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Abstract—We consider the measurement of image structure using linear filters, in particular derivative-of-Gaussian (DtG) filters,

which are an important model of V1 simple cells and widely used in computer vision, and whether such measurements can determine

local image symmetry. We show that even a single linear filter can be sensitive to a symmetry, in the sense that specific responses of

the filter can rule it out. We state and prove a necessary and sufficient, readily computable, criterion for filter symmetry-sensitivity. We

use it to show that the six filters in a second order DtG family have patterns of joint sensitivity which are distinct for 12 different classes

of symmetry. This rich symmetry-sensitivity adds to the properties that make DtG filters well-suited for probing local image structure,

and provides a set of landmark responses suitable to be the foundation of a nonarbitrary system of feature categories.

Index Terms—Group theory, invariance, pattern analysis

Ç

1 INTRODUCTION

WE continue an investigation of a model of an early
stage of front-end vision, when local measurements

of an image are performed by computation of inner
products between an image and derivative-of-Gaussian
(DtG) filters [1]. See Fig. 2 for an overview of this model.
Interest in the model arises from 1) the biological relevance
of DtGs, 2) the elegant formal properties of families of DtGs,
and 3) the effectiveness of DtGs in computer vision. The
biological relevance of DtGs is that they provide a model
[1], [2], [3], [4], [5], [6], [7], [8] of the measurement of image
structure performed by the linear aspects of V1 simple cell
neurons of the mammalian primary visual cortex. The
formal properties of measurement with DtGs are linked to
the several different interpretations that can be put on such
measurement. These interpretations are: as computing the
Hermite Transform, a local analogue of the Fourier Trans-
form [9], [10], or as implementing a generalization of
differential geometry to noninfinitesimal local structure [5],
[6], [11], [12], or as, in a single operation, rescaling the image
and computing a regular Taylor series [13], [14]. The
effectiveness for computer vision comes from the Cartesian
separability of DtGs, their good joint-localization in space
and frequency, the adequacy of a small basis set tuned to
only a few orientations, and the closure of the family with
respect to composition by convolution [15].

Measurement with DtGs is a satisfactory solution for
linear measurement of quantitative local image structure, but
researchers in computational vision have long found that it
is useful to go beyond quantitative to some notion of
qualitative structure [16], such as categorizing image loca-
tions as being edges, bars, or junctions. Similar ideas can be

found in the biological literature (see [17]). The central
puzzle of this “filters-to-features” [4] process is how to
establish a partitioning of filter response space into
categories corresponding to different features. What makes
it a puzzle is that linear filter response space has, apart from
the origin, no special landmarks or subspaces picked out:
There seem to be no clues as to how to carve it up.

Various sources of additional structure that could drive
the partitioning of filter response space have been sug-
gested and explored (reviewed in [17]). At one extreme is
the use of natural image statistics [18], [19], [20], [21], [22];
intermediate is the use of tractable idealized models of the
statistics of natural images, for example, as Brownian noise
[23], [24]; at the other extreme are purely geometric
arguments. It is arguable that no approaches have yet been
purely geometric. The furthest in this direction is an
approach [25], [26], [27], [28] based on the assumption that
image intensity is bounded above and below.

This paper is concerned with defining additional structure
on filter response space purely through geometric considera-
tions, with no assumptions being made about statistics or
restrictions on the images measured. Our approach is to
consider in what circumstances filter responses are informa-
tive about the local symmetry of the measured image. For
generality, our results when possible will concern linear
filters in general, but we also specialize to DtG filters and
show that a rich structure of landmarks does arise. We leave
it to a future paper to show that these landmarks can be an
effective basis for a partitioning into feature categories.

1.1 Paper Organization

The paper is written to be self-contained and is organized as
follows: Section 2 concerns symmetry in general and of
images in particular. Section 3 describes the detection of
image symmetry using general linear filters. Section 4
reviews the DtG family of linear filters. Section 5 describes
the detection of image symmetry using DtGs. Finally,
Section 6 is about summary and conclusion.

1.2 Conventions Used

If a variable name is introduced as an unconstrained
example of a mathematical type (e.g., q : IR! IR, a scalar
function of one variable), it remains so throughout the paper.
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If c 2 IR is a scalar, q � c indicates that q takes the same
constant value c for all arguments. We use the symbol � for
the composition of transformations and their application to
scalars, functions, and images; the placeholder is used as
an unnamed variable; j j is used for the signed determinant
of an isometry (�1 or þ1). The abbreviations D1, P1, T1, and
C1 will be used to refer to numbered definitions, proposi-
tions, theorems, and corollaries. Italics are used for
emphasis, especially of a first use.

2 SYMMETRY

In this section, we review material relating to symmetry. We
start with a discussion of the role of transformations in
understanding structures and how the transformation
perspective gives rise to the distinction between intrinsic
and extrinsic properties and to the possibility of symmetrical
structures. We will argue that symmetry type is a particu-
larly fundamental intrinsic property. In the next sections, we
move on from the symmetry of structures in general to the
symmetry of images in particular. We summarize previous
results cataloguing image symmetry types.

2.1 The Transformation Perspective

Generally speaking, a structure embedded in a space can
usefully be analyzed from the perspective of the space group
(C), a group of transformations of the containing space [29].
The choice of space group makes all the difference between
one geometry and another [30], so we assume that the choice
has been made and is fixed. This transformation perspective
has two consequents—intrinsic versus extrinsic properties,
and symmetrical structures—which we consider in turn.

Intrinsic properties are those that are unchanged by
application of any transformation of the space group; the
rest are extrinsic properties. This dichotomy is familiar for
planar figures. Let the space group be the planar isometries
(i.e., C ¼ Eð2Þ), which are the distance-preserving transfor-
mations. What we commonly call the shape of a figure is its
intrinsic properties, while its location, orientation, and handed-
ness are extrinsic properties. The intrinsic/extrinsic dichot-
omy is of philosophical importance [31], and cognitively, it
may play a role in carving the world into distinct objects [32].

Symmetrical structures are defined in terms of automorph-
isms, which are those transformations of the space group
that cause the structure to be repositioned so that it is
indistinguishable from the original. The automorphisms of
a structure are closed under composition and inversion and
so form a mathematical group (Aut½X� ¼ ft j t 2 C; t �X ¼
Xg). When this automorphism group contains more than just
the identity transformation, the structure is said to be
symmetrical.

What then of the automorphism group, is that an
intrinsic property of a structure? No. Translating a circle,
for example, changes the automorphism group as rotations
about a different center are needed. The automorphism
group has an invariant though, its symmetry type, which is
simply an equivalence ðffiÞ class of symmetry groups that
can be made identical by conjugation, which is pre and
postcomposition by a transformation and its inverse, i.e.,
8U; V � C U ffi V () 9 w 2 C U ¼ w � V � w�1.

Thus, are the two consequents of the transformation
perspective—intrinsic versus extrinsic properties, and
symmetrical structures—reunited in the concept of the

symmetry type of a structure. We claim that symmetry type
is a particular fundamental intrinsic property. We note that:

. It is defined without reference to any external
measure.

. It is a property of all structures.

. Its definition requires only a notion of indis-
tinguishability.

Contrast this with the “radius” (for example) of a circle.
“Radius” is an intrinsic property of a circle as it is unaffected
by an isometry, but it is considerably more complex than
symmetry type. In particular, observations 1-3 are not true
of “radius.”

2.2 Types of Image Symmetry

The precise split between intrinsic and extrinsic, and the
variety of possible symmetry types both depend on the
class of transformations considered [30]. Consider, for
example, allowing isotropic scaling of planar figures in
addition to the rigid transformations considered above:
With their inclusion, all circles are the same intrinsic shape,
without them they are not; with their inclusion, there are
symmetrical spirals, without them there are not.

In this paper, the structures of concern are images, which
we characterize as scalar functions of the euclidean plane. For
images, as with planar figures, the gamut of possible
symmetry types depends on the class of transformations
considered. If the transformation class is Eð2Þ, then the
symmetries of a football pitch can be fully expressed, but
those of Escher’s lithograph “Reptiles” (where the plane is
tiled by interlocking black, white, and red lizard shapes [33])
cannot. To deal with patterns such as “Reptiles,” a broader
class of “colored isometries” (Eð2Þ � Sn, where Sn is one of
the symmetric groups), where each spatial isometry is
combined with a tonal transformation that permutes a finite
set of image “color” values, can be considered and the
possible symmetries can be determined relative to this class.

In this paper, the transformations that we will consider
are, like colored isometries, a pairing of a spatial isometry
with a tonal transformation; but rather than a permutation
of a discrete label set, we follow [34] and use isometrical
transformations of the image intensity. These intensity
isometries are of two possible types only: increment/
decrements (v 7! cþ v) and negations about a value
(v 7! 2c� v). We call a pairing of a spatial and an intensity
isometry an image isometry, and will consider the group of
them Eð2Þ �Eð1Þ.

Let i 2 Eð1Þ be a 1D (intensity) isometry. The following
trivial propositions about such isometries will be useful later:

Proposition 1 (Derivative of a 1D isometry and its

inverse). The derivative of i and i�1 are necessarily
constant-valued, equal, and of unit absolute value. They will
be denoted by j j, so i0 � ði�1Þ0 � jij ¼ ji�1j 2 f�1; 1g.

Proposition 2 (1D isometry commutes with affine combi-

nation). i �
P

r zrvr ¼
P

r zr i � vr, where zr; vr 2 IR andP
r zr ¼ 1.

Let s 2 Eð2Þ be a 2D (spatial) isometry. We denote its
application to an image I : IR2 ! IR by s � I ¼ Iðs�1 � Þ. We
write an image isometry as g ¼ ði; sÞ and denote its
application to an image by g � I ¼ i � Iðs�1 � Þ. In Section 4,
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we will have the need of the following easily proven

proposition about image isometries:

Proposition 3 (First variation of an image isometry).

� g � Ið Þ
�I

�I ¼ jijs � �I:

Each type of planar isometry—identity, reflection, transla-
tion, rotations, and glide reflection—can be paired with
each type of intensity isometry—identity, increment,
negation—to make an image isometry. Although all
pairings are valid image isometries, some (e.g., the pairing
of a spatial identity transformation with an intensity
increment) can never be automorphisms. We call the
pairing of a reflection and a negation an antireflection, and
a rotation and a negation an antirotation.

Having chosen a class of transformations, the possible
image symmetries, relative to the class, can be catalogued.
This was achieved in the first half of the 20th century for the
planar isometries (Eð2Þ) [35], [36], [37], and in the second
half for the colored isometries (Eð2Þ � Sn) [38], [39]. The
catalogue of possible image symmetries, relative to the class
of image isometries (Eð2Þ � Eð1Þ), is partially complete [40],
[41]—the complete list of symmetries other than those
involving periodic translations has been provably determined
and is shown in Fig. 1 and listed in Table 1. The figure and
table indicate a notational system for the symmetry types
established in [41]. Individual types are denoted by Jn or
Jlabel; families of types are denoted by Jn;m, where n
indicates the family and m the order. The lattice of Fig. 1
indicates inclusion relations between symmetry types.

In Section 6, when we consider the sensitivity of families
of DtG filters to the image symmetries shown in Fig. 1, we
will have cause to more finely subdivide the symmetry
types. The subdivision will be based on the relation between
the transformations of a group and the point in the plane,
where the filters are centered. We will distinguish between
symmetry types that are centered (indicated by c super-
script), aligned (by a or a� superscript), and in general
position (by g). The possible subtypes are shown in Table 1.

2.3 Detection of Image Symmetry

The detection and classification of image symmetry has been
studied in the context of Computer [42], [43], [44], [45], [46],
[47] and Biological Vision [48], [49], [50], [51], [52], [53], [54],
[55]. As discussed in Section 3.2, there are many types of
symmetries potentially relevant to image understanding, but
often detection of the reflectional type only has been
considered; less often considered are skew-reflectional
(reflect and shear) [56], antireflectional [54], and periodic-
translational [47], [51]. Researchers in Biological Vision
generally focus on global symmetry, which, having an
established definition, makes it suitable for stimulus char-
acterization. Researchers in Computational Vision, recogniz-
ing that global symmetry is a rather rare circumstance in
natural images, often focus on advancing definitions of local
symmetry and algorithms for its detection [42], [43], [57], [58],
[59], [60], [61]. For biologists and psychologists, the interest in
symmetry arises mostly from informal observation of
sensitivity, from the suggestion of it as a Gestalt grouping
principle, from its potential for use in detecting biological
structures such as faces and flowers [62], and for its role in
mate selection [63]. For computer vision engineers, symme-
try is thought to be useful for image description in general,
and object recognition in particular [64].
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Fig. 1. The different types of image symmetry, relative to the class of image isometries, but cases without periodic translation only. The links show
supertype-subtype relationships from above to below. Colored panels indicate the membership of a countably infinite family of that symmetry type,
e.g., all J2;n panels are pale green. Dashed links indicate that the type/subtype relationships only hold between certain orders of the groups at either
end of the link. Type/subtype relationship can also hold within a node when the orders permit it; for example, J1;3 is a subtype of J1;9. The contour
plots within the panels show an example image with the symmetry type. These were generated by applying the symmetrization procedure described
in Section 4 to random images. Overlaid on these plots are lines of reflection (red), lines of negating-reflection (green), centers of rotation (red),
centers of negating-rotation (yellow), and lines of centers of negating-rotation (yellow). These lines and centers are not shown when they are too
numerous, e.g., lines of reflection for J3.



The methods and models proposed for symmetry
detection and classification can be fairly complex. Some
require first processing the image to create an edge map
[61], [65], others are based on nonlinear combination of the
outputs of multiple linear filters positioned at distinct image
locations (e.g., either side of a line of reflection) [66], and yet
others detect and match point features [67], [68].

Our approach to image symmetry, presented in the
remainder of the paper, is focused on local symmetry. We
recognize, as others have done before, that whereas
extended symmetry in images is a strong but rare image
cue, local symmetry is actually commonplace; and it is not
just the local reflectional symmetry to which the Medial
Axis Transform [69] is attuned, but a range of local
symmetry types. The results that we will present concern
when a symmetry can be ruled out on the basis of the
response of linear filters. Possibly, this is useful for
symmetry detection in the conventional sense, but our
aim is rather to discover what natural landmarks exist in
filter response space that could serve as a basis for solving
the filters-to-features problem. The symmetries that we
shall consider for detection are those defined by groups of
images isometries. Detection of other types of symmetries
would also be of interest.

3 LINEAR FILTERS AND IMAGE SYMMETRY

Linear filters are typically the first stage in Computer Vision
systems and are a good approximation to the first stage of
cortical analysis in mammalian vision systems (see [70] for a

discussion of the limits of this approximation). We cannot
conceive of a simpler mode of image measurement. In this
section, we consider whether measurement with linear
filters has any sensitivity to the symmetry group of an
image; in Section 6, we will extend our consideration to the
sensitivity to symmetry type of a particular family of linear
filters, the DtGs.

On cursory analysis, linear filters can detect image
symmetry but it seems to require multiple filters at distinct
locations to do so. For example, a necessary condition for a
particular reflectional symmetry would be that some filter F
gives the same response as F 0, the reflected filter in the
reflected position. The cursory analysis is wrong though,
and multiple filters are not necessary for symmetry
detection. Consider, for instance, the two-pixel-support

filter, such as used in finite-difference schemes. If this
filter is positioned so that it straddles a candidate line of
reflection, then a necessary criterion for the symmetry is
that this single filter gives a zero response—we will call this
its critical response.

Note that the above criterion—zero response by the
filter—is a necessary condition for the reflectional symmetry
to be present, but is not sufficient. This is a general limitation
that exists for all filter-based symmetry detection. It is
inevitable given either the linearity or the locality of the
measurements. We do not believe that this limitation
undermines the correctness or significance of our analysis,
but it should not be ignored. We characterize the limitation
as follows: the responses of appropriate, localized, linear
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filters can tell you when a symmetry is present so far as the
filters are concerned.

We can generalize from the above with the definition:
A (nonzero) filter is said to be sensitive to a symmetry if
it gives the same (critical) response to all images that
have the symmetry.

To formalize this, we use an inner product notation

hF jIi ¼
R
~x2IR2 F ð~xÞIð~xÞ to denote the measurement of an

image by a filter F : IR2 ! IR. Let K � Eð2Þ � Eð1Þ be a

group of image isometries. We can then say:

Definition 1 (Sensitivity of a filter FF to a group of image

isometries KK). F 6� 0 is sensitive to K () 9 f 2
IR 8I Aut½I� 	 K ) hF j Ii ¼ f .

The definition of sensitivity, although unambiguous,

does not allow us readily to determine whether a given

filter is sensitive to a given symmetry—the difficulty lies in

ascertaining the truth of the universal quantification across

images. We have solved this by finding a provably

equivalent criterion without any universal quantification.

Our proof makes use of two types of operations on 2D

scalar functions: i-symmetrization, which we typically

apply to images and f-symmetrization that we typically

apply to filters. In i-symmetrization, denoted and defined by

IK :¼ jKj�1P
g2K g � I, we separately apply to an image

each transformation of a group of image isometries and take

the mean of the results. In f-symmetrization, denoted and

defined by F ðKÞ :¼ jKj�1P
ði;sÞ2K jijs � F , we separately

apply to a filter each of the spatial parts of a group of

image isometries, weight the transformed filters by the

determinant of the corresponding intensity isometry, and

take the mean of the results. For both types of symmetriza-

tion, the summation over the group becomes an integration

if the group is continuous. We now state and prove three

propositions concerning i-symmetrization, followed by a

proposition about f-symmetrization, followed by the main

theorem of the paper.

Proposition 4 (i-symmetrization makes symmetric images).

Aut½IK � 	 K (or, equivalently, 8g 2 K g � IK ¼ IK).

Notes. The example symmetric images of Fig. 1 were

generated by i-symmetrizing noise images.

Proof. Let h 2 K. Then, making use of P2:

h � IK ¼ h � jKj�1
X
g2K

g � I
 !

¼ jKj�1
X
g2K

h � g � I

¼ jKj�1
X
g2K
ðh � gÞ � I ¼ jKj�1

X
g2K

g � I ¼ IK:

Hence, Aut½IK � 	 K as required. tu
Proposition 5 (i-symmetrization has no effect on sym-

metric images).

Aut½I� 	 K ) IK ¼ I:

Proof. Assume that Aut½I� 	 K and so 8g 2 K g � I ¼ I.

Plug this into the definition of i-symmetrization:

IK ¼ jKj�1
X
g2K

g � I ¼ jKj�1
X
g2K

I ¼ I:

ut

Proposition 6 (Variation of i-symmetrization is
f-symmetrization).

�IK

�I
�I ¼ ð�IÞðKÞ:

Proof. Trivial given P3. tu
Proposition 7 (f-symmetrization makes quasisymmetric

filters).

8ði; sÞ 2 K jijs � F ðKÞ ¼ F ðKÞ:

Notes. Compare with P4 to see a difference in effect
between i and f-symmetrizations.

Proof.

jijs � F ðKÞ ¼ jijs � jKj�1
X
ðj;tÞ2K

jjjt � F

0
@

1
A

¼ jKj�1
X
ðj;tÞ2K

jijjjjs � t � F

¼ jKj�1
X
ðj;tÞ2K

ji � jjðs � tÞ � F

¼ jKj�1
X
ðj;tÞ2K

jjjt � F ¼ F ðKÞ:

ut

Theorem 1 (Sensitivity of a filter (F ) to a group (K) of
image isometries). The following are true or false together:

. F is sensitive to K,

. F ðKÞ � 0,

. hF j F ðKÞi ¼ 0.

Proof. Define the functional kðIÞ ¼ hF j IKi. Compute the
variation of k with respect to I, and simplify the result
making use of P1 and P6.

�kðIÞ
�I

�I ¼
�
F j ð�IÞðKÞ

�
¼ F

�����jKj�1
X
ði;sÞ2K

jijs � �I
* +

¼ jKj�1
X
ði;sÞ2K

hF jjijs � �Ii

¼ jKj�1
X
ði;sÞ2K

hji�1js�1 � F j�Ii

¼ jKj�1
X
ði;sÞ2K

jijs � F j�I
* +

¼
�
F ðKÞj�I

�
:
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1. F is sensitive to K ) F ðKÞ � 0.
Assume the premise. Then, since by P4

Aut½IK � 	 K, it follows that kðIÞ is constant, and
so the variation of kðIÞwith respect to I must be 0.

For this to be true for all �I, it must be that F ðKÞ �
0 as required to prove.

2. F ðKÞ � 0) F is sensitive to K.
Assume that F ðKÞ � 0; therefore �

�I kðIÞ ¼ 0;

therefore kðIÞ is constant. Define f :¼ kð Þ to be

that constant value. Then, since by P5 Aut½I� 	
K ) I ¼ IK , it follows that Aut½I� 	 K ) hF j
Ii ¼ hF j IKi ¼ kðIÞ ¼ f .

3. F ðKÞ � 0) hF j F ðKÞi ¼ 0.
Trivial.

4. hF j F ðKÞi ¼ 0) F ðKÞ � 0.
Assume the premise, then

8ði; sÞ 2 Khjijs � F jjijs � F ðKÞi ¼ 0:

Then P7 allows simplification to

8ði; sÞ 2 Khjijs � F jF ðKÞi ¼ 0:

Continuing:

8 i; sð Þ 2 Khjijs � F jF ðKÞi ¼ 0

) jKj�1
X
ði;sÞ2J

jijs � F
����F ðKÞ

* +
¼ 0

)
�
F ðKÞ

��F ðKÞ� ¼ 0

) F ðKÞ � 0:

Together, steps 1-4 imply the theorem. tu

3.1 Notation for Sets of Filters

In the following sections, we will typically deal with sets of

filters and their span. It is convenient for presentation to

assemble a set of filters (F1; . . . ; Fn) into a vector, denoted by
~F :¼ ðF1 . . .FnÞT. We will then use a dot product notation to

denote the filter in the span of ~F picked out by a weight

vector ~w ¼ ðw1 . . .wnÞT as follows: ~w 
 ~F :¼
Pn

i¼1 wiFi. We

will also use the same inner product notation we use for

measurement by a single filter to denote the measurement

by a family of filters, i.e., h~F j Ii :¼ ðhF1 j Ii . . . hFn j IiÞT.

We extend the notation for i and f-symmetrizations to

vectors of filters in the obvious way, e.g., ~F
ðKÞ ¼ ðF ðKÞ1 . . .

F ðKÞn Þ
T. Finally, we define an outer product between sets of

filters as follows:

~A� ~B :¼
hA1 j B1i . . . hA1 j Bni

..

. . .
. ..

.

hAn j B1i . . . hAn j Bni

0
B@

1
CA:

4 DTG FILTERS, JETS, AND JET SPACE

As this paper is self-contained, in this section, we review the

definitions and properties of DtGs and the measurement of

image structure using them.

4.1 Families of DtG Filters

Gaussian Derivative (DtG) filters of scale � > 0 are defined
in 1D by

GðxÞ :¼ G0ðxÞ :¼ ð2��2Þ�
1
2e�

x2

2�2 ;

GnðxÞ :¼ dn

dxn
GðxÞ ¼ �1

�
ffiffiffi
2
p

� �n
Hn

x

�
ffiffiffi
2
p

� �
GðxÞ; n 2 ZZþ;

where Hn is the nth Hermite polynomial; and in 2D by

Gmnðx; yÞ :¼ GmðxÞ GnðyÞ; m; n 2 ZZþ;

Gðx; yÞ :¼ G00ðx; yÞ:

They are used as a general purpose method to probe an
image location (which, for simplicity, we assume is at the
origin 0) by computation of inner products:

jmn :¼ hGmnjIi:

Typically, one measures with a family of DtG filters up to

some order. In this paper, we are concerned with the 2nd

order family fGmn j 0 � mþ n � 2g; henceforth the DtG

family. See Fig. 2. We will write ~G :¼ ðG00 . . .G02ÞT for a

vector of these filters. The vector of DtG responses ~j ¼
ðj00 . . . j02ÞT is called a jet and is said to be an element of jet

space. We will write ~jðIÞ :¼ h~G j Ii for the jet arising from

measuring the image I.
The suitability of DtGs as the front-end of an uncommitted

vision system arises from the symmetries that individual
filters and families possess [8]. First, among these symmetries
is a scale symmetry, which manifests in a change of size, but
not of shape, when a DtG is blurred with a Gaussian kernel
[8]. Second is that the linear span of a family of DtGs is
rotationally symmetric [5], a property which is typically
called steerability [71]. Steerability allows, for example, a
first-order derivative DtG filter, at any desired orientation, to
be constructed as a linear sum of any two first-order
derivative DtG filters in distinct directions. For example, the
sum of the horizontal and vertical first-order derivative DtG
filters shown in the middle row of the triangle of filters in the
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Fig. 2. Schematically, (top-left) the measurement of image structure
using a bank of DtG filters up to second order and the resulting jet (top-
right). The orbit in jet space that would result if the patch was rotated,
brightened, etc., is illustrated by a squiggle (bottom-left). Factoring the
jet space by a group collapses each orbit to a single point of the orbifold,
a different point for each orbit. A mildly distorting embedding of the
orbifold into 3D space is shown at bottom-right.



top-left of Fig. 2 is precisely equal to a DtG filter, which is a
first-order derivative in a direction at 45 degrees to the
horizontal and vertical. It is worth noting that, in practice,
there is no need first to construct a desired filter in this
manner, and then to apply it to the image. Instead, because of
linearity, one needs only to apply the full basis set of filters,
and then linearly combine the filter outputs to compute the
responses that would have been obtained had the desired
filter actually been synthesized and applied.

4.2 The Intrinsic Component of Jets

The symmetries of a DtG filter family give it the potential to
measure intrinsic image structure; but additional work
needs to be done to make it explicit, as raw filter responses
are still a mixture of intrinsic and extrinsic aspects of image
structure. A representation that isolates the intrinsic
component of DtG measurements (up to second order)
has been developed, and will now be summarized so that it
can be used in the remainder of the paper; see [1] for a fuller
treatment. The representation (see Fig. 2) works by factoring
out of the 6D second order jet space the changes due to the
group (denoted by D1ð0Þ �Aþð1Þ , i.e., the cross product of
the infinite Dihedral group with the 1D special Affine
group) generated by rotations about the measurement
point, reflection in lines through the measurement point,
and strictly positive affine rescalings of the intensity (i.e.,
v 7! �þ �v; � > 0). We regard these changes as extrinsic as
they typically arise from changes in the relationship
between imager and scene, rather than from scene changes.
We do not claim this as the final word in what group best
models extrinsic image changes.

The factoring proceeds by considering the foliation of the
jet space into orbits, each corresponding to the range of jets
obtained as a particular image patch is intensity scaled,
reflected, and rotated. A new space—an orbifold—is
constructed that has one point for each orbit. Like manifolds,
orbifolds are locally like IRn but they can have boundaries,
creases, and corners. The topology of an orbifold arises from
the neighborhood relations among the orbits in the factored
space. In the case of factoring the 6D jet space, the induced
orbifold has a 0D component that corresponds to the orbit,
which consists of the jet space origin only, and a 3D
component, each point of which corresponds to a 3D orbit in
the jet space. When we refer to the orbifold without
qualification, we will mean the 3D component; we will be
explicit when we refer to the 0D component.

A coordinate system ðl; b; aÞ for the orbifold is given by
Griffin [1]:

l ¼ tan�1 c20 þ c02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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;

where cij are scale-normalized derivatives defined by
cij :¼ �iþjjij. Roughly speaking, the l-coordinate expresses

a normalized Laplacean value, and the a and b-coordinates
express, respectively, the relative magnitudes and angle
between the first and second order structures. In Section 6,
and the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2009.91, we will sometimes find it
convenient to use the shape index (s) descriptor of pure
second order structure [72], [73], [74], which can be
computed using tan s ¼ csc b tan l.

In [1], we argue for the following norm on jet space,

k~ck� ¼ ððc2
10 þ c2

01Þ þ 1
2ðc2

20 þ 2c2
11 þ c2

02ÞÞ
1
2, and from it we

induce a metric on the orbifold that can be expressed as

the line dL2 ¼ dl2 þ cos2 lðdb2 þ 2 sin2 2b
5�3 cos 2b da

2Þ. We defined an

embedding
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of the orbifold into euclidean space. Using the line element,
we were able to show that this embedding is only mildly
distorting, so its use for visualization (Figs. 2, 3, and 4) is not
too misleading.

5 DTG FILTERS AND IMAGE SYMMETRY

In Section 2.2, we summarized the possible symmetries of
images. In Section 3, we established a link between these
symmetries and linear image filters via an easily applicable
test of the sensitivity of any given filter to any given
symmetry group. In Section 4, we described the DtG family
of filters. We now determine the symmetry sensitivity of the
DtG family.

The symmetry sensitivity of the DtG family is fully
determined by considering the sensitivities of individual
linear filters only; there is no need to consider the sensitivity
of nonlinear combinations of filter responses. This is because
the possible jets (measured as always at the origin) of images
with a particular symmetry fill an affine subspace of jet space
(follows from P3) and an affine subspace is fully determined
by the span of directions in its complementary orthogonal
subspace and where the subspace intersects these directions.
Each direction corresponds to a filter in the DtG family,
which is sensitive to the symmetry, and the value of the
intersect corresponds to the filter’s critical response.

We can go beyond determining the sensitivity to (mere)
symmetry groups, and determine the sensitivity to sym-
metry types. To do this, we will make use of the jet space
factorization of Section 4.2. In the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2009.91, we
provide further details on the method: In this Section, we
only describe and interpret the results.

In presenting our results, we will make use of the
concept of a sensitivity submanifold (SS). This is the affine
subspace of jet space in which the jets measured at the
origin arising from images with a particular symmetry must
lie. We will also use SS to refer to the (topological closure of
the) image of the jet space SS when projected into the
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orbifold—context will make it clear which sense is
intended. Working with the closure allows for simpler
presentation without loss of important detail.

5.1 The Symmetry-Sensitivity Lattice

Fig. 3 shows the complete results on symmetry-type
sensitivity of the DtG family. Periodic symmetries are
unmentioned in the figure because, as proved in the
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2009.91, DtGs are never sensitive to these.

Consider a particular symmetry type: for example, the
centered subtype of J2;2 that we denote by Jc2;2. As shown in
Fig. 1 and [41], this symmetry type consists of invariance to
perpendicular mirrors intersecting at the measurement
point. Consider a particular group, denoted by K, of this
type: for example, the one with horizontal and vertical
mirror lines. There will be various filters in the span of the
DtG family that are sensitive to K-symmetry, as can be
determined using the test of T1. These filters will always
give the same response if the image has K-symmetry, or, to
put it the other way, there are responses that these filters
will not give if the image has K-symmetry; hence, there are
restrictions on the possible jets of K-symmetric images.

The restrictions on the jets of K-symmetric images can
be mapped into the orbifold. It turns out that there are
restrictions there too: The orbifold components of the jets
of K-symmetric images must lie on the right-hand crease
of the orbifold. Thus, the right-hand crease is the SS of the
group K. Moreover, since the orbifold is, by construction,
“blind” to orientation, the right-hand crease is the SS of
any group of type Jc2;2; hence, we say that it is the SS of the
Jc2;2 symmetry type. This is indicated by the leftmost box of
Fig. 3, middle row.

The orbifold is not blind to the position of the
measurement point relative to the symmetry. So, for
example, the SS for noncentered J2;2 groups is different. If
the measurement point is on exactly one of the mirrors, we
say that the symmetry type is “aligned” and denote it by
Ja2;2. The SS of Ja2;2 is the exterior of the orbifold—this is
indicated by the leftmost box of the second row (from the
bottom) in Fig. 3. If the measurement point is on neither of
the mirrors, we say that the symmetry is in “general”
position and denote it by Jg2;2—the SS of this is the entirety
of the orbifold.

Looking across the different boxes of Fig. 3, one can see that

the SS is assembled from a limited collection of components.

Some of these components are aligned in an obvious manner

to the geometry of the orbifold: its exterior surface

(jlj � �
2 ^ b 2 ½0; �2� ^ a 2 f0; �2g), one of the two creases on the

exterior (jlj � �
2 ^ b ¼ �

2 ), as shown in the Jc1;2 panel, and the

pair of apical points at the ends of the creases (jlj ¼ �
2 ) as

shown in the J5 pane. Some are less obviously aligned: a pair

of leaf-shaped (more precisely lanceolate) internal cross

sections (jsj ¼ �
4 ^ ðb; aÞ 2 ½0; �2�

2, where s is the shape index

defined in Section 4.2), shown in the J10 panel; two curves,

each made of one boundary from each of the two leaf-shaped

cross sections (b 2 ½0; �2� ^ ðs; aÞ 2 fð� �
4 ; 0Þ; ð�4 ; �2Þg and

b 2 ½0; �2� ^ ðs; aÞ 2 fð� �
4 ;

�
2Þ; ð�4 ; 0Þg), shown in the Ja11 and

J3 panels; and a rod across the interior of the orbifold

(l ¼ 0 ^ b 2 ½0; �2� ^ a ¼ �
4 ), shown in the Ja6;1 panel.

The lattice structure of Fig. 3 is based on inclusion
relations between the various SSs. For example, the SS for J3

is linked to and below that of Jslope because SSðJ3Þ 

SSðJslopeÞ. Observe that this relation is similar to the relation
J3 � Jslope. This is an example of a general rule expressed in
the following proposition:
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Fig. 3. The sensitivity submanifolds (SSs) of different symmetry types are shown in red. The different possible SSs are arranged in a lattice induced
by inclusion relations. The symmetry-type labels correspond to those used in Fig. 1 and [41]. Where necessary, superscripts are used to indicate the
spatial relationship between jet measurement point and the symmetry type. The variable c superscript indicates that the measurement point is at a
center of rotation; a indicates that it is “aligned” on exactly one line of reflection or antireflection, but not centered (aþ or a� is used if necessary to
indicate the type of the reflection); g indicates that it is in general position, neither centered nor aligned.



Proposition 8 (Symmetry subtype relation implies SS

subset relation). If A;B are symmetry types, then
A � B) SSðAÞ 	 SSðBÞ.

Proof. Assume the premise. Hence, any B-symmetric image
is A-symmetric. Hence, the jets that can arise from
measuring B-symmetric images are a subset of the jets
that can arise from measuring A-symmetric images. This
nesting is trivially preserved under projection into the
orbifold. tu

P8 is strong enough for us to characterize the lattice of
Fig. 3 as “compatible” with that of Fig. 1, but its limitations
should be borne in mind. In particular, the implied subset
relations between SS can be improper (for example, Jc1;2 �
Jc2;2 but SSðJc1;2Þ ¼ SSðJc2;2Þ) and the implication of P8 is not
from right-to-left (for example, SSðJc6;2Þ ¼ SSðJc7;4Þ but
Jc6;2 6� Jc7;4 ^ Jc7;4 6� Jc6;2).

5.2 Examples on an Image

In this section, we aim to encourage informal under-
standing of what it means for an image to have a symmetry
only in so far as a DtG filter family has assessed. The caveat
means that the symmetry is only asserted to manifest locally
and partially.

The “local” part of the caveat arises because a family of
DtG filters (effectively) probes only a restricted “local” part
of the image. The idea of a symmetry holding only over a
local region is a variant of the idea of a symmetry holding
over only a limited region, such as occurs in all real-world
tiling patterns [75]. The “partial” part of the caveat arises
because assessment of the symmetry is incomplete, even
locally. This is because of the much greater number of
degrees of freedom that an image has locally than the

number of filters used to probe those degrees of freedom.

We are familiar with many examples of partial local

symmetry, for instance, the translational symmetry of a

row of soldiers. Since the row is finite, the symmetry is only

local. Since the soldiers agree in their personhood, dress,

and posture, but disagree in other aspects of their

appearance, the symmetry is only partial.

Although partial symmetry can be found in common-

place examples, it is not always easy to perceive. To help in

understanding the partial local symmetries that DtG filter

families determine, we have prepared Fig. 4, which shows

11 example patches extracted from a single gray-level

image. The patches were selected by finding image

locations where it is unambiguous which is the smallest

(tightest) SS close to the orbifold position of the jet. In

selecting the 11 example patches, some low-contrast

patches were rejected, but otherwise the patches were not

hand-selected. Jets were calculated at a scale of � ¼ 7. The

patches are 492 pixels. The overlaid circles, of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
6
pp

� � 16 pixels, show the fuzzy region (defined by

the outermost inflexion of the filters) that the DtG family

roughly probes.
Each patch has been labeled with the symmetry of those

corresponding to the tightest nearby SS that, by eyeball

measure, it best possesses. An overlay of mirror lines,

translation directions, rotation centers, etc., also indicates

the symmetry. Again by eye, we have ordered the patches

depending on the quality of the symmetry as assessed

across the aperture probed by the DtGs. Thus, patch (a) has

an excellent Jg9 symmetry, patch (e) has approximate Jg5
symmetry, and patch (i) has rough Ja2;1 symmetry.
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Fig. 4. Eleven sample patches (right) taken from an example gray-level image (left). Patch border color indicates where in the image the patch
came from. Patches are labeled on their left with the symmetry that they are judged approximately to have. The orbifold locations of the jet
measured at each patch center, at a scale indicated by the purple circles, are indicated by the small spheres in the bottom-left diagram. Patches are
ordered (a)-(k) on the basis of the degree of approximation (locally) of the symmetry written to their left; alphabetically, earlier patches have the
symmetry more clearly.



The message of Fig. 4 is that having a jet compatible with
some symmetry guarantees only that the patch, at full
resolution, will roughly have the symmetry. The stronger
result, already clearly shown by the theorems in this paper,
but confirmed by Fig. 4, is that if the image locally has a
symmetry that the DtGs are sensitive to, then the orbifold
location of the jet will correctly reflect that. We thus stress
that what we have mapped out for DtGs are merely
sensitivities; we make no claim about their usefulness for
symmetry detection in the normally understood sense.
Also, we observe that there can be symmetries strongly
present in an image (e.g., the periodic symmetry of the
banisters in Fig. 4) which do not give rise to strongly
constrained jets. This is because the second order DtG
family is not sensitive to this symmetry, at least not in the
way in which we have defined sensitivity.

6 SUMMARY AND CONCLUSION

We started by describing the filters-to-features problem: the
problem of partitioning into qualitatively distinct feature
categories, the joint-response space of a collection of linear
filters. We explained that the difficulty is that filter response
space is a landmark-free vector space, so there is no clue
how to carve it up. We reviewed previous approaches to
defining structure in filter response space for the purpose of
guiding the partitioning. We described how these ap-
proaches varied in their reliance on natural image statistics
versus geometrical considerations, but that no previous
method had been truly purely geometrical. We proposed
that consideration of what filter responses told one about
the symmetry of the measured image had the potential to
define the needed additional structure, in a purely
geometrical manner. We stated and proved a theorem that
gave an easy test for whether a filter was informative about
the presence of a symmetry. We used the test to explore the
symmetry sensitivity of DtG filters, a class of filters that we
introduced as an important model of biological vision and a
useful tool in computer vision. We found that DtG filters
showed excellent sensitivity to different symmetries, and a
rich network of landmarks in their response space was
induced, each corresponding to responses that are reliably
obtained whenever the image has particular symmetries.

Our stated goal, defining additional structure on DtG
response space, was therefore reached. It remains for future
work to determine whether this structure provides a suitable
basis for a useful system of feature categories. Optimistically,
we recall our argument that symmetry type is not merely an
intrinsic property of the image, but a particularly funda-
mental one; pessimistically, we object that the concern of
visual systems is to see through the image to the scene
beyond, and we lack an argument that ties image symmetries
to scene symmetries, even in a noisy manner.

ACKNOWLEDGMENTS

This work was supported by the EPSRC-funded project
“Basic Image Features” EP/D030978/1.

REFERENCES

[1] L.D. Griffin, “The Second Order Local-Image-Structure Solid,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 8,
pp. 1355-1366, Aug. 2007.

[2] R.A. Young and R.M. Lesperance, “The Gaussian Derivative
Model for Spatial-Temporal Vision: II. Cortical Data,” Spatial
Vision, vol. 14, nos. 3/4, pp. 321-389, 2001.

[3] J. Weickert, S. Ishikawa, and A. Imiya, “On the History of
Gaussian Scale-Space Axiomatics,” Gaussian Scale-Space Theory,
pp. 45-59, Kluwer, 1997.

[4] M.A. Georgeson, “From Filters to Features—Location, Orienta-
tion, Contrast and Blur,” Higher-Order Processing in the Visual
System, pp. 147-165, Wiley, 1994.

[5] J.J. Koenderink and A.J. van Doorn, “Representation of Local
Geometry in the Visual-System,” Biological Cybernetics, vol. 55,
no. 6, pp. 367-375, 1987.

[6] J.J. Koenderink, “Operational Significance of Receptive-Field
Assemblies,” Biological Cybernetics, vol. 58, no. 3, pp. 163-171, 1988.

[7] J.J. Koenderink and A.J. van Doorn, “Receptive-Field Families,”
Biological Cybernetics, vol. 63, no. 4, pp. 291-297, 1990.

[8] J.J. Koenderink and A.J. van Doorn, “Generic Neighborhood
Operators,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 14, no. 6, pp. 597-605, June 1992.

[9] L. Debnath, “On Hermite Transforms,” Mathematicki Vesnik, vol. 1,
no. 16, pp. 285-292, 1964.

[10] L. Debnath, Integral Transforms and Their Applications. CRC Press,
1995.

[11] L.M.J. Florack et al., “Scale and the Differential Structure of
Images,” Image and Vision Computing, vol. 10, no. 6, pp. 376-388,
1992.

[12] L.D. Griffin, “Histograms of Infinitesimal Neighbourhoods,” Scale
Space and Morphology in Computer Vision, M. Kerckhove, ed.,
pp. 326-334, Springer, 2001.

[13] T. Lindeberg and B.M. ter Haar Romeny, “Linear Scale-Space
Theory I: Basic Theory,” Geometry-Driven Diffusion in Computer
Vision, B.M. ter Haar Romeny, ed., pp. 1-38, Kluwer, 1994.

[14] B.M.T. Romeny et al., “Higher-Order Differential Structure of
Images,” Image and Vision Computing, vol. 12, no. 6, pp. 317-325,
1994.

[15] B.M. ter Haar Romeny, Front-End Vision and Multi-Scale Image
Analysis. Kluwer, 2003.

[16] D. Marr, Vision. W.H. Freeman & Co., 1982.
[17] L.D. Griffin and M. Lillholm, “Hypotheses for Image Features,

Icons and Textons,” Int’l J. Computer Vision, vol. 71, no. 3, pp. 213-
230, 2006.

[18] X.W. Liu and D.L. Wang, “A Spectral Histogram Model for Texton
Modeling and Texture Discrimination,” Vision Research, vol. 42,
no. 23, pp. 2617-2634, 2002.

[19] S.-C. Zhu et al., “What Are Textons?” Int’l J. Computer Vision,
vol. 62, no. 1, pp. 121-143, 2005.

[20] M. Varma and A. Zisserman, “A Statistical Approach to Texture
Classification from Single Images,” Int’l J. Computer Vision, vol. 62,
nos. 1/2, pp. 61-81, 2005.

[21] L.D. Griffin, “Feature Classes for 1D, Second Order Structure
Arise from the Maximum Likelihood Statistics of Natural
Images,” Network: Computation in Neural Systems, vol. 16, nos. 2/
3, pp. 301-320, 2005.

[22] L.D. Griffin, M. Lillholm, and M. Nielsen, “Natural Image Profiles
Are Most Likely to be Step Edges,” Vision Research, vol. 44, no. 4,
pp. 407-421, 2004.

[23] L.D. Griffin, “Local Image Structure, Metamerism, Norms, and
Natural Image Statistics,” Perception, vol. 31, no. 3, pp. 377-377,
2002.

[24] E. Tagliati and L.D. Griffin, “Features in Scale Space: Progress
on the 2D Second Order Jet,” Lecture Notes in Computer Science,
M. Kerckhove, ed., pp. 51-62, Springer, 2001.

[25] J.J. Koenderink and A.J. van Doorn, “Receptive Field Assembly
Specificity,” J. Visual Comm. and Image Representation, vol. 3, no. 1,
pp. 1-12, 1992.

[26] J.J. Koenderink, “What Is a Feature?” J. Intelligent Systems, vol. 3,
no. 1, pp. 49-82, 1993.

[27] J.J. Koenderink and A.J. van Doorn, “Metamerism in Complete
Sets of Image Operators,” Advances in Image Understanding,
pp. 113-129, Wiley-IEEE CS Press, 1996.

[28] J.J. Koenderink and A.J. van Doorn, “Local Image Operators and
Iconic Structure,” Algebraic Frames for the Perception-Action Cycle,
G. Sommer and J.J. Koenderink, eds., pp. 66-93, Springer, 1997.

[29] E. Cassirer, “The Concept og Group and the Theory of Percep-
tion,” Philosophy and Phenomenological Research, vol. 5, no. 1, pp. 1-
36, 1944.

GRIFFIN AND LILLHOLM: SYMMETRY SENSITIVITIES OF DERIVATIVE-OF-GAUSSIAN FILTERS 1081



[30] F. Klein, “A Comparative Review of Recent Researches in
Geometry,” Bull. New York Math. Soc., vol. 2, pp. 215-249,
translated by M.W. Haskell, 1892.

[31] D. Lewis, “Extrinsic Properties,” Philosophical Studies, vol. 44,
pp. 111-112, 1983.

[32] S.Y. Auyang, Mind in Everyday Life and Cognitive Sciences. MIT
Press, 2000.

[33] D. Schattschneider, MC Escher: Visions of Symmetry. Plenum Press,
1990.

[34] J.J. Koenderink and A.J. van Doorn, “Image Processing Done
Right,” Proc. European Conf. Computer Vision, 2002.
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