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Abstract

‘We consider the problem of automatically recognizing human faces from frontal views, with varying
illumination and expression. We cast the recognition problem as one of classifying among multiple linear
regression models, and argue that new theory from sparse signal representation offers the key to address-
ing this problem. The desired representation is sparse, since the test sample should only be represented
in terms of training samples from the same class. Based on the sparse representation computed by £!-
minimization, we propose a general classification algorithm for (image-based) object recognition. This
new framework provides new insights into two crucial issues in face recognition: feature extraction and
robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is
properly hamessed, the choice of features is no longer critical. What is critical, however, is whether
the number of features is sufficiently large and whether the sparse representation is correctly computed.
Unconventional featﬁres such as downsampled images and random projections perform just as well as
conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature
space surpasses certain threshold, predicted by the theory of sparse representation. This framework can
handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are
often sparse w.r.t. to the standard (pixel) basis. This basis can be treated as a special class of training
samples. An occluded test image has a sparse representation w.r.t. the training images plus these special
training samples. The theory of sparse representation helps predict how much occlusion the recognition
algorithm can handle and how to choose the training images to maximize robustness to occlusion. We
conduct extensive experiments on publicly available databases to verify the efficacy of the proposed

algorithm, and corroborate the above claims.

Index Terms

Face Recognition, Feature Extraction, Occlusion and Corruption, Sparse Representation, Com-

pressed Sensing, £'-Minimization, Validation and Outlier Rejection.

I. INTRODUCTION

Parsimony has a rich history as a guiding principle for inference. One of its most celebrated
instantiations, the principle of minimum description length in model selection [1], [2], stipulates
that within a hierarchy of model classes, the model that yields the most compact representation
should be preferred for decision-making tasks such as classification. A related, but simpler,
measure of parsimony in high-dimensional data processing seeks models that depend on only

a few of the observations, selecting a small subset of features for classification or visualization
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(e.g., Sparse PCA [3], [4] amongst others). Such sparse feature selection methods are, in a sense,
dual to the support vector machine (SVM) approach of [5], [6], which instead selects a small
subset of relevant training examples to characterize the decision boundary between classes. While
these works comprise only a small fraction of the literature on parsimony for inference, they
do serve to illustrate a common theme: all of them use parsimony as a principle for choosing a
limited subset of features or models from the training data, rather than directly using the data
for representing or classifying an input (test) signal.

The role of parsimony in human perception has also been strongly supported by studies of
human vision. Investigators have recently revealed that in both low-level and mid-level human
vision [7], [8], many neurons in the visual pathway are selective for a variety of specific stimuli,
such as color, texture, orientation, scale, and even view-tuned object images. Considering these
neurons to form an overcomplete dictionary of base signal elements at each visual stage, the
firing of the neurons w.r.t. to a given input image is typically highly sparse.

In the statistical signal processing community, the algorithmic problem of computing sparse
linear representations w.r.t. to an overcomplete dictionary of base elements or signal atoms has
seen a recent surge of interest [9]-[12].! Much of this excitement centers around the discovery
that whenever the optimal representation is sufficiently sparse, it can be efficiently computed by
convex optimization [9], even though this problem can be extremely difficult in the general case
[13]. The resulting optimization problem, similar to the Lasso in statistics [12], [14] penalizes
the #'-norm of the coefficients in the linear combination, rather than the directly penalizing the
number of nonzero coefficients (i.e. the #°-norm).

The original goal of these works was not inference or classification per se, but rather repre-
sentation and compression of signals, potentially using lower sampling rates than the Shannon-
Nyquist bound [15]. Algorithm performance was therefore measured in terms of sparsity of the
representation and fidelity to the original signals. Furthermore, individual base elements in the

dictionary were not assumed to have any particular semantic meaning — they are typically chosen

" the literature, the terms “sparse’” and “representation” have been used to refer to a number of similar concepts. Throughout
this paper, we will use the term “sparse representation™ to refer specifically to an expression of the input signal as a linear
combination of base elements in which many of the coefficients are zero. In most cases considered, the percentage of nonzero
coefficients will vary between zero and ~ 30%. However, in characterizing the breakdown point of our algorithms, we will

encouttfer cases with up to 70% nonzeros.
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from standard bases (e.g.., Fourier, Wavelet, Curvelet, Gabor), or even generated from random
matrices [11], [15]. Nevertheless, the sparsest representation is naturally discriminative: amongst
all subsets of base vectors, it selects the subset which most compactly expresses the input signal
and rejects all other possible but less compact representations.

In this paper, we exploit the discriminative nature of sparse representation to perform classi-
Jication. Instead of using the generic dictionaries discussed above, we represent the test sample
in an overcomplete dictionary whose base elements are the training samples themselves. If
sufficient training samples are available from each class,? it will be possible to represent the
test samples as a linear combination of just those training samples from the same class. This
representation is naturally sparse, involving only a small fraction of the overall training database.
We argue that in many problems of interest, it is actually the sparsest linear representation of
the test sample in terms of this dictionary, and can be recovered efficiently via ¢'-minimization.
Seeking the sparsest representation therefore automatically discriminates between the various
classes present in the training set. Figure 1 illustrates this simple idea using face recognition
as an example. Sparse representation also provides a simple and surprisingly effective means of
rejecting invalid test samples not arising from any class in the training database: these samples’
sparsest representations tend to involve many dictionary elements, spanning multiple classes.

Our use of sparsity for classification differs significantly from the various parsimony principles
discussed above. Instead of using sparsity to identify a relevant model or relevant features that can
later be used for classifying all test samples, it uses the sparse representation of each individual
test sample directly for classification, adaptively selecting the training samples that give the most
compact representation. The proposed classifier can be considered a generalization of popular
classifiers such as nearest neighbor (NN) [18] and nearest subspace (NS) [19] (i.e., minimum
distance to the subspace spanned all training samples from each object class). Nearest neighbor
classifies the test sample based on the best representation in terms of a single training sample,
whereas nearest subspace classifies based on the best linear representation in terms of all the
training samples in each class. The nearest feature line (NFL) algorithm [20] strikes a balance

between these two extremes, classifying based on the best affine representation in terms of a

“In contrast, methods such as [16]. [17] that utilize only a single training sample per class face a more difficult problem and

generally incorporate more explicit prior knowledge about the types of variation that could occur in the test sample.
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Fig. 1. Our method represents a test image (left), which is potentially occluded (top) or corrupted (bottom). as a sparse linear
combination of all the training images (middle) plus sparse errors (right) due to occlusion or corruption. Red (darker) coefficients
correspond to training images of the correct individual. Our algorithm determines the true identity (indicated with a red box at

second row and third column) from 700 training images of 100 individuals (7 each) in the standard AR face database.

pair of training samples. Our method strikes a similar balance, but instead of just considering
pairs of training samples, it considers all possible supports (within each class or across multiple
classes) and adaptively chooses the minimal number of training samples needed to represent
each test sample.’

We will motivate and study this new approach to classification within the context of automatic
face recognition. Human faces are arguably the most extensively studied object in image-based
recognition. This is partly due to the remarkable face recognition capability of the human visual
system [21], and partly due to numerous important applications for face recognition technology
[22]. In addition, technical issues associated with face recognition are representative of object
recognition and even data classification in general. Conversely, the theory of sparse representation
and compressed sensing yields new insights into two crucial issues in automatic face recognition:
the role of feature extraction and the difficulty due to occlusion.

a) The Role of Feature Extraction: The question of which low-dimensional features of an
object image are the most relevant or informative for classification is a central issue in face
recognition, and in object recognition in general. An enormous volume of literature has been
devoted to investigate various data-dependent feature transformations for projecting the high-

dimensional test image into lower dimensional feature spaces: examples include Eigenfaces

3The relationship between our method and NN, NS, and NFL is explored more thoroughly in the supplementary appendix.
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[23], Fisherfaces [24], Laplacianfaces [25], and a host of variants [26], [27]. With so many
proposed features and so little consensus about which are better or worse, practitioners lack
guidelines to decide which features to use. However, within our proposed framework, the theory
of compressed sensing implies that the precise choice of feature space is no longer critical:
even random features contain enough information to recover the sparse representation and hence
correctly classify any test image. What is critical is that the dimension of the feature space is
sufficiently large, and that the sparse representation is correctly computed.

b) Robusmess to Occlusion: Occlusion poses a significant obstacle to robust, real-world
face recognition [16], [28], [29]. This difficulty is mainly due to the unpredictable nature of the
error incurred by occlusion: it may affect any part of the image, and may be arbitrarily large in
magnitude. Nevertheless, this error typically corrupts only a fraction of the image pixels, and
is therefore sparse in the standard basis given by individual pixels. When the error has such
a sparse representation, it can be handled uniformly within our framework: the basis in which
the error is sparse can be treated as a special class of training samples. The subsequent sparse
representation of an occluded test image w.r.t. this expanded dictionary (training images plus
error basis) naturally separates the component of the test image arising due to occlusion from
the component arising from the identity of the test subject (see Figure 1 for an example). In this
context, the theory of sparse representation and compressed sensing characterizes when such
source-and-error separation can take place, and therefore how much occlusion the resulting
recognition algorithm can tolerate.

'¢) Organization of this Paper: In Section II, we introduce a basic, general framework for
classification using sparse representation, applicable to a wide variety of problems in image-
based object recognition. We will discuss why the sparse representation can be computed by
¢'-minimization, and how it can be used for classifying and validating any given test sample.
Section IIT shows how to apply this general classification framework to study two important
issues in image-based face recognition: feature extraction and robustness to occlusion. In Section
IV, we verify the proposed method with extensive experiments on popular face datasets, and
comparisons with many other state-of-the-art face recognition techniques. Further connections
between our method, nearest neighbor, and nearest subspace are discussed in the supplementary

appendix.
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While the proposed method is of broad interest to object recognition in general, the studies
and experimental results in this paper are confined to human frontal face recognition. We will
deal with illumination and expressions but we do not explicitly account for object pose, nor rely
on any 3-D model of the face. The proposed algorithm is robust to small variations in pose and
displacement, for example, due to registration errors. However, we do assume that detection,

cropping, and normalization of the face have been performed prior to applying our algorithm.

II. CLASSIFICATION BASED ON SPARSE REPRESENTATION

A basic problem in object recognition is to use labeled training samples from k distinct object
classes to correctly determine the class to which a new test sample belongs. We arrange the given
n; training samples from the ¢-th class as columns of a matrix A; = [v;1,Vi2,. .., Vi, € R™™.
In the context of face recognition, we will identify a w x h grayscale image with the vector
v € R™ (m = wh) given by stacking its columns; the columns of A; are then the training face

images of the i-th subject.

A. Test Sample as a Sparse Linear Combination of Training Samples

An immense variety of statistical. generative or discriminative, models have been proposed for
exploiting the structure of the A; for recognition. One particularly simple and effective approach
models the samples from a single class as lying on a linear subspace. Subspace models are flexible
enough to capture much of the variation in real datasets, and are especially well-motivated in the
context of face recognition, where it has been observed that the images of faces under varying
lighting and expression lie on a special low-dimensional subspace [24], [30], often called a
face subspace. Although the proposed framework and algorithm can also apply to multimodal or
nonlinear distributions (see the supplementary appendix for more detail), for ease of presentation,
we shall first assume that the training samples from a single class do lie on a subspace. This is
the only prior knowledge about the training samples we will be using in our solution.*

Given sufficient training samples of the i-th object class, 4; = [v;1,Vs2,. .., Vin,| € R™X™,

any new (test) sample y € R™ from the same class, will approximately lie in the linear span of

*In face recognition, we actually do not need to know whether the linear structure is due to varying illumination or expression,
since we do not rely on domain-specific knowledge such as an illumination model [31] to eliminate the variability in the training

and testing images.
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the training samples® associated with object i:
Y= Q101 + QUi+ 4 Qi Vi, (D

for some scalars a;; € R, 7 =1,2,...,n;.
Since the membership ¢ of the test sample is initially unknown, we define a new matrix A

for the entire training set as the concatenation of the n training samples of all k& object classes:
A=A Ay A = (010,010, U1, Ve, Vs, € R™X 2)

Then the linear representation of y can be rewritten in terms of all training samples as
y=Ax, €R™, 3)

where oy = [0, ,0, 41,42, ., Qi 0, ... ,O]T € R" is a coefficient vector whose entries
are zero except those associated with the i-th class.

As the entries of the vector @, encode the identity of the test sample ¥, it is tempting to
attempt to obtain it by solving the linear system of equations y = Ax. Notice, though, that
using the entire training set to solve for  represents a significant departure from one sample or
one class at a time methods such as nearest neighbor (NN) and nearest subspace (NS). We will
later argue that one can obtain a more discriminative classifier from such a global representation.
We will demonstrate its superiority over these local methods (NN or NS) both for identifying
objects represented in the training set and for rejecting outlying samples that do not arise from
any of the classes present in the training set. These advantages can come without an increase
in the order of growth of the computation: as we will see, the complexity remains linear in the
size of training set.

Obviously, if m > n, the system of equations y = Az is overdetermined and the correct &g
can usually be found as its unique solution. We will see in Section III, however, that in robust
face recognition, the system y = Az is typically underdetermined, and so its solution is not

unique.® Conventionally, this difficulty is resolved by choosing the minimum ¢2-norm solution,

(%) - &y = argmin |||, subjectto Az =y. Cy

*One may refer to [32] for how 1o choose the training images to ensure this property for face recognition. Here, we assume
such a training set is given.
SFurthermore, even in the overdetermined case. such a linear equation may not be perfectly satisfied in the presence of data

noise (see Section II-B.2).
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While this optimization problem can be easily solved (via the pseudoinverse of A), the solution
x5 18 not especially informative for recognizing the test sample y. As shown in Example 1,
&, is generally dense, with large nonzero entries corresponding to training samples from many
different classes. To resolve this difficulty, we instead exploit the following simple observation:
A valid test sample y can be sufficiently represented using only the training samples from the
same class. This representation is naturally sparse if the number of object classes k is reasonably
large. For instance, if k = 20, only 5% of the entries of the desired xo should be nonzero. The
more sparse the recovered x is, the easier will it be to accurately determine the identity of the
test sample y.’

This motivates us to seek the sparsest solution to y = Az, solving the following optimization
problem:

GF &o = argmin ||z|lo subject to Az =y, (5)

where | - [|o denotes the <€0—n0rm,‘ which counts the number of nonzero entries in a vector. In
fact, if the columns of A are' in general position, then whenever y = Az for some x with less
than m/2 nonzeros, x is the unique sparsest solution: &, = x [33]. However, the problem of
finding the sparsest solution of an underdetermined system of linear equations is NP-hard, and
difficult even to approximate [34]: That is, in the general case, no known procedure for finding
the sparsest solution is significantly more efficient than exhausting all subsets of the entries for

Z.

B. Sparse Solution via ¢*-Minimization

Recent development in the emerging theory of sparse representation and compressed sens-
ing [9]-[11] reveals that if the solution xy sought is sparse enough, the solution of the £°-
minimization problem (5) is equal to the solution to the following ¢'-minimization problem:

(€4 T, = argmin |||, subjectto Az =y. (6)

This problem can be solved in polynomial time by standard linear programming methods [35].

Even more efficient methods are available when the solution is known to be very sparse. For

"This intuition holds only when the size of the database is fixed. For example, if we are allowed to append additional irrelevant
columns to A, we can make the solution =g have a smaller fraction of nonzeros. but this does not make x¢ more informative

for recognition.
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R"™ R™

y = Axg

Fig. 2. Geometry of sparse representation via ¢*-minimization, The ¢!-minimization determines which facet (of the lowest-
dimension) of the polytope A(P,) the point y/||y|[1 lies in. The test sample vector g is represented as a linear combination of

just the vertices of that facet.. with coefficients x.

example, homotopy algorithms recover solutions with ¢ nonzeros in O(t* + n) time, linear in
the size of the training set [36].

1) Geometric Interpretation: Fig.ure 2 gives a geometric interpretation (essentially due to [37])
of why minimizing the ¢'-norm correctly recovers sufficiently sparse solutions. Let P, denote

the #*-ball (or crosspolytope) of radius o
P,={xz:|z|i <a} CR™ (7)

In Figure 2, the unit £'-ball P; is mapped to the polytope P = A(P;) C R™ consisting of all y
that satisfy y = Az for some = whose ¢!-norm is < 1.

The geometric relationship between F, and the polytope A(PF,) is invariant to scaling. That
is, if we scale F,, its image under multiplication by A is also scaled by the same amount.
Geometrically, finding the minimum ¢'-norm solution &, to (6) is equivalent to expanding the
¢'-ball P, until the polytope A(P,) first touches y. The value of a at which this occurs is
exactly [|zq][;.

Now suppose that y = Az, for some sparse xo. We wish to know when solving (6) correctly
recovers xg. This question is easily resolved from the geometry of Figure 2: Since @ is found
by expanding both P, and A(F,) until a point of A(F,) touches y, the £!-minimizer &; must
generate a point Axy on the boundary of P.

Thus z; = xy if and only if the point A(z,/||xo||;) lies on the boundary of the polytope P.

For the example shown in Figure 2, it is easy to see that the ¢!-minimization recovers all xg

January 17, 2008 DRAFT
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with only one nonzero entry. This equivalence holds because all of the vertices of P, map to
points on the boundary of P.

In general, if A maps all ¢-dimensional facets of P to facets of P, the polytope P is referred to
as (centrally) t-neighborly [37]. From the above, we see that the ¢!-minimization (6) correctly
recovers all xg with < ¢ + 1 nonzeros iff P is t-neighborly, in which case it is equivalent
to the (-minimization (5).® This condition is surprisingly common: even polytopes F given
by random matrices (e.g., uniform, Gaussian, and partial Fourier) are highly neighborly [15],
allowing correct recover of sparse xg by £*-minimization.

Unfortunately, there is no known algorithm for efficiently verifying the neighborliness of
a given polytope P. The best known algorithm is combinatorial and therefore only practical
when the dimension m is moderate [38]. When m is large, it is known that with overwhelming

probability, the neighborliness of a randomly chosen polytope P is loosely bounded between:
c-m<t<|(m+1)/3] o (8)

for some small constant ¢ > 0 (see [9], [37]). Loosely speaking, as long as the number of
nonzero entries of x, is a small fraction of the dimension 2, £'-minimization will recover .

2) Dealing with Small, Dense Noise: So far, we have assumed that equation (3) holds exactly.
Since real data are noisy, it may not be possible to express the test sample exactly as a sparse
superposition of the training samples. The model (3) can be modified to explicitly account for

small, possibly dense noise, by writing
Y= AwO -+ z, (9)

where z € R™ is a noise term with bounded energy |z||2 < €. The sparse solution g can still

be approximately recovered by solving the following stable ¢'-minimization problem:
(€l : &1 = argmin ||z|; subject to | Az — yls <e. (10)

This convex optimization problem can be efficiently solved via second-order cone program-

ming [35] (see Section IV for our algorithm of choice). The solution of (¢}) is guaranteed to

8Thus, neighborliness gives a necessary and sufficient condition for sparse recovery: The restricted isometry properties often
used in analyzing the performance of ¢'-minimization in random matrix ensembles (e. g.. [15]) give sufficient, but not necessary,

conditions.
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approximately recovery sparse solutions in ensembles of random matrices A [39]: There are
constants p and ¢ such that with overwhelming probability, if [zollo < pm and ||z|, < ¢, then
the computed @ satisfies

”5&] - 5130”2 S CG (11)

C. Classification Based on Sparse Representation

Given a new test sample y from one of the classes in the training set, we first compute its
sparse representation &, via (6) or (10). Ideally, the nonzero entries in the estimate &, will all be
associated with the columns of A from a single object class 7, and we can easily assign the test
sample y to that class. However, noise and modeling error may lead to small nonzero entries
associated with multiple object classes (see Figure 3). Based on the global, sparse representation,
one can design many possible classifiers to resolve this. For instance, we can simply assign y
to the object class with the single largest entry in &,. However, such heuristics do not harness
the subspace structure associated with images in face recognition. To better harness such linear
structure, we instead classify y based on how well the coefficients associated with all training
samples of each object reproduce y.

For each class i, let §; : R™ — R™ be the characteristic function which selects the coefficients
associated with the i-th class. For z € R, §;(x) € R™ is a new vector whose only nonzero
entries are the entries in « that are associated with class 7. Using only the coefficients associated
with the i-th class, one can approximate the given test sample y as y; = Ad;(z1). We then
classify y based on these approximations by assigning it to the object class that minimizes the
residual between y and y;:

111}11 ?"z(y) = H’y — A &(331)”2 (12)

Algorithm 1 below summarizes the complete recognition procedure. Our implementation min-

imizes the ¢'-norm via a primal-dual algorithm for linear programming based on [40], [41].

Example 1 (€*-Minimization versus ¢2-Minimization): To illustrate how Algorithm 1 works,
we randomly select half of the 2,414 images in the Extended Yale B database as the training set,
and the rest for testing. In this example, we subsample the images from the original 192 x 168 to

size 12 x 10. The pixel values of the downsampled image are used as 120-D features — stacked
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Algorithm 1: Sparse Representation-based Classification (SRC)
1: Input: a matrix of training samples A = [A;, Ay, ..., Ax] € R™ for k classes, a test

sample y € R™, (and an optional error tolerance ¢ > 0.)
2: Normalize the columns of A to have unit £2-norm.

3: Solve the ¢!-minimization problem:
;= argmin ||z||; subject to Az =y. (13)

(Or alternatively, solve &; = argmin,, |z||; subject to || Az — yll» <€)
4. Compute the residuals r;(y) = |ly — Adi(@1)||2 fori=1,... k.
5. Output: identity(y) = arg min; r;(y).

as columns of the matrix A in the algorithm. Hence matrix A has size 120 x 1207, and the
system y = Az is underdetermined. Figure 3 left illustrates the sparse coefficients recovered
by Algorithm 1 for a test image from the first subject. The figure also shows the features and
the original images that correspond to the two largest coefficients. The two largest coefficients
are both associated with training samples from subject 1. Figure 3 right shows the residuals
w.r.t. the 38 projected coefficients §;(@1), ¢ = 1,2,...,38. With 12 x 10 downsampled images
as features, Algorithm 1 achieves an overall recognition rate of 92.1% across the Extended Yale
B database. (See Section IV for details and performance with other features such as Eigenfaces
and Fisherfaces, as well as comparison with other methods.) Whereas the more conventional
minimum ¢-norm solution to the underdetermined system y = Az is typically quite dense,
minimizing the ¢!-norm favors sparse solutions, and provably recovers the sparsest solution when
this solution is sufficiently sparse. To illustrate this contrast, Figure 4 left shows the coefficients
of the same test image given by the conventional ¢*-minimization (4), and Figure 4 right shows
the corresponding residuals w.r.t. the 38 subjects. The coefficients are much less sparse than
those given by ¢'-minimization (in Figure 3), and the dominant coefficients are not associated
with subject 1. As a result, the smallest residual in Figure 4 does not correspond to the correct

subject (subject 1).
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Fig. 3. A valid test image. Left: Recognition with 12 x 10 downsampled images as features. The test image y belongs to
subject 1. The values of the sparse coefficients recovered from Algorithm 1 are plotted on the right together with the two training
examples that correspond to the two largest sparse coefficients. Right: The residuals »;(y) of a test image of subject 1 w.r.t. the

projected sparse coefficients d;(#) by {*-minimization. The ratio between the two smallest residuals is about 1:8.6.
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Fig. 4. Left: Coefficients from ¢*-minimization, using the same test image as Figure 3. The recovered solution is not sparse
and hence less informative for recognition (large coefficients do not correspond to training images of this test subject). Right:
The residuals of the test image from subject 1 w.r.t. the projection ;(3:) of the coefficients obtained by £*-minimization. The

ratio between the two smallest residuals is about 1:1.3. The smallest residuval is not.associated with subject 1.

D. Validation Based on Sparse Representation

Before classifying a given test sample, we must first decide if it is a valid sample from one of
the classes in the dataset. The ability to detect and then reject invalid test samples, or “outliers,”
is crucial for recognition systems to work in real-world situations. A face recognition system,
for example, could be given a face image of a subject that is not in the database, or an image
that is not a face at all.

Systems based on conventional classifiers such as nearest neighbor (NN) or nearest subspace
(NS), often use the residuals r;(y) for validation, in addition to identification. That is, the
algorithm accepts or rejects a test sample based on how small the smallest residual is. However,
each residual 7;(y) is computed without any knowledge of images of other object classes in the
training dataset and only measures similarity between the test sample and each individual class.

In the sparse representation paradigm, the coefficients @; are computed globally, in terms of
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Fig. 5. Example of an invalid test image. Left: The sparse coefficients for the invalid test image w.r.t. the same training data
set from Example 1. The test image is a randomly selected irrelevant image. The values of the sparse coefficients recovered
from Algorithm 1 are plotted on the right. Right: The residuals of the invalid test image w.r.t. the projection §;(&) of the sparse

representation computed by ¢'-minimization. The ratio between the two smallest residuals is about 1:1.2.

images of all classes. In a sense, it can harness the joint distribution of all classes for validation.
We contend that the coefficients & are better statistics for validation than the residuals. Let us
first see this through an example.

Examplé 2 (Conceéntration of Sparse Coefficients): We randomly select an irrelevant image
from Google, and downséhiple it to 12 x 10. We then compute the sparse representation of the
image against the same Extended Yale B training data as in Example 1. Figure 5 left plots the
obtained coefficients, and right plots the corresponding residuals. Compared to the coefficients
of a valid test image in Figure 3, notice that the coefficients & here are not concentrated on any
one subject and instead spread widely across the entire training set. Thus, the distribution of
the estimated sparse coefficients & contains important information about the validity of the test
image: A valid test image should have a sparse representation whose nonzero entries concentrate
mostly on one subject, whereas an invalid image has sparse coefficients spread widely among
multiple subjects.

To quantify this observation, we define the following measure of how concentrated the coef-
ficients are on a single class in the dataset:

Definition 1 (Sparsity Concentration Index): The sparsity concentration index (SCI) of a co-
efficient vector € R” is defined as

SCI(z) = &0 ”5@'15“1)“11/”‘””1 ~L < (14)

For a solution & found by Algorithm 1, if SCI(&) = 1, the test image is represented using only

images from a single object, and if SCI(z) = 0, the sparse coefficients are spread evenly over
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all classes. We choose a threshold 7 € (0,1) and accept a test image as valid if
SCI(z) > T, (15)

and otherwise reject as invalid. Thus, in step 5 of Algorithm 1, one may choose to output the
identity of y only if it passes this criterion.

Unlike NN or NS, this new rule avoids the use of the residuals r;(y) for validation. Notice
that in Figure 5, even for a non-face image, with a large training set, the smallest residual of
the invalid test image is not so large. Rather than relying on a single statistic for both validation
and identification, our approach separates the information required for these tasks: the residuals
for identification and the sparse coefficients for validation.” In a sense, the residual measures
how well the representation approximates the test image; and the sparsity concentration index
measures how good the representation itself is, in terms of localization.

One benefit to this approach to validation is improved performance against generic objects
that are simiiar td ’mﬁhlipkle object' clésses. For example, in face recognition, ‘a geheric face might
be rather similar to some of the subjects in the dataset and may have small residuals w.r.t. their
training images. Using residuals for validation more likely leads to a false positive. But a generic
face is unlikely to pass the new validation rule as a good representation of it typically requires
contribution from images of multiple subjects in the dataset. Thus, the new rule can better judge
whether the test image is a generic face or the face of one particular subject in the dataset.
In Section IV-G we will demonstrate that the new validation rule outperforms the NN and NS
methods, with as much as 10-20% improvement in verification rate for a given false accept rate

(see Figure 14 in Section IV or Figure 18 in the supplementary appendix).

III. TwO FUNDAMENTAL ISSUES IN FACE RECOGNITION

In this section, we study the implications of the above general classification framework for
two critical issues in face recognition: 1. The choice of feature transformation, and 2. Robustness

to corruption, occlusion, and disguise.

*We find empirically that this separation works well enough in our experiments with face images. However, it is possible that

better validation and identification rules can be contrived from using the residual and the sparsity together.
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(a) original ¥ {b) 120-D features § = Ry (c) eye feature 7

Fig. 6. Examples of feature extraction. (a). Original face image. (b). 120-D representations in terms of four different features
(from left to right): Eigenfaces, Laplacianfaces, downsampled (12 X 10 pixel) image. and random projection. We will demonstrate
that all these features contain almost the same information about the identity of the subject and give similarly good recognition
performance. (¢). The eye is a popular choice of feature for face recognition. In this case. the feature matrix R is simply a

binary mask.

A. The Role of Feature Extraction

In the computer vision literature, numerous feature extraction schemes have been investigated
for finding projections that better separate the classes in lower-dimensional spaces, which are
often referred to as feature spaces. One class of methods extracts holistic face features, such
as Eigenfaces [23], Fisherfaces [24], and Laplacianfaces [25]. Another class of methods tries
to extract meaningful partial facial features (e.g., patches around eyes or nose) [21], [42].
See Figure 6 for some examples. Traditionally, when feature extraction is used in conjunction
with simple classifiers such as NN and NS, the choice of feature transformation is considered
critical to the success of the algorithm. This has led to the development of a wide variety
of increasingly complex feature extraction methods, including nonlinear and kernel features
[43], [44]. In this section, we reexamine the role of feature extraction within the new sparse
représentation framework for face recognition.

One benefit of feature extraction, which carries over to the proposed sparse representation
framework, is reduced data dimension and computational cost. For raw face images, the cor-
responding linear system y = Az is very large. For instance, if the face images are given at
the typical resolution, 640 x 480 pixels, the dimension m is on the order of 10°. Although
Algorithm 1 relies on scalable methods such as linear programming, directly applying it to such
high-resolution images is still beyond the capability of regular computers.

Since most feature transformations involve only linear operations (or approximately so), the

projection from the image space to the feature space can be represented as a matrix R € Rex™
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with d <« m. Applying R to both sides of equation (3) yields:
= Ry = RAz, ¢ R% (16)

In practice, the dimension d of the feature space is typically chosen to be much smaller than
n. In this case, the system of equations § = RAz € R? is underdetermined in the unknown
x € R™. Nevertheless, as the desired solution x, is sparse, we can hope to recover it by solving

the following reduced ¢'-minimization problem:

(€Y %, = argmin ||z||; subject to |RAz — |2 <, (17)

T

for a given error tolerance ¢ > 0. Thus, in Algorithm 1, the matrix A of training images is now
replaced by the matrix RA € R¥™ of d-dimensional features; the test image y is replaced by
its features y.

For extant face recognition methods, empirical studies have show that increasing the dimension
d of the feature space generally improves the recognition rate, as long as the distribution of
features RA; does not become degenerate [43]. Degeneracy is not an issue for ¢'-minimization,
since it merely requires that ¢ be in or near the range of RA; — it does not depend on the
covariance X; = A?RTRAi being nonsingular as in classical discriminant analysis. The stable
version of ¢'-minimization (10) or (17) is known in statistical literature as the Lasso [14]. It
can effectively regularize highly underdetermined linear regression when the desired solution is
sparse [12].

For our sparse representation approach to recognition, we would like to understand how the
choice of the feature extraction R affects the ability of the ¢'-minimization (17) to recover the
correct sparse solution . From the geometric interpretation of ¢£!-minimization given in Section
1I-B.1, the answer to this depends on whether the associated new polytope P = RA(P;) remains
sufficiently neighborly. It is easy to show that the neighborliness of the polytope P = RA(F;)
increases with d [11], [15]. In Section IV, our experimental results will verify the ability of
£ -minimization, in particular the stable version (17), to recover sparse representations for face
recognition using a variety of features. This suggests that most data-dependent features popular in
face recognition (e.g., Eigenfaces, Laplacianfaces) may indeed give highly neighborly polytopes
P.

Further analysis of high-dimensional polytope geometry has revealed a somewhat surprising

phenomenon: if the solution @y is sparse enough, then with overwhelming probability, it can
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be correctly recovered via ¢!-minimization from any sufficiently large number d of linear mea-
surements § = RAz. More precisely, if o has ¢ < n nonzeros, then with overwhelming
probability,

d > 2tlog(n/d) (18)

random linear measurements are sufficient for ¢!-minimization (17) to recover the correct sparse

solution xq [45].1°

This surprising phenomenon has been dubbed the “blessing of dimensionality”
[15], [47]. Random features can be viewed as a less-structured counterpart to classical face
features, such as Eigenfaces or Fisherfaces. Accordingly, we call the linear projection generated
by a Gaussian random matrix Randomfaces:!!

Definition 2 (Randomfaces): Consider a transform matrix R € R%*™ whose entries are in-
dependently sampled from a zero-mean normal distribution and each row is normalized to unit
length. These row vectors of RA can be viewed as d random faces in R™.

One major adizantage of Randomfaces is that they are extremely efficient to generate, as the
transformation R is independent of the training data set. This advantage can be important for a
face-recognition system where we may not be able to acquire in advance a complete database of
all subjects of interest to precompute data-dependent transformations such as Eigenfaces, and the
subjects in the database may change over time. In such cases, there is no need for recomputing
the random transformation R.

As long as the correct sparse solution @ can be recovered, Algorithm 1 will always give the
same classification result, regardless of the feature actually used. Thus, when the dimension of
feature d exceeds the above bound (18), one should expect that the recognition performance of
Algorithm 1 with different features quickly converges, and the choice of an “optimal” feature
transformation is no longer critical: Even random projections or downsampled images should
perform as well as any other carefully engineered features. This will be corroborated by the

experimental results in Section IV,

08 trictly speaking, this threshold holds when random measurements are taken computed directly from zo — ¥ = Rzo.
Nevertheless. our experiments roughly agree with the bound given by (18). The case where zq is instead Sparse in some
overcomplete basis A, and we observe random measurements § = RAxzy has also been studied in [46]. While conditions for

correct recovery have been given, the bounds. are not yet as sharp as (18) above.

HRandom projection has been previously studied as a general dimensionality-reduction method for numerous clustering

problems [48]-[50]. as well as for learning nonlinear manifolds [51], [52).
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B. Robustness to Occlusion or Corruption

In many practical face recognition scenarios, the test image y could be partially corrupted or

occluded. In this case, the above linear model (3) should be modified as
Y = Ypyte = 44580“}‘60, (19)

where e, € R™ is a vector of errors — a fraction, p, of its entries are nonzero. The nonzero
entries of ey model which pixels in y are corrupted or occluded. The locations of corruption can
differ for different test images and are not known to the computer. The errors may have arbitrary
magnitude and therefore cannot be ignored or treated with techniques designed for small noise
such as the one given in Section II-B.2.

A fundamental principle of coding theory [53] is that redundancy in the measurement is
essential to detecting and correcting gross errors. Redundancy arises in object recognition because
the number of image pixels is typically far greater than the number of subjects that have generated
the irﬁaées. In this case, even if a fraction of the pixels are complete]y corrupted by occlusioh,
recognition may still be possible based on the remaining pixels. On the other hand, feature
extraction schemes discussed in the previous section would discard useful information that could
help compensate for the occlusion. In this sense, no representation is more redundant, robust,
or informative than the original images. Thus, when dealing with occlusion and corruption, we
should always work with the highest possible 1'esollftion, performing downsampling or feature
extraction only if the resolution of the original images is too high to process.

Of course, redundancy would be of no use without efficient computational tools for exploit-
ing the information encoded in the redundant data. The difficulty in directly harnessing the
redundancy in corrupted raw images has led researchers to instead focus on spatial locality as
a guiding principle for robust recognition. Local features computed from only a small fraction
of the image pixels are clearly less likely to be corrupted by occlusion than holistic features.
In face recognition, methods such as ICA [54] and LNMF [55] exploit this observation by
adaptively choosing filter bases that are locally concentrated. Local Binary Patterns [56] and
Gabor wavelets [57] exhibit similar properties, since they are also computed from local image
regions. A related approach partitions the image into fixed regions and computes features for each
region [16], [58]. Notice, though, that projecting onto locally concentrated bases transforms the

domain of the occlusion problem, rather than eliminating the occlusion. Errors on the original
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pixels become errors in the transformed domain, and may even become less local. The role
of feature extraction in achieving spatial locality is therefore questionable, since no bases or
Jeatures are more spatially localized than the original image pixels themselves. In fact, the most
popular approach to improving the robustness of feature-based methods is based on randomly
sampling individual pixels [28], sometimes in conjunction with statistical techniques such as
multivariate trimming [29].

Now, let us show how the proposed sparse representation classification framework can be
extended to deal with occlusion. Let us assume that the corrupted pixels are a relatively small
portion of the image. The error vector ey, like the vector g, then has sparse!? nonzero entries.

Since y, = Axo, we can rewrite (19) as

y=[41]"| < Bw,. (20)

€y

Here, thi [A, I] € R™*(n+m) oo the system y = Baw is always underdetermined and does
not have a unique solution for w. However, from the above discussion about the sparsity of g
and ey, the correct generating wy = [xy, €y] has at most n; + pm nonzeros. We might therefore
hope to recover wy as the sparsest solution to the system y = Bw. In fact, if the matrix B is
in general position, then as long as y = B for some @ with less than m/2 nonzeros, W is
the unique sparsest solution. Thus, if the occlusion e covers less than 5™ pixels, &~ 50% of
the image, the sparsest solution @ to y = Bw is the true generator, wy = [xo, €g].

More generally, one can assume that the corrupting error ey has a sparse representation with
respect to some basis A, € R™*”. That is, e = A.uy for some sparse vector u, € R™. Here,
we have chosen the special case A, = I € R™™ as eq is assumed to be sparse with respect
to the natural pixel coordinates. If the error ey is instead more sparse with respect to another
basis, e.g., Fourier or Haar, we can simply redefine the matrix B by appending A. (instead of

the identity I) to A and instead seck the sparsest solution wy to the equation:
y=Bw with B=[A4, A,] R (21)

In this way, the same formulation can handle more general classes of (sparse) corruption.

2 ‘. . ‘. .- . . . .
2Here, “sparse™ does not mean very few.” In fact, as our experiments will demonstrate, the portion of corrupted entries can

be rather significant. Depending on the type of corruption. our method can handle up to p = 40% or p = 70% corrupted pixels.
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Fig. 7. Face recognition with occlusion. The columns of £B = =[A4, I] span a high-dimensional polytope P = B(F;) in
R™. Each vertex of this polytope is either a training image or an image with just a single pixel illuminated (corresponding
to the identity submatrix 7). Given a test image, solving the £'-minimization problem essentially locates which facet of the
polytope the test image falls on. The “*-minimization finds the facet with the fewest possible vertices. Only vertices of that

facet contribute to the representation: all other vertices have no contribution.

As before, we attempt to recover the sparsest solution wy from solving the following extended

/'-minimization problem:
(Y : w; = argmin ||w|; subject to Bw =y. (22)

That is, in Algorithm 1, we now replace the image matrix A with the extended matrix B = [A, /]
and = with w = [z, e].

Clearly, whether the sparse solution wg can be recovered from the above ¢'-minimization
depends on the neighborliness of the new polytope P = B(P) = [A, I](F1). This polytope
contains vertices from both the training images A and the identify matrix [, as illustrated in
Figure 7. The bounds given in (8) imply that if ¢ is an image of subject ¢, the ¢'-minimization

(22) cannot guarantee to correctly recover wg = [z, €o] if
n; + |support(eg)| > d/3.

Generally, d > n;, so (8) implies that the largest fraction of occlusion under which we can hope
to still achieve perfect reconstruction is 33%. This bound is corroborated by our experimental

results; see Figure 12.
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To know exactly how much occlusion can be tolerated, we need more accurate information
about the neighborliness of the polytope P than a loose upper bound given by (8). For instance,
we would like to know for a given set of training images, what is the largest amount of (worst-
possible) occlusion it can handle. While the best known algorithms for exactly computing the
neighborliness of a polytope are combinatorial in nature, tighter upper bounds can be obtained
by restricting the search for intersections between the nullspace of B and the ¢!-ball to a random
subset of the ¢-faces of the £!-ball (see [38] for details). We will use this technique to estimate
the neighborliness of all the training datasets considered in our experiments.

Empirically, we found that the stable version (10) is only necessary when we do not consider
occlusion or corruption e in the model (such as the case with feature extraction discussed in the
previous section). When we explicitly account for gross errors by using B = [A, I] the extended
¢-minimization (22) with the exact constraint Bw = y is already stable under moderate noise.

‘Once the sparse solution wy = [&y, €3 is computed, setting y, = y — €; recovers a clean
image of the subject with occlusion or corruption compensated for. To identify the subject, we

slightly modify the residual r;(y) in Algorithm 1, computing it against the recovered image y,.:

ri{y) = |y, — Ad(Z1) |2 = lly — €1 — Adi(1)]|2. (23)

IV. EXPERIMENTAL VERIFICATION

In this section, we present experiments on publicly available databases for face recognition,
which serve both to demonstrate the efficacy of the proposed classification algorithm, and to
validate the claims of the previous sections. We will first examine the role of feature extraction
within our framework, comparing performance across various feature spaces and feature dimen-
sions, and comparing to several popular classifiers. We will then demonstrate the robustness of
the proposed algorithm to corruption and occlusion. Finally, we demonstrate (using ROC curves)
the effectiveness of sparsity as a means of validating test images, and examine how to choose

training sets to maximize robustness to occlusion.

A. Feature Extraction and Classification Methods

We test our sparse representation-based classification (SRC) algorithm using several conven-

tional holistic face features, namely, Eigenfaces, Laplacianfaces, and Fisherfaces, and compare
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their performance with two unconventional features: Randomfaces and downsampled images.
We compare our algorithm with three classical algorithms, namely, nearest neighbor (NN), and
nearest subspace (NS), discussed in the previous section, as well as linear support vector machine
(SVM)." In this section, we use the stable version of SRC in various lower-dimensional feature
spaces, solving the reduced optimization problem (17) with the error tolerance ¢ = 0.05. The
MATLAB implementation of the reduced (feature space) version of Algorithm 1 takes only a
few seconds per test image on a typical 3GHz PC.

1) Extended Yale B Database: The Extended Yale B database consists of 2,414 frontal-face
images of 38 individuals [59]. The cropped and normalized 192 x 168 face images were captured
under various laboratory-controlled lighting conditions [60]. For each subject, we randomly select
half of the images for training (i.e., about 32 images per subject), and the other half for testing.
Randomly choosing the training set ensures that our results and conclusions will not depend on
any-special choice of the training data.

We compute the recognition rates with the feature space dimensions 30, 56, 120, and 504.
Those numbers correspond to downsampling ratios of 1/32, 1/24, 1/16, and 1/8, respectively.'*
Notice that Fisherfaces are different from the other features because the maximal number of
valid Fisherfaces is one less than the number of classes k [24], 38 in this case. As a result, the
recognition result for Fisherfaces is only available at dimension 30 in our experiment.

The subspace dimension for the NS algorithm is 9, which has been mostly agreed upon in
the literature for processing facial images with only illumination change.’® Figure 8 shows the
recognition performance for the various features, in conjunction with four different classifiers:
SRC, NN, NS, and SVM.

SRC achieves recognition rates between 92.1% and 95.6% for all 120 dimensional feature

spaces, and a maximum rate of 98.1% with 504 dimensional randomfaces. The maximum

BDue to the subspace structure of face images, linear SVM is already ‘appropriate for separating features from different faces.
The use of a linear kernel (as opposed to more complicated, nonlinear transformations) also makes it possible to directly compare
between different algorithms working in the same feature space. Nevertheless, better performance might be achieved by using
nonlinear kernels in addition to feature transformations.

YWe cut off the dimension at 504 as the compuation of Eigenfaces and Laplacianfaces reaches the memory limit of MATLAB.
Although our algorithm persists to work far beyond on the same computer. 504 is already sufficient to reach all our conclusions.

We have experimented with other subspace dimensions that are either greater or less than 9, and they eventually led to a

decrease in performance.
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Fig. 8. Recognition rates on Extended Yale B database, for various feature transformations and classifiers. Top left: SRC (our

approach). Top right: nearest neighbor. Bottom left: nearest subspace. Bottom right: support vector machine (linear kernel).

recognition rates for NN, NS, and SVM are 90.7%, 94.1%, and 97.7%, respectively. Tables
with all the recognition rates are available in the supplementary appendix. The recognition rates
shown in Figure 8 are consistent with those that have been reported in the literature, although
some reported on different databases or with different training subsets. For example, He et. al.
[25] reported the best recognition rate of 75% using Eigenfaces at 33 dimension, and 89% using
Laplacianfaces at 28 dimension on the Yale face database, both using NN. In [32], Lee et. al.
reported 95.4% accuracy using the NS method on the Yale B database.

2) AR Database: The AR database consists of over 4,000 frontal images for 126 individuals.
For each individual, 26 pictures were taken in two separate sessions [61]. These images include
more facial variations including illumination change, expressions, and facial disguises comparing
to the Extended Yale B database. In the experiment, we chose a subset of the dataset consisting
of 50 male subjects and 50 female subjects. For each subject, 14 images with only illumination
change and expressions were selected: the seven images from Session 1 for training, and the other

seven from Session 2 for testing. The images are properly cropped with dimension 165 x 120,
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and all converted to grayscale. We selected four feature space dimensions: 30, 54, 130, and 540,
which correspond to the downsample ratios 1/24, 1/18, 1/12, and 1/6, respectively. Because the
number of subjects is 100, results for Fisherfaces are only given at dimension 30 and 54.

This database is substantially more challenging than the Yale database, since the number of
subjects is now 100 but the training images is reduced to seven per subject: Four neutral faces
with different lighting conditions and three faces with different expressions. For NS, since the
number of training images per subject is seven, any estimate of the face subspace cannot have
dimension higher than 7. We chose to keep all seven dimensions for NS in this case.

Figure 9 shows the recognition rates for this experiment. With 540 dimensional features, SRC
achieves a recognition rate between 92.0% and 94.7%. One the other hand, that best recognition
rates achieved by NN and NS are 89.7% and 90.3%, respectively. SVM slightly outperforms SRC
on this dataset, achieving a maximum recognition rate of 95.7%. However, the performance of
SVM varies more with the choice of feature space — the recognition rate using random features
is just 88.8%. The supplementary appendix contains a table of detailed numerical results.

Based on the results on the Extended Yale B database and the AR database, we draw the
following conclusions:

1) For both the Yale database and AR database, the best performances of SRC and SVM
consistently exceed the best performances of the two classical methods NN and NS at
each individual feature dimension. More specifically, the best recognition rate for SRC on
the Yale database is 98.1%, compared to 97.7% for SVM, 94.0% for NS, and 90.7% for
NN; the best rate for SRC on the AR database is 94.7%, compared to 95.7% for SVM,
90.3% for NS, and 89.7% for NN.

2) The performances of the other three classifiers depends strongly on a good choice of
“optimal” features — Fisherfaces for lower feature space dimension and Laplacianfaces
for higher feature space dimension. With NN and SVM, the performance of the various
features does not converge as the dimension of the feature space increases.

3) The results corroborate the theory of compressed sensing: Equation (18) suggests that
d ~ 128 random linear measurements should be sufficient for sparse recovery in the Yale
database, while d ~ 88 random linear measurements should suffice for sparse recovery in
the AR database [45]. Beyond these dimensions, the performances of various features in

conjunction with £!-minimization converge, with conventional and unconventional features
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Fig. 9. Recognition rates on AR database, for various feature transformations and classifiers. Top left: SRC (our approach).

Top right: nearest neighbor. Bottom left: nearest subspace. Bottom right: support vector machine (linear kernel).

(e.g., Randomfaces and downsampled images) performing similarly. When the feature di-

mension is large, a single randomly chosen projection performs the best (98.1% recognition

rate on Yale, 94.7% on AR).

B. Partial Face Features

There have been extensive studies in both the human and computer vision literature about the
effectiveness of partial features in recovering the identity of a human face, e.g., see [21], [42]. As
a second set of experiments, we test our algorithm on the following three partial facial features:
nose, right eye, and mouth & chin. We use the Extended Yale B database for the experiment,
with the same training and test sets as in subsection IV-A.1. See Figure 10 for a typical example
of the extracted features.

Notice that for each of the three features, the dimension d is larger than the number of
training samples (n = 1,207), and the linear system (16) to be solved becomes overdetermined.

Nevertheless, sparse approximate solutions x can still be obtain by solving the e-relaxed ¢!-
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Features Nose | Right Eye | Mouth & Chin
Dimension (d) | 4,270 5,040 12,936
SRC 87.3% 93.7% 98.3%
NN 49.2% 68.8% 72.7%
NS 83.7% 78.6% 94.4%
SVM 70.8% 85.8% 95.3%

Fig. 10. Left: Example three partial face features. Right: Recognition rates of SRC, NN, NS, and SVM on the Extended Yale

B database.

minimization problem (17) (here, again, ¢ = 0.05). The results in Figure 10 right again show
that the proposed SRC algorithm achieves better recognition rates than NN, NS, and SVM,
which again demonstrate the significance of imposing the sparsity constraint in face recognition.
These experiments also show the scalability of the proposed algorithm in working with more

than 10*-dimensional features.

C. Recognition Despite Random Pixel Corruption

For this experiment, we test the robust version of SRC, which solves the extended -
minimization problem (22), using the Extended Yale B Face Database. We choose Subsets 1
and 2 (717 images, normal-to-moderate lighting conditions) for training, and Subset 3 (453
images, more extreme lighting conditions) for testing. Without occlusion, this is a relatively
easy recognition problem. This choice is deliberate, in order to isolate the effect of occlusion.
The images are resized to 96 x 84 pixels,'® so in this case B = [A, ] is an 8,064 x 8,761
matrix. For this dataset, we have estimated that the polytope P = conv(+B) is approximately
1, 185-neighborly (using the method given in [38]), suggesting that perfect reconstruction can
be achieved upto 13.3% (worst possible) occlusion.

We corrupt a percentage of randomly chosen pixels from each of the test images, replacing their
values with iid samples from a uniform distribution'’. The corrupted pixels are randomly chosen
for each test image and the locations are unknown to the algorithm. We vary the percentage of

corrupted pixels from 0% to 90%. Figure 11 (left) visualizes several representative examples of

1®The only reason for resizing the images is to be able to run all the experiments within the memory size of MATLAB on a

typical PC. The algorithm relies on linear programming and is scalable in the image size.

Uniform over [0, Ymaz]. Where ymas is the largest possible pixel value.
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Fig. 11. Recognitioﬁ under random corruption. Left: (a) Test images y {rom Extended Yale B, with random corruption.
Top row: 30% of pixels are corrupted, Middie row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors é;1. (c)
Estimated sparse coefficients &1. (d) Reconstructed images y,.. SRC correctly identifies all three corrupted face images. Right:
The recognition rate across the entire range of corruption for various algorithms. SRC (red curve) significantly outperforms

others, performing almost perfectly upto 60% random corruption (see table below).

v

Percent corrupted 0% 10% 20% 30% | 40% 50% 60% 70% 80% | 90%

Recognition rate 100% | 100% | 100% | 100% | 100% | 100% | 99.3% | 90.7% | 37.5% | 7.1%

the test images. To the human eye, beyond 50% corruption, the corrupted images (Figure 11(a)
second and third rows) are barely recognizable as face images; determining their identity seems
out of the question. Yet even in this extreme circumstance, SRC correctly recovers the identity
of the subjects.

We quantitatively compare our method to four popular techniques for face recognition in the
vision literature. The Principal Component Analysis (PCA) approach of [23] is not robust to
occlusion. There are many variations to make PCA robust to corruption or incomplete data,
and some have been applied to robust face recognition, e.g., [29]. We will later discuss their
performance against ours on more realistic conditions. Here we use the basic PCA to provide
a standard baseline for comparison'®. The remaining three techniques are designed to be more
robust to occlusion. Independent Component Analysis (ICA) architecture I [54] attempts to
express the training set as a linear combination of statistically independent basis images. Local

Nonnegative Matrix Factorization (LNMF) [55] approximates the training set as an additive

18Following [59] we normalize the image pixels to have zero mean and unit variance before applying PCA.
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combination of basis images, computed with a bias toward sparse bases.'* We also compare to the
algorithm of [16], which combats occlusion by dividing the image into regions and aggregating
Mahalanobis distances across regions. Finally. to demonstrate that the improved robustness is
really due to the use of the ¢*-norm, we compare to a least-squares technique that first projects
the test image onto the subspace spanned by all face images, and then performs nearest subspace.

Figure 11 (right) plots the recognition performance of SRC and its five competitors, as a
function of the level of corruption. We see that the algorithm dramatically outperforms others.
From 0% upto 50% occlusion, SRC correctly classifies all subjects. At 50% corruption, none
of the others achieves higher than 73% recognition rate, while the proposed algorithm achieves
100%. Even at 70% occlusion, the recognition rate is still 90.7%. This greatly surpasses the
theoretical bound of worst-case corruption (13.3%) that the algorithm is ensured to tolerate.

Clearly, the worst-case analysis is too conservative for random corruption.

D. Recognition Despite Random Block Occlusion

We next simulate various levels of contiguous occlusion, from 0% to 50%, by replacing a
randomly located square block of each test image with an unrelated image, as in Figure 12(a).
Again, the location of occlusion is randomly chosen for each image and is unknown to the
computer. Methods that select fixed facial features or blocks of the image (e.g., [16], [58]) are
less likely to succeed here, due to the unpredictable location of the occlusion. The top two
rows of Figure 12 left shows two representative results of Algorithm 1 with 30% occlusion.
Figure 12(a) is the occluded image. In the second row, the entire center of the face is occluded,
this is a difficult recognition task even for humans. Figure 12(b) shows the magnitude of the
estimated error e;. Notice that e; compensates not only for occlusion due to the baboon, but
also for the violation of the linear subspace model caused by the shadow under the nose. Figure
12(c) plots the estimated coefficient vector &,. The red entries are coefficients corresponding to
test image’s true class. In both examples, the estimated coefficients are indeed sparse, and have
large magnitude only for training images of the same person. In both cases, the SRC algorithm
correctly classifies the occluded image. For this dataset, our Matlab implementation requires 90

seconds per test image on a PowerMac GS5.

YFor PCA, ICA and LNMF. the number of basis components is chosen to give the optimal test performance over the range
{100, 200, 300, 400, 500, 600}.
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Fig. 12.  Recognition under varying level of random contiguous ocelusion. Left, top two rows: (a) 30% occluded test

face images y from Extended Yale B. (b) Estimated sparse errors, e1. (c) Estimated sparse coefficients, &1, red {darker) entries
correspond Lo training images of the same person. (d) Reconstructed images. y .. SRC correctly identifies both occluded faces. For
comparison, the bottom row shows the same test case, with the result given by least-squares (overdetermined ¢*-minimization).
Right: The recognition rate across the entire range of corruption for various algorithms. SRC (red curve) significantly outperforms

others, performing almost perfectly upto 30% contiguous occlusion (see table below).

Percent occluded 0% 10% 20% 30% 40% 50%
Recognition rate | 100% | 100% | 99.8% | 98.5% | 90.3% | 65.3%

The graph in Figure 12 (right) shows the recognition rates of all six algorithms. SRC again
significantly outperforms the other five methods, for all levels of occlusion. Upto 30% occlusion,
Algorithm 1 performs almost perfectly, correctly identifying over 98% of test subjects. Even at
40% occlusion, only 9.7% of subjects are misclassified. Compared to random pixel corruption,
contignous occlusion is certainly a worse type of errors for the algorithm. Notice, though, that
the algorithm does not assume any knowledge about the nature of corruption or occlusion. In
Section IV-F, we will see that if we know in advance that the occlusion is contiguous, how
that information can be used to customize the algorithm and greatly enhance the recognition
performance.

This result has interesting implications for the debate over the use of holistic versus local
features in face recognition [22]. It has been suggested that both ICA I and LNMF are robust
to occlusion: since their bases are locally concentrated, occlusion corrupts only a fraction of
the coefficients. By contrast, if one uses ¢*>-minimization (orthogonal projection) to express an

occluded image in terms of a holistic basis such as the training images themselves, all of the
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coefficients may be corrupted (as in Figure 12 left third row). The implication here is that the
problem is not the choice of representing the test image in terms of a holistic or local basis,
but rather how the representation is computed. Properly harnessing redundancy and sparsity is
the key to error correction and robustness. Extracting local or disjoint features can only reduce

redundancy, resulting in inferior robustness.

E. Recognition Despite Disguise

We test our algorithm’s ability to cope with real, possibly malicious, occlusions using a subset
of the AR Face Database. The chosen subset consists of 1,399 images (14 each, except for a
corrupted image w-027-14 .bmp) of 100 subjects, 50 male and 50 female. For training, we
use 799 images (about 8 per subject) of unoccluded frontal views with varying facial expression,
giving a matrix B of size 4,980 x 5,779. We estimate P = conv(£B) is approximately 577-
neighborly, indicating that perfect reconstruction is possible upto 11.6% occlusion. Our Matlab
ifﬁplementation réquires about 75 seconds per test image on a PowerMac G5. |

We consider two separate test sets of 200 images. The first test set contains images of the
subjects wearing sunglasses, which occlude roughly 20% of the image. Figure 1 top shows a
successful example from this test set. Notice that e; compensates for misalignment of the image
edges as well as occlusion due to sunglasses.?

The second test set considered contains images of the subjects wearing a scarf, which occludes
roughly 40% of the image. Since the occlusion level is more than three times the maximum worst
case occlusion given by the neighborliness of conv(+5), our approach is unlikely to succeed
in this domain. Figure 13 top shows an example that the algorithm fails to identify the correct
subject. Notice that the largest coefficient corresponds to an image of a bearded man whose
mouth region resembles the scarf.

The table in Figure 13 left compares SRC to the other five algorithms described in the previous
section. On faces occluded by sunglasses, SRC achieves a recognition rate of 87%, more than
17% better than the nearest competitor. For occlusion by scarves, its recognition rate is 59.5%,
more than double its nearest competitor but still quite poor. This confirms that although the

algorithm is provably robust to arbitrary occlusions upto the breakdown point determined by
2L arger misalignments do cause problems, however. Most of the failures on this dataset seem to be due to registration errors.
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Algorithms Rec. rate | Rec. rate

sunglasses | scarves
SRC 87.0% 59.5% .
(partitioned) | (97.5%) | (93.5%) Holistic -
PCA + NN 70.0% 12.0% Y S —
ICA I+ NN 53.5% 15.0% -
LNMF + NN | 33.5% 24.0% N \
[16] 240% | 13.5% Partitioned T ===
¢ + NS 64.5% 12.5% ‘ : ;

A B C D

Fig. 13. Left: Table of recognition rates on the AR database. The table shows the performance of all the algorithms for both
types of occlusion. SRC. its holistic version (right top) and partitioned version (right bottom), achieves the highest recognition
rate. Right: A partition scheme to tackle contiguous disguise. The top fow visualizes an example for which SRC failed with
the whole image (holistic). Notice that the two largest coefficients correspond to a bearded man and a screaming woman, two
images whose mouth region resembles the occluding scarf. If the occlusion is known to be configuous, one can partition the
image into multiple smaller blocks. apply the' SRC algorithm to each of the blocks and then aggregate the results by voting.
The second row visualizes how this partition-based scheme works on the same- test image, but leading to a correct identification.

(A) The test image, occluded by scarf. (B) Estimated sparse error &;. (C) Estimated sparse coefficients &1. (D) Reconstructed

image.

the neighborliness of the training set, beyond that point it is sensitive to occlusions that resemble
regions of a training image from a different individual. Because the amount of occlusion exceeds
this breakdown point, additional assumptions, such as the disguise is likely to be contiguous,

are needed to achieve higher recognition performance.

F. Improving Recognition by Block Partitioning

Thus far we have not exploited the fact that in many real recognition scenarios, the occlusion
falls on some patch of image pixels which is a-priori unknown, but is known to be connected. A
somewhat traditional approach (explored in [58] amongst others) to exploiting this information
in face recognition is to partition the image into blocks and process each block ndependently.
The results for individual blocks are then aggregated, for example, by voting, while discarding
blocks believed to be occluded (using, say, the outlier rejection rule introduced in Section II-D).
The major difficulty with this approach is that the occlusion cannot be expected to respect any
fixed partition of the image; while only a few blocks are assumed to be completely occluded,

some or all of the remaining blocks may be partially occluded. Thus, in such a scheme there is
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still a need for robust techniques within each block.

We partition each of the training images into L blocks of size a x b, producing a set of
matrices A, ... A € RP*", where p = ab. We similarly partition the test image y into
yW, . yP) e RP. We write the [-th block of the test image as a sparse linear combination
AW g® of |-th blocks of the training images, plus a sparse error e € RP: y = AO g0 4 0,

We can recover can again recover a sparse w) = [z e®] € R by ¢! minimization:
w\) = argmin |w|, subjectto [AD I]w =y (24)
wERn+P

We apply the classifier from Algorithm 1 within each block?! and then aggregate the results by
voting. Figure 13 illustrates this scheme.

We verify the efficacy of this scheme on the AR database for faces disguised with sunglasses
or scarves. We partition the images into eight (4 x 2) blocks, each of size 20 x 30 pixels. Doing so
increases the overall recognition rate on scarf images from 59.5% to 93.5%, and also improves
the recognition rate on-sunglasses images from 87.0% to 97.5%. This performance exceeds the
best known results on the AR dataset [29] to date. That work obtains 84% on the sunglasses and

93% on the scarfs, on only 50 subjects, using more sophisticated random sampling techniques.

G. Rejecting Invalid Test Images

We next demonstrate the relevance of sparsity for rejecting invalid test images, with or without
occlusion. We test the outlier rejection rule (15) based on the Sparsity Concentration Index (14)
on the Extended Yale B database, using Subsets 1 and 2 for training and Subset 3 for testing
as before. We again simulate varying levels of occlusion (10%, 30%, and 50%) by replacing a
randomly chosen block of each test image with an unrelated image. However, in this experiment,
we include only half of the subjects in the training set. Thus, half of the subjects in the testing set
are new to the algorithm. We test the system’s ability to determine whether a given test subject
is in the training database or not by sweeping the threshold 7 through a range of values in [0, 1],
generating the reciever operator characteristic (ROC) curves in Figure 14. For comparison, we
also considered outlier rejection by thresholding the Euclidean distance between (features of)

the test image and (features of) the nearest training images within the PCA, ICA and LNMF

Totally occluded blocks can also be rejected based on equation (15). In our experiments. we find that this does not sighificantly

increase the recognition rate.
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Fig. 14.  ROC curves for outlier rejection. Vertical axis: true positive rate. Horizontal axis: false positive rate. The solid

red curve is generated by SRC with outliers rejected based on equation (15). As we see, the SCI-based validation and SRC

classification together perform almost perfectly for upto 30% occlusion.

feature spaces. These curves are also displayed in Figure 14. Notice that the simple rejection rule
(15) performs nearly perfectly at 10% and 30% occlusion. At 50% occlusion, it still significantly
outperforms the other three algorithms, and is the only one of the four algorithms that performs
significantly better than chance. In the supplementary appendix, one can find more validation

results on the AR database using Eigenfaces. Again, one witnesses significant improvement in
the ROC.

H. Designing the Training Set for Robustess

An important consideration in designing recognition systems is selecting the number of training
images as well as the conditions (lighting, expression, viewpoint etc.) under which they are to be
taken. The set of training images should obviously be extensive enough to span the conditions that
would occur in the test set, i.e., they should be “sufficient” from a pattern recognition standpoint.
For instance, the work of [60] shows how to choose the fewest representative real images that
are sufficient to well approximate the illumination cone of each face and subsequently ensure

good recognition. The notion of neighborliness discussed in Section II provides a different,
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quantitative measure for how “robust” the training set is: the amount of occlusion the algorithm
can tolerate in the worst case is directly determined by how neighborly the associated polytope
is. The worst case is relevant in visual recognition, since the occluding object could potentially
be quite similar to one of the other training classes. If, however, the occlusion is random and
uncorrelated with the training images, as in Section IV-C, the average behavior may also be of
interest in some applications.

In fact, these two concerns, sufficiency and robustness, are complementary. Figure 15 left
shows the estimated neighborliness for the four subsets of the Extended Yale B database.
Notice that the highest neighborliness, = 1,330, is achieved with Subset 4, the most extreme
lighting conditions. Figure 15 right shows the breakdown point for subsets of the AR database
with different facial expressions. The dataset contains four facial expressions, Neutral, Happy,
Angry, and Scream, pictured in Figure 15 right. We generate training sets from all pairs of
expressions and compute the neighborliness of each of the corresponding polytopes. The most
robust training sets are achieved by the Neutral+Happy and Happy%Séréam combinations, while
the least robustness comes from Neutral+Angry. Notice that the Neutral and Angry images are
quite similar in appearance, while (for example) Happy and Scream are very dissimilar.

Thus, both for varying lighting (Figure 15 left) and expression (Figure 15 right), training sets
with wider variation in the images allow greater robustness to occlusion. Designing a training
set that allows recognition under widely varying conditions does not hinder our algorithm; in
fact it helps it. However, the training set should not contain too many similar images, as in the
Neutral+Angry example of Figure 15 right. In the language of signal representation, the training

images should form an incoherent dictionary [9].

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have contended both theoretically and experimentally that exploiting sparsity
is critical for high-performance classification of high-dimensional data such as face images. With
sparsity properly harnessed, the choice of features becomes less important than the number of
features used (in our face recognition example, approximately 100 are sufficient to make the
difference negligible). Moreover, occlusion and corruption can be handled uniformly and robustly
within the same classification framework. One can achieve striking recognition performance for

severely occluded or corrupted images by a simple algorithm with no special engineering.
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Subset 1 ~ Subset 2  Subset 3 Subset 4 Neutral (N) Happy (H) Angry (A) Screaming (S)
Training set 1 2 3 4 Training set | N+H | N+A | N+S | H+A | H+S | A+S
Neighborly | 1,124 | 1,122 | 1,190 | 1,330 Neighborly | 585 | 421 | 545 | 490 | 550 | 510

Fig. 15. Robust training set design. Left: varying illumination. Top left: four subsets of Extended Yale B, containing
increasingly extreme lighting conditions. Bottom left: estimated neighborliness of the polytope conv(£B) for each subset.
Right: varying expression. Top right: four facial expressions in the AR database. Bottom right: estimated neighborliness of

conv(+B) when taking the training set from different pairs of expressions.

An intriguing problem for future work is whether this framework can be useful for object
detection, in addition to recognition. The usefulness of sparsity in detection has been noticed
in the work of [62] and more recently explored in [63]. We believe that the full potential of
sparsity in robust object detection and recognition together is yet to be uncovered. From a
pfactical standpoint, it would also be useful to extend the algorithm to handle less Eonétraihed
conditions, such as variations in object pose. Robustness to occlusion allows the algorithm to
tolerate minor pose variation or misalignment. In the supplementary appendix, we discuss the
ability of sparse representation to adapt to nonlinear distributions such as face images with
varying pose. However, it remains to be seen how effective sparse representation will be in this

new scenario and how many more training images it will require.
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APPENDIX
I. RELATIONSHIPS TO NEAREST NEIGHBOR AND NEAREST SUBSPACE

One may notice that the use of all the training samples of all classes to represent the test sample
goes against the conventional classification methods popular in face recognition literature and
existing systems. These methods typically suggest using residuals computed from “one sample at
a time” or “one class at a time” to classify the test sample. The representative methods include:

1) The nearest neighbor (NN) classifier: Assign the test sample y to class 7 if the smallest

distance from y to the nearest training sample of class ¢

rly) = min Jly = visla 25)

1,...7
is the smallest among all classes.?

2) The nearest subspace (NS) classifier (e.g., [32]): Assign the test sample y to class i if the

distance from y to the subspace spanned by all samples A; = [v;1,...,V;,,] of class i
s .. . L i o ). : 5o ;;35 . ;
ri(y) = min [ly — Al (26)

is the smallest among all classes.

Clearly, NN seeks the best representation in terms of just a single training sample,” while NS
seeks the best representation in terms of all the training samples of each class. The nearest feature
line (NFL) algorithm [20] strikes a balance between these two by considering the distance of ¥y
to the line spanned by any pair of training samples. As NN and NS represent the two extreme
cases, we will compare our method with them and see how enforcing sparsity can strike a better

balance than methods like NFL.

A. Relationship to Nearest Neighbor

Let us first assume that a test sample y can be well-represented in terms of one training

sample, say v; (one of the columns of A):
Y =0+ 2 @n
**Another popular distance metric for the residual is the ¢*-norm distance Il < la. This is not to be confused with the £*-

minimization in this paper.

 Alternatively, a similar classifier K-NN considers K nearest neighbors.
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where ||z;]|2 < ¢ for some small € > 0. As discussed in Section II-B.2, the recovered sparse
solution @ to (10) satisfies

|2 — zoll2 < (e

where o € R™ is the vector whose i-th entry is 1 and others are all zero, and ( is a constant
that depends on A. Thus, in this case, the ¢!-minimization based classifier will give the same
identification for the test sample as NN.

On the other hand, in face recognition, test images may have large variability due to different
lighting conditions or facial expressions, and the training sets generally do not densely cover the
space of all possible face images (as we see in the experimental section, this is the case with
the AR database). In this case, it is unlikely that any single training image will be very close to
the test image, and nearest-neighbor classification may perform poorly.

Example 3: Figure 16 left shows the ¢2-distances between the downsampled face image from
subject 1 in Example 1 and each of the training images. Although the smallest distance is
correctly associated with subject 1, the variation of ‘the distances for other subjects is quite
large. As we will see in Section IV, this inevitably leads to inferior recognition performance

when using NN (only 71.6% in this case, comparing to 92.1% of Algorithm 1).2*

B0

500 4

L | | i |
!
|| |

) : . . .
0 P Ao BUY o) TR 1200 Subject

Rezidual
o
<
o

Fig. 16. Left: The ¢*-distances (logarithmic scale) between the test image and the training images in Example 1 (as used by

nearest neighbor). Right: The residuals of the test image in Example 1 w.r.t. the 38 face subspaces (as used by nearest subspace).

B. Relationship to Nearest Subspace

Let us now assume that the test sample y can be represented uniquely as a linear combination

of the training samples A; of class i:
Y = Azaq + z; (28)
20ther commonly used distance metrics in NN such as ¢*-distance give results similar to Figure 16 left.
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where ||z;|l2 < € for some small ¢ > 0. Then again according to equation (11), the recovered
sparse solution & to (10) satisfies

|2 — zoll2 < (e

where &y € R™ is a vector of the form [0,...,0,a7,0,...,0]". That is,
0i(z) = xo and ||0;(x)| < (e for all j # 1. (29)
We have
ly = Adi(@)l2 = llzilla <€, [ly — Ad;(@)[l2 = |lylla > ¢ forall j # . (30)

Thus, in this case, the £'-minimization based classifier will give the same identification for the
test sample as NS. Notice that for j # 4, §;(x) is rather different from «; computed from
ming; ||y — Ajajslle. The norm of d;() is bounded by the approximation error (29) when y
is represented just within class j, whereas the norm of a; can be very large as face images
of different subjects are highly correlated. Further notice that each of the oy is an optimal
representation (in the 2-norm) of y in terms of some (different) subset of the training data,
whereas only one of the {63-(:2:)};?:1 computed via ¢'-minimization is optimal in this sense: the
rest have very small norm. In this sense, £'-minimization is more discriminative than N S, as is
the set of associated residuals {||y — Ad;(&) |2},

Example 4: Figure 16 right shows the residuals of the downsampled features of the test image
in Example 1 w.r.t. the subspaces spanned by the 38 subjects. Although the minimum residual
is correctly associated with subject 1, the difference from the residuals of the other 37 subjects
is not as dramatic as that obtained from Algorithm 1. Compared to the ratio 1:8.6 between the
two smallest residuals in Figure 3, the ratio between the two smallest residuals in Figure 16
right is only 1:3. In other words, the solution from Algorithm 1 is more discriminative than that
from NS. As we will see Section IV, for the 12 x 10 downsampled images, the recognition rate
of NS is lower than that of Algorithm 1 (91.1% versus 92.1%).

Be aware that the subspace for each subject is only an approximation to the true distribution
of the face images. In reality, due to expression variations, specularity, or alignment error, the
actual distribution of face images could be nonlinear or multi-modal. Using only the distance to
the entire subspace ignores information about the distribution of the samples within the subspace,

which could be more important for classification. Even if the test sample is generated from a
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simple statistical model: y = A;o; + z; with o; and z; independent Gaussians, any sufficient
statistic (for the optimal classifier) depends on both [Ja;||» and ||z;]|2, not just the residual || z;|2.
While the ¢!-minimization based classifier is also suboptimal under this model, it does implicitly
use the information in «y; as it penalizes o, that has a large norm — the #'-minimization based
classifier favors small ||z;]|2 as well as small ||o;||; in representing the test sample with the
training data.

Furthermore, using all the training samples in each class may over-fit the test sample In the

case when the solution oy to
y = Aja; +2z; subjectto ||zie <€

is not unique, the £'-minimization (6) will find the sparsest c;p € R™ instead of the least £2-norm
solution oz = (A} A;)Ty € R™. That is, the £*-minimization will use the smallest number of
samples necessary in each class to rgpresent the, test sample, subject to a small error. To see
why the sparse solution oy respects better the actual distribution of the training samples (inside

the subspace spanned by all samples), consider the two situations illustrated in Figure 17.

Fig. 17. A sparse solution within the subspace spanned by all training samples of one class. Left: the samples exhibit a nonlinear
distribution within the subspace. Right: the samples lie on two lower-dimensional subspaces within the subspace spanned by all

the samples.

In the figure on the left, the training samples have a nonlinear distribution within the subspace,
say due to pose variation. For the given positive test sample “+,” only two training samples are
needed to represent it well linearly. For the other negative test sample “-.” although it is inside
the subspace spanned by all the samples, it deviates significantly from the sample distribution. In

the figure on the right, the training samples of one class are distributed on two lower-dimensional
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subspaces. This could represent the situation in face recognition when the training images contain
both varying illuminations and expressions. Again, for a positive test sample “+,” typically a
small subset of the training samples are needed to represent it well. But if we use the span of
all the samples, that could easily over-fit negative samples that do not belong to the same class.
For example, as we have shown in Figure 3, although subject 1 has 32 training samples, the test
image is well represented using less than 5 large coefficients. In other words, £!-minimization is
very efficient in harnessing sparse structures even within the sample distribution of each class.

From our discussions above, we see that the #!-minimization based classifier works under a
wider range of conditions than NN and NS combined. It strikes a good balance between NN and
NS: To avoid under-fitting, it uses multiple (instead of the nearest one) training samples in each
class to linearly extrapolate the test sample, but it uses only the smallest necessary number of
them to avoid over-fitting. For each test sample, the number of samples needed is automatically
determined by the ¢'-minimization, because in terms of finding the sparse solution xy, the £'-
minimization is equivalent to the Ed—minimization. As a result, the classifier can better exploit
the actual (possibly multi-modal and nonlinear) distributions of the training samples of each
class and is therefore likely to be more discriminative among multiple classes. These advantages
of Algorithm 1 are corroborated by experimental results presented in Section IV as well as the

additional experimental results given below.

C. Experimental Comparison

In this subsection, we provide more detailed numerical results, for easy comparison of Algo-
rithm 1 with NN and NS, in terms of both recognition and validation.

a) Comparison of Recognition Performance: The tables below contain the numerical values
plotted in the graphs in Sections IV-A.1 and IV-A.2. Table I gives the performance of our sparse
representation based classification (SRC) algorithm on the Extended Yale B database, across
different feature transformations and feature dimensions. Here, “E-Random” refers to a variant of
the algorithm that uses an ensemble of multiple random projections to compute averaged residuals
ri (here, 5 different random projections are used). Aggregating multiple random projections
improves the stability of the algorithm, leading to better classification performance. Table II
gives the corresponding results for NN and NS. Similarly, using the same experimental setup in

Section IV-A.2, Table III gives the result for Algorithm 1, and Table TV for NN and NS.
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TABLE 1
RECOGNITION RATES OF SRC ON THE EXTENDED YALE B DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG

ALL FEATURES.

Dimension (d) 30 56 120 504
Eigen [%] 86.5 | 91.63 | 93.95 | 96.77
Laplacian [%] 87.49 | 91.72 | 93.95 | 96.52
Random [%] 82.6 | 91.47 | 95.53 | 98.09
Downsample [%] | 74.57 | 86.16 | 92.13 | 97.1
Fisher [%] 8691 | N/A | N/JA | N/A
E-Random [%] 90.72 | 94.12 | 96.35 | 98.26

TABLE I
RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT) AND NEAREST SUBSPACE (RIGHT) ON THE EXTENDED YALE B

DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 56 120 504 Dimension (d) 30 56 120 504
Eigen [%] 7432 | 81.36 | 85.50 | 88.40 Eigen [%] 89.89 | 91.13 | 92.54 | 93.21
Laplacian [%] 77.13 | 83.51 | 87.24 | 90.72 Laplacian [%] 88.98 | 90.39 | 91.88 | 93.37
Random [%] 70.34 | 75.56 | 78.79 | 79.04 Random [%] 87.32 | 91.47 | 93.87 | 94.12
Downsample [%] | 51.69 | 62.55 | 71.58 | 77.96 Downsample {%] | 80.78 | 88.15 | 91.13 | 93.37
Fisher [%] 87.57 | N/A N/A N/A Fisher [%] 81.94 | N/A N/A N/A

b) Comparison of Validation Performance: In Section IV-G, we have demonstrated the
ability of the robust version of Algorithm 1 to reject invalid test images, in the presence
of occlusion. Here, we present further experimental results comparing the algorithm’s outlier
rejection capability to that of nearest neighbor and nearest subspace, this time without occlusion,
working with features rather than the raw image itself. Conventionally, the two major indices
used to measure the accuracy of outlier rejection are the false acceptance rate (FAR) and the
verification rate (VR). False acceptance rate calculates the percentage of test samples that
are accepted and wrongly classified. Verification rate is one minus the percentage of valid
test samples that are wrongfully rejected. A good recognition system should achieve high

verification rates even at very low false acceptance rates. Therefore, the accuracy and reliability
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TABLE III

RECOGNITION RATES OF SRC ON THE AR DATABASE. THE BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 54 130 540
Eigen [%] 71.14 80 85.71 | 91.99
Laplacian [%] 73.71 | 84.69 | 90.99 | 94.28
Random [%] 578 | 75.54 | 87.55 | 94.7
Downsample [%] | 46.78 67 84.55 | 93.85
Fisher [%] 8698 | 92.27 | N/A | N/A
E-Random [%] 78.54 | 85.84 | 91.23 | 94.99

TABLE IV
RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT) AND NEAREST SUBSPACE (RIGHT) ON THE AR DATABASE. THE

BOLD NUMBERS INDICATE THE BEST AMONG ALL FEATURES.

Dimension (d) 30 54 130 540 Dimension (d) 30 54 130 540
Eigen [%] 68.10 | 74.82 | 79.26 | 80.54 Eigen [%] 64.09 | 77.11 | 81.97 | 85.12
Laplacian [%] 73.10 | 77.11 | 83.83 | 89.70 Laplacian [%] 6595 | 77.54 | 84.26 | 90.27
Random [%] 36.65 | 63.66 | 71.39 | 74,96 Random [%] 59.23 1 68.24 | 79.97 | 83.26
Downsample [%] | 51.65 | 60.94 | 69.24 | 73.68 Downsample [%] | 56.22 | 67.67 | 76.97 | §2.12
Fisher [%] 83.40 | 86.84 | N/A | N/A Fisher [%] 80.26 | 85.84 | N/A | N/A

of a recognition system are typically evaluated by the FAR-VR curve (sometimes it is loosely
identiﬁed as the receiver operating characteristic (ROC) curve).

In this experiment, we only use the more challenging AR dataset — more subjects and more
variability in the testing data make outlier rejection a more relevant issue. The experiments are
run under two different settings. The first setting is the same as in subsection IV-A.2: 700 training
images for all 100 subjects and another 700 images for testing. So in this case, there is no real
outliers. The role of validation is simply to reject test images that are difficult to classify. In the
second setting, we remove the training samples of every third of the subjects and add them into
the test set. That leaves us 469 training images for 67 subjects and 700 + 231 = 931 testing

images for all 100 subjects. So about half of the test images are true outliers.?> We compare

BMore precisely. 462 out of the 931 test images belong to subjects not in the training set.
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Fig. 18. The FAR-VR curves (solid, red) for SRC using Eigenfaces, compared with the curves of NS and NN using Eigenfaces.
Left: 700 images for all 100 subjects in the training, no real outliers in the 700 test images. Right: 469 images for 67 subjects

in the training, about half of the 931 test images are true outliers.

thi'eé aigorithms: Algorithm 1, NN,'and NS. To be faﬁ’, éll three algorithms use exactly the same
features, 504-dimensional eigenfaces.?®

Figure 18 shows the FAR-VR curves obtained under the two settings. Notice that Algorithm
1 significantly outperforms NS and NN, as expected. Compared to the performance in Section
IV-G, we observe there that the validation performance of Algorithm 1 improves much further
with the full image whereas the other methods do not — their performance saturates when the

feature dimension is beyond a few hundred.

ZNotice that according to Table ITI, among all 504-D features. eigenfaces are in fact the worst for our algorithm. We use it

anyway as this gives a baseline performance for our algorithm.
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