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Abstract

We consider the problems of clustering, classification, aisdalization of high-dimensional data
when no straightforward Euclidean representation exiBtpically, these tasks are performed by first
reducing the high-dimensional data to some lower dimemsiduclidean space, as many manifold
learning methods have been developed for this task. In meastipal problems however, the assumption
of a Euclidean manifold cannot be justified. In these casarpee appropriate assumption would be
that the data lies on statistical manifold, or a manifold of probability density functions¥Ps). In this
paper we propose using the properties of information gegmebrder to define similarities between data
sets using the Fisher information metric. We will show thistric can be approximated using entirely
non-parametric methods, as the parameterization of thefahdis generally unknown. Furthermore,
by using multi-dimensional scaling methods, we are ablemibed the corresponding PDFs into a low-
dimensional Euclidean space. This not only allows for digsgion of the data, but also visualization of
the manifold. As a whole, we refer to our framework as Fisimdorimation Non-parametric Embedding
(FINE), and illustrate its uses on a variety of practicallpeons, including bio-medical applications and
document classification.

. INTRODUCTION

The fields of statistical learning and machine learning aeduo study problems of inference, which
is to say gaining knowledge through the construction of n®ateorder to make decisions or predictions
based on observed data [1]. Statistical learning examira@sdgms such as observing natural associations
between data sets (clustering), and predicting to whichsctd known groupings an unlabeled data set
belongs (classification), based on some model defined bya kniowledge of the data. Machine learning
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introduces a non-parametric approach to these learnirg taa model-free learning from examples.
Recent work on manifold learning aims at the high dimensamgime, in which examples are governed by
geometrical constraints effectively reducing the dimensif the problem from a high extrinsic dimension
to a low intrinsic dimension. On the other hand, informatimometry aims at understanding the structure
of statistical models and introduces a geometric persgetti inference problems [2].

We are interested in the cross section of the three fieldsgubkie principles of each to solve problems
that do not fit within the framework of any of the individuallis. Often data does not exhibit a low
intrinsic dimension in the data domain as one would have inifola learning. A straightforward strategy
is to express the data in terms of a low-dimensional featemor for which thecurse of dimensionality
is alleviated. This initial processing of data as real-edldeature vectors in Euclidean space, which is
often carried out in an ad hoc manner, has been called thgy 'ldiundry” of machine learning [3]. This
procedure is highly dependent on having a good model for #ia dnd in the absence of such model
may be highly suboptimal. When a statistical model is alddélathe process of obtaining a feature vector
can be done optimally by extracting the model parameterafgiven data set and thus characterizing
the data through its lower dimensional parameter vectorawenterested in extending this approach to
the case in which the data follows an unknown parametrigstitatl model.

While the problem of learning in a Euclidean space is wellrdafj there are many problems in which
the data cannot be appropriately represented by a Euclidemnifold, and the model parameters are
unspecified and must be learned through the data. In flow @trgnpathologists study blood samples
containing many cells taken from a patient. Each individegll is analyzed with different fluorescent
markers, resulting in a large, high-dimensional data skis Ts assumed to be a realization of some
overriding parametric model, but the model parameters ak@mawn. Pathologists desire the ability to
appropriately classify patients with differing ailmentigt may express similar responses to these markers.
For the purposes of analysis and visualization, it is thetesgary to reduce the dimensionality of these
sets. The problem of document classification is one in whiehdata is clearly non-Euclidean, as each
set is a collection of words from a dictionary. It is still desl to distinguish between documents by
forming clusters of different similarities. A standard tmed is to form a probability distribution over
a dictionary and use methods of information geometry tordetes a similarity between data sets [4].
Applications of statistical manifolds have also been pné=ein the cases of face recognition [5], texture
segmentation [6], image analysis [7], and shape analykis [8

A common theme to all of the problems presented above is beattodel from which the data is
generated is unknown. In this paper, we present a frameveohiandle such problems. Specifically, we
focus on the case where the data is high-dimensional and wer Idimensional Euclidean manifold
gives a sufficient description. In many of these cases, arlairaensional statistical manifold can be
used to assess the data for various learning tasks. We ceterr tframework as Fisher Information Non-
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parametric Embedding (FINE), and it includes charactédneaof data sets in terms of a non-parametric
statistical model, a geodesic approximation of the Fishfarination distance as a metric for evaluating
similarities between data sets, and a dimensionality rialugrocedure to obtain a low-dimensional
Euclidean embedding of the original high-dimensional datafor the purposes of both classification and
visualization.

Statistical manifolds in both the parametric and non-patait settings have been well discussed [9],
[10]. Our work differs in that we assume the manifold is ded\from some natural parameterization, only
that set of parameters is unknown. There has been much weskmed on the use of statistical manifolds
[4], [7], [11], [12] and information geometry [13], [14] irelrning problems, all proposing alternatives
to using Euclidean geometry for data modeling. These matliodus on clustering and classification,
and do not explicitly address the problems of dimensiopaiiuction (embedding each set into a low-
dimensional Euclidean space) and visualization. Addéilyn they focus on parameter estimation as a
necessity for their methods, as opposed to our work whicleifopmed in a non-parametric setting. We
provide a start-to-finish framework which enables analgsifigh-dimensional data through non-linear
embedding into a low-dimensional space by information, Eutlidean, geometry. Our methods require
no explicit model assumptions; only than that the given data realization from an unknown model
with some natural parameterization.

Recent work by Leeet al. [15] similar to our own [16], [17] has demonstrated the ufetatistical
manifolds for dimensionality reduction. While each worlsheeen developed independently and originally
presented at nearly the same time, they share enough dlimdathat we now express the different
contributions of our own work. Specifically, we consider twerk presented by Leet al. to be a
specialized case of our more general framework. They foouh® specific case of image segmentation,
which consists of multinomial distributions as points whige on ann-simplex (or projected onto an
n + 1-dimensional sphere). By framing their problem as suchy tire able to exploit the properties of
such a manifold: using the cosine distance as an exact catiguiof the Fisher information distance,
and using linear methods (PCA) of dimensionality reductidhey have shown very promising results
for the problem of image segmentation, and briefly menti@ngbssibility of using non-linear methods
of dimensionality reduction, which they consider unneaeggor their problem. The work we present
differs in that we make no assumptions on the type of didiiibs making up the statistical manifold.
As such, our geodesic approximation for the Fisher informmaaccounts for submanifolds of interest.
This is illustrated later in Figl]3, where the submanifoldslion then + 1-dimensional sphere, but
does not fill the entire space. As such, there is no exact meaguthe Fisher information between
points, and we must approximate with a geodesic along thefoldnAdditionally, we utilize non-linear
methods of dimensionality reduction, which we considerdarore relevant for many non-linear types of
applications. Finally, by considering all statistical nfalus rather than focusing on those of consisting
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of multinomial distributions, we are able to apply our methdo many problems of practical interest.

This paper is organized as follows: Sectloh Il describes edp@mund in information geometry and
statistical manifolds. Sectidnlll gives the formulatiar the problem we wish to solve, while Section IV
develops and outlines the FINE algorithm. We illustrate tbgults of using FINE on real and synthetic
data sets in Section]V. Finally, we draw conclusions andudisdhe possibilities for future work in
Section V).

Il. BACKGROUND ONINFORMATION GEOMETRY

Information geometry is a field that has emerged from theystiidjeometrical structures on manifolds
of probability distributions. These investigations arayprobability distributions as geometrical struc-
tures in a Riemannian space. Using tools and methods dgrikam differential geometry, information
geometry is applicable to information theory, probabitityeory, and statistics. The field of information
theory is largely based on the works of Shun’ichi Amari [18dahas been used for analysis in such
fields as statistical inference, neural networks, and obsfrstems. In this section, we will give a brief
background on the methods of information geometry that vikzeitin our framework. For a more
thorough introduction to information geometry, we sugd&8i and [2].

A. Differential Manifolds

The concept of a differential manifold is similar to that o@ooth curve or surface lying in a high-
dimensional space. A manifold1 can be intuitively thought of as a set of points with a cooatkn
system. These points can be from a variety of constructd) asdEuclidean coordinates, linear system,
images, or probability distributions. Regardless of théni@on of the points in the manifold\, there
exists a coordinate system with a one-to-one mapping fraftio R¢, and as such{ is known as the
dimension of M.

For reference, we will refer to the coordinate system/ohas : M — R? If ¢ has M as its
domain, we call it a global coordinate system [2]. In thisiafton, ) is a one-to-one mapping oni?
for all points in M. A manifold is differentiable if the coordinate system maggpy is differentiable
over its entire domain. If) is infinitely differentiable, the manifold is said to be ‘soth’ [19].

In many cases there does not exist a global coordinate syEvemmples of such manifolds include the
surface of a sphere, the “swiss roll”, and the torus. Fordheanifolds, there are only local coordinate
systems. Intuitively, a local coordinate system acts a®bajlcoordinate system for a local neighborhood
of the manifold, and there may be many local coordinate syst®r a particular manifold. Fortunately,
since a local coordinate system contains the same propesiea global coordinate system (only on a
local level), analysis is consistent between the two. Adisue shall focus solely on manifolds with a
global coordinate system.

February 12, 2013 DRAFT



1) Statistical Manifolds:Let us now present the notion statistical manifolds, or a\dethose elements
are probability distributions. A probability distributidunction (PDF) on a set is defined as a function
p: X — R in which

p(z) >0,V e X (1)

/p(az) dr = 1.

We describe only the case for continuum on the Behowever if X was discrete valued, equatidd (1)
will still apply by switching [ p(z) dz = 1 with >~ p(z) = 1. If we considerM to be a family of PDFs
on the set¥, in which each element oM is a PDF which can be parameterized by [6',...,6"],
then M is known as a statistical model oti. Specifically, let

M= {p(z|0) |66 CRY, 2)

with p(x | #) satisfying the equations if](1). Additionally, there esist one-to-one mapping betweén
andp(x | ).

Given certain properties of the parameterizatiorhdf such as differentiability and° diffeomorphism
(details of which are described in [2]), the parameterirati is also a coordinate system @f. In this
case, M is known as a statistical manifold. In the rest of this paper,will use the terms ‘manifold’
and ‘statistical manifold’ interchangeably.

B. Distances on Manifolds

In Euclidean space, the distance between two points is definghe length of a straight line between
the points. On a manifold, however, one can measure distapaetrace of the shortest path between
the points along the manifold. This path is called a geodesid the length of the path is the geodesic
distance. In information geometry, the distance betweem aints on a manifold is analogous to the
difference in information between them, and is defined byRisher information metric.

1) Fisher Information Metric: The Fisher information measures the amount of informatisaralom
variable X contains in reference to an unknown paramétdror the single parameter case it is defined

<% log f(X;9)>2 ye] .

If the condition | Cr?—;f(X;H) dX = 0 is met, then the above equation can be written as

as
1(0) = E

2

7(0) = —E [% log f(X; 9)} .
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For the case of multiple parametets= [¢',...,6"], we define the Fisher information matriZ (6)],
whose elements consist of the Fisher information with respespecified parameters, as

0l X;0)01 X;0
e [ o LD D 50)

(3)

For a parametric family of probability distributions, it jg@ssible to define a Riemannian metric using
the Fisher information matrix, known as the information neetThe information metric distance, or
Fisher information distance, between two distributigis; 6,) andp(z;62) in a single parameter family
is

DF(91,92) = /992 I(Q)l/QdQ, (4)

wheref; andf, are parameter values corresponding to the two PDFsZéfdis the Fisher information
for the parametef. Extending to the multi-parameter case, we obtain:

0
Dp(01,02) = rlrg1117n 62/ \/ ;%)dﬁ 5)

2) Example:Here we present a derivation of a geodesic distance betweesariate Gaussian densities

via the Fisher information metric for two reasons. First, weuld like to illustrate how involved the
process is for such a simple family of PDFs. Secondly, we gmmesa process of deriving the Fisher
information metric that is involved in computing the geddedistance. Let us consider the family of
univariate Gaussian distributior® = {p1,...,p,}, where

pi() = ———exp (—(x — u)?/202).
27TO’Z-2

For the case o parameterized by = (%,a), the resultant Fisher information matrix is

) |

We omit the derivation, which can be found in [19] and is sfinaiforward from [(3B).

2
o2

[an}
QN|M o

We define the distance between two points on the manifold @snihimum length between all paths
connecting the two points. Using the inner product assediatith the Fisher information matrix

<u,v >p=u'[T(0)]v,

we define the length of the paif between two points parameterized #hyandf,, on the manifoldM
as

161 — 62]|p = /< 01 — 09,601 — 0 >p.
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Using the parameterizatiaf(t) such thatd(0) = ¢, andf(1) = 6, we obtain the length oP as

o~ 02l = | 1 \/ (%eu))TI(e(t)) (50) .

We are able to define the distance between pgints p(z;60;) andps = p(z;602) as the minimum over

all path lengths defined above

1 Lla2+&2
- | V2
D - 2 V2L gt 6
F(p1.p2) r;l(glf/o s 6)

whereji = 4u(t) ands = Lo(t).

The solution to[(B) is the well known Poinéanyperbolic distance, in which the shortest path between
two points is the length of an arc on a circle in which both poire at a radius length from the circle’s
center. In the case of the univariate normal distributibis arc is a straight line when the mean is held
constant and the variance is changed.

By changing variables and parameterizim@s a function ofu, we obtain:

1 + 02
min /L,
o(p):o(p1)=01,0(12) —02
d

whereg = @a(ﬂ). It should be clear that this is a representation[0f (4). tuith also be noted that
there exists a one-to-one mappia@:) : R — R along the geodesic from (1) to o(us2), except for
the case whep; =

Solving [6) becomes a problem of calculus of variations. fher univariate normal family of distri-
butions, this has been calculated in a closed-form exmpregsiesented in [20], determining the Fisher
information distance as:

o e (o) (o) ()]
) o) (o) () e

For visualization, let us define a set of probability deesi® = {p;(x)} on a grid, such that; = py,,

is parameterized byju;, 0;) = (ak,1+ gl), k,l =1...n anda, 8 € R. Figure1 shows a mesh-grid and
contour plot of the Fisher information distance betweendéesity defined byu;, ;) = (0.6,1.5) and
the neighboring densities on the $et(a = 5 = 0.1).

I1l. PROBLEM FORMULATION

A key property of the Fisher information metric is that it islependent of the parameterization of the
manifold [7], [19]. Although the evaluation remains equérs, calculating the FIM requires knowledge
of the parameterization, which is generally not availal¥e.instead assume that the collection of density
functions lie on a manifold that can be described by somerabparameterization. Specifically, we are
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Fig. 1. a) Mesh-grid and b) Contour plots of the Fisher infation distance based on a grid of univariate normal dessitie
parameterized byu, o). The reference pointy;, is located af(u;,0:) = (0.6, 1.5) and is denoted by the red star.

givenP = {p1,...,pn}, Wherep; € M is a PDF andM is a manifold embedded i§, the simplex of
densities inL;. Under these circumstances, it is important to note thatnofithe same theory still applies
for determining dissimilarity between probability disttions. Our goal is to find an approximation for
the geodesic distance between points/enusing only the information available i®. Can we find an
approximation functiorG which yields

Drp(pi.p;) = G(pi, pj; P), (8)
such thatﬁp(pi,pj) — Dp(pi,pj) asn — 0o?

This problem is similar to the setting of classical paperH,[222] in manifold learning and dimen-
sionality reduction, where only a set of points on the mddifare available. As such, we are able to
use these manifold learning techniques to construct a lovewssional embedding of that family. This
not only allows for an effective visualization of the manifqin 2 or 3 dimensions), but by reducing
the effect of thecurse of dimensionalitwe can perform clustering and classification on the family of
distributions lying on the manifold.

A. Approximation of Fisher Information Distance

The Fisher information distance is consistent, regardiéshe parameterization of the manifold [7].
This fact enables the approximation of the informationatise when the specific parameterization of the
manifold is unknown, and there have been many metrics deedlor this approximation. An important
class of such divergences is known as thivergence [23], in whichf(u) is a convex function on
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v >0 and

Dy(pllg) = /p(x)f (%).

A specific and important example of thfedivergence is ther-divergence, wheré(®) = Dy fora
real number. The functionf(® (u) is defined as

s (1 —ulF9/2) g £ 41
f(a)(u): ulogu a=1

—logu a=-—1

As such, then-divergence can be evaluated as

D (pllg) = (1 -/ p(:U)ITQq(w)HTde) atl,
and »
(-1) _ p _ ) loe P
D' (pllg) = DY (qllp) = /p( ) log @) (9)

The a-divergence is the basis for many important and well knowrerdience metrics, such as the
Hellinger distance, the Kullback-Leibler divergence, dhd Renyi-Alpha entropy [24].
1) Kullback-Leibler DivergenceThe Kullback-Leibler (KL) divergence is defined as
x
KLl = [ ple)ios 2, (10)
which is equal toD(-Y (@). The KL-divergence is a very important metric in infortina theory, and is
commonly referred to as the relative entropy of one PDF talaroKass and Vos show [19] the relation
between the Kullback-Leibler divergence and the Fishasrinftion distance is

2K L(p|lq) — Dr(p,q)

asp — ¢. This allows for an approximation of the Fisher informatidistance, through the use of the
available PDFs, without the need for the specific paranetioin of the manifold.

Returning to our illustration developed in Sectlon I}B2e Wwave defined the data setof univariate
normal distributions, and presented an expression for ikbeF information distance on the resultant
manifold (7). The Kullback-Leibler divergence betweenvamniate normal distributions is also available

in a closed-form expression:

7

_ 1 o; ' 2, 92
KL(pinj)—§ 10g ? +g+(,uj—ui) /O'j—l .
J

To compare the KL-divergence to the Fisher information atise, we define the error a8 =
|v/2K L(pillp;) — Dr(pi,pj)|, wherep; ; € P. In Fig.[2 we display the mesh-grid and contour plots of
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Fig. 2. a) Mesh-grid and b) Contour plots of the error betwienKL-divergence and the Fisher information distance tase

a grid of univariate normal densities, parameterized pyr). E = ‘w/QKL pillpj) — Dr( pupj)‘ Note thatv2KL — Dr,
wherep; is denoted by the red star.

E, where pointp; is held constant in the center of the grid definiigandp; varies about the manifold.
As described earlier, as the density — p;, the errorE — 0. In Fig. [2(b), the reference poini; is
noted by the red star.

It should be noted that the KL-divergence is not a distanceimes it does not satisfy the symmetry,
KL(p|lq) # KL(pl|lq), or triangle inequality properties of a distance metric.dfgain this symmetry,
we will define the KL-divergence as:

Dk r(p,q) = KL(pllq) + K L(qllp), (11)

which is symmetric, but still not a distance as it does nasBathe triangle inequality. Since the Fisher
information is a symmetric measure, we can relate the synoni€L-divergence and approximate the
Fisher information distance as

Dg1(p,q) — Dr(p,q), (12)

asp — q.
2) Hellinger Distance:Another important result of the-divergence is the evaluation with = 0:

O (plq) —2/(\/— \/7)

which is called the closely related to the Hellinger disgnc
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which satisfies the axioms of distance - symmetry and thaghainequality. The Hellinger distance is
related to the information distance in the limit by

asp — ¢ [19]. We note that the Hellinger distance is related to thdlldack-Leibler divergence, as in
the limit \/K L(p|lq) — Du(p,q).

3) Other Fisher ApproximationsThere are other metrics which approximate the Fisher infion
distance, such as the cosine distance. When dealing wittinmulial distributions, the approximation

Dc(p, q) = 2arccos / VP-q— Dr(p,q),

is the natural metric on the sphere.

We restrict our analysis to that of the Kullback-Leiblereligence and the Hellinger distance. The KL-
divergence is a great means of differentiating shapes dfiraayus PDFs. Analysis of (10) shows that
asp(x)/q(z) — oo, KL(p|lg) — co. These properties ensure that the KL-divergence will belidieg
in regions where there is a significant difference in the pbility distributions. This cannot be used
in the case of a multinomial PDF, however, because of dibiglzero issues. In that case the Hellinger
distance is the desired metric as there exists a monotamsformation function) : Dy — D¢ [19].
For additional measures of probabilistic distance, someavioith approximate the Fisher information
distance, and a means of calculating them between datavweetgfer the reader to [25].

B. Approximation of Distance on Statistical Manifolds

We have shown the approximation functi@p(pl,pg) of the Fisher information distance betwegn
andp, can be calculated using a variety of metricgpas— ps. If p1 andp, do not lie closely together on
the manifold, these approximations become weak. An exawifplkis is illustrated in Fig[13, where the
manifold of interest lies in a subspace of another manifattj the distance between two points should
be considered as the distance traveled on the manifold efeist A good approximation can still be
achieved if the manifold is densely sampled between the twbpmints. By defining the path between
p1 andp, as a series of connected segments and summing the lengtbsef segments, we approximate
the distance of thgeodesicwhich is the shortest path along the manifold. Specificgliyen the set of
n PDFs parameterized b§y = {61, ..., 6, }, the Fisher information distance betwegnandp, can be
estimated as:

Dr(p1,p2) = - {Q(I?ine( 5 > Drpb),p0ar1),  p0) — p0(ir1) Vi
{00}

Whel"ep(e(l)) = P1, p(e(m)) = p2, {9(1), o 79(m)} € Py, andm < n.
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Fig. 3. The Fisher information distance between points oabe exactly calculated about a manifold if the data exist®o
submanifold of interest (shaded area). Rather than djreeticulating the distance between points (A) , the distasimild be
approximated by a geodesic along the submanifold (B).

Using our approximation of the Fisher information distamsg; — p2 (whether KL-divergence or
Hellinger distance is of no immediate concern), we can nofindean approximation functioty for all
pairs of PDFs:

G(p1,p2;P) = gll%lZﬁF(p(i)m(iH)), P(i) = Pa+1) Vi (13)
7=l

whereP = {p1,...,p,} is the available collection of PDFs on the manifold. Intgty, this estimate
calculates the length of the shortest path between poinegs aonnected graph on the well sampled
manifold, and as sucli(p1,p2; P) — Dp(p1,p2) asn — oo. This is similar to the manner in which
Isomap [21] approximates distances on Euclidean manifdiitpure[4 illustrates this approximation
by comparing the KL graph approximation to the actual Fish@éasrmation distance for the univariate
Gaussian case. As the manifold is more densely sampledofamif in mean and variance parameters
for this simulation), the approximation converges to theetFisher information distance, as calculated

in (@).

C. Dimensionality Reduction

Given a matrix of dissimilarities between entities, mangaoaithms have been developed to find a
low-dimensional embedding of the original data M — R?. These techniques have been classified as
a group of methods called Multi-Dimensional Scaling (MDEhere are supervised methods, which are
generally used for classification purposes, and unsuphrigethods, which are often used for clustering
and manifold learning. Using these MDS methods allows usnio di single low-dimensional coordinate
representation of each high-dimensional, large sampla, sk.
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Fig. 4. Convergence of the graph approximation of the Figfifermation distance using the Kullback-Leibler divergenAs
the manifold is more densely sampled, the approximationaaghes the true value.

1) Classical Multi-Dimensional ScalingClassical MDS (cMDS) takes a matrix of dissimilarities and
embeds each point into a Euclidean space. This is performéidcsbcentering the dissimilarities about the
origin, then calculating the eigenvalue decompositionhef tentered matrix. This unsupervised method
permits the calculation of the low-dimensional embeddiogrdinates which reveal any natural separation
or clustering of the data.

Define D as a dissimilarity matrix which contains (or approximatgsiclidean distances. L&® be
the “double centered” matrix which is calculated by takihg tnatrix D, subtracting its row and column
means, then adding back the grand mean and muItipIyingLéy As a result,B is a version ofD
centered about the origin. Mathematically, this processolged by

1
B= —§HD2H,

where H = I — (1/N)117, I is the N-dimensional identity matrix, and is an N-element vector of
ones.
The embedding coordinateg, € R%*", can then be determined by taking the eigenvalue deconposit
of B,
B = [WVpldiag(As, ..., An) [ViVa] ™,

and calculating
Y = diag (A}/Q, ...,Ai/2> V.

The matrixV; consists of the eigenvectors corresponding todHargest eigenvalues,, ..., A\; while
the remainingV — d eigenvectors are representedi@s The term ‘diag)\, ..., A\y)’ refers to anNV x N
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Fig. 5. Classical MDS to the matrix of a) Fisher informatiaistdnces and b) Kullback-Leibler geodesic approximatiohs
the Fisher information distance, on a grid of univariatenmalr densities, parameterized by, o)

diagonal matrix with); as itsi"" diagonal element.
To continue our illustration from Section TI-B2, I& be the matrix of Fisher information distances de-

fined in (7) for the set of univariate normal densitieswhereD(i, j) = Dr(p;, p;). Figure[5(d) displays
the results of applying cMDS t®. We demonstrate the embedding with the geodesic appraoximat
the Fisher information distance_(13) in Ffg. §(b), which &y similar to the embedding created with
the exact values. It is clear that while the densities dgjitite setP are parameterized on a rectangular
grid, the manifold on whichP lives is not rectangular itself, which is due to the diffgyieffects that
changes in mean and variance have on the Gaussian PDF.

2) Laplacian Eigenmapsiaplacian Eigenmaps (LEM) is an unsupervised techniqueldped by
Belkin and Niyogi and first presented in [22]. This perfornmdinear dimensionality reduction by per-
forming an eigenvalue decomposition on the graph Laplaitiened by the data. As such, this algorithm
is able to discern low-dimensional structure in high-disienal spaces that were previously indiscernible
with methods such as principal components analysis (PCA)ctassical MDS. The algorithm contains

three steps and works as follows:

1) Construct adjacency graph

Given dissimilarity matrixDx between data points in the sAt, define the grapliz over all data

points by adding an edge between pointndj if X; is one of thek-nearest neighbors oX ;.
2) Compute weight matrixy’

If points 7 andj are connected, assigi;; = e~ Dx(f’j)Q
3) Construct low-dimensional embedding

, otherwiselV;; = 0.
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Solve the generalized eigenvalue problem
Lf = \Df,

where D is the diagonal weight matrix in which;; = Zj W;;, andL = D — W is the Laplacian

matrix. If [f1, ..., fy] is the collection of eigenvectors associated witemallest generalized eigen-
values which solve the above, thedimensional embedding is defined py= (vi1, ..., viq)" ,1 <
1 < n.

3) Additional MDS MethodsWhile we choose to only detail the cMDS and LEM algorithmgréhare
many other methods for performing dimensionality reduciio a linear fashion (PCA) and non-linearly
(Local Linear Embedding [26]) for unsupervised learningr Bupervised learning there are also linear
(Linear Discriminant Analysis) and non-linear (Classifica Constrained Dimensionality Reduction [27],
Neighbourhood Component Analysis [28]) methods, all ofalhtan be applied to our framework. We
do not highlight the heavily utilized Isomap [21] algorithsince it is identical to using cMDS on the
approximation of the geodesic distances.

IV. OUR TECHNIQUES

We have presented a series of methods for manifold learnévgldped in the field of information
geometry. By performing dimensionality reduction on a figrof data sets, we are able to both better visu-
alize and classify the data. In order to obtain a lower dirtered embedding, we calculate a dissimilarity
metric between data sets within the family by approximating Fisher information distance between
their corresponding PDFs. This has been illustrated with family of univariate normal probability
distributions.

In problems of practical interest, however, the parameadéion of the probability densities are usually
unknown. We instead are given a family of data séts= {X, X,...,X,}, in which we may
assume that each data skt is a realization of some underlying probability distrilmutito which we
do not have knowledge of the parameters. As such, we rely onpacametric techniques to estimate
both the probability density and the approximation of thehEr information distance. Following these
approximations, we are able to perform the same multi-dgimeral scaling operations as previously
described.

A. Kernel Density Estimation

Kernel methods are non-parametric techniques used fanatitig probability densities of data sets.
These methods are similar to mixture-models in that theydafmed by the normalized sum of multiple
densities. Unlike mixture models, however, kernel metham@snon-parametric and are comprised of the
normalized sum of identical densities centered about eatd goint within the se{{14). This yields a
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density estimate for the entire set in that highly probablians will have more samples, and the sum
of the kernels in those areas will be large, corresponding tigh probability in the resultant density.
The kernel density estimate (KDE) of a PDF is defined as

B(x) th (“””“”) (14)

where K is some kernel satisfying the properties

K(z) >0,V e X,

[ K@i

andh is the bandwidth or smoothing parameter.

There are two key points to note when using kernel densitgnasirs. First, it is necessary to determine
which distribution to use as the kernel. Without a priori Whedge of the original distribution, we choose
to use Gaussian kernels,

K(x) = L exp <—1mTz:—1m> , (15)

(2m)(d/2)||1/2 2

whered is the dimension of andX is the covariance matrix, as they have the quadratic priegeattat will
be useful in implementation. Secondly, the bandwidth patemis very important to the overall density
estimate. Choosing a bandwidth parameter too small wildyéepeak filled density, while a bandwidth
that is too large will generate a density estimate that issimooth and loses most of the features of the
distribution. There has been much research done in calleglaptimal bandwidth parameters, resulting
in many different methods [29], [30] which can be used in aanfework.

We note that the mean squared error of a KDE decreases omly3$/9), which becomes extremely
slow for larged. As such, it may be difficult to calculate good kernel densisfimates. However, for
our purposes, the estimation of densities is secondaryet@stimation of the divergence between them.
As such, the issues with MSE of density estimates in largesdsions, while an area for future work,
is not of immediate concern.

B. Algorithm

Fisher Information Non-parametric Embedding (FINE) issemted in Algorithni ]l and combines all
of the methods we have presented in order to find a low-dimmeasiembedding of a collection of data
sets. If we assume each data set is a realization of an uihdepDF, and each of those distributions lie
on a manifold with some natural parameterization, then eéhibedding can be viewed as an embedding
of the actual manifold into Euclidean space. Note that ir[fn ‘embedG, d)’ refers to using any multi-
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Algorithm 1 Fisher Information Non-parametric Embedding

Input: Collection of data set&’ = {X 1, Xo,..., X n}; the desired embedding dimensidn
1. for i =1to N do

2:  Calculatep;(x), the density estimate oX;

3: end for R

4: CalculateG, where G(i,j) = Dr(p;,p;), the geodesic approximation of the Fisher information
distance

5: Y = embedG, d)
Output: d-dimensional embedding of, into Euclidean spac® ¢ RN
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Fig. 6. Given a collection of data sets with a Gaussian thstion having means equal to points a sampled ‘swiss roll’
manifold, our methods are able to reconstruct the origitatistical manifold from which each data set is derived.

dimensional scaling method (such as cMDS, Laplacian Eiggrsyetc.) to embed the dissimilarity matrix
G into a Euclidean space with dimensidn

V. APPLICATIONS

We have illustrated the uses of the presented framework énptievious sections with a manifold
consisting of the set of univariate normal densiti®s, We now present several synthetic and practi-
cal applications for the framework, all of which are baseduad visualization and classification. In
each application, the densities are unknown, but we assheylie on a manifold with some natural
parameterization.

A. Simulated Data

To demonstrate the ability of our methods to reconstructstéistical manifold, we create a known
manifold of densities. LeY” = {y1,...,y,}, where eachy; is uniformly sampled on the ‘swiss roll’
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Fig. 7. Historically, the process of clinical flow cytometayalysis relies on a series of 2-dimensional scatter piotshich
cell populations are selected for further evaluation. Fhigcess does not take advantage of the multi-dimensionaienaf the
problem.

manifold (see Fig[ 6(a)). Le& = {X;,Xo,...,X,} where eachX; is generated from a normal
distribution M/ (y;, 3), whereX: is held constant for each density. As such, we have develastatistical
manifold of known parameterization, which is sampled bywndDFs. Utilizing FINE in an unsuper-
vised manner, we are able to recreate the original mani¥oldtrictly from the collection of data sets
X. This is shown in Fig. 6(b) where each set is embedded into B&Mimensions, and the ‘swiss roll’
is reconstructed. While this embedding could easily be ttoaed using the mean of each s€t as a
Euclidean location, it illustrates that FINE can be usedvisualizing the statistical manifold as well,
without a priori knowledge of the data.

B. Flow Cytometry

In clinical flow cytometry, cellular suspensions are pregdirom patient samples (blood, bone marrow,
and solid tissue), and evaluated simultaneously for thegmee of several expressed surface antigens and
for characteristic patterns of light scatter as the celfsglarough an interrogating laser. Antibodies to each
target antigen are conjugated to fluorescent markers, acid irdividual cell is evaluated via detection
of the fluorescent signal from each marker. The result is aacheristic multi-dimensional distribution
that, depending on the panel of markers selected, may bediér a specific disease entity. The data
from clinical flow cytometry can be considered multi-dimimsal both from the standpoint of multiple
characteristics measured for each cell, and from the standpf thousands of cells analyzed per sample.
Nonetheless, clinical pathologists generally interptatical flow cytometry results in the form of two-
dimensional scatter plots in which the axes each represendbmultiple cell characteristics analyzed (up
to 8 parameters per cell in routine clinical flow cytometnydanany more parameters per cell in research
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Fig. 8. 2-dimensional plots of disease classes CLL and MCie dverlapping nature of the scatter plots makes it diffifrrt
pathologists to differentiate disease classes using fwvem2-dimensional axes projections.

applications). Additional parameters are often utilized'date” (i.e. select or exclude) specific cell sets
based on antigen expression or light scatter characteridtiowever, clinical flow cytometry analysis
remains a step-by-step process of 2-dimensional histogmaaysis (Fig[17), and the multidimensional
nature of flow cytometry is routinely underutilized in ckai practice.

An example of the difficulty in analysis of 2-dimensional tea plots is illustrated in Fig.18. Two
distinct disease classes, mantle cell lymphoma (MCL) andréb lymphocytic leukemia (CLL), are
illustrated with both scatter and contour plots. Each paaptesents a distinct blood cell from two different
patients, each containing one of the specified diseasesxé®represent those which pathologists have
determined to be the two markers which are most differéngidor these two disease classes. It is clear
that for these two patients there is significant similaritythe scatter and contour plots of the data. The
overlapping nature of these 2-dimensional scatter platd¢a a very primitive analysis of the available
data. It would be potentially beneficial, therefore, to depesystems for clustering and classification
of clinical flow cytometry data that utilize all dimension$ @ata derived for each cell during routine
clinical analysis. The variability of distributions of @ain multidimensional flow cytometry over various
patients is smaller than that associated with a generalacteization of a multivariate distribution.
This leads us to believe that these distributions exist eanesmanifold with a much lower dimensional
parameterization. Hence, we should be able to use FINE #opthipose of viewing a natural clustering
of different patients into their respective disease clads®sed on the full set of markers evaluated in
each multiparameter flow cytometric analysis.

For this analysis, we will compare patients with two distibat immunophenotypically similar forms
of lymphoid leukemia - mantle cell ymphoma (MCL) and chmotymphocytic leukemia (CLL), as
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Fig. 9. 2-dimensional embedding of CLk)(and MCL (+) patients using FINE with cMDS and the Kullback-Leibler eligence
as a dissimilarity metric. The circled points correspondh® CLL and MCL cases highlighted in Figl 8, which are difftcial
discern with scatter plots, but well separated in the FIN&cep

illustrated in Fig[ 8. These diseases display similar attarastics with respect to many expressed surface
antigens, but are generally distinct in their patterns gifregsion of two common B lymphocyte antigens
CD23 and FMC7 (a distinct conformational epitope of the CR2igen). Typically, CLL is positive
for expression of CD23 and negative for expression of FMCHijeMMCL is positive for expression of
FMC7 and negative for expression of CD23. These distinstigimould lead to a difference in densities
between patients in each disease class, and should showralr@tistering.

Let ¥ = {X,,X,,...,X,} where X; is the data set corresponding to the flow cytometer output
of the *" patient. Each patient’s blood is analyzed for 5 parametiersvard and side light scatter,
and 3 fluorescent markers (CD45, CD23, FMC7). Hence, eadh skttX; is 5-dimensional withn;
elements corresponding to individual blood cells (eagimay be different). Given that' is comprised
of both patients with CLL and patients with MCL, we wish to Brz& the performance of FINE for the
visualization and clustering of cytometry data.

The data set consists of 23 patients with CLL and 20 patieitts MCL. The setX; for each patient
is on the order of; ~ 5000 cells. The data and clinical diagnosis for each patient wasiged by the
Department of Pathology at the University of Michigan. Fgl@ shows the 2-dimensional embedding
with FINE, using cMDS and the Kullback-Leibler divergenas as the dissimilarity metric. Each point
in the plot represents an individual patient. Although tliecdssed methods perform the dimensionality
reduction and embedding in unsupervised methods, we glish&aclass labels as a means of analysis.
It should be noted that there exists a natural separatiometaet the different classes. As such, we can
conclude that there is a natural difference in probabiligtribution between the disease classes as well.
Although this is known through years of clinical experienae were able to determine this without any
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a priori knowledge; simply with a density analysis.

An important byproduct of this natural clustering is thelipito visualize the cytometry data in a
manner which allows comparisons between patients. Thiedipoints in FiglP correspond to the patients
illustrated in Fig[8, which were difficult to differentiatey using a scatter plot of the most discerning
marker combination as deemed by pathologists. In the spefieed by FINE, the patients are easily
differentiated and lie well within the clusters of each dise type. By using the embedding created with
FINE, pathologists are able to determine similarities laetvpatients, which gives them a quick and easy
means of determining which data sets may need further iigegistn (i.e. for possible misdiagnosis).

C. Document Classification

Recent work has shown in interest in using dimensionaligucgion for the purposes of document
classification [31] and visualization [32]. Typically douents are represented as very high-dimensional
PDFs, and learning algorithms suffer from ttrse of dimensionalityDimensionality reduction not only
alleviates these concerns, but it also reduces the conmqmahtomplexity of learning algorithms due to
the resultant low-dimensional space. As such, the probléiooument classification is an interesting
application for FINE.

Given a collection of documents of known class, we wish tot loésssify a document of unknown
class. A document can be viewed as a realization of someidweyrprobability distribution, in which
different distributions will create different documenfar example, in a newsgroup about computers you
could expect to see multiple instances of the term “laptagiile a group discussing recreation may see
many occurrences of “sports”. The counts of “laptop” in thereation group, or “sports” in the computer
group would predictably be low. As such, the distributiomdvieen articles in computers and recreation
should be distinct. In this setting, we defined the PDFs ast¢h@m frequencyrepresentation of each
document. Specifically, let; be the number of times terrmappears in a specific document. The PDF
of that document can then be characterized as the multinahstibution of normalized word counts,
with the maximum likelihood estimate provided as

. x x

By utilizing the term frequencies as a multinomial disttibn, and not implementing a kernel density

estimator, we show that our methods are not tied to the KDE,wmi simply use it in the case of
continuous densities as a means of estimation. If one hasod gnowledge of the distribution, that
step is unnecessary. Additionally, we use the Hellingetadise due to the multinomial nature of the
distribution. As described in Sectidn IlI-A3)y has a monotonic transformation 0., which is the
natural metric on the sphere defined by multinomial PDFs.
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Fig. 10. 2-dimensional embeddings of 20 Newsgroups date.dBite displays some natural clustering, in the informatiased
embedding, while the PCA embedding does not distinguistvdue classes.

For illustration, we will utilize the well known 20 Newsgrps data sét which is commonly used
for testing document classification methods. This set éostevord counts for postings on 20 separate
newsgroups. We choose to restrict our simulation to the 4agiesnwith the largest number of sub-
domains (comp.*, rec.*, sci.*, and talk.*), and wish to ddg each posting by its highest level domain.
Specifically we are giverP = {p1,...,pn} Where eaclp; corresponds to a single newsgroup posting
and is estimated witH (16). We note that the data was prepseceto remove all words that occur in 5
or less documents

1) Unsupervised FINEFirst, we utilize unsupervised methods to see if the natgeametry exists
between domains. Using Laplacian Eigenmaps on the digsitigk calculated with the Hellinger distance,
we found an embeddin® — R2. Figure[1I0(d) shows the natural geometric separation lestvilee
different document classes, although there is some ovévldgich is to be expected). Contrarily, a
Principal Components Analysis (PCA) embedding (fFig. J0¢xes not demonstrate the same natural
clustering. PCA is often used as a means to lower the dimermdidata for learning problems due to its
optimality for Euclidean data. However, the PCA embeddihghe 20 Newsgroups set does not exhibit
any natural class separation due to the non-Euclideanenafuthe data.

We now compare the classification performance of FINE to t4iaPCA. In the case of document
classification, dimensionality reduction is important las hatural dimension (i.e. number of words) for
the 20 Newsgroups data setd§,214. Using local intrinsic dimension estimation [33], Fig.] 1hosvs

Ihttp://people.csail.mit.edu/jrennie/20Newsgrolips/
Zhttp://lwww.cs.uiuc.edu/homes/dengcai2/Data/ Texthatal
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Fig. 11. Local dimension estimates for each document frormnadom subset of 4020 documents in the 20 Newsgroups data
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Fig. 12. Classification rates for low-dimensional embeddising different methods for dimensionality reductiorstandard
deviation confidence intervals shown over 20-fold cros&lasibn.

the histogram of the true dimensionality of the sample damuigy so we test performance for low-
dimensional embedding® — R for d € [5,95]. Following each embedding, we apply an SVM with
a linear kernel to classify the data in an ‘all-vs-all’ segti(i.e. classify each test sample as one of 4
different potential classes in a single event, rather thaepgarate binary events). The training and test
sets were separated according to the recommended indimtgagh set was randomly sub-sampled for
computational purposes, keeping the ratio of training & samples constant (2413 training samples,
1607 test samples). Both the FINE and PCA settings jointlpedinthe training and test sets.

Figure[12 illustrates that the embedding calculated witNB-loutperforms using PCA as a means
of dimensionality reduction. The classification rates areven with a 1-standard deviation confidence
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Fig. 13. 3-dimensional embedding of 20 Newsgroups corpugUsINE in a supervised manner.

interval, and FINE with a dimension as low ds= 25 generates results comparable to those of a PCA
embedding withd = 95. To ease any concerns that Laplacian Eigenmaps (LEM) islgimmbetter
method for embedding these multinomial PDFs, we calculate@mbedding with LEM in which each
PDF was viewed as a Euclidean vector with thedistance used as a dissimilarity metric. This form
of embedding performed much worse than the information dasebedding using the same form of
dimensionality reduction and the same linear kernel SVMilavbomparable to the PCA embedding in
very low dimensions.

2) Supervised FINEIf we allow FINE to use supervised methods for embedding, aredramatically
improve classification performance. By embedding with €ifasation Constrained Dimensionality Re-
duction (CCDR) [27], which is essentially LEM with an additial tuning parameter defining the emphasis
on class labels in the embedding, we are able to get goods#@ssation even in 3 dimensions (Higl 13).
We now compare FINE to the diffusion kernels developed bydraf and Lebanon [12] for the purpose
of document classification. The diffusion kernels methodsuthe full term-frequency representation of
the data and does not utilize any dimensionality reductfée stress this difference to determine whether
or not using FINE for dimensionality reduction can gene@mparable results.

We first illustrate the classification performance in a ‘orse &ll' setting, in which all samples from
a single class were given a positive label (i1¢.and all remaining samples were labeled negatively
(i.,e. —1). In the FINE setting, we first subsampled from the trainimgl #est sets, using a test set size
of 200, then used CCDR to embed the entire data set Ritpwith d € [5,95] chosen to maximize
classification performance. The classification task wafopeed using a simple linear kernel SVM,

K(X,Y)=X"Y.
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FINE Diffusion Kernels

Task L Mean STD Mean STD
40 || 82.3750 | 4.1003|| 75.5750| 3.9413
comp.* 80 || 85.8250 | 2.8713|| 83.0250| 3.4469
120 || 87.6000 | 2.0876|| 85.5750| 3.2129
200 || 87.9750 | 2.3978| 87.8500| 2.2775
400 || 89.8000 | 2.0926|| 89.6250| 1.9992
600 || 90.6500| 2.0970| 91.3000 | 2.4677
1000 || 91.3000| 2.3864 | 91.9000 | 2.2572
40 || 82.3500 | 3.2610|| 76.2000| 3.1514
rec.t 80 || 86.3500 | 2.0462|| 82.0000| 3.8251
120 || 87.1500 | 2.3345|| 83.1250| 3.9599
200 || 89.5500 | 1.4133|| 86.8750| 2.1143
400 || 91.4750 | 2.2152|| 90.7000| 2.0545
600 || 92.7500| 1.2722| 93.1000 | 2.0494
1000 || 93.2000| 1.3318(| 94.6250 | 1.4223
40 || 78.6500 | 2.8102|| 76.3250| 3.2898
Sci* 80 || 80.3750 | 3.3280|| 77.4750| 4.2286
120 || 81.5250 | 2.8722|| 78.2250| 3.1518
200 || 83.4000 | 2.9585| 82.2000| 3.0236
400 || 86.1750( 2.2021|| 86.2000 | 2.2325
600 || 87.1750 | 2.9212| 87.0500| 2.9731
1000 || 89.3000| 2.3022| 89.8000 | 2.2384
40 || 89.1250 | 3.1241|| 82.2750| 2.9131
talk * 80 || 90.4250 | 2.8895|| 85.9250| 3.6859
120 || 91.1250 | 2.5745|| 86.5500| 4.0161
200 || 92.6500 | 1.8503| 89.7750| 3.1518
400 || 93.1000 | 1.9775|| 92.4750| 2.1672
600 || 94.7500 | 1.3908| 94.3750| 1.5634
1000 || 94.8500 | 1.5483| 94.8500 | 1.4244

TABLE |
EXPERIMENTAL RESULTS ON20 NEWSGROUPS CORPUSCOMPARING FINE USING CCDRAND A LINEAR SVM TO A
MULTINOMIAL DIFFUSION KERNEL BASED SVM. THE PERFORMANCE(CLASSIFICATION RATE IN %) IS REPORTED AS MEAN
AND STANDARD DEVIATION FOR DIFFERENT TRAINING SET SIZESL, OVER A 20-FOLD CROSS VALIDATION,

For the diffusion kernels setting,
K(X,Y) = (4rt)* exp (—% arccos? <\/Y \/?)) )

we chose parameter valuevhich optimized the classification performance at eaclatiten. The exper-
imental results of performance versus training set sizé) @0-fold cross validation, are shown in Table
[l where the highest performance at each range is hightigfR&NE shows a significant performance

February 12, 2013 DRAFT



26

90

85r

801

751

< 701

e
o 65
3]
X 6ot
551 1r.,
50 —— FINE
45t = = = Diffusion |{
~+ 00S
40 - - - : -
0 200 400 600 800 1000

Training Samples

Fig. 14. Classification rates for low-dimensional embeddiith FINE using CCDR vs Diffusion kernels. The classifioattask
was all v.s. all. Rates are plotted versus number of traisamgples. Confidence intervals are shown at one standardtidevi
For comparison to the joint embedding (FINE), we also pl&t plerformance of FINE using out of sample extension (OOS).

increase over the diffusion kernels method for sets with $ample size. As the sample size increases,
however, the gap in performance between the diffusion kemethod and FINE decreases, with diffusion
kernels eventually surpassing FINE.

We now modify the classification task from a ‘one v.s. all’ to ‘all v.s. all’ setting, in which each
class is given a different label and the task is to assign &sstrsample to a specific class. Classification
rates are defined as the number of correctly classified tegplea divided by the total number of test
samples (kept constant a00). The structure of the experiment is otherwise identicath® ‘one v.s.
all’ setting. We once again notice in Fig.]114 that FINE oufpens the diffusion kernels method for
low sample sizes. The point at which the diffusion kernelshoé surpasses FINE has decreased (i.e.
L ~ 200 for ‘all v.s. all compared toL ~ 600 for ‘one v.s. all’), yet FINE is still competitive as the
sample size increases.

While our focus when using FINE has been on jointly embeddiioth the training and test samples
(while keeping the test samples unlabeled), Eid. 14 alsstithtes the use of out of sample extension
(OOS) [34] with FINE. In this scenario, the training sampdes embedded as normal with CCDR, while
the test samples are embedded into the low-dimensionaé spsicg interpolation. This setting allows for
a significant decrease in computational complexity givenfdct that the FINE embedding has already
been determined for the training samples (i.e. new test kmnape received). A decrease in performance
exists when compared to the jointly embedded FINE, whicledgiced as the number of training samples
increases.

Analysis of the results in both the ‘one v.s. all’ and ‘all.val' cases shows that FINE can improve
upon the deficiencies of the diffusion kernels method in the sample size region. By viewing each
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Fig. 15. Comparison of classification performance on the 2W$groups data set with FINE using different SVM kernels;
one linear and two non-lineal{® polynomial and radial basis function).

document as a coarse approximation of the overriding cl&45 R is easy to see that, for low sample
sizes, the estimate of the within class PDF generated byifflusidn kernels will be highly variable, which
leads to poor performance. By reducing the dimension withE;Ithe variance is limited to significantly
fewer dimensions, enabling documents within each clasetdrbwn nearer to one another. While this
could also bring the classes closer to each other, theatidiz of CCDR ensures class separation. This
results in better classification performance than usingetitee multinomial distribution. As the number
of training samples increases, the effect of dimensionaireduced, which allows the diffusion kernels
to better approximate the multinomial PDF representativeagh class. This reduction in variance across
all dimensions ensures that a few anomalous documents @atilhave the same drastic effect as they
would in the low sample size region. As such, the performagaia surpasses that of FINE, due to
the fact that thecurse of dimensionalitywas alleviated elsewhere (i.e. increase in sample size)naie
that while FINE performs slightly worse than diffusion kels in the large sample size region, it still
performs competitively with a leading classification methwhich utilizes the full dimensional data.

An additional reason for the diffusion kernels improvedfpenance over FINE in the large sample
size region is that we have restricted FINE to using a lineandl for this experiment, while the diffusion
kernels method is very non-linear. We do this to show thaheveimple linear classifier can perform
admirably in the FINE reduced space. Using a non-linear édewould show increased performance
with FINE. This is illustrated in Figl_15, where we compare therformance of FINE using an SVM
classifier with a linear kerneli((X,Y) = X7Y), 2" degree polynomial kernel(X,Y) = (yX7Y)?),
and a radial basis function kernek'(X,Y) = exp(—v|X — Y|?)), where~ is a weighting constant.
For visualization purposes, we show the results for only lbsetiof the training sample range (i.e.
L = [200,400]), but it is clear that the use of non-linear kernels impraesperformance of FINE. The
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problem of which of the many possible non-linear kernelspsinoal remains open and is a subject for
future work.

V1. CONCLUSIONS

The assumption that high-dimensional data lies on a Eumhidmanifold is based on the ease of
implementation due to the wealth of knowledge and methodsdan Euclidean space. This assumption
is not viable in many problems of practical interest, asehisroften no straightforward and meaningful
Euclidean representation of the data. In these situatioissnore appropriate to assume the data lies on
a statisticalmanifold. Using information geometry, we have shown thditghtio find a low-dimensional
embedding of the manifold, which allows us to not only find tieural separation of the data, but to
also reconstruct the original manifold and visualize it ilba-dimensional Euclidean space. This allows
the use of many well known learning techniques which worledasn the assumption of Euclidean data.

By approximating the Fisher information distance, FINE lideao construct the Euclidean embedding
with an information based metric, which is more appropriatenon-Euclidean data. We have illustrated
this approximation by finding the length of the geodesic gltdre manifold, using approximations such
as the Kullback-Leibler divergence and the Hellinger dis&a The specific metric used to approximate
the Fisher information distance is determined by the prabland FINE is not tied to any specific
choice of metric. Additionally, we point out that althougle wtilize kernel methods to obtain PDFs, the
method used for density estimation is only of secondary eoncThe primary focus is the measure of
dissimilarity between densities, and the method used wwutate those PDFs is similarly determined by
the problem.

We have illustrated FINE's ability to be used in a variety efining tasks such as visualization,
clustering, and classification. FINE is a framework that banused for a multitude of problems which
may seem to have little to nothing in common, such as flow cgtoyrand document classification. The
only commonality between the problems is that each are basrohd data which has no straightforward
Euclidean representation, which is the only setting neddegtilize FINE. In future work we plan to
utilize different classification methods (such &N and using different SVM kernels) to maximize
our document classification performance. This includesstraiming our dimensionality reduction to a
sphere, which will allow the use of diffusion kernels in a loiimensional space. We also plan to continue
studies on the effect of using out of sample extension on eufiopmance. Lastly, we will continue to
find applications which fit the setting for FINE, such as inttranomaly detection and face recognition,
and determine whether or not these problems would benefit &or framework.
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