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Abstract

We consider the problems of clustering, classification, andvisualization of high-dimensional data

when no straightforward Euclidean representation exists.Typically, these tasks are performed by first

reducing the high-dimensional data to some lower dimensional Euclidean space, as many manifold

learning methods have been developed for this task. In many practical problems however, the assumption

of a Euclidean manifold cannot be justified. In these cases, amore appropriate assumption would be

that the data lies on astatisticalmanifold, or a manifold of probability density functions (PDFs). In this

paper we propose using the properties of information geometry in order to define similarities between data

sets using the Fisher information metric. We will show this metric can be approximated using entirely

non-parametric methods, as the parameterization of the manifold is generally unknown. Furthermore,

by using multi-dimensional scaling methods, we are able to embed the corresponding PDFs into a low-

dimensional Euclidean space. This not only allows for classification of the data, but also visualization of

the manifold. As a whole, we refer to our framework as Fisher Information Non-parametric Embedding

(FINE), and illustrate its uses on a variety of practical problems, including bio-medical applications and

document classification.

I. INTRODUCTION

The fields of statistical learning and machine learning are used to study problems of inference, which

is to say gaining knowledge through the construction of models in order to make decisions or predictions

based on observed data [1]. Statistical learning examines problems such as observing natural associations

between data sets (clustering), and predicting to which class of known groupings an unlabeled data set

belongs (classification), based on some model defined by a priori knowledge of the data. Machine learning
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introduces a non-parametric approach to these learning tasks via model-free learning from examples.

Recent work on manifold learning aims at the high dimension regime, in which examples are governed by

geometrical constraints effectively reducing the dimension of the problem from a high extrinsic dimension

to a low intrinsic dimension. On the other hand, informationgeometry aims at understanding the structure

of statistical models and introduces a geometric perspective to inference problems [2].

We are interested in the cross section of the three fields; using the principles of each to solve problems

that do not fit within the framework of any of the individual fields. Often data does not exhibit a low

intrinsic dimension in the data domain as one would have in manifold learning. A straightforward strategy

is to express the data in terms of a low-dimensional feature vector for which thecurse of dimensionality

is alleviated. This initial processing of data as real-valued feature vectors in Euclidean space, which is

often carried out in an ad hoc manner, has been called the ”dirty laundry” of machine learning [3]. This

procedure is highly dependent on having a good model for the data and in the absence of such model

may be highly suboptimal. When a statistical model is available, the process of obtaining a feature vector

can be done optimally by extracting the model parameters fora given data set and thus characterizing

the data through its lower dimensional parameter vector. Weare interested in extending this approach to

the case in which the data follows an unknown parametric statistical model.

While the problem of learning in a Euclidean space is well defined, there are many problems in which

the data cannot be appropriately represented by a Euclideanmanifold, and the model parameters are

unspecified and must be learned through the data. In flow cytometry, pathologists study blood samples

containing many cells taken from a patient. Each individualcell is analyzed with different fluorescent

markers, resulting in a large, high-dimensional data set. This is assumed to be a realization of some

overriding parametric model, but the model parameters are unknown. Pathologists desire the ability to

appropriately classify patients with differing ailments that may express similar responses to these markers.

For the purposes of analysis and visualization, it is then necessary to reduce the dimensionality of these

sets. The problem of document classification is one in which the data is clearly non-Euclidean, as each

set is a collection of words from a dictionary. It is still desired to distinguish between documents by

forming clusters of different similarities. A standard method is to form a probability distribution over

a dictionary and use methods of information geometry to determine a similarity between data sets [4].

Applications of statistical manifolds have also been presented in the cases of face recognition [5], texture

segmentation [6], image analysis [7], and shape analysis [8].

A common theme to all of the problems presented above is that the model from which the data is

generated is unknown. In this paper, we present a framework to handle such problems. Specifically, we

focus on the case where the data is high-dimensional and no lower dimensional Euclidean manifold

gives a sufficient description. In many of these cases, a lower dimensional statistical manifold can be

used to assess the data for various learning tasks. We refer to our framework as Fisher Information Non-
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parametric Embedding (FINE), and it includes characterization of data sets in terms of a non-parametric

statistical model, a geodesic approximation of the Fisher information distance as a metric for evaluating

similarities between data sets, and a dimensionality reduction procedure to obtain a low-dimensional

Euclidean embedding of the original high-dimensional dataset for the purposes of both classification and

visualization.

Statistical manifolds in both the parametric and non-parametric settings have been well discussed [9],

[10]. Our work differs in that we assume the manifold is derived from some natural parameterization, only

that set of parameters is unknown. There has been much work presented on the use of statistical manifolds

[4], [7], [11], [12] and information geometry [13], [14] in learning problems, all proposing alternatives

to using Euclidean geometry for data modeling. These methods focus on clustering and classification,

and do not explicitly address the problems of dimensionality reduction (embedding each set into a low-

dimensional Euclidean space) and visualization. Additionally, they focus on parameter estimation as a

necessity for their methods, as opposed to our work which is performed in a non-parametric setting. We

provide a start-to-finish framework which enables analysisof high-dimensional data through non-linear

embedding into a low-dimensional space by information, notEuclidean, geometry. Our methods require

no explicit model assumptions; only than that the given datais a realization from an unknown model

with some natural parameterization.

Recent work by Leeet al. [15] similar to our own [16], [17] has demonstrated the use of statistical

manifolds for dimensionality reduction. While each work has been developed independently and originally

presented at nearly the same time, they share enough similarities that we now express the different

contributions of our own work. Specifically, we consider thework presented by Leeet al. to be a

specialized case of our more general framework. They focus on the specific case of image segmentation,

which consists of multinomial distributions as points which lie on ann-simplex (or projected onto an

n+ 1-dimensional sphere). By framing their problem as such, they are able to exploit the properties of

such a manifold: using the cosine distance as an exact computation of the Fisher information distance,

and using linear methods (PCA) of dimensionality reduction. They have shown very promising results

for the problem of image segmentation, and briefly mention the possibility of using non-linear methods

of dimensionality reduction, which they consider unnecessary for their problem. The work we present

differs in that we make no assumptions on the type of distributions making up the statistical manifold.

As such, our geodesic approximation for the Fisher information accounts for submanifolds of interest.

This is illustrated later in Fig. 3, where the submanifold lies on then + 1-dimensional sphere, but

does not fill the entire space. As such, there is no exact measure of the Fisher information between

points, and we must approximate with a geodesic along the manifold. Additionally, we utilize non-linear

methods of dimensionality reduction, which we consider to be more relevant for many non-linear types of

applications. Finally, by considering all statistical manifolds rather than focusing on those of consisting
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of multinomial distributions, we are able to apply our methods to many problems of practical interest.

This paper is organized as follows: Section II describes a background in information geometry and

statistical manifolds. Section III gives the formulation for the problem we wish to solve, while Section IV

develops and outlines the FINE algorithm. We illustrate theresults of using FINE on real and synthetic

data sets in Section V. Finally, we draw conclusions and discuss the possibilities for future work in

Section VI.

II. BACKGROUND ON INFORMATION GEOMETRY

Information geometry is a field that has emerged from the study of geometrical structures on manifolds

of probability distributions. These investigations analyze probability distributions as geometrical struc-

tures in a Riemannian space. Using tools and methods deriving from differential geometry, information

geometry is applicable to information theory, probabilitytheory, and statistics. The field of information

theory is largely based on the works of Shun’ichi Amari [18] and has been used for analysis in such

fields as statistical inference, neural networks, and control systems. In this section, we will give a brief

background on the methods of information geometry that we utilize in our framework. For a more

thorough introduction to information geometry, we suggest[19] and [2].

A. Differential Manifolds

The concept of a differential manifold is similar to that of asmooth curve or surface lying in a high-

dimensional space. A manifoldM can be intuitively thought of as a set of points with a coordinate

system. These points can be from a variety of constructs, such as Euclidean coordinates, linear system,

images, or probability distributions. Regardless of the definition of the points in the manifoldM, there

exists a coordinate system with a one-to-one mapping fromM to R
d, and as such,d is known as the

dimension ofM.

For reference, we will refer to the coordinate system onM as ψ : M → R
d. If ψ hasM as its

domain, we call it a global coordinate system [2]. In this situation,ψ is a one-to-one mapping ontoRd

for all points inM. A manifold is differentiable if the coordinate system mapping ψ is differentiable

over its entire domain. Ifψ is infinitely differentiable, the manifold is said to be ‘smooth’ [19].

In many cases there does not exist a global coordinate system. Examples of such manifolds include the

surface of a sphere, the “swiss roll”, and the torus. For these manifolds, there are only local coordinate

systems. Intuitively, a local coordinate system acts as a global coordinate system for a local neighborhood

of the manifold, and there may be many local coordinate systems for a particular manifold. Fortunately,

since a local coordinate system contains the same properties as a global coordinate system (only on a

local level), analysis is consistent between the two. As such, we shall focus solely on manifolds with a

global coordinate system.
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1) Statistical Manifolds:Let us now present the notion statistical manifolds, or a setM whose elements

are probability distributions. A probability distribution function (PDF) on a setX is defined as a function

p : X → R in which

p(x) ≥ 0, ∀x ∈ X (1)
∫

p(x) dx = 1.

We describe only the case for continuum on the setX , however ifX was discrete valued, equation (1)

will still apply by switching
∫

p(x) dx = 1 with
∑

p(x) = 1. If we considerM to be a family of PDFs

on the setX , in which each element ofM is a PDF which can be parameterized byθ =
[

θ1, . . . , θn
]

,

thenM is known as a statistical model onX . Specifically, let

M = {p(x | θ) | θ ∈ Θ ⊆ R
d}, (2)

with p(x | θ) satisfying the equations in (1). Additionally, there exists a one-to-one mapping betweenθ

andp(x | θ).
Given certain properties of the parameterization ofM, such as differentiability andC∞ diffeomorphism

(details of which are described in [2]), the parameterization θ is also a coordinate system ofM. In this

case,M is known as a statistical manifold. In the rest of this paper,we will use the terms ‘manifold’

and ‘statistical manifold’ interchangeably.

B. Distances on Manifolds

In Euclidean space, the distance between two points is defined as the length of a straight line between

the points. On a manifold, however, one can measure distanceby a trace of the shortest path between

the points along the manifold. This path is called a geodesic, and the length of the path is the geodesic

distance. In information geometry, the distance between two points on a manifold is analogous to the

difference in information between them, and is defined by theFisher information metric.

1) Fisher Information Metric:The Fisher information measures the amount of information arandom

variableX contains in reference to an unknown parameterθ. For the single parameter case it is defined

as

I(θ) = E

[

(

∂

∂θ
log f(X; θ)

)2

|θ
]

.

If the condition
∫

∂2

∂θ2 f(X; θ) dX = 0 is met, then the above equation can be written as

I(θ) = −E
[

∂2

∂θ2
log f(X; θ)

]

.
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For the case of multiple parametersθ =
[

θ1, . . . , θn
]

, we define the Fisher information matrix[I(θ)],

whose elements consist of the Fisher information with respect to specified parameters, as

Iij =

∫

f(X; θ)
∂ log f(X; θ)

∂θi

∂ log f(X; θ)

∂θj
dX. (3)

For a parametric family of probability distributions, it ispossible to define a Riemannian metric using

the Fisher information matrix, known as the information metric. The information metric distance, or

Fisher information distance, between two distributionsp(x; θ1) andp(x; θ2) in a single parameter family

is

DF (θ1, θ2) =

∫ θ2

θ1

I(θ)1/2dθ, (4)

whereθ1 andθ2 are parameter values corresponding to the two PDFs andI(θ) is the Fisher information

for the parameterθ. Extending to the multi-parameter case, we obtain:

DF (θ1, θ2) = min
θ:θ(0)=θ1,θ(1)=θ2

∫ 1

0

√

(

dθ

dβ

)T

I(θ)

(

dθ

dβ

)

dβ. (5)

2) Example:Here we present a derivation of a geodesic distance between univariate Gaussian densities

via the Fisher information metric for two reasons. First, wewould like to illustrate how involved the

process is for such a simple family of PDFs. Secondly, we present a process of deriving the Fisher

information metric that is involved in computing the geodesic distance. Let us consider the family of

univariate Gaussian distributionsP = {p1, . . . , pn}, where

pi(x) =
1

√

2πσ2
i

exp
(

−(x− µi)
2/2σ2

i

)

.

For the case ofP parameterized byθ =
(

µ√
2
, σ
)

, the resultant Fisher information matrix is

[I(θ)] =

(

2
σ2 0

0 2
σ2

)

.

We omit the derivation, which can be found in [19] and is straight forward from (3).

We define the distance between two points on the manifold as the minimum length between all paths

connecting the two points. Using the inner product associated with the Fisher information matrix

< u,v >F = u
t[I(θ)]v,

we define the length of the pathP between two points parameterized byθ1 andθ2, on the manifoldM
as

‖θ1 − θ2‖P =
√

< θ1 − θ2, θ1 − θ2 >F .

February 12, 2013 DRAFT
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Using the parameterizationθ(t) such thatθ(0) = θ1 andθ(1) = θ2, we obtain the length ofP as

‖θ1 − θ2‖P =

∫ 1

0

√

(

d

dt
θ(t)

)T

I(θ(t))

(

d

dt
θ(t)

)

dt.

We are able to define the distance between pointsp1 = p(x; θ1) andp2 = p(x; θ2) as the minimum over

all path lengths defined above

DF (p1, p2) = min
θ(t)

√
2

∫ 1

0

√

1√
2
µ̇2 + σ̇2

σ(t)2
dt, (6)

whereµ̇ = d
dtµ(t) and σ̇ = d

dtσ(t).

The solution to (6) is the well known Poincaré hyperbolic distance, in which the shortest path between

two points is the length of an arc on a circle in which both points are at a radius length from the circle’s

center. In the case of the univariate normal distribution, this arc is a straight line when the mean is held

constant and the variance is changed.

By changing variables and parameterizingσ as a function ofµ, we obtain:

min
σ(µ):σ(µ1)=σ1,σ(µ2)=σ2

∫ µ2

µ1

√

1 + σ̇2

σ(µ)2
dµ,

where σ̇ = d
dµσ(µ). It should be clear that this is a representation of (4). It should also be noted that

there exists a one-to-one mappingσ(µ) : R → R
+ along the geodesic fromσ(µ1) to σ(µ2), except for

the case whenµ1 = µ2.

Solving (6) becomes a problem of calculus of variations. Forthe univariate normal family of distri-

butions, this has been calculated in a closed-form expression presented in [20], determining the Fisher

information distance as:

DF (p1, p2) =
√

2 log

∥

∥

∥

(

µ1√
2
, σ1

)

−
(

µ2√
2
,−σ2

)∥

∥

∥
+
∥

∥

∥

(

µ1√
2
, σ1

)

−
(

µ2√
2
, σ2

)∥

∥

∥

∥

∥

∥

(

µ1√
2
, σ1

)

−
(

µ2√
2
,−σ2

)∥

∥

∥
−
∥

∥

∥

(

µ1√
2
, σ1

)

−
(

µ2√
2
, σ2

)∥

∥

∥

. (7)

For visualization, let us define a set of probability densitiesP = {pi(x)} on a grid, such thatpi = pk,l

is parameterized by(µi, σi) = (αk, 1 + βl), k, l = 1 . . . n andα, β ∈ R. Figure 1 shows a mesh-grid and

contour plot of the Fisher information distance between thedensity defined by(µi, σi) = (0.6, 1.5) and

the neighboring densities on the setP (α = β = 0.1).

III. PROBLEM FORMULATION

A key property of the Fisher information metric is that it is independent of the parameterization of the

manifold [7], [19]. Although the evaluation remains equivalent, calculating the FIM requires knowledge

of the parameterization, which is generally not available.We instead assume that the collection of density

functions lie on a manifold that can be described by some natural parameterization. Specifically, we are
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Fig. 1. a) Mesh-grid and b) Contour plots of the Fisher information distance based on a grid of univariate normal densities,
parameterized by(µ, σ). The reference point,pi, is located at(µi, σi) = (0.6, 1.5) and is denoted by the red star.

givenP = {p1, . . . , pn}, wherepi ∈ M is a PDF andM is a manifold embedded inS, the simplex of

densities inL1. Under these circumstances, it is important to note that much of the same theory still applies

for determining dissimilarity between probability distributions. Our goal is to find an approximation for

the geodesic distance between points onM using only the information available inP. Can we find an

approximation functionG which yields

D̂F (pi, pj) = G(pi, pj ;P), (8)

such thatD̂F (pi, pj) → DF (pi, pj) asn→ ∞?

This problem is similar to the setting of classical papers [21], [22] in manifold learning and dimen-

sionality reduction, where only a set of points on the manifold are available. As such, we are able to

use these manifold learning techniques to construct a low-dimensional embedding of that family. This

not only allows for an effective visualization of the manifold (in 2 or 3 dimensions), but by reducing

the effect of thecurse of dimensionalitywe can perform clustering and classification on the family of

distributions lying on the manifold.

A. Approximation of Fisher Information Distance

The Fisher information distance is consistent, regardlessof the parameterization of the manifold [7].

This fact enables the approximation of the information distance when the specific parameterization of the

manifold is unknown, and there have been many metrics developed for this approximation. An important

class of such divergences is known as thef -divergence [23], in whichf(u) is a convex function on
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u > 0 and

Df (p‖q) =

∫

p(x)f

(

q(x)

p(x)

)

.

A specific and important example of thef -divergence is theα-divergence, whereD(α) = Df (α) for a

real numberα. The functionf (α)(u) is defined as

f (α)(u) =















4
1−α2

(

1 − u(1+α)/2
)

α 6= ±1

u log u α = 1

− log u α = −1

.

As such, theα-divergence can be evaluated as

D(α)(p‖q) =
4

1 − α2

(

1 −
∫

p(x)
1−α

2 q(x)
1+α

2 dx

)

α 6= 1,

and

D(−1)(p‖q) = D(1)(q‖p) =

∫

p(x) log
p(x)

q(x)
. (9)

The α-divergence is the basis for many important and well known divergence metrics, such as the

Hellinger distance, the Kullback-Leibler divergence, andthe Renyi-Alpha entropy [24].

1) Kullback-Leibler Divergence:The Kullback-Leibler (KL) divergence is defined as

KL(p‖q) =

∫

p(x) log
p(x)

q(x)
, (10)

which is equal toD(−1) (9). The KL-divergence is a very important metric in information theory, and is

commonly referred to as the relative entropy of one PDF to another. Kass and Vos show [19] the relation

between the Kullback-Leibler divergence and the Fisher information distance is

√

2KL(p‖q) → DF (p, q)

as p → q. This allows for an approximation of the Fisher informationdistance, through the use of the

available PDFs, without the need for the specific parameterization of the manifold.

Returning to our illustration developed in Section II-B2, we have defined the data setP of univariate

normal distributions, and presented an expression for the Fisher information distance on the resultant

manifold (7). The Kullback-Leibler divergence between univariate normal distributions is also available

in a closed-form expression:

KL(pi‖pj) =
1

2

(

log

(

σ2
j

σ2
i

)

+
σ2

i

σ2
j

+ (µj − µi)
2 /σ2

j − 1

)

.

To compare the KL-divergence to the Fisher information distance, we define the error asE =
∣

∣

√

2KL(pi‖pj) −DF (pi, pj)
∣

∣, wherepi,j ∈ P. In Fig. 2 we display the mesh-grid and contour plots of
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(b) Contour plot

Fig. 2. a) Mesh-grid and b) Contour plots of the error betweenthe KL-divergence and the Fisher information distance based on
a grid of univariate normal densities, parameterized by(µ, σ). E =

˛

˛

˛

p

2KL(pi‖pj) − DF (pi, pj)
˛

˛

˛
. Note that

√
2KL → DF ,

wherepi is denoted by the red star.

E, where pointpi is held constant in the center of the grid definingP, andpj varies about the manifold.

As described earlier, as the densitypj → pi, the errorE → 0. In Fig. 2(b), the reference pointpi is

noted by the red star.

It should be noted that the KL-divergence is not a distance metric, as it does not satisfy the symmetry,

KL(p‖q) 6= KL(p‖q), or triangle inequality properties of a distance metric. Toobtain this symmetry,

we will define the KL-divergence as:

DKL(p, q) = KL(p‖q) +KL(q‖p), (11)

which is symmetric, but still not a distance as it does not satisfy the triangle inequality. Since the Fisher

information is a symmetric measure, we can relate the symmetric KL-divergence and approximate the

Fisher information distance as
√

DKL(p, q) → DF (p, q), (12)

asp→ q.

2) Hellinger Distance:Another important result of theα-divergence is the evaluation withα = 0:

D(0)(p‖q) = 2

∫

(

√

p(x) −
√

q(x)
)2
dx,

which is called the closely related to the Hellinger distance,

DH =

√

1

2
D(0),
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which satisfies the axioms of distance - symmetry and the triangle inequality. The Hellinger distance is

related to the information distance in the limit by

2DH(p, q) → DF (p, q)

as p → q [19]. We note that the Hellinger distance is related to the Kullback-Leibler divergence, as in

the limit
√

KL(p‖q) → DH(p, q).

3) Other Fisher Approximations:There are other metrics which approximate the Fisher information

distance, such as the cosine distance. When dealing with multinomial distributions, the approximation

DC(p, q) = 2 arccos

∫ √
p · q → DF (p, q),

is the natural metric on the sphere.

We restrict our analysis to that of the Kullback-Leibler divergence and the Hellinger distance. The KL-

divergence is a great means of differentiating shapes of continuous PDFs. Analysis of (10) shows that

asp(x)/q(x) → ∞, KL(p‖q) → ∞. These properties ensure that the KL-divergence will be amplified

in regions where there is a significant difference in the probability distributions. This cannot be used

in the case of a multinomial PDF, however, because of divide-by-zero issues. In that case the Hellinger

distance is the desired metric as there exists a monotonic transformation functionψ : DH → DC [19].

For additional measures of probabilistic distance, some ofwhich approximate the Fisher information

distance, and a means of calculating them between data sets,we refer the reader to [25].

B. Approximation of Distance on Statistical Manifolds

We have shown the approximation function̂DF (p1, p2) of the Fisher information distance betweenp1

andp2 can be calculated using a variety of metrics asp1 → p2. If p1 andp2 do not lie closely together on

the manifold, these approximations become weak. An exampleof this is illustrated in Fig. 3, where the

manifold of interest lies in a subspace of another manifold,and the distance between two points should

be considered as the distance traveled on the manifold of interest. A good approximation can still be

achieved if the manifold is densely sampled between the two end points. By defining the path between

p1 andp2 as a series of connected segments and summing the length of those segments, we approximate

the distance of thegeodesic, which is the shortest path along the manifold. Specifically, given the set of

n PDFs parameterized byPθ = {θ1, . . . , θn}, the Fisher information distance betweenp1 andp2 can be

estimated as:

DF (p1, p2) ≈ min
m,{θ(1),...,θ(m)}

m
∑

i=1

DF (p(θ(i)), p(θ(i+1))), p(θ(i)) → p(θ(i+1)) ∀ i

wherep(θ(1)) = p1, p(θ(m)) = p2,
{

θ(1), . . . , θ(m)

}

∈ Pθ, andm ≤ n.
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Fig. 3. The Fisher information distance between points cannot be exactly calculated about a manifold if the data exists on a
submanifold of interest (shaded area). Rather than directly calculating the distance between points (A) , the distanceshould be
approximated by a geodesic along the submanifold (B).

Using our approximation of the Fisher information distanceas p1 → p2 (whether KL-divergence or

Hellinger distance is of no immediate concern), we can now define an approximation functionG for all

pairs of PDFs:

G(p1, p2;P) = min
m,P

m
∑

i=1

D̂F (p(i), p(i+1)), p(i) → p(i+1) ∀ i (13)

whereP = {p1, . . . , pn} is the available collection of PDFs on the manifold. Intuitively, this estimate

calculates the length of the shortest path between points ina connected graph on the well sampled

manifold, and as suchG(p1, p2;P) → DF (p1, p2) asn → ∞. This is similar to the manner in which

Isomap [21] approximates distances on Euclidean manifolds. Figure 4 illustrates this approximation

by comparing the KL graph approximation to the actual Fisherinformation distance for the univariate

Gaussian case. As the manifold is more densely sampled (uniformly in mean and variance parameters

for this simulation), the approximation converges to the true Fisher information distance, as calculated

in (7).

C. Dimensionality Reduction

Given a matrix of dissimilarities between entities, many algorithms have been developed to find a

low-dimensional embedding of the original dataψ : M → R
d. These techniques have been classified as

a group of methods called Multi-Dimensional Scaling (MDS).There are supervised methods, which are

generally used for classification purposes, and unsupervised methods, which are often used for clustering

and manifold learning. Using these MDS methods allows us to find a single low-dimensional coordinate

representation of each high-dimensional, large sample, data set.

February 12, 2013 DRAFT



13

0 500 1000 1500
2.3

2.35

2.4

2.45

2.5

Number of Points on Manifold

D

 

 

KL Geodesic Approximation
Fisher Information Distance

Fig. 4. Convergence of the graph approximation of the Fisherinformation distance using the Kullback-Leibler divergence. As
the manifold is more densely sampled, the approximation approaches the true value.

1) Classical Multi-Dimensional Scaling:Classical MDS (cMDS) takes a matrix of dissimilarities and

embeds each point into a Euclidean space. This is performed by first centering the dissimilarities about the

origin, then calculating the eigenvalue decomposition of the centered matrix. This unsupervised method

permits the calculation of the low-dimensional embedding coordinates which reveal any natural separation

or clustering of the data.

DefineD as a dissimilarity matrix which contains (or approximates)Euclidean distances. LetB be

the “double centered” matrix which is calculated by taking the matrixD, subtracting its row and column

means, then adding back the grand mean and multiplying by−1
2 . As a result,B is a version ofD

centered about the origin. Mathematically, this process issolved by

B = −1

2
HD2H,

whereH = I − (1/N)11T , I is theN -dimensional identity matrix, and1 is anN -element vector of

ones.

The embedding coordinates,Y ∈ R
d×n, can then be determined by taking the eigenvalue decomposition

of B,

B = [V1V2]diag(λ1, ..., λN ) [V1V2]
T ,

and calculating

Y = diag
(

λ
1/2
1 , ..., λ

1/2
d

)

V T
1 .

The matrixV1 consists of the eigenvectors corresponding to thed largest eigenvaluesλ1, . . . , λd while

the remainingN−d eigenvectors are represented asV2. The term ‘diag(λ1, . . . , λN )’ refers to anN×N
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Fig. 5. Classical MDS to the matrix of a) Fisher information distances and b) Kullback-Leibler geodesic approximationsof
the Fisher information distance, on a grid of univariate normal densities, parameterized by(µ, σ)

diagonal matrix withλi as itsith diagonal element.

To continue our illustration from Section II-B2, letD be the matrix of Fisher information distances de-

fined in (7) for the set of univariate normal densitiesP, whereD(i, j) = DF (pi, pj). Figure 5(a) displays

the results of applying cMDS toD. We demonstrate the embedding with the geodesic approximation of

the Fisher information distance (13) in Fig. 5(b), which is very similar to the embedding created with

the exact values. It is clear that while the densities defining the setP are parameterized on a rectangular

grid, the manifold on whichP lives is not rectangular itself, which is due to the differing effects that

changes in mean and variance have on the Gaussian PDF.

2) Laplacian Eigenmaps:Laplacian Eigenmaps (LEM) is an unsupervised technique developed by

Belkin and Niyogi and first presented in [22]. This performs non-linear dimensionality reduction by per-

forming an eigenvalue decomposition on the graph Laplacianformed by the data. As such, this algorithm

is able to discern low-dimensional structure in high-dimensional spaces that were previously indiscernible

with methods such as principal components analysis (PCA) and classical MDS. The algorithm contains

three steps and works as follows:

1) Construct adjacency graph

Given dissimilarity matrixDX between data points in the setX, define the graphG over all data

points by adding an edge between pointsi andj if Xi is one of thek-nearest neighbors ofXj .

2) Compute weight matrixW

If points i andj are connected, assignWij = e−
DX (i,j)2

t , otherwiseWij = 0.

3) Construct low-dimensional embedding
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Solve the generalized eigenvalue problem

Lf = λDf,

whereD is the diagonal weight matrix in whichDii =
∑

j Wji, andL = D−W is the Laplacian

matrix. If [f1, . . . , fd] is the collection of eigenvectors associated withd smallest generalized eigen-

values which solve the above, thed-dimensional embedding is defined byyi = (vi1, . . . , vid)
T , 1 ≤

i ≤ n.

3) Additional MDS Methods:While we choose to only detail the cMDS and LEM algorithms, there are

many other methods for performing dimensionality reduction in a linear fashion (PCA) and non-linearly

(Local Linear Embedding [26]) for unsupervised learning. For supervised learning there are also linear

(Linear Discriminant Analysis) and non-linear (Classification Constrained Dimensionality Reduction [27],

Neighbourhood Component Analysis [28]) methods, all of which can be applied to our framework. We

do not highlight the heavily utilized Isomap [21] algorithmsince it is identical to using cMDS on the

approximation of the geodesic distances.

IV. OUR TECHNIQUES

We have presented a series of methods for manifold learning developed in the field of information

geometry. By performing dimensionality reduction on a family of data sets, we are able to both better visu-

alize and classify the data. In order to obtain a lower dimensional embedding, we calculate a dissimilarity

metric between data sets within the family by approximatingthe Fisher information distance between

their corresponding PDFs. This has been illustrated with the family of univariate normal probability

distributions.

In problems of practical interest, however, the parameterization of the probability densities are usually

unknown. We instead are given a family of data setsX = {X1,X2, . . . ,Xn}, in which we may

assume that each data setXi is a realization of some underlying probability distribution to which we

do not have knowledge of the parameters. As such, we rely on non-parametric techniques to estimate

both the probability density and the approximation of the Fisher information distance. Following these

approximations, we are able to perform the same multi-dimensional scaling operations as previously

described.

A. Kernel Density Estimation

Kernel methods are non-parametric techniques used for estimating probability densities of data sets.

These methods are similar to mixture-models in that they aredefined by the normalized sum of multiple

densities. Unlike mixture models, however, kernel methodsare non-parametric and are comprised of the

normalized sum of identical densities centered about each data point within the set (14). This yields a
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density estimate for the entire set in that highly probable regions will have more samples, and the sum

of the kernels in those areas will be large, corresponding toa high probability in the resultant density.

The kernel density estimate (KDE) of a PDF is defined as

p̂(x) =
1

Nh

N
∑

i=1

K

(

x− xi

h

)

, (14)

whereK is some kernel satisfying the properties

K(x) ≥ 0, ∀x ∈ X ,
∫

K(x) dx = 1,

andh is the bandwidth or smoothing parameter.

There are two key points to note when using kernel density estimators. First, it is necessary to determine

which distribution to use as the kernel. Without a priori knowledge of the original distribution, we choose

to use Gaussian kernels,

K(x) =
1

(2π)(d/2)|Σ|1/2
exp

(

−1

2
x

T Σ−1
x

)

, (15)

whered is the dimension ofx andΣ is the covariance matrix, as they have the quadratic properties that will

be useful in implementation. Secondly, the bandwidth parameter is very important to the overall density

estimate. Choosing a bandwidth parameter too small will yield a peak filled density, while a bandwidth

that is too large will generate a density estimate that is toosmooth and loses most of the features of the

distribution. There has been much research done in calculating optimal bandwidth parameters, resulting

in many different methods [29], [30] which can be used in our framework.

We note that the mean squared error of a KDE decreases only asn−O(1/d), which becomes extremely

slow for larged. As such, it may be difficult to calculate good kernel densityestimates. However, for

our purposes, the estimation of densities is secondary to the estimation of the divergence between them.

As such, the issues with MSE of density estimates in large dimensions, while an area for future work,

is not of immediate concern.

B. Algorithm

Fisher Information Non-parametric Embedding (FINE) is presented in Algorithm 1 and combines all

of the methods we have presented in order to find a low-dimensional embedding of a collection of data

sets. If we assume each data set is a realization of an underlying PDF, and each of those distributions lie

on a manifold with some natural parameterization, then thisembedding can be viewed as an embedding

of the actual manifold into Euclidean space. Note that in line 5, ‘embed(G, d)’ refers to using any multi-
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Algorithm 1 Fisher Information Non-parametric Embedding
Input: Collection of data setsX = {X1,X2, . . . ,XN}; the desired embedding dimensiond

1: for i = 1 to N do
2: Calculatep̂i(x), the density estimate ofXi

3: end for
4: CalculateG, whereG(i, j) = D̂F (pi, pj), the geodesic approximation of the Fisher information

distance
5: Y = embed(G, d)

Output: d-dimensional embedding ofX , into Euclidean spaceY ∈ R
d×N
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Fig. 6. Given a collection of data sets with a Gaussian distribution having means equal to points a sampled ‘swiss roll’
manifold, our methods are able to reconstruct the original statistical manifold from which each data set is derived.

dimensional scaling method (such as cMDS, Laplacian Eigenmaps, etc.) to embed the dissimilarity matrix

G into a Euclidean space with dimensiond.

V. A PPLICATIONS

We have illustrated the uses of the presented framework in the previous sections with a manifold

consisting of the set of univariate normal densities,P. We now present several synthetic and practi-

cal applications for the framework, all of which are based around visualization and classification. In

each application, the densities are unknown, but we assume they lie on a manifold with some natural

parameterization.

A. Simulated Data

To demonstrate the ability of our methods to reconstruct thestatistical manifold, we create a known

manifold of densities. LetY = {y1, . . . , yn}, where eachyi is uniformly sampled on the ‘swiss roll’
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Fig. 7. Historically, the process of clinical flow cytometryanalysis relies on a series of 2-dimensional scatter plots in which
cell populations are selected for further evaluation. Thisprocess does not take advantage of the multi-dimensional nature of the
problem.

manifold (see Fig. 6(a)). LetX = {X1,X2, . . . ,Xn} where eachXi is generated from a normal

distributionN (yi,Σ), whereΣ is held constant for each density. As such, we have developeda statistical

manifold of known parameterization, which is sampled by known PDFs. Utilizing FINE in an unsuper-

vised manner, we are able to recreate the original manifoldY strictly from the collection of data sets

X . This is shown in Fig. 6(b) where each set is embedded into 3 cMDS dimensions, and the ‘swiss roll’

is reconstructed. While this embedding could easily be constructed using the mean of each setXi as a

Euclidean location, it illustrates that FINE can be used forvisualizing the statistical manifold as well,

without a priori knowledge of the data.

B. Flow Cytometry

In clinical flow cytometry, cellular suspensions are prepared from patient samples (blood, bone marrow,

and solid tissue), and evaluated simultaneously for the presence of several expressed surface antigens and

for characteristic patterns of light scatter as the cells pass through an interrogating laser. Antibodies to each

target antigen are conjugated to fluorescent markers, and each individual cell is evaluated via detection

of the fluorescent signal from each marker. The result is a characteristic multi-dimensional distribution

that, depending on the panel of markers selected, may be distinct for a specific disease entity. The data

from clinical flow cytometry can be considered multi-dimensional both from the standpoint of multiple

characteristics measured for each cell, and from the standpoint of thousands of cells analyzed per sample.

Nonetheless, clinical pathologists generally interpret clinical flow cytometry results in the form of two-

dimensional scatter plots in which the axes each represent one of multiple cell characteristics analyzed (up

to 8 parameters per cell in routine clinical flow cytometry, and many more parameters per cell in research
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Fig. 8. 2-dimensional plots of disease classes CLL and MCL. The overlapping nature of the scatter plots makes it difficultfor
pathologists to differentiate disease classes using primitive 2-dimensional axes projections.

applications). Additional parameters are often utilized to “gate” (i.e. select or exclude) specific cell sets

based on antigen expression or light scatter characteristics; however, clinical flow cytometry analysis

remains a step-by-step process of 2-dimensional histogramanalysis (Fig. 7), and the multidimensional

nature of flow cytometry is routinely underutilized in clinical practice.

An example of the difficulty in analysis of 2-dimensional scatter plots is illustrated in Fig. 8. Two

distinct disease classes, mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), are

illustrated with both scatter and contour plots. Each pointrepresents a distinct blood cell from two different

patients, each containing one of the specified diseases; theaxes represent those which pathologists have

determined to be the two markers which are most differentiating for these two disease classes. It is clear

that for these two patients there is significant similarity in the scatter and contour plots of the data. The

overlapping nature of these 2-dimensional scatter plot leads to a very primitive analysis of the available

data. It would be potentially beneficial, therefore, to develop systems for clustering and classification

of clinical flow cytometry data that utilize all dimensions of data derived for each cell during routine

clinical analysis. The variability of distributions of data in multidimensional flow cytometry over various

patients is smaller than that associated with a general characterization of a multivariate distribution.

This leads us to believe that these distributions exist on some manifold with a much lower dimensional

parameterization. Hence, we should be able to use FINE for the purpose of viewing a natural clustering

of different patients into their respective disease classes based on the full set of markers evaluated in

each multiparameter flow cytometric analysis.

For this analysis, we will compare patients with two distinct but immunophenotypically similar forms

of lymphoid leukemia - mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), as
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Fig. 9. 2-dimensional embedding of CLL (•) and MCL (+) patients using FINE with cMDS and the Kullback-Leibler divergence
as a dissimilarity metric. The circled points correspond tothe CLL and MCL cases highlighted in Fig. 8, which are difficult to
discern with scatter plots, but well separated in the FINE space.

illustrated in Fig. 8. These diseases display similar characteristics with respect to many expressed surface

antigens, but are generally distinct in their patterns of expression of two common B lymphocyte antigens

CD23 and FMC7 (a distinct conformational epitope of the CD20antigen). Typically, CLL is positive

for expression of CD23 and negative for expression of FMC7, while MCL is positive for expression of

FMC7 and negative for expression of CD23. These distinctions should lead to a difference in densities

between patients in each disease class, and should show a natural clustering.

Let X = {X1,X2, . . . ,Xn} whereX i is the data set corresponding to the flow cytometer output

of the ith patient. Each patient’s blood is analyzed for 5 parameters:forward and side light scatter,

and 3 fluorescent markers (CD45, CD23, FMC7). Hence, each data setXi is 5-dimensional withni

elements corresponding to individual blood cells (eachni may be different). Given thatX is comprised

of both patients with CLL and patients with MCL, we wish to analyze the performance of FINE for the

visualization and clustering of cytometry data.

The data set consists of 23 patients with CLL and 20 patients with MCL. The setXi for each patient

is on the order ofni ≈ 5000 cells. The data and clinical diagnosis for each patient was provided by the

Department of Pathology at the University of Michigan. Figure 9 shows the 2-dimensional embedding

with FINE, using cMDS and the Kullback-Leibler divergence set as the dissimilarity metric. Each point

in the plot represents an individual patient. Although the discussed methods perform the dimensionality

reduction and embedding in unsupervised methods, we display the class labels as a means of analysis.

It should be noted that there exists a natural separation between the different classes. As such, we can

conclude that there is a natural difference in probability distribution between the disease classes as well.

Although this is known through years of clinical experience, we were able to determine this without any
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a priori knowledge; simply with a density analysis.

An important byproduct of this natural clustering is the ability to visualize the cytometry data in a

manner which allows comparisons between patients. The circled points in Fig. 9 correspond to the patients

illustrated in Fig. 8, which were difficult to differentiateby using a scatter plot of the most discerning

marker combination as deemed by pathologists. In the space defined by FINE, the patients are easily

differentiated and lie well within the clusters of each disease type. By using the embedding created with

FINE, pathologists are able to determine similarities between patients, which gives them a quick and easy

means of determining which data sets may need further investigation (i.e. for possible misdiagnosis).

C. Document Classification

Recent work has shown in interest in using dimensionality reduction for the purposes of document

classification [31] and visualization [32]. Typically documents are represented as very high-dimensional

PDFs, and learning algorithms suffer from thecurse of dimensionality. Dimensionality reduction not only

alleviates these concerns, but it also reduces the computational complexity of learning algorithms due to

the resultant low-dimensional space. As such, the problem of document classification is an interesting

application for FINE.

Given a collection of documents of known class, we wish to best classify a document of unknown

class. A document can be viewed as a realization of some overriding probability distribution, in which

different distributions will create different documents.For example, in a newsgroup about computers you

could expect to see multiple instances of the term “laptop”,while a group discussing recreation may see

many occurrences of “sports”. The counts of “laptop” in the recreation group, or “sports” in the computer

group would predictably be low. As such, the distributions between articles in computers and recreation

should be distinct. In this setting, we defined the PDFs as theterm frequencyrepresentation of each

document. Specifically, letxi be the number of times termi appears in a specific document. The PDF

of that document can then be characterized as the multinomial distribution of normalized word counts,

with the maximum likelihood estimate provided as

p̂(x) =

(

x1
∑

i xi
, . . . ,

xN
∑

i xi

)

. (16)

By utilizing the term frequencies as a multinomial distribution, and not implementing a kernel density

estimator, we show that our methods are not tied to the KDE, but we simply use it in the case of

continuous densities as a means of estimation. If one has a priori knowledge of the distribution, that

step is unnecessary. Additionally, we use the Hellinger distance due to the multinomial nature of the

distribution. As described in Section III-A3,DH has a monotonic transformation toDC , which is the

natural metric on the sphere defined by multinomial PDFs.
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Fig. 10. 2-dimensional embeddings of 20 Newsgroups data. The data displays some natural clustering, in the informationbased
embedding, while the PCA embedding does not distinguish between classes.

For illustration, we will utilize the well known 20 Newsgroups data set1, which is commonly used

for testing document classification methods. This set contains word counts for postings on 20 separate

newsgroups. We choose to restrict our simulation to the 4 domains with the largest number of sub-

domains (comp.*, rec.*, sci.*, and talk.*), and wish to classify each posting by its highest level domain.

Specifically we are givenP = {p1, . . . , pN} where eachpi corresponds to a single newsgroup posting

and is estimated with (16). We note that the data was preprocessed to remove all words that occur in 5

or less documents2.

1) Unsupervised FINE:First, we utilize unsupervised methods to see if the naturalgeometry exists

between domains. Using Laplacian Eigenmaps on the dissimilarities calculated with the Hellinger distance,

we found an embeddingP → R
2. Figure 10(a) shows the natural geometric separation between the

different document classes, although there is some overlap(which is to be expected). Contrarily, a

Principal Components Analysis (PCA) embedding (Fig. 10(b)) does not demonstrate the same natural

clustering. PCA is often used as a means to lower the dimension of data for learning problems due to its

optimality for Euclidean data. However, the PCA embedding of the 20 Newsgroups set does not exhibit

any natural class separation due to the non-Euclidean nature of the data.

We now compare the classification performance of FINE to thatof PCA. In the case of document

classification, dimensionality reduction is important as the natural dimension (i.e. number of words) for

the 20 Newsgroups data set is26, 214. Using local intrinsic dimension estimation [33], Fig. 11 shows

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
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Fig. 12. Classification rates for low-dimensional embedding using different methods for dimensionality reduction. 1-standard
deviation confidence intervals shown over 20-fold cross validation.

the histogram of the true dimensionality of the sample documents, so we test performance for low-

dimensional embeddingsP → R
d for d ∈ [5, 95]. Following each embedding, we apply an SVM with

a linear kernel to classify the data in an ‘all-vs-all’ setting (i.e. classify each test sample as one of 4

different potential classes in a single event, rather than 4separate binary events). The training and test

sets were separated according to the recommended indices, and each set was randomly sub-sampled for

computational purposes, keeping the ratio of training to test samples constant (2413 training samples,

1607 test samples). Both the FINE and PCA settings jointly embed the training and test sets.

Figure 12 illustrates that the embedding calculated with FINE outperforms using PCA as a means

of dimensionality reduction. The classification rates are shown with a 1-standard deviation confidence
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interval, and FINE with a dimension as low asd = 25 generates results comparable to those of a PCA

embedding withd = 95. To ease any concerns that Laplacian Eigenmaps (LEM) is simply a better

method for embedding these multinomial PDFs, we calculatedan embedding with LEM in which each

PDF was viewed as a Euclidean vector with theL2-distance used as a dissimilarity metric. This form

of embedding performed much worse than the information based embedding using the same form of

dimensionality reduction and the same linear kernel SVM, while comparable to the PCA embedding in

very low dimensions.

2) Supervised FINE:If we allow FINE to use supervised methods for embedding, we can dramatically

improve classification performance. By embedding with Classification Constrained Dimensionality Re-

duction (CCDR) [27], which is essentially LEM with an additional tuning parameter defining the emphasis

on class labels in the embedding, we are able to get good classseparation even in 3 dimensions (Fig. 13).

We now compare FINE to the diffusion kernels developed by Lafferty and Lebanon [12] for the purpose

of document classification. The diffusion kernels method uses the full term-frequency representation of

the data and does not utilize any dimensionality reduction.We stress this difference to determine whether

or not using FINE for dimensionality reduction can generatecomparable results.

We first illustrate the classification performance in a ‘one vs. all’ setting, in which all samples from

a single class were given a positive label (i.e.1) and all remaining samples were labeled negatively

(i.e. −1). In the FINE setting, we first subsampled from the training and test sets, using a test set size

of 200, then used CCDR to embed the entire data set intoR
d, with d ∈ [5, 95] chosen to maximize

classification performance. The classification task was performed using a simple linear kernel SVM,

K(X,Y ) = X · Y.
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FINE Diffusion Kernels
Task L Mean STD Mean STD

comp.*

40 82.3750 4.1003 75.5750 3.9413
80 85.8250 2.8713 83.0250 3.4469
120 87.6000 2.0876 85.5750 3.2129
200 87.9750 2.3978 87.8500 2.2775
400 89.8000 2.0926 89.6250 1.9992
600 90.6500 2.0970 91.3000 2.4677
1000 91.3000 2.3864 91.9000 2.2572

rec.*

40 82.3500 3.2610 76.2000 3.1514
80 86.3500 2.0462 82.0000 3.8251
120 87.1500 2.3345 83.1250 3.9599
200 89.5500 1.4133 86.8750 2.1143
400 91.4750 2.2152 90.7000 2.0545
600 92.7500 1.2722 93.1000 2.0494
1000 93.2000 1.3318 94.6250 1.4223

sci.*

40 78.6500 2.8102 76.3250 3.2898
80 80.3750 3.3280 77.4750 4.2286
120 81.5250 2.8722 78.2250 3.1518
200 83.4000 2.9585 82.2000 3.0236
400 86.1750 2.2021 86.2000 2.2325
600 87.1750 2.9212 87.0500 2.9731
1000 89.3000 2.3022 89.8000 2.2384

talk.*

40 89.1250 3.1241 82.2750 2.9131
80 90.4250 2.8895 85.9250 3.6859
120 91.1250 2.5745 86.5500 4.0161
200 92.6500 1.8503 89.7750 3.1518
400 93.1000 1.9775 92.4750 2.1672
600 94.7500 1.3908 94.3750 1.5634
1000 94.8500 1.5483 94.8500 1.4244

TABLE I
EXPERIMENTAL RESULTS ON20 NEWSGROUPS CORPUS, COMPARING FINE USING CCDRAND A LINEAR SVM TO A

MULTINOMIAL DIFFUSION KERNEL BASED SVM. THE PERFORMANCE(CLASSIFICATION RATE IN %) IS REPORTED AS MEAN

AND STANDARD DEVIATION FOR DIFFERENT TRAINING SET SIZESL, OVER A 20-FOLD CROSS VALIDATION.

For the diffusion kernels setting,

K(X,Y ) = (4πt)
n

2 exp

(

−1

t
arccos2

(√
X ·

√
Y
)

)

,

we chose parameter valuet which optimized the classification performance at each iteration. The exper-

imental results of performance versus training set size, with 20-fold cross validation, are shown in Table

I, where the highest performance at each range is highlighted. FINE shows a significant performance
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Fig. 14. Classification rates for low-dimensional embedding with FINE using CCDR vs Diffusion kernels. The classification task
was all v.s. all. Rates are plotted versus number of trainingsamples. Confidence intervals are shown at one standard deviation.
For comparison to the joint embedding (FINE), we also plot the performance of FINE using out of sample extension (OOS).

increase over the diffusion kernels method for sets with lowsample size. As the sample size increases,

however, the gap in performance between the diffusion kernels method and FINE decreases, with diffusion

kernels eventually surpassing FINE.

We now modify the classification task from a ‘one v.s. all’ to an ‘all v.s. all’ setting, in which each

class is given a different label and the task is to assign eachtest sample to a specific class. Classification

rates are defined as the number of correctly classified test samples divided by the total number of test

samples (kept constant at200). The structure of the experiment is otherwise identical tothe ‘one v.s.

all’ setting. We once again notice in Fig. 14 that FINE outperforms the diffusion kernels method for

low sample sizes. The point at which the diffusion kernels method surpasses FINE has decreased (i.e.

L ≈ 200 for ‘all v.s. all’ compared toL ≈ 600 for ‘one v.s. all’), yet FINE is still competitive as the

sample size increases.

While our focus when using FINE has been on jointly embeddingboth the training and test samples

(while keeping the test samples unlabeled), Fig. 14 also illustrates the use of out of sample extension

(OOS) [34] with FINE. In this scenario, the training samplesare embedded as normal with CCDR, while

the test samples are embedded into the low-dimensional space using interpolation. This setting allows for

a significant decrease in computational complexity given the fact that the FINE embedding has already

been determined for the training samples (i.e. new test samples are received). A decrease in performance

exists when compared to the jointly embedded FINE, which is reduced as the number of training samples

increases.

Analysis of the results in both the ‘one v.s. all’ and ‘all v.s. all’ cases shows that FINE can improve

upon the deficiencies of the diffusion kernels method in the low sample size region. By viewing each
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Fig. 15. Comparison of classification performance on the 20 Newsgroups data set with FINE using different SVM kernels;
one linear and two non-linear (2nd polynomial and radial basis function).

document as a coarse approximation of the overriding class PDF, it is easy to see that, for low sample

sizes, the estimate of the within class PDF generated by the diffusion kernels will be highly variable, which

leads to poor performance. By reducing the dimension with FINE, the variance is limited to significantly

fewer dimensions, enabling documents within each class to be drawn nearer to one another. While this

could also bring the classes closer to each other, the utilization of CCDR ensures class separation. This

results in better classification performance than using theentire multinomial distribution. As the number

of training samples increases, the effect of dimensionality is reduced, which allows the diffusion kernels

to better approximate the multinomial PDF representative of each class. This reduction in variance across

all dimensions ensures that a few anomalous documents will not have the same drastic effect as they

would in the low sample size region. As such, the performancegain surpasses that of FINE, due to

the fact that thecurse of dimensionalitywas alleviated elsewhere (i.e. increase in sample size). Wenote

that while FINE performs slightly worse than diffusion kernels in the large sample size region, it still

performs competitively with a leading classification method which utilizes the full dimensional data.

An additional reason for the diffusion kernels improved performance over FINE in the large sample

size region is that we have restricted FINE to using a linear kernel for this experiment, while the diffusion

kernels method is very non-linear. We do this to show that even a simple linear classifier can perform

admirably in the FINE reduced space. Using a non-linear kernel would show increased performance

with FINE. This is illustrated in Fig. 15, where we compare the performance of FINE using an SVM

classifier with a linear kernel (K(X,Y ) = XTY ), 2nd degree polynomial kernel (K(X,Y ) = (γXTY )2),

and a radial basis function kernel (K(X,Y ) = exp(−γ|X − Y |2)), whereγ is a weighting constant.

For visualization purposes, we show the results for only a subset of the training sample range (i.e.

L = [200, 400]), but it is clear that the use of non-linear kernels improvesthe performance of FINE. The
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problem of which of the many possible non-linear kernels is optimal remains open and is a subject for

future work.

VI. CONCLUSIONS

The assumption that high-dimensional data lies on a Euclidean manifold is based on the ease of

implementation due to the wealth of knowledge and methods based on Euclidean space. This assumption

is not viable in many problems of practical interest, as there is often no straightforward and meaningful

Euclidean representation of the data. In these situations it is more appropriate to assume the data lies on

a statisticalmanifold. Using information geometry, we have shown the ability to find a low-dimensional

embedding of the manifold, which allows us to not only find thenatural separation of the data, but to

also reconstruct the original manifold and visualize it in alow-dimensional Euclidean space. This allows

the use of many well known learning techniques which work based on the assumption of Euclidean data.

By approximating the Fisher information distance, FINE is able to construct the Euclidean embedding

with an information based metric, which is more appropriatefor non-Euclidean data. We have illustrated

this approximation by finding the length of the geodesic along the manifold, using approximations such

as the Kullback-Leibler divergence and the Hellinger distance. The specific metric used to approximate

the Fisher information distance is determined by the problem, and FINE is not tied to any specific

choice of metric. Additionally, we point out that although we utilize kernel methods to obtain PDFs, the

method used for density estimation is only of secondary concern. The primary focus is the measure of

dissimilarity between densities, and the method used to calculate those PDFs is similarly determined by

the problem.

We have illustrated FINE’s ability to be used in a variety of learning tasks such as visualization,

clustering, and classification. FINE is a framework that canbe used for a multitude of problems which

may seem to have little to nothing in common, such as flow cytometry and document classification. The

only commonality between the problems is that each are basedaround data which has no straightforward

Euclidean representation, which is the only setting neededto utilize FINE. In future work we plan to

utilize different classification methods (such ask-NN and using different SVM kernels) to maximize

our document classification performance. This includes constraining our dimensionality reduction to a

sphere, which will allow the use of diffusion kernels in a low-dimensional space. We also plan to continue

studies on the effect of using out of sample extension on our performance. Lastly, we will continue to

find applications which fit the setting for FINE, such as internet anomaly detection and face recognition,

and determine whether or not these problems would benefit from our framework.
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