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Abstract
In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a
generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple
Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel
Density Estimator (MKDE). The ASKC framework is grounded on and unifies these robust
estimators using nonparametric kernel density estimation theory. In particular, we show that each
of these methods is a special case of ASKC using a specific kernel. Like these methods, ASKC
can tolerate more than 50 percent outliers, but it can also automatically estimate the scale of
inliers. We apply ASKC to two important areas in computer vision, robust motion estimation and
pose estimation, and show comparative results on both synthetic and real data.
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1 INTRODUCTION
Robust statistical techniques play an important role in many areas of computer vision.
Applications include segmentation [1], [11], [28], [29], optical flow calculation [2], [15],
fundamental matrix estimation [24], [28], as well as many others. The key point of robust
methods is to extract the parameters of an underlying structural model while tolerating the
influence of outliers, which do not obey the assumed model.

A number of robust estimation techniques (e.g., [3], [4], [7], [13], [17], [18], [19], [24], [26],
[27], [29]) have been proposed during the last decades. The Maximum-likelihood estimators
(M-estimators) [7], the Least Median of Squares (LMedS) estimator [17], and the RANdom
SAmple Consensus (RANSAC) estimator [4] are some of the most popular robust estimators
that have been widely used in many areas. However, M-estimators and LMedS cannot deal
with data involving more than 50 percent outliers; RANSAC can tolerate more than 50
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percent outliers, but it requires the user to specify an error tolerance which is not known a
priori in many practical environments. The value of this tolerance has a significant influence
on the performance of RANSAC [25], [28]. M-estimator SAmple Consensus (MSAC) [24]
improves the performance of RANSAC by modifying its cost function, but it also requires a
user-specified error tolerance. Minimum Unbiased Scale Estimator (MUSE) [13], MINmize
the Probability of RANdomness (MINPRAN) [19], Adaptive Least Kth order Squares
(ALKS) [11], Residual Sample Consensus (RESC) [29], and Adaptive Scale Sample
Consensus (ASSC) [28] can tolerate more than 50 percent outliers. However, MUSE is
biased in the scale estimation, and thus, it needs a lookup table to correct the estimated scale.
MINPRAN and ALKS are computationally expensive and will break down for
multistructure data with a large percentage of outliers. The RESC estimator requires the user
to tune many parameters in its objective function. ASSC assigns equal weights to all inliers,
and thus, is less effective in estimating the model parameters. Recently, Chen and Meer [3]
modified the cost function of the M-estimators to create projection-based M-estimators
(pbM-estimators). Rozenfeld and Shimshoni [18] and Subbarao and Meer [20] proposed
some variants to improve the performance of pbM. Lavva et al. [10] applied a modified pbM
to 3D range image segmentation. All of these modifications [3], [10], [18], [20] are based on
the projection pursuit paradigm [8], [9].

1.1 Contributions of the Paper
In [28], the first author developed the ASSC estimator which uses the ratio of the number of
inlier samples to the scale of inliers as its objective function. We now describe a new robust
estimator, Adaptive Scale Kernel Consensus (ASKC). ASKC assumes that, with the correct
model parameters, the mode at the origin in the residual space has the maximum kernel
density. Thus, ASKC estimates the parameters maximizing the kernel density value at the
origin of the residual space. As we employ the nonparametric kernel density estimation
techniques in the objective function of ASKC, ASKC is based on kernel consensus and is
more effective than ASSC and RANSAC which are based on sample consensus. Moreover,
ASKC provides a generalized framework for robust model fitting, from which a set of new
robust estimators can be derived by employing different kernels. ASKC unifies a set of
popular robust estimators, such as RANSAC, ASSC, and Maximum Kernel Density
Estimator (MKDE) [26].

To show the ability of ASKC, we apply it to two important areas in computer vision: robust
motion estimation and robust pose estimation. We compare the performance of ASKC with
those of several other popular robust methods (LMedS, RANSAC, MSAC, RESC, pbM, and
ASSC). Experimental results on both synthetic and real data show our method can achieve
better results than other methods.

2 THE PROPOSED METHOD
The problem of model fitting can be described as follows: given a set of data points {(xi,
yi)}i = 1,…,N (with the explanatory variables (xi = (xi1,…,xid) ∈ Rd and the response
variable yi ∈ R1) and a model M with M(θ, X)↦ RN, where model parameters are θ = (θ1,
…, θd)t ∈ Rd and data vector is X = [(x1, y1),…, (xN, yN)]t ∈ R N × d, compute an estimate θ
^ from X.

The classical linear regression (LR) model can be written as follows:

(1)
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The measurement error term ei is usually assumed to be independent and identically
distributed, and the (identical) distribution is a zero-mean Gaussian G(0, σ2). In many real
situations, both the regression parameters θ and the scale of noise σ are unknown and must
be estimated.

With an LR model, a d-dimensional data point xi can be mapped to the 1D residual space.
Given an estimate θ̂, the residual ri corresponding to xi is written as:

(2)

where Rθ ̂ = [r1,θ ̂,…, rN,θ ̂̂].

2.1 Kernel Density Estimation
Given an estimate θ̂ and a set of residuals Rθ ̂ = {r1,θ ̂,…, rN,θ ̂}, the fixed bandwidth kernel
density estimate at γ with a kernel K (.) and a bandwidth h is computed as follows:

(3)

An alternative is to select a different bandwidth h = h(θ ̂) ≡ h¸ ̂ for a different parameter
estimate ¸ ̂. The variable bandwidth kernel density estimate can be written as:

(4)

We will utilize radial basis function (RBF) kernels which satisfy the following condition:

(5)

where k(β) is the profile of the kernel. ck is a normalization constant to make K(β) integrate
to one. Note: The value of ck changes for different kernels.

There are many kernels available in the literature. In this paper, we only consider two
popular RBF kernels, the Epanechnikov kernel KE(β) and the normal kernel KG(β):

(6)

(7)
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Although this paper investigates the properties of ASKC with the Epanechnikov kernel
(henceforth ASKC1) and the normal kernel (henceforth ASKC2), our method can easily
employ an arbitrary kernel.

2.2 Bandwidth Estimation
The bandwidth h (or hθ) is a crucial parameter in kernel density estimation. Let σ ̂θ be a scale
estimate of inliers for a given Rθ. An oversmoothed bandwidth estimate is written as follows
[21], [22], [25]:

(8)

It is recommended that the bandwidth is set as ch ĥθ (0 < ch < 1) to avoid oversmoothing
([25, p. 62]). To estimate the scale of inliers σ ̂θ, we can employ robust scale estimators such
as the median [17], the Median Absolute Deviation (MAD) [16], the robust k scale estimator
[11], or the two-step scale estimator (TSSE) [28].

In this paper, we use a TSSE-like procedure to estimate the scale of inliers. TSSE employs a
mean-shift procedure and a mean-shift valley (MSV) procedure to estimate the scale for
multiple-mode data. Our implementation operates as follows: First, we use a robust k scale
estimator to compute an initial scale estimate

(9)

where |rθ|k is the (k × N) th residual of the ordered absolute residuals.Ψ−1[.] is the argument
of the normal cumulative density function. For example, when the k value is set to 0.1 or
0.2, at least 10 or 20 percent of the data points are included in the shortest window.

Once we have an initial scale estimate, we refine the scale estimate by running TSSE.
However, in addition to the Epanechnikov kernel employed in [28] for the mean shift and
the mean-shift valley procedures, we may employ the normal kernel (or other kernels) as
well. In the case that the normal kernel is used, mean-shift mode-seeking can be written as:

(10)

The sequence of successive locations {γi}i = 1,… of the MSV procedure is:

(11)

where ζ is an adjustment factor which keeps the MSV vectors consistent in direction.

Fig. 1 shows that when the θ̂ estimate is correct (i.e., the parameters of the red horizon line
are used in Fig. 1a), the kernel density at the origin point is higher (Fig. 1b). And the ratio of
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the kernel densities at the detected peak and valley is higher. In contrast, when the model
parameter estimate θ̂ is incorrect, the kernel density estimate at the origin is low and the
ratio of the kernel densities at the detected peak and valley is lower (Fig. 1c).

2.3 The ASKC Estimator
We consider the kernel density value at the origin ( ) in the residual space as our objective
function. Given a set of residuals Rθ = {ri,θ}i=1,…, N subject to θ, we define the objective
function of ASKC based on (4) as:

(12)

The ASKC estimator can be written as:

(13)

In the fixed bandwidth case, (13) can be rewritten as follows (which we termed the MKDE
in [26]):

(14)

In [26], we have shown that the scale estimate of inliers or the bandwidth has a much
weaker influence on the performance of MKDE than that of RANSAC, while the
computational efficiency of MKDE is comparable to that of RANSAC.

To calculate the solution of (13) (or (14) for the fixed bandwidth case), we employ a
sampling procedure to produce a set of candidates. We can employ either a random
sampling scheme [17] or a guided sampling technique [23].

Fig. 2 gives the detailed procedure of the ASKC estimator. The purpose of using residuals
from M̄i (i.e., the data other than the sample candidate) rather than X is to avoid influence of
the sampled subset on the residual distribution. An additional TSSE-like procedure in step 6
may refine the scale estimate for heavily contaminated data. To improve the computational
efficiency, it is unnecessary to run the TSSE-like procedure for all samples. In our case, we

only run the TSSE-like procedure for the samples with high ASKC scores .

2.4 Unifying Other Robust Estimators
Consider the RANSAC estimator [4],

(15)

and the ASSC estimator [28],

Wang et al. Page 5

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2010 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(16)

where nθ is the number of data points within an error tolerance (for RANSAC) or the scale
of inliers (for ASSC) and S^θ is the estimated scale of inliers.

From the above equations, we can see that RANSAC and ASSC are actually special cases of
ASKC with the uniform kernel:

(17)

More specifically, RANSAC is one special case of ASKC with a fixed bandwidth and the
uniform kernel. Replacing hθ in (13) with Ŝθ in (16), ASSC is another special case of ASKC
with a variable bandwidth and the uniform kernel.

The effectiveness of the uniform kernel is low because it weights all inliers equally. In
comparison, ASKC with the Epanechnikov kernel or the normal kernel (or other kernels
such as triangular kernel or quartic kernel) is more effective than ASSC and RANSAC.

2.5 Differences from the pbM-Estimators
The pbM-estimators [3] and our method share some similarities because both employ the
kernel density estimate techniques. However, the differences between our method and pbM
are significant:

1. pbM places emphasis on the projection pursuit paradigm and works in the
projection space along the direction of parameter vector. ASKC considers the
kernel density of the mode in the residual space.

2. The methods in [3] find the optimal projection direction by an inner optimization
and an outer optimization, i.e., they seek the mode by maximizing the density in the
projection space, which, in turn, maximizes the projection index. In contrast,
ASKC directly seeks the mode by maximizing the kernel density at the origin in the
residual space. Our method is thus more computationally efficient (see Table 1).

3. pbM employs MAD in the bandwidth estimation. However, MAD can break down
when outliers occupy more than 50 percent, which will lead to oversmoothing in
the kernel density estimate. ASKC uses a more robust TSSE-like scale estimator to
estimate the bandwidth.

4. After finding the mode with the maximum density in the projection space, pbM
searches for two local minima (one on each side of the mode) by a heuristic
procedure and the points with values within the two minima are treated as inliers.
ASKC searches for one local minimum in the residual space and the local minima
is adaptively found by a mean-shift valley procedure.

3 ASKC FOR MOTION ESTIMATION AND POSE ESTIMATION
Estimating relative camera motion from two views with a calibrated camera, and
determining camera poses relating 2D images to known 3D geometry are two classical
problems in computer vision. There are some existing solutions in the literature for motion
estimation (e.g, [5], [14]) and pose estimation (e.g., [12]). In this section, we show a way to
apply ASKC to robust motion estimation and pose estimation.
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3.1 Motion Estimation
Considering a set of 3D points P = {pi}i=1,…, N = {(xi, yi, zi)t}i=1,…, N observed by a
calibrated camera from two camera positions, the points P are projected to two image

locations Q = {qi}i=1,…, N and . The pairs  form a set of 2D-2D
feature matches and we have [6]:

(18)

where E is the essential matrix. K1 and K2 are, respectively, the intrinsic camera matrices
corresponding to the two images. The essential matrix can be written as E = [T]xR, where
[Tx is the cross-product matrix of the translation vector T and R is the rotation matrix.

Given the camera matrices and a set of feature matches, E can be estimated using the
nonlinear five-point algorithm [14]. The camera motion (R and T) can be recovered from E
by Singular Value Decomposition (SVD) [6] and T can only be estimated up to a scale
factor (i.e., ‖T˜ ‖ = 1).

Letting , we define the residual of a corresponding pair as:

(19)

Assuming a unique solution exists, the robust estimate of the camera motion can be written
as:

(20)

3.2 Pose Estimation
The pose estimation problem can be described as: Given a set of 2D–3D correspondences
{(qi, pi)}i=1,…,N′, estimate the camera pose (rotation R and translation vector T) which maps
the 3D reference points to 2D image coordinates. Let

(21)

We have [12]:

(22)

Let  be an observed image point. Then, the residual of the corresponding pair is
defined as:

(23)
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We employ [12] to generate solutions from each sample candidate.

4 EXPERIMENTS
In this section, we evaluate the performance of the ASKC estimator employing the
Epanechnikov kernel (ASKC1) and the normal kernel (ASKC2) in model fitting (including
2D line fitting and 3D plane fitting), motion estimation, and pose estimation. We compare
the performance of ASKC1/ASKC2 with those of several other popular robust estimators
(LMedS, RANSAC, MSAC, RESC, and ASSC). We also compare with pbM1 in line/plane
fitting and motion estimation where the application of pbM is straightforward. As the value
of the error tolerance is not known a priori, we use a median scale estimator for RANSAC
and MSAC (suggested by [24]). In Section 4.3, we also test the performance of RANSAC
with a manually chosen optimal scale (termed as RANSAC2). The scale of inliers (σ) for the
synthetic data used in this section is set to 0.2.

4.1 Line and Plane Fitting
We generate a four-line signal containing 50 data points in each line and 300 randomly
distributed outliers. Thus, the total number of the data points is 500 and there are 90 percent
outliers (including pseudo-outliers and random outliers) for each line at the beginning.2 We
apply the robust estimators to sequentially fit and extract all the four lines. The results
(except for the result by RANSAC due to space limits) are shown in Fig. 3. LMedS, MSAC
and RANSAC cannot successfully fit/extract any line. RESC and pbM correctly fit one line
but fail to extract any line because the scale is wrongly estimated. ASSC extracts three lines
but fails in one. ASKC1/ASKC2 successfully fits/extracts all four lines.

We sequentially fit and extract four 3D planes with the comparative robust estimators.
Among the total 500 data points, the number of points in each of the four planes is 45. The
number of random outliers is 320. Thus, the outlier percentage for each plane is 91 percent
at the beginning.

Fig. 4 shows that only the proposed ASKC1/ASKC2 correctly fits and extracts all the four
planes. In contrast, ASSC succeeds on two planes but wrongly fits/extracts two planes.
MSAC and RESC correctly fit one plane but fail to extract any plane due to incorrect scale
estimates. LMedS, RANSAC, and pbM fail to fit and extract all of the four planes.

4.2 Time Complexity
It is interesting to investigate the computational efficiency of the robust estimators. We
compare the time complexity of the above methods in Table 1. All methods were coded in
MATLAB except for pbM which was coded in C++. We use 3,000 random samples (1,000
for pbM) in line fitting and 6,000 random samples (2,000 for pbM) in plane fitting. We only
compare the time to fit and extract the first structure (line/plane) because some methods
break down after this step.

As shown in Table 1, ASKC1/2 is a little slower than LMedS, RANSAC, and MSAC but
significantly faster than RESC, ASSC, and pbM. The reason that ASKC is faster than ASSC
is because of step 5 in Fig. 2. ASKC is about 20–100 times faster than pbM (without
considering that pbM was coded in C++ while ASKC coded in MATLAB) because it is
computationally expensive to implement the step of local simplex optimization in pbM

1The code is available at: http://www.caip.rutgers.edu/riul/research/code/PBM/index.html.
2When the inliers of one line are removed from the data, the percentage of outliers for the remaining lines decreases.
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which is not used in ASKC. Between ASKC1 and ASKC2, we can see than ASKC1 is
slightly faster than ASKC2.

4.3 Motion Estimation
We evaluate the performance of the robust estimators in motion estimation on a set of
endoscopic sinus images. The endoscopic sinus image data were collected on a cadaverous
porcine specimen with a calibrated monocular endoscope. The ground truth of the
endoscope motion was recorded by an external Optotrak tracking system (Northern Digital
Corp., Waterloo, Ontario). The endoscopic images involve a number of challenges such as
low texture, specularities, illumination changes, and motion blurring (see Figs. 5a and 5b).
As a result, the obtained feature-based matches between image pairs contain a large number
of outliers or mismatches (see Fig. 5c). Thus, it requires the methods to be highly robust to
outliers.

To obtain the quantitative results, we apply the comparative methods to 130 endoscopic
sinus image pairs. The distance between the positions of the endoscopic camera in each pair
of images is larger than 1 mm. The averaged number of the matched features is 922. The
approximate outlier percentage is about 61.5 to 84.8 percent. We use the median, the mean,
and the standard variances of the estimate errors in translation and rotation to evaluate the
performance of the methods. The translation error (ET) is computed as ET = ‖T̃−T̃true ‖ ×
100, where T̃ (with ‖T̃‖ = 1) is the estimated translation direction vector and T̃true (with
‖T̃true‖ = 1) is the ground truth translation direction vector. Similarly, we write the rotation
error (Eτ) as Eτ = ‖τ − τtrue‖ × 100, where τ is a quaternion representation of the rotation
matrix R.

Table 2 shows the quantitative results. As we can see, ASKC1/ASKC2 achieves the most
accurate results among the comparative methods (including RANSAC with a manually
chosen optimal scale). And between ASKC1 and ASKC2, ASKC2 generally outperforms
ASKC1 in the translation and rotation estimation. LMedS, MSAC, and RANSAC with the
median scale estimator achieve the worst results because the median is not robust to data
with more than 50 percent outliers. The results of ASSC are better than those of RESC but
less accurate than those of ASKC1/ASKC2. ASKC2 with the five-point algorithm [14]
achieves better results than ASKC2* with the eight-point algorithm [6]. When the eight-
point algorithm is employed for both pbM and ASKC2*, ASKC2* achieves better results
than pbM.

4.4 Pose Estimation
We generate a set of synthetic data with various percentages of outliers to evaluate our
methods in pose estimation. Among the total 100 2D–3D correspondences, the percentage of
outliers (i.e., mismatches) is increased from 1 to 80 percent with interval being 1 percent.
We repeat the experiments 20 times. We report errors in terms of rotation, translation, and
RMS reprojection errors of inliers. We use Eτ = ‖τ −τtrue‖ × 100 for the rotation error

measure and  for the translation error measure. The RMS reprojection
error is written as
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where  and q ̂ are, respectively, the real reprojection point and the recovered reprojection
point. The mean and the standard variance of the overall estimate errors are shown in Table
3.

From Table 3, we can see that LMedS, MSAC, and RANSAC yield the largest mean and
standard variance errors. The results of RESC are more accurate than LMedS, MSAC, and
RANSAC, but less accurate than ASSC, ASKC1, and ASKC2. ASSC achieves less accurate
results than ASKC1/ASKC2. The results of ASKC1 and ASKC2 are similar, while ASKC2
achieves slightly better results than ASKC1.

5 CONCLUSIONS
This paper has presented a new robust estimator (ASKC) which is based on the
nonparametric kernel density estimation techniques. We also provide a generalized
framework in which a set of new robust estimators can be derived by employing various
kernels. We show that ASKC can be treated as a generalized form of several traditional and
recently developed robust estimators such as RANSAC, ASSC, and MKDE. We apply
ASKC to robust motion and pose estimation and test the proposed method on both synthetic
and real data. Experiments show that ASKC has achieved better results than several other
popular robust estimators.
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Fig. 1.
The procedure of the TSSE-like scale estimator. (a) The input two-line data with 70 percent
outliers. The detected peak and valley with correct parameters (b) and incorrect parameters
(c).
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Fig. 2.
The ASKC estimation procedure.
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Fig. 3.
Line fitting and extraction by the robust estimators (result by RANSAC is not shown).
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Fig. 4.
Plane fitting and extraction by the robust estimators (result by RANSAC is not shown).
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Fig. 5.
(a), (b) Two examples showing the challenges present in endoscopic sinus images. A
snapshot showing the feature matches (c) and the matches selected by ASKC1 (d) on the left
undistorted image.
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