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Abstract—We propose a novel and robust computational framework for automatic detection of deformed 2D wallpaper patterns in

real-world images. The theory of 2D crystallographic groups provides a sound and natural correspondence between the underlying

lattice of a deformed wallpaper pattern and a degree-4 graphical model. We start the discovery process with unsupervised clustering of

interest points and voting for consistent lattice unit proposals. The proposed lattice basis vectors and pattern element contribute to the

pairwise compatibility and joint compatibility (observation model) functions in a Markov Random Field (MRF). Thus, we formulate the

2D lattice detection as a spatial, multitarget tracking problem, solved within an MRF framework using a novel and efficient Mean-Shift

Belief Propagation (MSBP) method. Iterative detection and growth of the deformed lattice are interleaved with regularized thin-plate

spline (TPS) warping, which rectifies the current deformed lattice into a regular one to ensure stability of the MRF model in the next

round of lattice recovery. We provide quantitative comparisons of our proposed method with existing algorithms on a diverse set of

261 real-world photos to demonstrate significant advances in accuracy and speed over the state of the art in automatic discovery of

regularity in real images.

Index Terms—Belief propagation, MRF, mean shift, lattice detection, wallpaper patterns.

Ç

1 INTRODUCTION

NEAR-REGULAR texture patterns [1] are pervasive in man-
made and natural environments. They provide funda-

mental cues for both human and machine perception [2],
[3]. In the computer vision and computer graphics commu-
nities, such patterns are usually regarded as textures with a
stochastic nature, composed of deformed versions of one or
more basic texture elements [1], [4], [5], [6], [7]. Ample
evidence can be found that near-regular textures are not
merely random collections of isolated texture elements, but
exhibit specific geometric, topological, and statistical reg-
ularities and relations [1] (Fig. 1).

Wallpaper group and lattice theory inform us that
periodic patterns can be described by a pattern element
(tile) and two smallest linearly independent ðt1; t2Þ generat-
ing vectors [8], [9]. The translation subgroup of all wall-
paper patterns can be characterized by a degree-4 graphical
model, where each pattern element is a node that has four
neighbors representing its own copies, offset by plus or
minus t1 and t2. For deformed wallpaper patterns or near-
regular textures [1], the “copies” are no longer faithful, due
to variations in viewing angle, material coloration, lighting,
or partial occlusion. Yet, the appearances of the photome-
trically and geometrically deformed elements remain highly
correlated. We call these varying pattern elements “texels,”

to distinguish them from the ideal pattern element that they
are instantiations of. Similarly, for deformed lattice pat-
terns, the strict geometric offsets of neighbors in the lattice
must be replaced by “spring” terms allowing local varia-
tions of the ðt1; t2Þ lattice basis vectors. We encode these soft
constraints on the geometry and appearance of deformed
wallpaper patterns as pairwise compatibility and joint
compatibility functions in a degree-4 Markov Random Field
(MRF) model.

The underlying topological lattice structure of a near-
regular texture (NRT) under a set of geometric and
photometric deformation fields was first acknowledged
and used by Liu et al. for texture analysis and manipulation
[1], [10], [11]. Subsequently, Hays et al. [12] developed the
first deformed lattice detection algorithm for real images
without presegmentation, and Lin and Liu [13], [14]
developed the first deformed lattice tracking algorithm for
dynamic NRTs.

The idea behind [12] is simply to look for the t1; t2
neighbors of randomly selected interest regions in the
image. If a sufficient number of such regions look like their
respective t1; t2 neighbors (lower order similarity) and also
share their t1; t2 neighbors’ directions/orientations with
other interest regions in the image (higher order correspon-
dences), their shared spatial relationships contribute to the
final lattice in a spectral method formulation. With the
found correspondence, the slightly deformed lattice is
straightened out and a new round of lattice discovery
begins, so the extracted lattice grows bigger and bigger.
Formulating the lattice detection problem as a higher order
correspondence problem adds computational robustness
against geometric distortions and photometric artifacts in
real images. Although Hays et al. [12] produce impressive
results, there are several serious drawbacks preventing its
wider applicability. First, local correlation-based peak
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finding is used as a last resort for finding regions of interest,
which is both time-consuming and sensitive to noise,
occlusion, and transform discontinuity in the image.
Second, the method is based on finding the eigenvalues of
an n2 � n2 sparse matrix (n is the number of potential
texture elements), which is cumbersome computationally.
Third, the algorithm examines only one of the t1; t2 vectors
at a time, and is thus less robust against misleading
repetitions and prone to wasting time on interest points
that do not lead to legitimate neighbors. Our proposed
method overcomes these weaknesses.

Our work is partially inspired by Lin and Liu [13], [14]
who treat lattice detection on the initial frame of a video clip
as a spatial tracking problem. However, they do not use a
graphical model in the lattice detection phase. Furthermore,
they require an initial texel to be given (by the user) and use
affine template matching to grow the deformed lattice
spirally outward. Instead, we propose to formulate the
detection of the underlying deformed lattice in an un-
segmented image as a spatial, multitarget tracking problem,
using a recently published, fast Belief Propagation method
called Mean-Shift Belief Propagation (MSBP) [15]. It is
natural to represent near-regular texture by an MRF given
the topological lattice structure of wallpaper patterns [11],
[12], [14].

Compared with [12], our proposed approach offers
significant improvements in accuracy, robustness, and
efficiency for automatic lattice detection by: 1) incorporat-
ing higher order constraints early-on to propose highly
plausible lattice points; 2) recovering the remaining ele-
ments by inference on a graphical model constructed from a
proposed ðt1; t2Þ vector pair and pattern element; and
3) achieving a deterministic algorithm linearly dependent
on the number of texels, instead of quadratic or higher
order. Quantified experimental results on an extensive set
of diverse real-world images (Section 6) demonstrate the
advantages of our approach quantitatively.

2 LATTICE FITTING USING A MARKOV RANDOM

FIELD

Assume that we are given an image I that contains a
deformed version of a true periodic pattern. Also, assume
that we have an estimate of the ideal pattern element,
specified by an appearance template T0, and the t1; t2
lattice generating vectors (a method for automatically
discovering these items is presented in Section 4). Our

goal in this section is to infer accurate image locations x ¼
fx0; x1; x2; . . . ; xng of all texels forming the repeated pattern
in image I.

An MRF specifies a factorization of the joint distribution
of a set X of random variables. An MRF can be represented
as an undirected graph G ¼ ðN;EÞ, where each node in N

represents a random variable in set X and each edge in E

represents a statistical dependency between random vari-
ables in X. In the present context, the random variables are
the image locations of texels, and edges in the MRF model
represent two kinds of dependencies: spatial constraints
between neighboring texels and appearance consistency
constraints between each image texel and the reference
pattern element (Fig. 2).

The motivation for performing lattice finding using an
MRF model is that localizing texels in a repeated pattern is
made easier and more robust if multiple texels are searched
for jointly, rather than one at a time. This is so because the
location of each texel is constrained by its neighbors, so
finding some of them provides knowledge about where the
others may be. In an extreme case, if you locate the four
adjacent neighbors of a texel, you can infer where the
central texel should be, even if it is occluded or otherwise
hard to find. The key to leveraging this insight is to encode
the topological lattice structure explicitly into a graphical
model so that the model can be used effectively to perform
inference over the joint space of spatial constraints.
Specifically, for each pair of neighbors xi and xj connected
by an edge in the MRF, we define a pairwise compatibility
function �ðxi; xjÞ to impose a spatial constraint between
them. For example, if we know that xi and xj are t1-
neighbors of each other in the lattice, we constrain the offset
vector xj � xi to be “similar” to vector t1.

Another piece of information that can help localize each
texel is that the image patch centered at xi should look like
the pattern template T0. In our case, the difference in
appearance between the two is quantified by an image
measurement zi, and a joint compatibility function �ðxi; ziÞ
is added to the MRF to impose the constraint that the
difference in appearance should be “small.”
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Fig. 1. Repeating patterns are pervasive both in natural and man-made

(and bee-made, bottom right) environments: buildings, handmade

baskets, bee hives, cloth, and fish.

Fig. 2. Information for fitting lattice patterns can be represented in a
degree-4 MRF. In this model, latent variables x represent 2D texel
locations to be inferred. Spatial neighborhood constraints provided by
the ðt1; t2Þ lattice basis vectors are expressed by a pairwise compatibility
function �ðxi; xjÞ, while image measurements z quantifying similarity in
appearance between each texel and the ideal pattern element are used
within a joint compatibility function �ðxi; ziÞ.
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2.1 Belief Propagation in Large State Spaces

As a statistical model, the MRF encodes the joint probability
pðx; zÞ. Determining the location of one texel given
estimated positions of all other texels is computationally
infeasible if it requires brute force evaluation of the
marginal distribution, leading to a time complexity of
Oðn� nk�1Þ, where k is the number of nodes in the graph
and n is the size of the latent variable space (cardinality of
the space of candidate texel locations). Thus, determining
where each of the elements is in the pattern would require
OðnkÞ computation time.

Fortunately, the joint probability over the texel locations x
and image appearance measurements z in an MRF can be
factored as

pðx1; . . . ; xN; z1; . . . ; zNÞ ¼ k
Y
ði;jÞ

 ðxi; xjÞ
Y
s

�ðxs; zsÞ; ð1Þ

with  and � being the pairwise compatibility and joint
compatibility functions. The belief propagation (BP) algo-
rithm takes advantage of this factorization to perform
inference on the graph efficiently. Thus, the computation
cost for estimating the location of all texels is reduced from
OðnkÞ to Oðkn2Þ. However, BP is still very expensive when
the latent variable state space is large, and is not feasible for
latent variable spaces with continuous values. Specifically,
by “BP,” we are referring to Discrete Belief Propagation
(DBP), where the values of the random variables xi come
from a discrete set. When xi is an image location, we thus
need to specify a level of discretization. Although finer
discretizations yield better localization accuracy, the com-
putation cost of DBP grows quadratically in the number of
locations considered.

To improve the speed of inference using DBP, several
approaches have been suggested. Ramanan and Forsyth [16]
speed up DBP by first removing states that have low image
likelihood value. However, preprocessing is needed to
compute the image likelihood for the entire space, which
needs O(nT) preprocessing time, where n is the size of the
latent variable space and T is the time needed for image
likelihood evaluation. Moreover, this kind of pruning
method is susceptible to error; once an important state is
incorrectly pruned in the preprocessing stage, the inferen-
cing may not reach the correct solution. Coughlan and
Huiying [17] also speed up DBP by state pruning. The
pruning method they use is dynamic quantization, which
allows addition and subtraction of states during the belief
propagation process. Although the method of Coughlan and
Huiying has less risk than static pruning of the latent variable
space, it is not suitable for high-dimensional state space.

More recently, efficient DBP methods for early vision
were discussed in [18]. The author shows that the
computation time can be reduced by several orders of
magnitude using minimum convolution, bipartite graphs,
and multigrid methods. However, minimum convolution
can be used only if the compatibility function is convex.
Moreover, it is not feasible in high-dimensional spaces due
to the need for uniform discretization.

Unless one is willing to discretize, approaches based on
DBP are not suitable for continuous latent variable spaces. To
tackle problems with continuous state spaces, several

versions of continuous BP have been proposed [19], [20],

[21]. Nonparametric Belief Propagation (NBP) approximates

BP inference for a continuous latent variable space by

representing arbitrary density functions using particles, each

particle being the mode of a Gaussian in a Mixture of

Gaussians distribution. It is reported that 100-200 Gaussians

suffice for an accurate representation of arbitrary densities

[19], [21]. However, the standard NBP algorithm is slow due

to the sampling process [21]. In our current problem, it would

also be slow when the number of nodes in the graphical

model becomes large due to a large number of repeating

pattern elements, such as windows on a skyscraper.

3 MEAN-SHIFT BELIEF PROPAGATION

We have developed a heuristic method called MSBP [15]

that works iteratively with local weighted samples to infer

maximum marginals within a large or continuous state

space. We note that mean shift is equivalent to finding a

local mode within a Parzen window estimate of a density

function, and use mean shift as a nonparametric mode-

seeking mechanism operating on weighted samples gener-

ated within the belief propagation framework. Geometri-

cally, we can visualize this process as performing mean shift

on the implicit belief surface or marginal density generated

by the belief propagation algorithm (Fig. 3). Because the

mean-shift algorithm needs only to examine the values of

the belief surface within its local kernel window, we can

avoid generating the entire belief surface, yielding great

computational savings. Since the approach needs a sig-

nificantly smaller number of samples than particle filtering,

computation time is reduced as compared to NBP [15].
Instead of evaluating all the possible states of the latent

variable space, MSBP works within a local regular grid of

samples centered at the predicted state. This grid of samples

becomes a new latent variable space within which BP

message passing is performed to compute a weight (belief)

for each sample. Once weights are computed, mean shift on

the samples at each node performs hill climbing to reach a

new predicted state for each node. A new discrete grid of

samples is then generated, centered on this predicted state,

and the process repeats.
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Fig. 3. (a) Illustration of a 2D marginal density computed by the BP
process. (b) Mean-shift hill climbing on that belief surface. Only a small
local grid of belief values within the mean-shift window need to be
computed during any iteration, so the majority of the belief surface can
remain implicitly defined (and thus not computed). Computational
savings increase as the dimensionality of the belief surface increases.
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3.1 Samples

Consider a 2D lattice graph where the latent variable space xi

is the continuous-valued ðx; yÞ location of a texel repre-
sented by node i. We first resample the continuous latent
variable space into a local regular grid of samples for each
node. This is a standard method in the context of density
estimation [22]. We build a regular grid of samples centered
at the initial variable estimates and compute data values for
these samples using Parzen window estimation. Let _xi ¼
fðx; yÞ jx 2 xi1; . . .xin; y 2 yi1; . . . yimg be the set of local sam-
ples centered at the current predicted state for node i. This
is a new discretized latent variable space over which the
pairwise and joint compatibility functions are computed.
The observations and belief arrays at each node have size
equal to the number of samples in the local grid used to
approximate the continuous latent variable space at each
iteration.

3.2 Weight

Sample weights for performing mean shift are generated by
using standard message passing to compute a belief value
for each sample.1 Specifically, message passing from node i
to j is computed according to the sum-product rule

m
ðnþ1Þ
i!j ð _xjÞ ¼

X
_xi

�iðxi; ziÞ ijðxi;xjÞ
Y

s2NðiÞnj
m
ðnÞ
s!iðxiÞ; ð2Þ

where NðiÞ n j means all neighbors of node i except j; �i is
the joint compatibility function at node i, and  ij is the
pairwise compatibility function between node i and j. Note
that sample points and summation are restricted to a
discrete grid of points. After passing of messages according
to the message update scheme, the belief about the state of
node i (probability of the state of node i based on evidence
about i gathered from its neighbors plus the image
observation at node i) is computed by

bið _xiÞ ¼ k�ið _xi; _ziÞ
Y
s2NðiÞ

ms!ið _xiÞ; ð3Þ

where k is a normalization constant. This belief value
becomes the sample weight. For a visual intuition of the
meaning of samples and their weights as an approximation
to the belief surface, refer back to Fig. 3.

3.3 Mean Shift on Weighted Samples

Once the grid of samples is defined and their weights are
computed within the BP framework, the next step is to
perform mean shift on the set of weighted samples. Recall
that the sample weights are belief values, that is, values of
the marginal posterior for that node. The mean-shift result
for each node, therefore, gives an updated estimate of the
mode of the marginal posterior. The procedures of
resampling, weight computation, and mean-shift hill
climbing are repeated, centered on the new estimate, until
convergence. We compute a mean-shift update as

xðnþ1Þ ¼
P

i Kðxi � xðnÞÞbðxiÞxiP
i Kðxi � xðnÞÞbðxiÞ

; ð4Þ

where bðxiÞ is the weight computed in (3), xð1Þ is the
initial predicted location, xðnÞ is the estimated location
after the nth iteration, and xi is a sample inside the
mean-shift kernel K.

MSBP is efficient because it only needs to explore a
relatively small number of sampled local windows as it
proceeds on the path to a local mode of the belief surface
(Fig. 3). Therefore, the surface can be sampled both densely
and efficiently. The more detailed analysis of the surface
leads to more accurate and stable solutions than can be
achieved, using the same number of samples, by either DBP
(via quantization of the space) or NBP.

3.4 Simulations

Although the mean-shift algorithm is a hill-climbing
method that can converge to the wrong peak in multimodal
data, its behavior within MSBP is constrained by the
pairwise compatibility function between neighboring
nodes. It is as if multiple climbers are asked to climb a
mountain while being tied together with ropes that force
them to move jointly. As a result, while mean shift applied
independently at each variable node would suffer in the
face of multimodal joint compatibility densities, the joint
hill-climbing behavior of MSBP leads to coupled behavior
that can overcome multimodality in the individual nodes.
To illustrate this behavior on multimodal data, we adopt the
approach of Weiss and Freeman [23], but using a non-
Gaussian joint compatibility function. We compare DBP,
NBP [19], [20], [24], simulated annealing using Markov
Chain Monte Carlo (MCMC) moves [25], [26], and MSBP for
performing inference on a 25� 25 grid. (Fig. 4)

The joint probability used in the simulation is

P ðX; zÞ ¼ k
Y
ij

e��ðxi�xjÞ2
Y
i

�ðxi; ziÞ; ð5Þ
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Fig. 4. (a) Surface zðx; yÞ ¼ ðx2 þ y2Þ=50. (b) Sample non-Gaussian joint

compatibility functions out of 25� 25 functions. (c) Actual measurement

where only 20 percent of the nodes are measurable. (d) Random

initialization of pixel labels at the 2D grid points.

1. The equations presented in this section are identical to BP except that
MSBP works on the grid of local samples approximating the latent variable
space at each node.
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where k is a normalizing constant and � ¼ 0:1 if nodes xi;xj

are the neighbors and 0 otherwise. The multimodal joint
compatibility function is

�ðxi; ziÞ ¼ e��iðxi�ziÞ2 þ 0:7e��iðxi�zi�riÞ2 ; ð6Þ

where�i is randomly selected to be 10�6 or 1 with probability
of 0.8 and 0.2, respectively, and ri is randomly chosen
between ½0; 5� (Fig. 4b). When �i ¼ 1, we set measurement zi
to be a sample from the surface zðx; yÞ ¼ ðx2 þ y2Þ=50 and
zi ¼ 0 otherwise. This setup is equivalent to an approxima-
tion problem from sparse data, where only 20 percent of the
nodes are visible with a weak prior of zero for the unobserved
nodes, as can be seen in Fig. 4c. Note that zi is a measurement
at node i, one of the 2D grid points expressed by ðx; yÞ.

To avoid implementation inconsistency and facilitate
cross validation, we use publically available MATLAB tool
boxes for NBP [24] and simulated annealing [25]. Algo-
rithm-specific parameters are set as follows: for DBP, we
discretize the continuous latent variable space into a
discrete space of �5-30 with step size of 0.015; for MSBP,
we discretize into 11 bins with a bin size of 1; for NBP, we
use 200 samples; and for simulated annealing, we use (6) as
a proposal function. For MSBP, we generate a random
starting point for X as illustrated in Fig. 4d and run for
100 times and report the average. All the experiments are
performed in MATLAB on an Intel dual core T7500 with
2.2 GHz and 3,070 MB memory.

Since our goal is to have estimates of the maximum
marginal (MM), we need to score accuracy of each method
by the value of the marginal. However, finding exact
marginals for a Markov network with multiple loops as in
our simulation is computationally prohibitive [23], [27],
[28]. For example, we could use analytic belief propagation
to compute marginals in the real-valued MRF in our
simulation since all the compatibility functions and mea-
surements are mixtures of Gaussians. However, for BP to
converge, BP needs many iterations and as it iterates, the
number of Gaussian components increases exponentially.

Another candidate for computing ground truth is to use
sampling. We notice that nonparametric belief propagation
is the sampling technique that is designed to compute
marginals in a way that can take advantage of factorization
in the MRF. However, as can be seen in Fig. 5, the NBP
estimate cannot be used as a metric due to nonconvergence
and inaccuracy for this example.

Fortunately, since latent variables in our simulation are
scalar variables, we can do uniform sampling for each latent
variable space into 10,000 bins with a step size of 0.01
without suffering from high dimensionality. Then, we use
DBP to compute marginals in a C++ implementation,
otherwise it takes too long until convergence (our DBP
MATLAB simulation with 3,000 bins took more than 8 hours
until convergence). We use MM estimates of DBP on the
densely sampled latent variable space as ground truth. We
compute and report the Mean Squared Error (MSE)
between ground truth and estimates of each algorithm.
We also measure the accuracy of each method by
�logðP ðX; zÞÞ for cross validation since our objective is
not to estimate the maximum a posteriori (MAP) solution.

For MM estimation, MSBP is the most accurate of all the
competing methods, as illustrated in Fig. 5e. It can be seen
in Fig. 5 that at a time t (1:75h) when all methods are able to

yield an answer, MSBP is the most accurate in terms of both

MAP and MSE. After 8 hours of simulation time, DBP

yields better numerical accuracy than MSBP for the MAP

estimate; however, as the dimension increases, the dis-

cretization of the continuous latent variable space becomes

even more intractable for DBP. MSBP converges over an

order of magnitude faster for a given level of accuracy than

all competing methods (Figs. 5e and 5f and Table 1).

4 DEFORMED LATTICE DETECTION

There exists a perfect conceptual match between

2D wallpaper patterns and a degree-4 statistical graph
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Fig. 5. (a) Result of DBP at time t. (b) Result of NBP at time t. (c) Result
of simulated annealing with MCMC move at time t. (d) Result of MSBP
at time t. (e) Accuracy versus time trade-off by Mean Squared Error
between ground truth (maximum marginal) and estimate of each
algorithm. (f) Accuracy versus time trade-off by �logðP ðX; zÞÞ.
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model. The property that neighboring texels in a lattice are
spatially related by two linearly independent ðt1; t2Þ vectors
is represented as a pairwise compatibility function within
an MRF. The property that each texel appearance is highly
correlated with the appearance of one reference pattern
element is enforced by the joint compatibility function
(observation model). Once a lattice model is represented by
an MRF, inferencing via belief propagation over a latent
variable space of 2D texel locations can be used to find a
deformed lattice of texels in an image.

In this section, we present an end-to-end algorithm for
automatically detecting near-regular textures in real-world
images by finding their deformed lattice. The algorithm is
divided into three phases (Fig. 6). Phase I is a discovery phase
where the unknown pattern element and ðt1; t2Þ vector pair
are learned and an MRF model is constructed. In Phase II,
MRF inference via MSBP spatially “tracks” the texels in
the image to seed, localize, and expand the lattice. In
Phase III, a transition phase, regularized thin-plate spline
warping rectifies the found deformed lattice into a regular
lattice. Then, a new round of lattice inference/expansion
starts (Fig. 6).

4.1 Phase I: Lattice Model Proposal

We view this phase as a discovery process starting with
low-level vision cues such as pixels, corners, and edges, and
ending with a high-level lattice model proposal. We first
generate feature points, group them by their appearance
similarities through unsupervised clustering, then seek a
lattice model consistent with the geometric relationship
between candidate point clusters. The output is a proposed
ðt1; t2Þ vector pair and a representative texel.

4.1.1 Interest Point Extraction

Any interest point detector can be used in this stage. The
key trade-off is to extract enough feature points to expose
some repeated structure of the near-regular texture reliably
without overwhelming the subsequent lattice finder with
false positives. Our initial experiments using the KLT corner
extractor [29] show low hit rate on repeating substructures
(Fig. 8a). This is because KLT points are sorted by corner
strength, and points with strength below Smax �Q are
discarded, where Smax is the highest corner strength and Q
is a user settable threshold. Rather than being scattered
uniformly throughout the image, KLT points tend to be
clustered in high-contrast regions (Fig. 8a). Instead of
applying KLT to the whole image, the simple alternative
of applying KLT in a blockwise fashion causes it to adapt
locally, thus revealing almost all repeating points (Fig. 8b).
Although threshold parameter Q is input-image-dependent,
our algorithm varies the value automatically until the
number of detected features is more than Ns in every block.
All experiments in this paper use a 50� 50 pixel block size
and Ns ¼ 30.

4.1.2 Clustering

To detect repeating features, we cluster interest points by
image patch appearance. We use mean-shift clustering,
since other clustering algorithms such as K-means require
knowing the number of clusters in advance. For each
detected feature point, a centered 11� 11 image patch is
extracted and normalized in the standard way by subtract-
ing the mean intensity and dividing by its standard
deviation. The patch is then reshaped into a 1� 121 row
vector, and these row vectors become the input for mean-
shift clustering. Although mean-shift clustering relies on a
bandwidth parameter, this can be set to a constant in our
case, since the feature space is normalized. We experimen-
ted with varying the bandwidth parameter from 1 to 20; by
visual inspection, these experiments showed that a band-
width of 7 works the best.

4.1.3 Lattice Model Proposal

Proposing a lattice model involves examining a cluster of
feature points with similar appearance to determine a
ðt1; t2Þ vector pair and pattern element. This step differs
significantly from [12] in two ways. First, each lattice unit
found is composed of the current point under consideration
and its two nearest matched neighbors, forming an L-
shaped ðt1; t2Þ vector pair (Fig. 9), as opposed to considering
t1 and t2 sequentially [12]. Second, the final proposal is
generated by a consensus vote of all potential ðt1; t2Þ vector
pairs. This is equivalent to imposing higher order con-
straints upfront, rather than waiting to prune infeasible
lattice hypotheses at a later stage [12].

We adopt a voting mechanism similar to [30]. For each
detected feature point cluster, we randomly sample three
points fa; b; cg and compute the affine transformation that
maps them from image space into the integer lattice basis
fð0; 0Þ; ð1; 0Þ; ð0; 1Þg. We can now transform all remaining
points from image space into their equivalent lattice
positions via the same affine transform, and count those
inlier points whose lattice space coordinates are within
some threshold of an integer position ði; jÞ. If the three
chosen points fa; b; cg define a ðt1; t2Þ vector pair corre-
sponding to the generators of a wallpaper pattern, many
additional supporting votes should emerge from other
interest points having a similar spatial configuration.
Although the use of an affine transform may not model
the exact deformation that occurs, the proposal of a ðt1; t2Þ
vector pair based on local regions suffices when the overall
deformation in the image can be approximated by a
piecewise smooth affine transform. We further consider the
proximity of points when computing the transformation, to
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TABLE 1
Convergence Time

Fig. 6. Flowchart of the overall proposed algorithm. There are three

phases: lattice model proposal, spatial tracking, and incremental thin-

plate spline warping.
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increase the likelihood of finding a feasible transform.
Given a point a chosen at random, points b and c are
chosen as the two points with least distance from point a.

Random selection of three points ða; b; cÞ is repeated
multiple times, and the ðt1; t2Þ vector pair with the largest
number of votes (inliers) is chosen as the lattice generator
proposal. Fig. 10a illustrates a sample ðt1; t2Þ proposal and
its inlier set of supporting members. Furthermore, a global
projective transformation is applied to the image, based on
selecting four points from the detected substructure, to
perform an initial, global image rectification in the hope of
aiding subsequent inference procedures in the following
phase (this is a heuristic, based on the observation that
repeated textures often lie on planar surfaces). Finally, an
estimate of the reference pattern element, T0 (a texel
template), centered at the origin of the proposed ðt1; t2Þ
vector pair is extracted.

4.2 Phase II: Lattice Expansion—Spatial Tracking
with MSBP

We treat the discovery of the deformed lattice in an image
as a multitarget tracking problem. Without knowing the
target to start with, Phase I of our algorithm proposes a
pattern element template T0 as a potential target and a
ðt1; t2Þ vector pair as a prediction model. As discussed in
Section 2, a degree-4 MRF model is a natural choice for
inferring texel locations while enforcing spatial lattice
constraints. Since the lattice may be geometrically distorted
in the image, it is dangerous to try to predict the whole
lattice at once. Instead, an initial small seed lattice is
predicted, refined, and gradually grown outward into a
larger and larger lattice, while the image is progressively
unwarped to “straighten out” geometric deformations.

Given its efficiency, we use the MSBP algorithm ([15],
and Section 3) as our inference engine for refining predicted
texture element locations. An initial lattice is built from the
ðt1; t2Þ proposal generated in Phase I, and the pattern
element template T0 is used to generate an image likelihood
map via normalized cross correlation (NCC). This image
likelihood map is taken as a prior density function for the
location of other texels. To increase the discriminative
power of the image likelihood, we augment intensity-based
appearance comparison with an additional comparison of
edge magnitude. The joint compatibility function (observa-
tion model) in the MRF is thus given by

�ðx½i;j�; z½i;j�Þ ¼ expð��ð1� z½i;j�ÞÞ;
z½i;j� ¼ NCCðT0; Iðx½i;j�ÞÞ

�NCCðemðT0Þ; emðIðx½i;j�ÞÞÞ;
ð7Þ

where x½i;j� is the 2D location of node ½i; j� at the ith row and
jth column in the lattice, Iðx½i;j�Þ is an image patch centered
at the location of node ½i; j�; T0 is the appearance template,
and emðIÞ is the edge magnitude of an image patch.
Equation (7) is of a form typical for data compatibility
functions that measure likelihood by appearance similarity.
Parameter � is a fixed constant that is set empirically.

The second kind of function for the MRF is the pairwise
compatibility function that specifies the spatial constraints
between neighboring pairs of texture elements. In the
context of lattice tracking, the pairwise compatibility

function governs the geometric characteristics of ðt1; t2Þ
vector pairs in the lattice. We measure the spatial consis-
tency of two such vector pairs ðti1; ti2Þ and ðtj1; t

j
2Þ using the

normalized error term defined below:

E
�
ti1; t

i
2; t

j
1; t

j
2

�
¼ max

��ti1 � tj1��2��ti1��2

;

��ti2 � tj2��2��ti2��2

 !
; ð8Þ

where kk2 is L2 vector norm, and we define our pairwise
compatibility function as

 ðx½i;j�;x½i;j�1�Þ ¼ expð�� � hðx½i;j�;x½i;j�1�Þ2Þ;
hðx½i;j�;x½i;j�1�Þ ¼
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where E is given by (8) and measures the error between a

hypothetical pair of lattice element vectors ðtðitÞ1 ; t
ðitÞ
2 Þ

at iteration2 it with the original proposed vectors

ðtð0Þ1 ; t
ð0Þ
2 Þ. Note that (9) and (10) are indeed pairwise functions

because only the terms with superscripts it are random

variables and the rest are constants. Since our image

likelihood is getting closer to the one that would have been

produced by a perfectly periodic pattern through regularized

thin-plate spline warping, this pairwise function is a good

approximation to a ternary function with three random

variables that form a local deformed version of the ðtð0Þ1 ; t
ð0Þ
2 Þ

vector pair.
Equation (9) with subscripts [�] and [þ] is used for

left-right and right-left message passing, respectively.
Equation (10) with subscripts [�] and [þ] is used for
up-down and down-up message passing, respectively. The
� parameter is a fixed parameter that is set empirically.
Because the error term is normalized, a fixed � parameter
can be used for all images regardless of spatial scale of the
lattice elements. We use � ¼ � ¼ 5 in all of our experi-
ments. Using the compatibility equations defined above,
MSBP [15] is performed. The use of MSBP is critical for
speeding up the inference process in real applications, as
otherwise the inference process would be very slow.

Once the optimization via MSBP converges for this
intermediate stage of lattice growth, verification of the
converged texture element positions is performed. This is
necessary because propagation of incorrect information to
other nodes in the graph may corrupt the optimization
process. Verifying whether the inferred locations are sig-
nificant local maxima or “peaks” in the likelihood image
gives us a safety measure for finding reliable correspon-
dences between the deformed image lattice and a hypothe-
tical regular lattice, which will be used for regularized thin-
plate spline warping in Phase III. Rather than a hard-coded
threshold, we use the region of dominance idea introduced
by Liu et al. [10] to determine if an estimated texture element
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2. Note that iteration it is not the iteration involved in computing belief
but the mean-shift iteration on the computed belief surface.
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position can be trusted. If the current estimated location is a
dominant peak within its neighboring region (that is, if it is a
local maximum with a significantly high likelihood score,
but is not located close to another local maximum with an
even higher score), we select it as a peak location.

Possible misalignment at a certain iteration of our
algorithm is acceptable because it can be corrected in later
iterations. After one iteration of Phase II and Phase III, the
lattice structure is expanded from the initial lattice, and the
growing process continues until no more texels are found. A
flowchart of the overall algorithm and the results of
subsequent iterations are shown in Figs. 6 and 7, respectively.
A movie demonstrates that the dynamic inferencing process
of Phase II and Phase III can be found in the supplemental
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2009.73.

4.3 Phase III: Regularized Thin-Plate Spline
Warping

Once a partial lattice is found in an image, it is natural and

useful to relate the found lattice to its regular origin: a

wallpaper structure [1], [9], [10]. It is natural since the
detected degree-4 lattice has the same topological structure
as the regular wallpaper patterns [9], and it is useful since
straightening out (rectifying) the deformed lattice and its
neighborhood helps the iterative algorithm to expand its
search for larger and larger lattice structures in the image
(Fig. 7). We achieve this unwarping step using regularized
thin-plate spline warping with a smaller regularization term
than was used in [12] for speed up of the rectification of the
deformed lattice.

The practical benefits of this phase include: 1) It allows us
to deal with deformation discontinuity in the scene; 2) it
facilitates analysis of corresponding pixels in the set of
found texels to help overcome geometric variations; and 3) it
ensures the stability of the regularized lattice model
throughout the entire iterative procedure. Unwarping of
the current lattice and spatial tracking on the rectified image
are repeated, iteratively, until the growing lattice reaches the
edge of the image or there are no more texels to track (Fig. 7).

One of the major advantages of coupling BP with MRF
and thin-plate spline warping is that as BP converges, the
inference engine provides the deformation correspon-
dences explicitly to the thin-plate spline procedure; and
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Fig. 7. Intermediate results illustrating stages of the lattice finding

algorithm. (a) Input image. (b) Lattice model proposal (result of Phase I

in Fig. 6). (c) Intermediate result after one iteration of MSBP and TPS

warping (Phases II and III). (d) The final detected lattice.

Fig. 8. (a) The results of the default KLT detector, run on the whole
image. (b) Results of performing blockwise KLT detection with
automatic thresholding.

Fig. 9. Phase I results: The green L-shape inside the red enlarged

rectangular window is the proposed (t1; t2) vector pair, and the red L-

shapes are its supporting members (inlier votes). The images are

cropped to emphasize the area of interest.

Fig. 10. (a) Proposed ðt1; t2Þ basis vector pair and its supporting
members: the green L-shape is the ðt1; t2Þ vector pair and the
partial lattice contains its supporting members. (b) Rectified image
using a global projective image transformation found from the lattice
model proposal.
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as the thin-plate spline rectifies the image, it provides
better observation and compatibility measures to the MRF
model, resulting in enhanced correspondences on
deformed patterns.

5 GROUND TRUTH AND EVALUATION METHOD

We have collected a diverse data set of 261 real-world
images containing 2D wallpaper patterns, for evaluating
deformed lattice detection algorithms (Fig. 11). The images
are divided into three categories. Data set 1 (D1) contains
67 images where the texels are opaque, and appearance
variations of the repeating elements come from different
viewpoint and lighting conditions (Fig. 11a). Data set 2 (D2)
contains 73 images with see-through or wiry structures,
thus high variation in texel appearance often occurs due to
the changing background (Fig. 11b). Data set 3 (D3)
contains 121 images with urban views of city buildings
where there are multiple repeating patterns with perspec-
tive distortion (Fig. 11c). The whole data set (D) is
composed of D1; D2, and D3.3

5.1 Ground Truth

Using a graphical interface designed to generate 2D lattice
ground truth for real photos, a human user interactively
draws and edits a lattice structure on top of the image.
Partial occlusion and texels that extend outside of the
actual image are counted as a valid texel if approximately
half or more (as judged by the user) of the area of the
texel is visible.

Ground truth generation of lattices is challenging
because many different equivalent lattice shapes exist. That
is, there may be several ways to draw a quadrilateral lattice
in the same image, as depicted in Fig. 12b. For locally
regular portions of a lattice, the ideal texel to use is the one
that has the shortest combined edge length in t1 and t2,
which is unique and well-defined [9]. However, in curved
or warped wallpaper patterns, this definition is ambiguous,
since the vector lengths may vary throughout the distorted

image. In our evaluation of a lattice, we only require the
detection method to find a repeated quadrilateral of some
shape as a valid texel, not necessarily the one with minimum
edge length.

5.2 Evaluation Method

We are interested in computing the success rate of an
automated lattice detection algorithm, DT/GT, where GT is
the number of ground truth texels and DT is the number of
valid texels detected by the algorithm. Computing the
validity of texels turns out to be a complex problem. Most
commonly, as illustrated in Fig. 12c, there is a global offset
between the detected lattice and the ground truth, but these
offsets do not alter the fact that each texel encompasses one
unit of a repeating pattern, and thus, should be considered
as a valid solution.

To overcome these difficulties, we have created an
automated method of lattice evaluation that establishes a
mapping between a detected lattice T and the ground truth
lattice G. First, every lattice point in T marks the lattice
point in G that is the closest to it as a match, and vice versa
(points in G mark the closest points in T). If two lattice
points mutually claim each other as matches, then we
consider these two points to be “married.” These marriages
constitute our correspondence mapping from one lattice to
the other.

In order to compensate for a global offset to the lattice,
we move all points in the detected lattice T by the average
offset to a marriage partner. The lattices become signifi-
cantly more aligned by eliminating the global offset. We
then generate matches and marriages again, usually gaining
a few additional correspondence due to the realignment.

To determine each texel’s validity, we must first analyze
texel shape. For each complete texel in T, we test whether or
not all of its corner points are married and, if so, whether
their marriage partners in G form a quadrilateral that can be
tiled to mimic the original lattice (Fig. 12). Additionally, the
texel in T must have an area in pixels between 50 and
150 percent of the area of its corresponding shape in G. If
the shape of the texel is potentially valid, then its shape is
recorded. Each texel in T with a particular shape counts as
one “vote” for that shape in the correspondence between
lattices. Once all the texels of T are either voted for or
rejected as invalid texels, the texel shape that receives the
most votes is regarded as the “correct” texel shape. All
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Fig. 11. (a) Data set 1 contains 67 images, where the texels are opaque
and appearance variations of the repeating elements come from
viewpoint and lighting changes. (b) Data set 2 contains 73 images with
see-through or wiry structures, thus high variation in texel appearance
often occurs due to the changing background. (c) Data set 3 contains
121 urban views of city buildings, where many images contain multiple
repeating structures.

Fig. 12. (a) Original images. (b) Different quadrilateral lattices (texel
shapes) that can model the same wallpaper pattern. (c) A case with a
global offset between ground truth and the detected lattice (solid line:
ground truth, dotted line: the detected sample lattice). Our evaluation
procedure counts a quadrilateral lattice as being “correct” if its corners
all match up to corners in the ground truth, and the lattice is said to be a
failure if it finds no correct texels.

3. The whole test image set can be viewed at PSU Near-Regular Texture
Database, http://vivid.cse.psu.edu/texturedb/gallery/ and downloaded
at http://vision.cse.psu.edu/MSBPLattice.htm.
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texels that voted for that shape are labeled as valid texels,
and all other texels in T are regarded as invalid.

This method works very reliably in most cases. In rare
cases, it can generate false positives due to odd boundary
conditions caused by occluding objects or the edge of the
image. For this reason, a visual inspection is carried out by
the user to be sure that only texels that are occluded by half
or less are counted as valid.

6 EXPERIMENTAL RESULTS

We quantitatively evaluate our proposed approach from
different perspectives by measuring: 1) the success rate of
the current lattice model proposal (Phase I) versus an earlier
alternative [31] and 2) the success rates of our approach
versus two state-of-the-art lattice detection algorithms [12],
[13], [14].

6.1 Phase I Success Rate (Table 2)

With respect to discovery of an initial lattice proposal
(Phase I), two main improvements of our current approach
over [31] are: 1) the use of a blockwise KLT interest point
detector with automatic thresholding and 2) applying
mean-shift clustering to group texels with similar appear-
ance. To evaluate whether these differences are indeed an
improvement, we compare the success rates of these two
Phase I approaches on 261 images. Table 2 shows that the
average success rate of proposing a feasible ðt1; t2Þ vector
pair increases from 66.7 [31] to 84.7 percent for 261 images.

This almost 20 percent improvement comes from a more

aggressive search and a more relaxed acceptance of

candidate repeating structures. Robustness against false

positives is provided by the generality of the degree-4 graph

model of repeated patterns, joint search for ðt1; t2Þ vector

pair, and a reliable statistical voting scheme.

6.2 Comparison with State of the Art (Table 3)

We next compare lattice detection results of our approach

against two state-of-the-art algorithms, the method of Lin

and Liu [13], [14], and the method of Hays et al. [12]. Since

the work of Lin and Liu requires a lattice unit to be given by

the user, we do not report its average runtime, and we only

report its success rate for the same 32-image data set used in

[31]. For that 32-image data set, the detection rate of Lin and

Liu is 18:3� 20:0 percent, Hays et al. is 33:0� 35:2 percent,

and ours is 69:9� 21:5 percent. Since the current ground

truth also includes texels that are at least half visible, the

detection rates tend to be somewhat lower than what we

reported in our previous work [31].
We extensively compare the automated method of Hays

et al. with our proposed method in terms of running time

on 261 real-world images and success rate on 143 real-world

images.4 As illustrated in Table 3, our detection rate for the

143 images is 65:78� 28:79 percent and the rate for Hays

et al. is 35:72� 39:28 percent. The detection rate is
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TABLE 2
Quantitative Evaluation of Success Rate of Phase I (Lattice Model Proposal Success Rate)

The comparison is between an earlier version of our method [31] and the new method proposed in this paper. The success rate is defined as the ratio
of the number of images for which a feasible ðt1; t2Þ vector pair is proposed over the total number of images tested.

TABLE 3
Quantitative Evaluation of Hays’ Algorithm [12] and Our Proposed Method on Various Data Sets

Since we have only ground truth for 143 images available at this time, we report the detection rates for 143 out of the 261 images in the entire data
set D. The average running time, however, is for all 261 images in the data sets. The success rate is defined as the ratio of the number of correctly
detected texels over the total number of ground truth texels. The runtime ratio is defined by the ratio of the time used by [12] to detect the lattice over
the time used by our proposed method. (a) Detection rate. (b) Average running time. (c) Average running time ratio.

4. Ground truth labeling has only been completed for 143 of 261 images
at the time of submission.
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computed as the ratio of the number of valid detected texels
over the number of ground truth texels. Since the algorithm
of Hays et al. [12] includes an element of randomness, it is
run multiple times and the best result is chosen according to
a modified A-score.5 However, we note that the “best”
result chosen automatically sometimes does not necessarily
cover the largest image area. Since the Hays et al. [12]
algorithm has to propose multiple lattice models to
maintain a certain level of detection rate, it has to deal
with the problem of choosing the best out of many
generated results. Our proposal phase tends to generate
fewer lattice proposals of higher quality, and we do not
suffer from the postdetection lattice selection problem.

As we compare results of Hays et al. [12] with ours on
143 images across three image sets, we tabulated results of
algorithm successes and failures, counting accurate detec-
tion of any valid texels as a success. On 80 images, both
methods succeed. On 53 images, our method succeeds,
while Hays et al. [12] fail. There are no images for which
the Hays et al. [12] method succeeds and ours fail, but

there are 10 images for which both methods fail. Sample
results can be seen in Figs. 13, 14, and 15, where we use a
shorthand index “DXYZ,” where “DX” indicates that
data set X is used (X ¼ 1; 2; or 3); “Y ”(“Z”) takes values
S (success) or F (failure) to indicate the outcome of the
lattice algorithm by Hays et al. [12] (our proposed
method), respectively.

These results (Table 3) show that our new approach is
almost twice as robust (66 percent versus 36 percent) at
finding lattice structures in real images, particularly when
the scene contains chain link fences (50 percent versus
22 percent) where each texture element is dominated by the
varying background, and in images of buildings (76 percent
versus 15 percent) with considerable planar perspective
distortions and many small repeated elements. Table 3b
shows that the average running time of our proposed
method over that of Hays et al. [12] is close to a 10-fold
speed-up on average (Table 3).

7 CONCLUSION

We develop a novel and efficient MSBP algorithm for
inferencing on real-valued, non-Gaussian MRFs. We pro-
pose a novel MRF graphical framework and show the
effectiveness of MSBP for automatic detection of deformed
2D wallpaper patterns in real images. The underlying lattice
of a wallpaper pattern generated by a pair of independent
basis vectors has a perfect conceptual match with a degree-4
graphical model. Since the repeating texel and the lattice
basis vectors are not given a priori, these unknowns are
discovered through unsupervised clustering of interest
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Fig. 13. Sample results on data set 1. D1SS—sample results where
both algorithms succeed. D1FS—sample results where Hays et al.
[12] fail, while ours succeed. D1FF—sample results where both
algorithms fail (it is interesting to note that both algorithms detect
texels that are half the size of the valid texel). For each pair of
images shown, the left is the result of Hays et al. [12] and the right
is the result of our proposed method.

Fig. 14. Sample results on data set 2. D2FS—sample results where
Hays et al. [12] fail, while ours succeed. D2SS—sample results where
both algorithms succeed. D2FF—sample results where both algorithms
fail. For each pair of images shown, the left is the result of Hays et al.
[12] and the right is the result of our proposed method.

5. A-score, originally introduced in [1], is the average per-pixel standard
deviation among the final, aligned texels. The modified score includes

ffiffiffi
n
p

in the divisor to bias the A-score toward rewarding more complete lattices
[12], where n is the number of detected texels.

Authorized licensed use limited to: Penn State University. Downloaded on September 8, 2009 at 12:36 from IEEE Xplore.  Restrictions apply. 



regions. Extensive experimentation on real-world images

demonstrates superior performance of our proposed ap-

proach over state-of-the-art lattice detection algorithms.

More specifically, our main contributions include:

1. proposing and utilizing an efficient method
(MSBP) for inferencing in large, continuous latent
variable spaces;

2. discovering highly plausible lattice proposals by
considering higher order constraints and low-level
feature points upfront and collectively;

3. coupling spatial and appearance compatibilities, as
well as spatial tracking and TPS warping, within an
MRF model;

4. providing an end-to-end lattice detection algorithm
that has a deterministic computational complexity
linear in the number of texels in the scene; and

5. developing a lattice detection ground-truth labeling
and evaluation tool.

There is a rich set of current and future applications for
such a deformed lattice detection algorithm [1], [6], [10],
[11], [13], [14], [30], [32], [33], [34], [35]. Since our approach
is formulated as a tracking algorithm, it is equally
applicable to tracking dynamic near-regular textures in
video sequences. Our future research will further investi-
gate the problem of fully automatic dynamic lattice
discovery and its use for temporal tracking in challenging,
multitarget video tracking scenarios.

ACKNOWLEDGMENTS

This work was partially funded under US National
Science Foundation (NSF) grant IIS-0535324 and a gift
grant to Dr. Liu from Northrop Grumman Corporation.
The authors thank F. Dellaert for the urban image set and
J. Hays for his lattice detection code (ECCV ’06).

REFERENCES

[1] Y. Liu, W.C. Lin, and J. Hays, “Near-Regular Texture Analysis and
Manipulation,” ACM Trans. Graphics, vol. 23, no. 3, pp. 368-376,
2004.

[2] J.J. Gibson, The Perception of the Visual World. Houghton Mifflin,
1950.

[3] B. Julesz, “Visual Pattern Discrimination,” IRE Trans. Information
Theory, vol. 8, no. 2, pp. 84-92, 1962.

[4] J. Malik, S. Belongie, J. Shi, and T. Leung, “Textons, Contours and
Regions: Cue Integration in Image Segmentation,” Proc. Seventh
IEEE Int’l Conf. Computer Vision, vol. 2, pp. 918-925, 1999.

[5] D. Forsyth, “Shape from Texture without Boundaries,” Proc.
Seventh European Conf. Computer Vision, pp. 43-66, 2002.

[6] W.C. Lin, J. Hays, C. Wu, V. Kwatra, and Y. Liu, “Quantitative
Evaluation of Near Regular Texture Synthesis Algorithms,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 427-434,
2006.

[7] B. Ghanem and N. Ahuja, “Phase Based Modelling of Dynamic
Textures,” Proc. IEEE 11th Int’l Conf. Computer Vision, pp. 1-8, 2007.

[8] B. Grunbaum and G. Shephard, Tilings and Patterns. W.H.
Freeman and Company, 1987.

[9] H. Coxeter, Introduction to Geometry, second ed. Wiley, 1980.
[10] Y. Liu, R.T. Collins, and Y. Tsin, “A Computational Model for

Periodic Pattern Perception Based on Frieze and Wallpaper
Groups,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 3, pp. 354-371, Mar. 2004.

[11] Y. Liu, Y. Tsin, and W.C. Lin, “The Promise and Perils of Near-
Regular Texture,” Int’l J. Computer Vision, vol. 62, nos. 1/2,
pp. 145-159, 2005.

[12] J. Hays, M. Leordeanu, A. Efros, and Y. Liu, “Discovering Texture
Regularity as a Higher-Order Correspondence Problem,” Proc.
Ninth European Conf. Computer Vision, pp. 522-535, 2006.

[13] W.C. Lin and Y. Liu, “Tracking Dynamic Near-Regular Textures
under Occlusions and Rapid Movements,” Proc. Ninth European
Conf. Computer Vision, pp. 44-55, 2006.

[14] W.C. Lin and Y. Liu, “A Lattice-Based MRF Model for Dynamic
Near-Regular Texture Tracking,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 5, pp. 777-792, May 2007.

[15] M. Park, Y. Liu, and R.T. Collins, “Efficient Mean Shift Belief
Propagation for Vision Tracking,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, pp. 1-8, 2008.

[16] D. Ramanan and D.A. Forsyth, “Finding and Tracking People
from the Bottom Up,” Computer Vision and Pattern Recognition,
vol. 2, pp. 467-474, 2003.

PARK ET AL.: DEFORMED LATTICE DETECTION IN REAL-WORLD IMAGES USING MEAN-SHIFT BELIEF PROPAGATION 1815

Fig. 15. Sample results on data set 3. D3SS—sample results where both

algorithms succeed. D3FS—sample results where Hays et al. [12] fail,

while ours succeed. D3FF—sample results where both algorithms fail.

For each pair of images shown, the left is the result of Hays et al. [12]

and the right is the result of our proposed method.

Authorized licensed use limited to: Penn State University. Downloaded on September 8, 2009 at 12:36 from IEEE Xplore.  Restrictions apply. 



[17] J. Coughlan and S. Huiying, “Shape Matching with Belief
Propagation: Using Dynamic Quantization to Accommodate
Occlusion and Clutter,” Proc. Conf. Computer Vision and Pattern
Recognition Workshop, p. 180, 2004.

[18] P.F. Felzenszwalb, “Efficient Belief Propagation for Early Vision,”
Int’l J. Computer Vision, vol. 70, no. 1, pp. 41-54, 2006.

[19] E.B. Sudderth, A.T. Ihler, W.T. Freeman, and A.S. Willsky,
“Nonparametric Belief Propagation,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, vol. 1, pp. 605-612, 2003.

[20] M. Isard, “Pampas: Real-Valued Graphical Models for Computer
Vision,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 1, pp. 613-620, 2003.

[21] T.X. Han, N. Huazhong, and T.S. Huang, “Efficient Nonpara-
metric Belief Propagation with Application to Articulated Body
Tracking,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 214-221, 2006.

[22] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

[23] Y. Weiss and W. Freeman, “Correctness of Belief Propagation in
Gaussian Graphical Models of Arbitrary Topology,” Neural
Computation, vol. 13, no. 10, pp. 2173-2200, 2001, ISSN 0899-7667.

[24] L. Sigal, Pampas/Non-Parametric Belief Propagation Toolbox for
Matlab v0.1, 2005.

[25] R. Frost, Simulated Annealing Tools for Matlab v1.03, http://
www.frostconcepts.com/software/satools. pdf, 2009.

[26] P. Salamon, P. Sibani, and R. Frost, Facts, Conjectures, and
Improvements for Simulated Annealing. SIAM, 2002.

[27] W.T. Freeman, “Learning Low-Level Vision,” Int’l J. Computer
Vision, vol. 40, no. 1, pp. 25-47, 2000.

[28] Y. Weiss, “Correctness of Local Probability Propagation in
Graphical Models with Loops,” Neural Computation, vol. 12,
no. 1, pp. 1-41, 2000.

[29] J. Shi and C. Tomasi, “Good Features to Track,” Proc. IEEE Conf.
Computer Vision and Pattern Recognitions, pp. 593-600, 1994.

[30] G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and F.
Dellaert, “Detecting and Matching Repeated Patterns for Auto-
matic Geo-Tagging in Urban Environments,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[31] M. Park, R.T. Collins, and Y. Liu, “Deformed Lattice Discovery via
Efficient Mean-Shift Belief Propagation,” Proc. 10th European Conf.
Computer Vision, 2008.

[32] K.C.J.W.B.A. Canada, G.K. Thomas, and Y. Liu, “Automatic
Lattice Detection in Near-Regular Histology Array Images,” Proc.
IEEE Int’l Conf. Image Processing, 2008.

[33] Y. Liu, T. Belkina, J. Hays, and R. Lublinerman, “Image de
Fencing,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1-8, 2008.

[34] E. Chastain and Y. Liu, “Quantified Symmetry for Entorhinal
Spatial Maps,” Neurocomputing J., special issue, vol. 70, nos. 10-12,
pp. 1723-1727, 2007.

[35] Y. Tsin, Y. Liu, and V. Ramesh, “Texture Replacement in Real
Images,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 539-544, 2001.

Minwoo Park received the BEng degree in
electrical engineering from Korea University,
Seoul, in 2004, and the MSc degree in
electrical engineering from The Pennsylvania
State University in 2007. He is currently work-
ing toward the PhD degree in the Department
of Computer Science and Engineering at The
Pennsylvania State University. His research
interests include probabilistic graphical model,
video scene understanding, computational sym-

metry, and computer graphics. He is a student member of the IEEE
and the IEEE Computer Society.

Kyle Brocklehurst received the BA degree in
computer science in May 2009 from The Penn-
sylvania State University, University Park, where
he is now a PhD student. He joined the
Laboratory for Perception, Action, and Cognition
in the summer of 2008. He has also been a
member and 3D programmer at Penn State’s
Visualization Lab. His research interests include
lattice detection and evaluation, as well as both
2D and 3D graphics, in particular inpainting and

texture synthesis. He is a student member of the IEEE.

Robert T. Collins received the PhD degree in
computer science from the University of
Massachusetts at Amherst in 1993 for work
on recovering scene models using stochastic
projective geometry. He is an associate pro-
fessor in the Computer Science and Engineer-
ing Department at The Pennsylvania State
University. His research interests include video
scene understanding, automated surveillance,
human activity modeling, and real-time track-

ing. He was a coeditor of the August 2000 special issue of the IEEE
Transactions on Pattern Analysis and Machine Intelligence on the
topic of video surveillance. He has served as an area chair for
CVPR ’99, CVPR ’09, and ICCV ’09 and is currently an associate
editor for the International Journal of Computer Vision. He routinely
serves as a reviewer for the major conferences and journals in
computer vision, IEEE workshops on tracking, video surveillance, and
activity recognition, and US National Science Foundation (NSF)
review panels in the area of computer vision. He is a senior member
of the IEEE and a member of the IEEE Computer Society.

Yanxi Liu received the BS degree in physics/
electrical engineering from Beijing, China, the
PhD degree in computer science for group
theory applications in robotics from the Univer-
sity of Massachusetts, Amherst, and postdoctor-
al training at LIFIA/IMAG, Grenoble, France.
She also spent one year at the US National
Science Foundation (NSF) Center for Discrete
Mathematics and Theoretical Computer Science
(DIMACS) with an NSF Research Education

Fellowship Award. She was an associate research professor in the
Robotics Institute of Carnegie Mellon University before she joined the
Computer Science Engineering and Electrical Engineering Departments
of The Pennsylvania State University in the fall of 2006 as a tenured
faculty member and the codirector of the Lab for Perception, Action, and
Cognition (LPAC). Her research interests span a wide range of
applications, including computer vision, computer graphics, robotics,
human perception, and computer-aided diagnosis in medicine, with a
theme on computational symmetry/regularity and discriminative sub-
space learning. She chaired the First International Workshop on
Computer Vision for Biomedical Image Applications (CVBIA) in Beijing
and coedited the book CVBIA: Current Techniques and Future Trends
(Springer-Verlag LNCS). She served as a multiyear chartered study
section member for the US National Institutes of Health (biomedical
computing and health informatics) and recently served as an area chair/
organizing committee member for CVPR ’08/MICCAI ’08/CVPR ’09. She
is a senior member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1816 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Authorized licensed use limited to: Penn State University. Downloaded on September 8, 2009 at 12:36 from IEEE Xplore.  Restrictions apply. 


