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Abstract

As a fundamental problem in pattern recognition, graph
matching has applications in a variety of fields, from com-
puter vision to computational biology. In graph match-
ing, patterns are modeled as graphs and pattern recognition
amounts to finding a correspondence between the nodes of
different graphs. Many formulations of this problem can be
cast in general as a quadratic assignment problem, where a
linear term in the objective function encodes node compati-
bility and a quadratic term encodes edge compatibility. The
main research focus in this theme is about designing efficient
algorithms for approximately solving the quadratic assign-
ment problem, since it is NP-hard. In this paper we turn our
attention to a different question: how to estimate compati-
bility functions such that the solution of the resulting graph
matching problem best matches the expected solution that
a human would manually provide. We present a method for
learning graph matching : the training examples are pairs
of graphs and the ‘labels’ are matches between them. Our
experimental results reveal that learning can substantially
improve the performance of standard graph matching algo-
rithms. In particular, we find that simple linear assignment
with such a learning scheme outperforms Graduated As-
signment with bistochastic normalisation, a state-of-the-art
quadratic assignment relaxation algorithm.

1 Introduction

Graphs are commonly used as abstract representations for
complex structures, including DNA sequences, documents,
text, and images. In particular they are extensively used in
the field of computer vision, where many problems can be
formulated as an attributed graph matching problem. Here
the nodes of the graphs correspond to local features of the
image and edges correspond to relational aspects between
features (both nodes and edges can be attributed, i.e. they
can encode feature vectors). Graph matching then consists
of finding a correspondence between nodes of the two graphs
such that they ’look most similar’ when the vertices are
labeled according to such a correspondence.

Typically, the problem is mathematically formulated as
a quadratic assignment problem, which consists of finding
the assignment that maximizes an objective function en-
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coding local compatibilities (a linear term) and structural
compatibilities (a quadratic term). The main body of re-
search in graph matching has then been focused on devising
more accurate and/or faster algorithms to solve the prob-
lem approximately (since it is NP-hard); the compatibility
functions used in graph matching are typically handcrafted.

An interesting question arises in this context: If we are
given two attributed graphs to match, G and G′, should
the optimal match be uniquely determined? For example,
assume first that G and G′ come from two images acquired
by a surveillance camera in an airport’s lounge; now, as-
sume the same G and G′ instead come from two images in a
photographer’s image database; should the optimal match
be the same in both situations? If the algorithm takes into
account exclusively the graphs to be matched, the optimal
solutions will be the same1 since the graph pair is the same
in both cases. This is the standard way graph matching is
approached today.

In this paper we address what we believe to be a limitation
of this approach. We argue that if we know the ‘conditions’
under which a pair of graphs has been extracted, then we
should take into account how graphs arising in those con-
ditions are typically matched. However, we do not take the
information on the conditions explicitly into account, since
this would obviously be impractical. Instead, we approach
the problem purely from a statistical inference perspective.
First, we extract graphs from a number of images acquired
under the same conditions as those for which we want to
solve, whatever the word ‘conditions’ means (e.g. from the
surveillance camera or the photographer’s database). We
then manually provide what we understand to be the op-
timal matches between the resulting graphs. This informa-
tion is then used in a learning algorithm which learns a map
from the space of pairs of graphs to the space of matches.

In terms of the quadratic assignment problem, this learn-
ing algorithm amounts to (in loose language) adjusting the
node and edge compatibility functions such that the ex-
pected optimal match in a test pair of graphs agrees with
the expected match they would have had, had they been
in the training set. In this formulation, the learning prob-
lem consists of a convex, quadratic program which is readily
solvable by means of a column generation procedure.

We provide experimental evidence that applying learn-
ing to standard graph matching algorithms significantly im-
proves their performance. In fact, we show that learning
improves upon non-learning results so dramatically that lin-
ear assignment with learning outperforms Graduated As-

1Assuming there is a single optimal solution and that the algorithm
finds it.
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signment with bistochastic normalisation, a state-of-the-art
quadratic assignment relaxation algorithm. Also, by intro-
ducing learning in Graduated Assignment itself, we obtain
results that improve both in accuracy and speed over the
best existing quadratic assignment relaxations.

A preliminary version of this paper appeared in [1].

1.1 Related Literature

The graph matching literature is extensive, and many differ-
ent types of approaches have been proposed, which mainly
focus on approximations and heuristics for the quadratic
assignment problem. An incomplete list includes spec-
tral methods [2–6], relaxation labeling and probabilistic
approaches [7–13], semidefinite relaxations [14], replicator
equations [15], tree search [16], and graduated assignment
[17]. Spectral methods consist of studying the similarities
between the spectra of the adjacency or Laplacian matri-
ces of the graphs and using them for matching. Relax-
ation and probabilistic methods define a probability dis-
tribution over mappings, and optimize using discrete relax-
ation algorithms or variants of belief propagation. Semidef-
inite relaxations solve a convex relaxation of the original
combinatorial problem. Replicator equations draw an anal-
ogy with models from biology where an equilibrium state is
sought which solves a system of differential equations on the
nodes of the graphs. Tree-search techniques in general have
worst case exponential complexity and work via sequential
tests of compatibility of local parts of the graphs. Gradu-
ated Assignment combines the ‘softassign’ method [18] with
Sinkhorn’s method [19] and essentially consists of a series
of first-order approximations to the quadratic assignment
objective function. This method is particularly popular
in computer vision since it produces accurate results while
scaling reasonably in the size of the graph.

The above literature strictly focuses on trying better algo-
rithms for approximating a solution for the graph matching
problem, but does not address the issue of how to determine
the compatibility functions in a principled way.

In [20] the authors learn compatibility functions for the
relaxation labeling process; this is however a different prob-
lem than graph matching, and the ‘compatibility functions’
have a different meaning. Nevertheless it does provide an
initial motivation for learning in the context of matching
tasks. In terms of methodology, the paper most closely re-
lated to ours is possibly [21], which uses structured estima-
tion tools in a quadratic assignment setting for word align-
ment. A recent paper of interest shows that very significant
improvements on the performance of graph matching can be
obtained by an appropriate normalization of the compati-
bility functions [22]; however, no learning is involved.

2 The Graph Matching Problem

The notation used in this paper is summarized in table 1.
In the following we denote a graph by G. We will often refer
to a pair of graphs, and the second graph in the pair will
be denoted by G′. We study the general case of attributed
graph matching, and attributes of the vertex i and the edge

Table 1: Definitions and Notation
G - generic graph (similarly, G′);
Gi - attribute of node i in G (similarly, G′i′ for G′);
Gij - attribute of edge ij in G (similarly, G′i′j′ for G′);
G - space of graphs (G× G - space of pairs of graphs);
x - generic observation: graph pair (G,G′); x ∈ X, space of
observations;
y - generic label: matching matrix; y ∈ Y, space of labels;
n - index for training instance; N - number of training in-
stances;
xn - nth training observation: graph pair (Gn, G′n);
yn - nth training label: matching matrix;
g - predictor function;
yw - optimal prediction for g under w;
f - discriminant function;
∆ - loss function;
Φ - joint feature map;
φ1 - node feature map;
φ2 - edge feature map;
Sn - constraint set for training instance n;
y∗ - solution of the quadratic assignment problem;
ŷ - most violated constraint in column generation;
yii′ - ith row and i′th column element of y;
cii′ - value of compatibility function for map i 7→ i′;
dii′jj′ - value of compatibility function for map ij 7→ i′j′;
ε - tolerance for column generation;
w1 - node parameter vector; w2 - edge parameter vector;
w := [w1 w2] - joint parameter vector; w ∈W;
ξn - slack variable for training instance n;
Ω - regularization function; λ - regularization parameter;
δ - convergence monitoring threshold in bistochastic nor-
malization.
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ij in G are denoted by Gi and Gij respectively. Standard
graphs are obtained if the node attributes are empty and
the edge attributes Gij ∈ {0, 1} are binary denoting the
absence or presence of an edge, in which case we get the
so-called exact graph matching problem.

Define a matching matrix y by yii′ ∈ {0, 1} such that
yii′ = 1 if node i in the first graph maps to node i′ in the
second graph (i 7→ i′) and yii′ = 0 otherwise. Define by
cii′ the value of the compatibility function for the unary
assignment i 7→ i′ and by dii′jj′ the value of the compati-
bility function for the pairwise assignment ij 7→ i′j′. Then,
a generic formulation of the graph matching problem con-
sists of finding the optimal matching matrix y∗ given by the
solution of the following (NP-hard) quadratic assignment
problem [23]

y∗ = argmax
y

∑
ii′

cii′yii′ +
∑
ii′jj′

dii′jj′yii′yjj′

 , (1)

typically subject to either the injectivity constraint (one-
to-one, that is

∑
i yii′ ≤ 1 for all i′,

∑
i′ yii′ ≤ 1 for all i)

or simply the constraint that the map should be a function
(many-to-one, that is

∑
i′ yii′ = 1 for all i). If dii′jj′ = 0

for all ii′jj′ then (1) becomes a linear assignment problem,
exactly solvable in worst case cubic time [24]. Although the
compatibility functions c and d obviously depend on the at-
tributes {Gi, G′i′} and {Gij , G′i′j′}, the functional form of
this dependency is typically assumed to be fixed in graph
matching. This is precisely the restriction we are going
to relax in this paper: both the functions c and d will be
parametrized by vectors whose coefficients will be learned
within a convex optimization framework. In a way, instead
of proposing yet another algorithm for determining how to
approximate the solution for (1), we are aiming at finding
a way to determine what should be maximized in (1), since
different c and d will produce different criteria to be maxi-
mized.

3 Learning Graph Matching

3.1 General Problem Setting

We approach the problem of learning the compatibility func-
tions for graph matching as a supervised learning problem
[25]. The training set comprises N observations x from an
input set X, N corresponding labels y from an output set Y,
and can be represented by {(x1; y1), . . . , (xN ; yN )}. Critical
in our setting is the fact that the observations and labels are
structured objects. In typical supervised learning scenarios,
observations are vectors and labels are elements from some
discrete set of small cardinality, for example yn ∈ {−1, 1}
in the case of binary classification. However, in our case an
observation xn is a pair of graphs, i.e. xn = (Gn, G′n), and
the label yn is a match between graphs, represented by a
matching matrix as defined in section 2.

If X = G×G is the space of pairs of graphs, Y is the space of
matching matrices, and W is the space of parameters of our
model, then learning graph matching amounts to estimating

a function g : G×G×W 7→ Y which minimizes the prediction
loss on the test set. Since the test set here is assumed not to
be available at training time, we use the standard approach
of minimizing the empirical risk (average loss in the training
set) plus a regularization term in order to avoid overfitting.
The optimal predictor will then be the one which minimizes
an expression of the following type:

1
N

N∑
n=1

∆(g(Gn, G′n;w), yn)︸ ︷︷ ︸
empirical risk

+ λΩ(w)︸ ︷︷ ︸
regularization term

, (2)

where ∆(g(Gn, G′n;w), yn) is the loss incurred by the pre-
dictor g when predicting, for training input (Gn, G′n), the
output g(Gn, G′n;w) instead of the training output yn. The
function Ω(w) penalizes ‘complex’ vectors w, and λ is a pa-
rameter that trades off data fitting against generalization
ability, which is in practice determined using a validation
set. In order to completely specify such an optimization
problem, we need to define the parametrized class of predic-
tors g(G,G′;w) whose parameters w we will optimize over,
the loss function ∆ and the regularization term Ω(w). In
the following we will focus on setting up the optimization
problem by addressing each of these points.

3.2 The Model

We start by specifying a w-parametrized class of predictors
g(G,G′;w). We use the standard approach of discriminant
functions, which consists of picking as our optimal estimate
the one for which the discriminant function f(G,G′, y;w)
is maximal, i.e. g(G,G′;w) = argmaxy f(G,G′, y;w).
We assume linear discriminant functions f(G,G′, y;w) =
〈w,Φ(G,G′, y)〉, so that our predictor has the form

g(G,G′, w) = argmax
y∈Y

〈w,Φ(G,G′, y)〉 . (3)

Effectively we are solving an inverse optimization problem,
as described by [25, 26], that is, we are trying to find f
such that g has desirable properties. Further specification
of g(G,G′;w) requires determining the joint feature map
Φ(G,G′, y), which has to encode the properties of both
graphs as well as the properties of a match y between these
graphs. The key observation here is that we can relate the
quadratic assignment formulation of graph matching, given
by (1), with the predictor given by (3), and interpret the
solution of the graph matching problem as being the esti-
mate of g, i.e. yw = g(G,G′;w). This allows us to interpret
the discriminant function in (3) as the objective function to
be maximized in (1):

〈Φ(G,G′, y), w〉 =
∑
ii′

cii′yii′ +
∑
ii′jj′

dii′jj′yii′yjj′ . (4)

This clearly reveals that the graphs and the parameters
must be encoded in the compatibility functions. The last
step before obtaining Φ consists of choosing a parametriza-
tion for the compatibility functions. We assume a simple

3



linear parametrization

cii′ = 〈φ1(Gi, G′i′), w1〉 (5a)

dii′jj′ =
〈
φ2(Gij , G′i′j′), w2

〉
, (5b)

i.e. the compatibility functions are linearly dependent on
the parameters, and on new feature maps φ1 and φ2 that
only involve the graphs (section 4 specifies the feature maps
φ1 and φ2). As already defined, Gi is the attribute of node
i and Gij is the attribute of edge ij (similarly for G′). How-
ever, we stress here that these are not necessarily local at-
tributes, but are arbitrary features simply indexed by the
nodes and edges.2 For instance, we will see in section 4 an
example where Gi encodes the graph structure of G as ‘seen’
from node i, or from the ‘perspective’ of node i.

Note that the traditional way in which graph matching
is approached arises as a particular case of equations (5): if
w1 and w2 are constants, then cii′ and dii′jj′ depend only
on the features of the graphs. By defining w := [w1 w2], we
arrive at the final form for Φ(G,G′, y) from (4) and (5):

Φ(G,G′, y) =[∑
ii′

yii′φ1(Gi, G′i′),
∑
ii′jj′

yii′yjj′φ2(Gij , G′i′j′)

]
. (6)

Naturally, the final specification of the predictor g depends
on the choices of φ1 and φ2. Since our experiments are con-
centrated on the computer vision domain, we use typical
computer vision features (e.g. Shape Context) for construct-
ing φ1 and a simple edge-match criterion for constructing
φ2 (details follow in section 4).

3.3 The Loss

Next we define the loss ∆(y, yn) incurred by estimating the
matching matrix y instead of the correct one, yn. When
both graphs have large sizes, we define this as the fraction
of mismatches between matrices y and yn, i.e.

∆(y, yn) = 1− 1
‖yn‖2F

∑
ii′

yii′y
n
ii′ . (7)

(where ‖·‖F is the Frobenius norm). If one of the graphs
has a small size, this measure may be too rough. In our ex-
periments we will encounter such a situation in the context
of matching in images. In this case, we instead use the loss

∆(G,G′, π) = 1− 1
|π|
∑
i

[
d(Gi, G′π(i))

σ

]
. (8)

Here graph nodes correspond to point sets in the images,
G corresponds to the smaller, ‘query’ graph, and G′ is the
larger, ‘target’ graph (in this expression, Gi and G′j are par-
ticular points in G and G′; π(i) is the index of the point in

2As a result in our general setting ‘node’ compatibilities and ‘edge’
compatibilities become somewhat misnomers, being more appropri-
ately described as unary and binary compatibilities. We however stick
to the standard terminology for simplicity of exposition.

G′ to which the ith point in G should be correctly mapped;
d is simply the Euclidean distance, and is scaled by σ, which
is simply the width of the image in question). Hence we are
penalising matches based on how distant they are from the
correct match; this is commonly referred to as the ‘endpoint
error’.

Finally, we specify a quadratic regularizer Ω(w) =
1
2 ‖w‖

2.

3.4 The Optimization Problem

Here we combine the elements discussed in 3.2 in order to
formally set up a mathematical optimization problem that
corresponds to the learning procedure. The expression that
arises from (2) by incorporating the specifics discussed in
3.2/3.3 still consists of a very difficult (in particular non-
convex) optimization problem. Although the regulariza-
tion term is convex in the parameters w, the empirical risk,
i.e. the first term in (2), is not. Note that there is a finite
number of possible matches y, and therefore a finite num-
ber of possible values for the loss ∆; however, the space of
parameters W is continuous. What this means is that there
are large equivalence classes of w (an equivalence class in
this case is a given set of w’s each of which produces the
same loss). Therefore, the loss is piecewise constant on w,
and as a result certainly not amenable to any type of smooth
optimization.

One approach to render the problem of minimizing (2)
more tractable is to replace the empirical risk by a convex
upper bound on the empirical risk, an idea that has been
exploited in Machine Learning in recent years [25,27,28]. By
minimizing this convex upper bound, we hope to decrease
the empirical risk as well. It is easy to show that the convex
(in particular, linear) function 1

N

∑
n ξn is an upper bound

for 1
N

∑
n ∆(g(Gn, G′n;w), yn) for the solution of (2) with

appropriately chosen constraints:

minimize
w,ξ

1
N

N∑
n=1

ξn +
λ

2
‖w‖2 (9a)

subject to 〈w,Ψn(y)〉 ≥ ∆(y, yn)− ξn (9b)
for all n and y ∈ Y.

Here we define Ψn(y) := Φ(Gn, G′n, yn) − Φ(Gn, G′n, y).
Formally, we have:

Lemma 3.1 For any feasible (ξ, w) of (9) the inequality
ξn ≥ ∆(g(Gn, G′n;w), yn) holds for all n. In particu-
lar, for the optimal solution (ξ∗, w∗) we have 1

N

∑
n ξ
∗
n ≥

1
N

∑
n ∆(g(Gn, G′n;w∗), yn).

Proof The constraint (9b) needs to hold for all y, hence in
particular for yw

∗
= g(Gn, G′n;w∗). By construction yw

∗

satisfies
〈
w,Ψn(yw

∗
)
〉
≤ 0. Consequently ξn ≥ ∆(yw

∗
, yn).

The second part of the claim follows immediately.

The constraints (9b) mean that the margin
f(Gn, G′n, yn;w) − f(Gn, G′n, y;w), i.e. the gap be-
tween the discriminant functions for yn and y should
exceed the loss induced by estimating y instead of the
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training matching matrix yn. This is highly intuitive since
it reflects the fact that we want to safeguard ourselves most
against mis-predictions y which incur a large loss (i.e. the
smaller is the loss, the less we should care about making
a mis-prediction, so we can enforce a smaller margin).
The presence of ξn in the constraints and in the objective
function means that we allow the hard inequality (without
ξn) to be violated, but we penalize violations for a given n
by adding to the objective function the cost 1

N ξn.
Despite the fact that (9) has exponentially many con-

straints (every possible matching y is a constraint), we will
see in what follows that there is an efficient way of finding
an ε-approximation to the optimal solution of (9) by finding
the worst violators of the constrained optimization problem.

3.5 The Algorithm

Note that the number of constraints in (9) is given by the
number of possible matching matrices |Y| times the number
of training instances N . In graph matching the number of
possible matches between two graphs grows factorially with
their size. In this case it is infeasible to solve (9) exactly.

There is however a way out of this problem by using an
optimization technique known as column generation [24].
Instead of solving (9) directly, one computes the most vi-
olated constraint in (9) iteratively for the current solution
and adds this constraint to the optimization problem. In
order to do so, we need to solve

argmax
y

[〈w,Φ(Gn, G′n, y)〉+ ∆(y, yn)] , (10)

as this is the term for which the constraint (9b) is tightest
(i.e. the constraint that maximizes ξn).

The resulting algorithm is given in algorithm 1. We use
the ’Bundle Methods for Regularized Risk Minimization’
(BMRM) solver of [29], which merely requires that for each
candidate w, we compute the gradient of 1

N

∑
〈w,Ψ(ŷ)〉 +

λ
2 ‖w‖

2 with respect to w, and the loss ( 1
N

∑
n ∆(ŷ, yn)) (ŷ is

the most violated constraint in column generation). See [29]
for further details

Let us investigate the complexity of solving (10). Using
the joint feature map Φ as in (6) and the loss as in (7), the
argument in (10) becomes

〈Φ(G,G′, y), w〉+ ∆(y, yn) = (11)

=
∑
ii′

yii′ c̄ii′ +
∑
ii′jj′

yii′yjj′dii′jj′ + constant,

where c̄ii′ = 〈φ1(Gi, G′i′), w1〉 + ynii′/ ‖yn‖
2
F and dii′jj′ is

defined as in (5b).
The maximization of (11), which needs to be carried out

at training time, is a quadratic assignment problem, as is
the problem to be solved at test time. In the particular case
where dii′jj′ = 0 throughout, both the problems at training
and at test time are linear assignment problems, which can
be solved efficiently in worst case cubic time.

In our experiments, we solve the linear assignment prob-
lem with the efficient solver from [30] (‘house’ sequence),
and the Hungarian algorithm (video/bikes dataset). For

Algorithm 1 Column Generation
Define:
Ψn(y) := Φ(Gn, G′n, yn)− Φ(Gn, G′n, y)
Hn(y) := 〈w,Φ(Gn, G′n, y)〉+ ∆(y, yn)
Input: training graph pairs {Gn},{G′n}, training match-
ing matrices {yn}, sample size N , tolerance ε
Initialize Sn = ∅ for all n, and w = 0
repeat

Get current w from BMRM
for n = 1 to N do
ŷ = argmaxy∈YH

n(y)
Compute gradient of 〈w,Ψ(Gn, G′n, y)〉 + λ

2 ‖w‖
2

w.r.t. w (= Ψn(ŷ) + λw)
Compute loss ∆(ŷ, yn)

end for
Report 1

N

∑
ξn and 1

N

∑
n ∆(ŷ, yn) to BMRM

until 1
N

∑
ξn is sufficiently small

quadratic assignment, we developed a C++ implementation
of the well-known Graduated Assignment algorithm [17].
However the learning scheme discussed here is indepen-
dent of which algorithm we use for solving either linear or
quadratic assignment. Note that the estimator is but a mere
approximation in the case of quadratic assignment: since we
are unable to find the most violated constraints of (10), we
cannot be sure that the duality gap is properly minimized
in the constrained optimization problem.

4 Features for the Compatibility
Functions

The joint feature map Φ(G,G′, y) has been derived in its full
generality (6), but in order to have a working model we need
to choose a specific form for φ1(Gi, G′i′) and φ2(Gij , G′i′j′),
as mentioned in section 3. We first discuss the linear fea-
tures φ1 and then proceed to the quadratic terms φ2. For
concreteness, here we only discuss options actually used in
our experiments.

4.1 Node Features

We construct φ1(Gi, G′i′) using the squared difference
φ1(Gi, G′i′) = (. . . ,−|Gi(r) − G′i′(r)|2, . . . ). This differs
from what is shown in [1], in which an exponential de-
cay is used (i.e. exp(−|Gi(r) − G′i′(r)|2/)); we found that
using the squared difference resulted in much better per-
formance after learning. Here Gi(r) and G′i′(r) denote
the rth coordinates of the corresponding attribute vectors.
Note that in standard graph matching without learning
we typically have cii′ = exp(−‖Gi −G′i′‖

2), which can be
seen as the particular case of (5a) for both φ1 and w1

flat, given by φ1(Gi, G′i′) = (. . . , exp(−‖Gi −G′i′‖
2), . . . )

and w1 = (. . . , 1, . . . ) [22]. Here instead we have cii′ =
〈φ1(Gi, G′i′), w1〉, where w1 is learned from training data.
In this way, by tuning the rth coordinate of w1 accordingly,
the learning process finds the relevance of the rth feature
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of φ1. In our experiments (to be described in the next sec-
tion), we use the well-known 60-dimensional Shape Con-
text features [31]. They encode how each node ‘sees’ the
other nodes. It is an instance of what we called in sec-
tion 3 a feature that captures the node ‘perspective’ with
respect to the graph. We use 12 angular bins (for an-
gles in [0, π6 ) . . . [ 11π6 , 2π)), and 5 radial bins (for radii in
(0, 0.125), [0.125, 0.25) . . . [1, 2), where the radius is scaled
by the average of all distances in the scene) to obtain our
60 features. This is similar to the setting described in [31].

4.2 Edge Features

For the edge features Gij (G′i′j′), we use standard graphs,
i.e. Gij (G′i′j′) is 1 if there is an edge between i and j and 0
otherwise. In this case, we set φ2(Gij , G′i′j′) = GijG

′
i′j′ (so

that w2 is a scalar).

5 Experiments

5.1 House Sequence

For our first experiment, we consider the CMU ‘house’ se-
quence – a dataset consisting of 111 frames of a toy house
[32]. Each frame in this sequence has been hand-labelled,
with the same 30 landmarks identified in each frame [33].
We explore the performance of our method as the baseline
(separation between frames) varies.

For each baseline (from 0 to 90, by 10), we identified all
pairs of images separated by exactly this many frames. We
then split these pairs into three sets, for training, validation,
and testing. In order to determine the adjacency matrix
for our edge features, we triangulated the set of landmarks
using the Delaunay triangulation (see figure 1).

Figure 1 (top) shows the performance of our method as
the baseline increases, for both linear and quadratic assign-
ment (for quadratic assignment we use the Graduated As-
signment algorithm, as mentioned previously). The values
shown report the normalised Hamming loss (i.e. the propor-
tion of points incorrectly matched); the regularization con-
stant resulting in the best performance on our validation set
is used for testing. Graduated assignment using bistochas-
tic normalisation, which to the best of our knowledge is the
state-of-the-art relaxation, is shown for comparison [22].3

For both linear and quadratic assignment, figure 1
shows that learning significantly outperforms non-learning
in terms of accuracy. Interestingly, quadratic assignment
performs worse than linear assignment before learning is
applied – this is likely because the relative scale of the linear
and quadratic features is badly tuned before learning. In-
deed, this demonstrates exactly why learning is important.
It is also worth noting that linear assignment with learning
performs similarly to quadratic assignment with bistochas-
tic normalisation (without learning) – this is an important
result, since quadratic assignment via Graduated Assign-
ment is significantly more computationally intensive.

3Exponential decay on the node features was beneficial when using
the method of [22], and has hence been maintained in this case (see
section 4.1); a normalisation constant of δ = 0.00001 was used.

Figure 1: Top: Performance on the ‘house’ sequence as
the baseline (separation between frames) varies (the nor-
malised Hamming loss on all testing examples is reported,
with error bars indicating the standard error). Centre: The
weights learned for the quadratic model (baseline = 90,
λ = 1). Bottom: A frame from the sequence, together
with its landmarks and triangulation; the 3rd and the 93rd

frames, matched using linear assignment (without learning,
loss = 12/30), and the same match after learning (λ = 10,
loss = 6/30). Mismatches are shown in red.
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Figure 2: Top: Performance on the video sequence as the
baseline (separation between frames) varies (the endpoint
error on all testing examples is reported, with error bars
indicating the standard error). Centre: The weights learned
for the model (baseline = 90, λ = 100). Bottom: The 7th

and the 97th frames, matched using linear assignment (loss
= 0.028), and the same match after learning (λ = 100, loss
= 0.009). The outline of the points to be matched (left), and
the correct match (right) are shown in green; the inferred
match is outlined in red; the match after learning is much
closer to the correct match.

Figure 3: Running time versus accuracy on the ‘house’
dataset, for a baseline of 90. Standard errors of both run-
ning time and performance are shown (the standard error
for the running time is almost zero). Note that linear as-
signment is around three orders of magnitude faster than
quadratic assignment.

Figure 1 (centre) shows the weight vector learned us-
ing quadratic assignment (for a baseline of 90 frames, with
λ = 1). Note that the first 60 points show the weights of the
Shape Context features, whereas the final point corresponds
to the edge features. The final point is given a very high
score after learning, indicating that the edge features are
important in this model.4 Here the first 12 features corre-
spond to the first radial bin (as described in section 4) etc.
The first radial bin appears to be more important than the
last, for example. Figure 1 (bottom) also shows an example
match, using the 3rd and the 93rd frames of the sequence
for linear assignment, before and after learning.

Finally, Figure 3 shows the running time of our method
compared to its accuracy. Firstly, it should be noted that
the use of learning has no effect on running time; since learn-
ing outperforms non-learning in all cases, this presents a
very strong case for learning. Quadratic assignment with
bistochastic normalisation gives the best non-learning per-
formance, however, it is still worse than either linear or
quadratic assignment with learning and it is significantly
slower.

5.2 Video Sequence

For our second experiment, we consider matching features
of a human in a video sequence. We used a video sequence
from the SAMPL dataset [34] – a 108 frame sequence of a
human face (see figure 2, bottom). To identify landmarks
for these scenes, we used the SUSAN corner detector [35,
36]. This detector essentially identifies points as corners if
their neighbours within a small radius are dissimilar. This

4This should be interpreted with some caution: the features have
different scales, meaning that their importances cannot be compared
directly. However, from the point of view of the regularizer, assigning
this feature a high weight bares a high cost, implying that it is an
important feature.
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detector was tuned such that no more than 200 landmarks
were identified in each scene.

In this setting, we are no longer interested in matching all
of the landmarks in both images, but rather those that cor-
respond to important parts of the human figure. We identi-
fied the same 11 points in each image (figure 2, bottom). It
is assumed that these points are known in advance for the
template scene (G), and are to be found in the target scene
(G′). Clearly, since the correct match corresponds to only a
tiny proportion of the scene, using the normalised Hamming
loss is no longer appropriate – we wish to penalise incorrect
matches less if they are ‘close to’ the correct match. Hence
we use the loss function (as introduced in section 3.2)

∆(G,G′, π) = 1− 1
|π|
∑
i

[
d(Gi, G′π(i))

σ

]
. (12)

Here the loss is small if the distance between the chosen
match and the correct match is small.

Since we are interested in only a few of our landmarks,
triangulating the graph is no longer meaningful. Hence we
present results only for linear assignment.

Figure 2 (top) shows the performance of our method as
the baseline increases. In this case, the performance is non-
monotonic as the subject moves in and out of view through-
out the sequence. This sequence presents additional difficul-
ties over the ‘house’ dataset, as we are subject to noise in
the detected landmarks, and possibly in their labelling also.
Nevertheless, learning outperforms non-learning for all base-
lines. The weight vector (figure 2, centre) is heavily peaked
about particular angular bins.

5.3 Bikes

For our final experiment, we used images from the Caltech
256 dataset [37]. We chose to match images in the ‘touring
bike’ class, which contains 110 images of bicycles. Since the
Shape Context features we are using are robust to only a
small amount of rotation (and not to reflection), we only
included images in this dataset that were taken ‘side-on’.
Some of these were then reflected to ensure that each im-
age had a consistent orientation (in total, 78 images re-
mained). Again, the SUSAN corner detector was used to
identify the landmarks in each scene; 6 points correspond-
ing to the frame of the bicycle were identified in each frame
(see figure 4, bottom).

Rather than matching all pairs of bicycles, we used a fixed
template (G), and only varied the target. This is an easier
problem than matching all pairs, but is realistic in many
scenarios, such as image retrieval.

Table 2 shows the endpoint error of our method, and gives
further evidence of the improvement of learning over non-
learning. Figure 4 shows a selection of data from our train-
ing set, as well as an example matching, with and without
learning.

Loss Loss (learning)
Training 0.094 (0.005) 0.057 (0.004)
Validation 0.040 (0.007) 0.040 (0.006)
Testing 0.101 (0.005) 0.062 (0.004)

Table 2: Performance on the ‘bikes’ dataset. Results for the
minimiser of the validation loss (λ = 10000) are reported.
Standard errors are in parentheses.

Figure 4: Top: Some of our training scenes. Bottom: A
match from our test set. The top frame shows the points as
matched without learning (loss = 0.105), and the bottom
frame shows the match with learning (loss = 0.038). The
outline of the points to be matched (left), and the correct
match (right) are outlined in green; the inferred match is
outlined in red.
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6 Conclusions and Discussion

We have shown how the compatibility functions for the
graph matching problem can be estimated from labeled
training examples, where a training input is a pair of graphs
and a training output is a matching matrix. We use large-
margin structured estimation techniques with column gen-
eration in order to solve the learning problem efficiently,
despite the huge number of constraints in the optimization
problem. We presented experimental results in three differ-
ent settings, each of which revealed that the graph matching
problem can be significantly improved by means of learning.

An interesting finding in this work has been that linear
assignment with learning performs similarly to Graduated
Assignment with bistochastic normalisation, a state-of-the-
art quadratic assignment relaxation algorithm. This sug-
gests that, in situations where speed is a major issue, lin-
ear assignment may be resurrected as a means for graph
matching. In addition to that, if learning is introduced to
Graduated Assignment itself, then the performance of graph
matching improves significantly both on accuracy and speed
when compared to the best existing quadratic assignment
relaxation [22].

There are many other situations in which learning a
matching criterion can be useful. In multi-camera settings
for example, when different cameras may be of different
types and have different calibrations and viewpoints, it is
reasonable to expect that the optimal compatibility func-
tions will be different depending on which camera pair we
consider. In surveillance applications we should take advan-
tage of the fact that much of the context does not change:
the camera and the viewpoint are typically the same.

To summarize, by learning a matching criterion from pre-
viously labeled data, we are able to substantially improve
the accuracy of graph matching algorithms.
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