines formed from the bitangent
points.

Fig. 4. An epipolar tangent is located by finding a line tangent to the

silhouette in the first view, which is transformed by the harmonic

homology W�T to a line tangent to the silhouette in the second view.

Fig. 5. The epipole is obtained as the intersection point of the two outer

epipolar tangents in one view. The horizon lh is recovered as a line

robustly fitted to the set of epipoles obtained from some randomly

sampled image pairs.



The advantages of the above approach are that it requires
the presence of only two epipolar tangents per image pair,
and involves only two one-dimensional searches with
trivial initializations. Nonetheless, it requires a dense (say,
with rotation angles less than 10�) and complete (i.e.,
performing a complete 360� rotation) sequence for approx-
imating the image of an SoR generated by the rotating
object, and requires the prior knowledge of the camera
calibration matrix to recover the rotation angles and achieve
a euclidean reconstruction. Furthermore, the method will
fail if the baseline of an image pair passes through the
object. Under this degenerate case, the epipoles will be
located inside the silhouettes and the location of the outer
epipolar tangents becomes impossible (see Fig. 6).

3.2 Sparse Sequence

The method described in the previous section works on a
dense complete turntable sequence. In [18], Wong and
Cipolla considered the case of a sparse incomplete turntable
sequence. Their method exploits the special parameteriza-
tion of the fundamental matrix given in (13), and assumes
that the camera calibration matrix K is known. Given the
camera calibration matrix K, the IAC can be recovered as
! � ðKKTÞ�, and vx can be uniquely determined by ls by
using (2). The horizon lh can be defined by vx and its
intersection vz with ls. Hence, vx, ls, and lh altogether have
only three DOF. Note that, with vx, ls, and lh being properly
normalized, the fixed scalar � can be determined from the
determinant of K. Given a sequence of N images, there are
N � 1 rotation angles between adjacent views, and therefore
a total of 3þ ðN � 1Þ ¼ N þ 2 parameters are needed to
describe all the fundamental matrices (i.e., motion para-
meters) associated with the sequence. The method in [18]
begins by manually initializing ls (and hence vx) and
selecting a point on ls to define lh. The N � 1 rotation angles
between the viewpoints are arbitrarily initialized. These
N þ 2 parameters are then optimized by minimizing the
symmetric transfer errors of the epipolar tangents to the
silhouettes. After the optimization, the fundamental ma-
trices between adjacent viewpoints are formed, which are
then upgraded to the essential matrices by using the camera
calibration matrix. A set of projection matrices compatible
with the turntable motion can then be obtained by decom-
posing the resulting essential matrices. In [18], Wong and
Cipolla also proposed a method for registering new general
views with the silhouettes in the turntable sequence, which

optimizes the six extrinsic parameters of the camera by
minimizing the symmetric transfer errors of the epipolar
tangents. Interested readers are referred to [14] and [18] for
details of this algorithm. Under the assumptions of unit
aspect ratio and the principal point being at the image center,
a minor modification, i.e., by including also the focal length f
in the optimization parameters (i.e., a total of N þ 3
parameters), will produce an algorithm similar to [15].

Compared with the dense sequence method, the above
method can handle sparse and incomplete turntable
sequences. However, it involves a nonlinear optimization
in a high-dimensional ðN þ 2Þ space. Nonetheless, the fact
that these N þ 2 parameters all have physical meanings
(e.g., the image of the rotation axis, the horizon, and
rotation angles) makes the initialization of the nonlinear
optimization an easy task. Like the dense sequence method,
this method requires prior knowledge of the camera
calibration matrix to recover the rotation angles and achieve
a euclidean reconstruction, and will fail under the pre-
viously described degenerate case.

4 SELF-CALIBRATION OF TURNTABLE MOTION

In this section, a novel parameterization for the imaged
circular points of the turntable plane will be introduced. This
allows the imaged circular points to be recovered directly
from the estimated image invariants. The imaged circular
points thus obtained, together with other image invariants,
will be exploited to develop a method for recovering the
camera calibration matrix. Finally, a robust method for
recovering the rotation angles in the absence of the camera
intrinsics is presented. These extend existing methods for
turntable motion estimation from silhouettes to handle
uncalibrated sequences by removing the restrictive require-
ment of the prior knowledge of the camera intrinsics.

4.1 Parameterization for the Imaged Circular Points

In this section, a new formula for the imaged circular points
of the turntable plane will be derived. It will be shown that
the imaged circular points can be expressed in terms of the
image invariants and the fixed scalar used in the special
parameterization of the fundamental matrix for turntable
sequence. The exact expression for the imaged circular
points of the turntable plane in terms of the image
invariants is given in Proposition 1.

Proposition 1. Given a turntable sequence, the imaged circular
points i and j of the turntable plane can be expressed as

i; j � vx � j�ðls � lhÞ; ð16Þ

where j2 ¼ �1 and vx, ls, lh, and � are the image invariants
and fixed scale factor used in the special parameterization of

the fundamental matrix for turntable motion, as given in (13).

Proof. Without loss of generality, consider two views in the
turntable sequence with projection matrices P1 ¼
KR½ I �C � and P2 ¼ KR½RY ð�12Þ �C �, respectively,
where RY ð�12Þ is a rotation about the Y -axis by an angle
�12 and C ¼ ½ 0 0 �1 �T is the camera center (see
Fig. 7). The image x of a point X ¼ ½X 0 Z 1 �T on
the X-Z plane under P1 is given by
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Fig. 6. In the degenerate case, the baseline passes through the object

and outer epipolar tangents do not exist.



x � ½p1 p2 p3 p4 �

X

0

Z

1

2
6664

3
7775

¼ ½p1 p3 �
X

Z þ 1

� �
;

ð17Þ

where pc ðc ¼ 1; 2; 3; 4Þ are the columns of P1 and
p3 ¼ p4. Since, under P1, vx and vz are the vanishing
points of the X-axis and Z-axis, respectively, it follows
that p1 � vx and p3 � vz [3]. The epipole ei on the
image of Pi is the projection of the point
½ sinð�þ ð�1Þi�12Þ 0 cosð�þ ð�1Þi�12Þ 1 �T and is gi-
ven by

ei � ½p1 p3 �
sinð�þ ð�1Þi�12Þ

cosð�þ ð�1Þi�12Þ þ 1

" #

� ½vx �vz �
sinð�þ ð�1Þi�12Þ

cosð�þ ð�1Þi�12Þ þ 1

" #

� ½vx �ðls � lhÞ �
sinð�þ ð�1Þi�12Þ

cosð�þ ð�1Þi�12Þ þ 1

" #

�vx � ð�1Þi� tan
�12

2
ðls � lhÞ;

ð18Þ

where � is an unknown fixed scalar used to fix the
relative scales between vx and vz, and vz � ls � lh (see
(6)). Note that e1 and e2 are the right and left null spaces
of the fundamental matrix F12 relating the two views.
From (13), F12 has the form

F12 � ½vx�� þ � tan
�12

2
lsl

T
h þ lhlT

s

� �
: ð19Þ

Solving F12e1 ¼ 0 and FT
12e2 ¼ 0 gives � ¼ �. Finally, the

imaged circular points i; j can be obtained by projecting
the circular points I;J ¼ ½ 1 0 �j 0 �T under P1, i.e.,

i; j �p1 � jp3

�vx � j�ðls � lhÞ;

and the proof is completed. tu

4.2 Recovery of the Camera Calibration Matrix

By exploiting the parameterization introduced in the
previous section, the imaged circular points of the turntable
plane can be recovered once the fundamental matrix has

been estimated. In this work, the image invariants and the
fundamental matrices are first estimated using the dense
sequence method [17], as described in Section 3.1. The
unknown scale factor � used in the formula of the imaged
circular points can be recovered by considering a triplet of
views. Let the three views have relative rotation angles �pq,
where p; q ¼ 1; 2; 3, p 6¼ q (see Fig. 8), and �1 ¼ � tan �12

2 ,
�2 ¼ � tan �23

2 , and �3 ¼ � tan �13

2 , respectively. Using the fact
that �13 ¼ �12 þ �23, the fixed scalar � can be obtained as

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2�3

�3 � �1 � �2

s
: ð20Þ

Due to the existence of noises, � estimated from different
triplets may have different values. In this work, a set of � is
recovered from some randomly sampled image triplets, and
the mode is then chosen as the best estimate.

Since the imaged circular points lie on the IAC !!,

iT!!i ¼ jT!!j ¼ 0: ð21Þ

Besides, the imaged rotation axis ls and the vanishing point
vx define a pole-polar relationship with respect to the IAC
[21]. Hence,

ls � !!vx: ð22Þ

Equations (21) and (22) together provide three independent
constraints on !!, which allow !! to be estimated under the
assumption of a natural camera with zero skew and unit
aspect ratio. Finally, the camera calibration matrix K can be
obtained by the Cholesky decomposition [23] of !!.

4.3 Recovery of the Rotation Angles

Having estimated the fixed scalar �, a simple way of
recovering the rotation angles is to divide the term � ¼
� tanð�=2Þ in (14) by � [19]. However, such an approach
cannot be applied to the degenerate case shown in Fig. 6
since the fundamental matrix (and hence �) cannot be
recovered in such a case. This problem can be avoided by
acquiring the images in a way such that the horizon is
above or below all the silhouettes. In this paper, this
problem is solved by making use of the available epipoles
from all image pairs.

Consider the top view of the turntable plane (i.e., the
X-Z plane; see Fig. 9). The reference camera C1 (lying on
the negative Z-axis) rotates about the origin O and the
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Fig. 7. A pair of cameras P1 and P2 related by a rotation with an

angle �12 about the Y -axis.
Fig. 8. Three views under turntable motion. Epipole epq is the projection

of the camera center of view p onto view q. �pq is the rotation angle

between views p and q (p; q ¼ 1; 2; 3 p 6¼ q).



relative positions of the camera center Ci ði ¼ 1; . . . ;mÞ
describe a circle on the X-Z plane. Consider the camera

center at two positions C1 and C2 with a relative rotation

angle �12, and a camera center at another position Ci where

i 6¼ 1; 2. The epipoles ei1 and ei2 are the projections of the

camera center Ci in the images taken at C1 and C2,

respectively. By rotating both C2 and Ci about the origin by

an angle �12 toward C1, C2 will coincide with C1 (see

Fig. 10). Let the new position of Ci be C0i. It is easy to see

that the rotation angle between Ci and C0i is �12, and ei2 is

equivalent to the projection of C0i in the image taken at C1

[24]. Let the viewing rays from C1 to Ci and C0i be Li1 and

Li2, respectively. By simple trigonometry, the angle �12

between Li1 and Li2 is equal to half the rotation angle �12,

i.e., �12 ¼ �12

2 . The angle �12 can be obtained using

Laguerre’s formula:

�12 ¼
1

2j
logfLi1;Li2; LI1;LJ1g; ð23Þ

where fLi1;Li2; LI1;LJ1g denotes a cross ratio, j2 ¼ �1, and

LI1 and LJ1 are the isotropic lines through C1 (i.e., the lines

from C1 to the circular points I and J, respectively) [25].

Given the epipoles fei1; ei2g and the imaged circular points
fi; jg, �12 can therefore be estimated as [4]

�12 ¼
1

2j
logfei1; ei2; i; jg; ð24Þ

and the rotation angle �12 follows. Note that the accuracy of
the recovered angle �12 depends on the accuracy of the
epipoles ei1 and ei2 (i.e., the accuracy of the estimated
fundamental matrices F1i and F2i) being used. To handle
the degenerate case robustly and obtain an accurate
estimate of the rotation angle, all available image pairs are
considered to compute a set of estimated angles and the
median is then chosen as the robust estimate of �12.

5 EXPERIMENTAL RESULTS

The first experimental sequence consists of 72 images of a
vase (see Fig. 11). The images have a resolution of 640 � 480.
Each image was taken by sequentially rotating the object by
5� on a manually operated turntable with a resolution of
0:01�. The silhouettes were extracted using cubic B-spline
snakes [26], [27] with manual initializations. The image
invariants ls, vx, and lh were first estimated from the whole
sequence by using the dense sequence method as described
in Section 3.1. A subsequence consisting of 18 images with
successive rotation angles of 20� was then extracted for the
euclidean reconstruction of the vase. The fixed scalar � and
the rotation angles were estimated from this subsequence
by using the methods described in Sections 4.2 and 4.3,
respectively. All the parameters (vx, ls, lh, �, and rotation
angles) were then optimized in a bundle adjustment, which
minimized the symmetric transfer errors of the epipolar
tangents to the silhouettes by using (13). The camera
calibration matrix was then recovered from the optimized
image invariants by using the method described in
Section 4.2. Finally, a set of projection matrices compatible
with the turntable motion was obtained from the decom-
position of the essential matrices, and a euclidean recon-
struction was achieved using a visual hull from silhouettes
method as described in [28].

Fig. 12 shows the histogram of the estimated values for �
from some randomly sampled image triplets, and the peak
indicates the mode that was taken as the robust estimate of
�. Fig. 13 shows both the rotation angles obtained before
and after the bundle adjustment. The root-mean-square
(RMS) errors of the estimated rotation angles before and
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Fig. 9. Two views and one point configuration: The epipoles ei1 and ei2
are the projections of the camera center Ci in the images taken at C1

and C2, respectively, where C2 is obtained by rotating C1 about the

origin by an angle �12.

Fig. 10. Two points and one view configuration: By rotating both C2 and

Ci about the origin by an angle �12 toward C1, C2 will coincide with C1.

Let the new position of Ci be C0i. ei2 can then be regarded as the

projection of the camera center C0i in the image taken at C1.

Fig. 11. An image from the vase sequence.



after the bundle adjustment are 0:134� and 0:112�, respec-

tively, which are better than the RMS error of 0:192�

reported in [17] for the same vase sequence.
The intrinsics recovered from the optimized image

invariants are shown in Table 1, which also shows the

ground-truth values obtained with a classical calibration

method [21] using an L-shape calibration pattern. It can be

seen that the focal length f and the u0 coordinate of the

principal point were both precisely estimated, while v0 was

not. This is due to the high uncertainty in the estimated

coordinates of vx, which was far away from the image

center for a camera looking at a direction close to the

rotation axis. Note that, under the assumption of a natural

camera, any error in the location of vx in a direction parallel

to ls will result in the same error in the location of the

principal point. Fig. 14 shows the recovered positions and

orientations of the rotating camera relative to the model,

and Fig. 15 shows three views of the 3D model recon-

structed from the estimated motion.
The second sequence consists of 72 images of a David

model with successive rotation angles of 5� (see Fig. 16). The

electronic turntable used has a resolution of 0:2�. Similar to

the first experiment, after obtaining ls, vx, and lh from the

whole dense sequence, a subsequence consisting of

18 images with successive rotation angles of 20� was

extracted, and the same procedures for motion estimation,

self-calibration, and euclidean reconstruction were applied

to this subsequence.
Fig. 17 shows the histogram of the estimated values for

the fixed scalar �. Fig. 18 shows both the rotation angles

obtained before and after the bundle adjustment. The RMS

errors of the estimated rotation angles before and after the

bundle adjustment are 0:170� and 0:120�, respectively,

which are better than the RMS error of 0:272� achieved

using the algorithm described in [17]. The calibration result
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Fig. 12. Vase sequence: histogram of the estimated values for �. The

dashed line indicates the “best estimate” �0.

Fig. 13. Vase sequence: angles estimated using the robust method and

those obtained after bundle adjustment. The RMS errors of the

estimated rotation angles before and after the bundle adjustment are

0:134� and 0:112�, respectively.

TABLE 1
Estimated and Ground-Truth Values for the Intrinsics

of the Vase Sequence

Fig. 14. The recovered camera positions and orientations for the vase

sequence.

Fig. 15. Different views of the 3D model of the vase built from the

estimated turntable motion.

Fig. 16. An image from the David sequence.



is shown in Table 2. Fig. 19 shows the recovered positions
and orientations of the rotating camera relative to the
model. The reconstructed model is shown in Fig. 20, which
reflects good qualities of our estimated parameters.

The third experiment was to test the robustness of the
algorithm under different rotation angles. The dense
sequence consisting of 72 vase images used in the first
experiment was employed here. It provided 10 possible
subsequences with 72, 36, 24, 18, 12, 9, 8, 6, 4, and 3 images,
respectively. The corresponding rotation angle � between
adjacent images in these subsequences are 5�, 10�, 15�, 20�,
30�, 40�, 45�, 60�, 90�, and 120�, respectively.

For each subsequence, the camera intrinsics and the
rotation angles were computed in exactly the same way as
in the first two experiments, except that the bundle
adjustment step was omitted. The results are shown in
Table 3. It can be seen that the camera calibration matrix can
generally be estimated with high accuracy. However, the

rotation angles could not be estimated accurately when the

rotation angles are large. This is due to the fact that, under

large rotation angles, the chance of having the degenerate

case increases and, at the same time, the number of epipoles

available for robust estimation of the angles decreases.

Hence, the accuracy of the estimated rotation angles

decreases accordingly.

6 DISCUSSIONS AND CONCLUSIONS

In this paper, a simple and practical approach has been

introduced to recover the camera intrinsics and the relative
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Fig. 17. David sequence: histogram of the estimated values for �. The

dashed line indicates the “best estimate” �0.

Fig. 18. David sequence: angles estimated using the robust method and

those obtained after bundle adjustment. The RMS errors of the

estimated rotation angles before and after the bundle adjustment are

0:170� and 0:120�, respectively.

TABLE 2
Estimated and Ground-Truth Values for the Intrinsics

of the David Sequence

Fig. 19. The recovered camera positions and orientations for the David

sequence.

Fig. 20. Different views of the 3D model of David built from the estimated

turntable motion.

TABLE 3
Calibration Results and the Estimated Angles

under Different Rotation Angles

Columns 2-4 show the estimated intrinsic parameters. The values in
brackets are the percentage errors relative to the ground-truth focal
length. Column 5 shows the RMS errors of the estimated rotation
angles. The values in brackets are the RMS errors of the estimated
rotation angles relative to the ground-truth angles.



rotation angles from silhouettes in a turntable sequence. A
special parameterization for the imaged circular points of
the turntable plane in terms of the image invariants and a
fixed scalar is derived. This allows the camera intrinsics to
be obtained directly from the estimated image invariants.
Besides, a robust method is developed to estimate the
rotation angles. This method does not depend on the
knowledge of the camera intrinsics, and can handle the
degenerate case in which the fundamental matrix is not
recoverable. The proposed algorithm takes an uncalibrated
turntable sequence as input, and self-calibration is carried
out to achieve a euclidean reconstruction. Experiments on
two image sequences showed that both the camera
intrinsics and the rotation angles could be estimated with
a high precision, and convincing 3D models have been
constructed using these estimated parameters.
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