
Dynamic Programming and Graph Algorithms in Computer
Vision*

Pedro F. Felzenszwalb and
Computer Science Department, University of Chicago, Chicago, IL 60637. pff@cs.uchicago.edu.

Ramin Zabih
Computer Science Department, Cornell University, Ithaca, NY 14853. rdz@cs.cornell.edu

Abstract
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas,
and has been successfully applied to many vision problems. Discrete optimization techniques are
especially interesting, since by carefully exploiting problem structure they often provide non-trivial
guarantees concerning solution quality. In this paper we briefly review dynamic programming and
graph algorithms, and discuss representative examples of how these discrete optimization techniques
have been applied to some classical vision problems. We focus on the low-level vision problem of
stereo; the mid-level problem of interactive object segmentation; and the high-level problem of
model-based recognition.

Keywords
Combinatorial Algorithms; Vision and Scene Understanding; Artificial Intelligence; Computing
Methodologies

1 Optimization in computer vision
Optimization methods play an important role in computer vision. Vision problems are
inherently ambiguous and in general one can only expect to make “educated guesses” about
the content of images. A natural approach to address this issue is to devise an objective function
that measures the quality of a potential solution and then use an optimization method to find
the best solution. This approach can often be justified in terms of statistical inference, where
we look for the hypothesis about the content of an image with the highest probability.

It is widely accepted that the optimization framework is well suited to deal with noise and other
sources of uncertainty such as ambiguities in the image data. Moreover, by formulating
problems in terms of optimization we can easily take into account multiple sources of
information. Another advantage of the optimization approach is that in principle it provides a
clean separation between how a problem is formulated (the objective function) and how the
problem is solved (the optimization algorithm). Unfortunately the optimization problems that
arise in vision are often very hard to solve.

In the past decade there has been a new emphasis on discrete optimization methods, such as
dynamic programming or graph algorithms, for solving computer vision problems. There are
two main differences between discrete optimization methods and the more classical continuous
optimization approaches commonly used in vision [83]. First, of course, these methods work
with discrete solutions. Second, discrete methods can often provide non-trivial guarantees

NIH Public Access
Author Manuscript
IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

Published in final edited form as:
IEEE Trans Pattern Anal Mach Intell. 2011 April ; 33(4): 721–740. doi:10.1109/TPAMI.2010.135.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

about the quality of the solutions they find. These theoretical guarantees are often accompanied
by strong performance in practice. A good example is the formulation of low-level vision
problems such as stereo using Markov Random Fields [92, 97] (we will discuss this in detail
in section 7).

1.1 Overview
This survey covers some of the main discrete optimization methods commonly used in
computer vision, along with a few selected applications where discrete optimization methods
have been particularly important. Optimization is an enormous field, and even within computer
vision it is a ubiquitous presence. To provide a coherent narrative rather than an annotated
bibliography, our survey is inherently somewhat selective, and there are a number of related
topics that we have omitted. We chose to focus on a dynamic programming and on graph
algorithms, since they share two key properties: first, they draw on a body of well-established,
closely inter-related techniques, which are typically covered in an undergraduate course on
algorithms (using a textbook such [24, 60]); and second, these methods have had a significant
and increasing impact within computer vision over the last decade. Some topics which we do
not explicitly cover include constrained optimization methods (such as linear programming)
and message passing algorithms (such as belief propagation).

We begin by reviewing some basic concepts of discrete optimization and introducing some
notation. We then summarize two classical techniques for discrete optimization, namely graph
algorithms (section 3) and dynamic programming (section 4); along with each technique, we
present an example application relevant to computer vision. In section 5 we describe how
discrete optimization techniques can be used to perform interactive object segmentation. In
section 6 we discuss the role of discrete optimization for the high-level vision problem of
model-based recognition. In section 7 we focus on the low-level vision problem of stereo.
Finally in section 8 we describe a few important recent developments.

2 Discrete optimization concepts
An optimization problem involves a set of candidate solutions and an objective function

 that measures the quality of a solution. In general the search space is defined
implicitly and consists of a very large number of candidate solutions. The objective function
E can either measure the goodness or badness of a solution; when E measures badness, the
optimization problem is often referred to as an energy minimization problem, and E is called
an energy function. Since many papers in computer vision refer to optimization as energy
minimization, we will follow this convention and assume that an optimal solution is
one minimizing an energy function E.

The ideal solution to an optimization problem would be a candidate solution that is a global

minimum of the energy function, . It is tempting to view the energy
function and the optimization methods as completely independent. This suggests designing an
energy function that fully captures the constraints of a vision problem, and then applying a
general-purpose energy minimization technique.

However, such an approach fails to pay heed to computational issues, which have enormous
practical importance. No algorithm can find the global minimum of an arbitrary energy function
without exhaustively enumerating the search space, since any candidate that was not evaluated
could turn out to be the best one. As a result, any completely general minimization method,
such as genetic algorithms [47] or MCMC [76], is equivalent to exhaustive search. On the other
hand, it is sometimes possible to design an efficient algorithm that solves problems in a
particular class, by exploiting the structure of the search space and the energy function E.
All the algorithms described in this survey are of this nature.

Felzenszwalb and Zabih Page 2

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Efficient algorithms for restricted classes of problems can be very useful since vision problems
can often be plausibly formulated in several different ways. One of these problem formulations,
in turn, might admit an efficient algorithm, which would make this formulation preferable. A
natural example, which we will discuss in section 7, comes from pixel labeling problems such
as stereo.

Note that in general a global minimum of an energy function might not give the best results in
terms of accuracy, because the energy function might not capture the right constraints. But if
we use an energy minimization algorithm that provides no theoretical guarantees it can be
difficult to decide if poor performance is due to the choice of energy function as opposed to
weaknesses in the minimization algorithm.

There is a long history of formulating pixel labeling problems in terms of optimization, and
some very complex and elegant energy functions have been proposed (see [41] for some early
examples). Yet the experimental performance of these methods was poor, since they relied on
general-purpose optimization techniques such as simulated annealing [6, 41]. In the last decade,
researchers have developed efficient discrete algorithms for a relatively simple class of energy
functions, and these optimization-based schemes are viewed as the state of the art for stereo
[21, 92].

2.1 Common classes of energy functions in vision
As previously mentioned, the problems that arise in computer vision are inevitably ambiguous,
with multiple candidate solutions that are consistent with the observed data. In order to
eliminate ambiguities it is usually necessary to introduce a bias towards certain candidate
solutions. There are many ways to describe and justify such a bias. In the context of statistical
inference the bias is usually called a prior. We will use this term informally to refer to any
terms in an energy function that impose such a bias.

Formulating a computer vision problem in terms of optimization often makes the prior clear.
Most of the energy functions that are used in vision have a general form that reflects the
observed data and the need for a prior,

(1)

The first term of such an energy function penalizes candidate solutions that are inconsistent
with the observed data, while the second term imposes the prior.

We will often consider an n-dimensional search space of the form , where is an
arbitrary finite set. We will refer to as a set of labels, and will use k to denote the size of

. This search space has an exponential number, kn, of possible solutions. A candidate solution
 will be written as (x1, . . . , xn) where . We will also consider search spaces

, which simply allows the use of a different label set for each xi.

A particularly common class of energy functions in computer vision can be written as

(2)

Many of the energy functions we will consider will be of this form. In general the terms Di are
used to ensure that the label xi is consistent with the image data, while the Vi,j terms ensure
that the labels xi and xj are compatible.

Felzenszwalb and Zabih Page 3

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Energy functions of the form given in equation (2) have a long history in computer vision.
They are particularly common in pixel labeling problems, where a candidate solution assigns
a label to each pixel in the image, and the prior captures a spatial smoothness assumption.

For these low-level vision problems, the labels might represent quantities such as stereo depth
(see section 7), intensity, motion, texture, etc. In all of these problems, the underlying data is
ambiguous, and if each pixel is viewed in isolation it is unclear what the correct label should
be.

One approach to deal with the ambiguity at each pixel is to examine the data at nearby pixels
and then independently choose its label. If the labels are intensities, this often corresponds to
a simple filtering algorithm (e.g., convolution with a Gaussian). For stereo or motion, such
algorithms are usually referred to as area-based; a relatively early example is provided by
[46]. Unfortunately, these methods have severe problems near object boundaries, since the
majority of pixels near a pixel p may not support the correct label for p. This shows up in the
very poor performance of area-based methods on the standard stereo benchmarks [92].

Optimization provides a natural way to address pixel labeling problems. The use of
optimization for such a problem appears to date to the groundbreaking work of [48] on motion.
They proposed a continuous energy function, where a data term measures how consistent the
candidate labeling is with the observations at each pixel, and a prior ensures the smoothness
of the solution. Note that their prior preferred labelings that are globally smooth; this caused
motion boundaries to be oversmoothed, which is a very important issue in pixel labeling
problems. The energy minimization problem was solved by a continuous technique, namely
the calculus of variations.

Following [48], many energy functions were proposed, both for motion and for other pixel
labeling problems. An interesting snapshot of the field is provided by [82], who point out the
ties between the smoothness term used by [48] and the use of Tikhonov regularization to solve
inverse problems [98]. Another important development was [41], which showed that such
energy functions have a natural statistical interpretation as maximizing the posterior probability
of a Markov Random Field (MRF). This paper was so influential that to this day many authors
use the terminology of MRF's to describe an optimization approach to pixel labeling problems
(see [18, 52, 63, 97] for a few examples).

A very different application of energy functions of the form in equation (2) involves object
recognition and matching with deformable models. One of the earliest examples is the pictorial
structures formulation for part-based modeling in [36]. In this case we have an object with
many parts and a solution corresponds to an assignment of image locations to each part. In the
energy function from [36] a data term measures how much the image data under each part
agrees with a model of the part's appearance, and the prior enforces geometrical constraints
between different pairs of parts. A related application involves boundary detection using active
contour models [3, 56]. In this case the data term measures the evidence for a boundary at a
particular location in the image, and the prior enforces smoothness of the boundary. Discrete
optimization methods are quite effective both for pictorial structures (see section 6.3) and for
active contour models (section 5.2).

The optimization approach for object detection and recognition makes it possible to combine
different sources of information (such as the appearance of parts and their geometric
arrangement) into a single objective function. In the case of part-based modeling this makes it
possible to aggregate information from different parts without relying on binary decision
coming from an individual part detector. The formulation can also be understood in terms of
statistical estimation, where the most probable object configuration is found [34].

Felzenszwalb and Zabih Page 4

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.2 Guarantees concerning solution quality
One of the most important properties of discrete optimization methods is that they often provide
some kind of guarantee concerning the quality of the solutions they find. Ideally, the algorithm
can be shown to compute the global minimum of the energy function. While we will discuss
a number of methods that can do this, many of the optimization problems that arise in vision
are NP-hard (see the appendix of [20] for an important example). Instead, many algorithms
look for a local minimum — a candidate that is better than all “nearby” alternatives. A general
view of a local minimum, which we take from [2], is to define a neighborhood system

 that specifies for any candidate solution x the set of nearby candidates N(x). Using
this notation, a local minimum solution with respect to the neighborhood system N is a
candidate x* such that E(x*) ≤ minx∈N(x*) E(x).

In computer vision, it is common to deal with energy functions with multiple local minima.
Problems with a single minimum can often be addressed via the large body of work in convex
optimization (see [13] for a recent textbook). Note that for some optimization problems, if we
pick the neighborhood system N carefully a local minimum is also a global minimum.

A local minimum is usually computed by an iterative process, where an initial candidate is
improved by explicitly or implicitly searching the neighborhood of nearby solutions. This
subproblem of finding the best solution within the local neighborhood is quite important. If
we have a fast algorithm for finding the best nearby solution within a large neighborhood, we
can perform this local improvement step repeatedly.1 There are a number of important vision
applications where such an iterated local improvement method has been employed. For
example, object segmentation via active contour models [56] can be performed in this way,
where the local improvement step uses dynamic programming [3] (see section 5.2 for details).
Similarly, low-level vision problems such as stereo can be solved by using min-cut algorithms
in the local improvement step [20] (see section 7).

While proving that an algorithm converges to a strong local minimum is important, this does
not directly imply that the solution is close to optimal. In contrast, an approximation algorithm
for an optimization problem is a polynomial time algorithm that computes a solution x̂ whose
energy is within a multiplicative factor of the global minimum. It is generally quite difficult to
prove such a bound, and approximation algorithms are a major research area in theoretical
computer science (see [60] for a particularly clear exposition of the topic). Very few
approximation algorithms have been developed in computer vision; the best known is the
expansion move algorithm of [20]. An alternative approach is to provide per-instance bounds,
where the algorithm produces a guarantee that the solution is within some factor of the global
minimum, but where that factor varies with each problem instance.

The fundamental difference between continuous and discrete optimization methods concerns
the nature of the search space. In a continuous optimization problem we are usually looking
for a set of real numbers and the number of candidate solutions is uncountable; in a discrete
optimization problem we are looking for an element from a discrete (and often, finite) set. Note
that there is ongoing work (e.g., [14]) that explores the relationship between continuous and
discrete optimization methods for vision.

While continuous methods are quite powerful, it is uncommon for them to produce guarantees
concerning the absolute quality of the solutions they find (unless, of course, the energy function
is convex). Instead they tend to provide guarantees about speed of convergence towards a local
minimum. Whether or not guarantees concerning solution quality are important depends on

1[2] refers to such algorithms as very large-scale neighborhood search techniques; in vision they are sometimes called move-making
algorithms [71].

Felzenszwalb and Zabih Page 5

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the particular problem and context. Moreover, despite their lack of such guarantees, continuous
methods can perform quite well in practice.

2.3 Relaxations
The complexity of minimizing a particular energy function clearly depends on the set it is being
minimized over, but the form of this dependence can be counterintuitive. In particular,
sometimes it is difficult to minimize E over the original discrete set , but easy to minimize

E over a continuous set that contains . Minimizing E over instead of is called a
relaxation of the original problem. If the solution to the relaxation (i.e., the global minimum

of E over) happens to occur at an element of , then by solving the relaxation we have
solved the original problem. As a general rule, however, if the solution to the relaxation does
not lie in , it provides no information about the original problem beyond a lower bound (since

there can be no better solution within than the best solution in the larger set). In computer
vision, the most widely used relaxations involve linear programming or spectral graph
partitioning.

Linear programming provides an efficient way to minimize a linear objective function subject
to linear inequality constraints (which define a polyhedral region). One of the best-known
theorems concerning linear programming is that when an optimal solution exists it can be
achieved at a vertex of the polyhedral region defined by the inequality constraints (see, e.g.,
[23]). A linear program can thus be viewed as a discrete optimization problem over the vertices
of a polyhedron. Yet linear programming has some unusual features that distinguish it from
the methods that we survey. For example, linear programming can provide a per-instance bound
(see [67] for a nice application in low-level vision). Linear programming is also the basis for
many approximation algorithms [60]. There is also a rich mathematical theory surrounding
linear programs, including linear programming duality, which plays an important role in
advanced optimization methods that don't explicitly use linear programming algorithms.

Linear programming has been used within vision for a number of problems, and one recent
application that has received significant interest involves message passing methods. The
convergence of belief propagation on the loopy graphs common in vision is not well
understood, but several recent papers [101, 102] have exposed strong connections with linear
programming.

Spectral partitioning methods can efficiently cluster the vertices of a graph by computing a
specific eigenvector of an associated matrix (see, e.g., [54]). These methods are exemplified
by the well-known normalized cut algorithm in computer vision [96]. Typically a discrete
objective function is first written down, which is NP-hard to optimize. With careful use of
spectral graph partitioning, a relaxation of the problem can be solved efficiently. Currently
there is no technique that converts a solution to the relaxation into a solution to the original
discrete problem that is provably close to the global minimum. However, despite the lack of
such guarantee these methods can perform well in practice.

2.4 Problem reductions
A powerful technique, which we will use throughout this survey paper, is the classical computer
science notion of a problem reduction [38]. In a problem reduction, we show how an algorithm
that solves one problem can also be used to solve a different problem, usually by transforming
an arbitrary instance of the second problem to an instance of the first.2

2We will only consider reductions that do not significantly increase the size of the problem (see [38] for more discussion of this issue).

Felzenszwalb and Zabih Page 6

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

There are two ways that problem reductions are useful. Suppose that the second problem is
know to be difficult (for example, it may be NP-hard, and hence widely believed to require
exponential time). In this case, the problem reduction gives a proof that the first problem is at
least as difficult as the second. However, discrete optimization methods typically perform a
reduction in the opposite direction, by reducing a difficult appearing problem to one that can
be solved quickly. This is the focus of our survey.

One immediate issue with optimization is that it is almost “too powerful” a paradigm. Many
NP-hard problems fall within the realm of discrete optimization. On the other hand, problems
with easy solutions can also be phrased in terms of optimization; for example, consider the
problem of sorting n numbers. The search space consists of the set of n! permutations, and the
objective function might count the number of pairs that are mis-ordered. As the example of
sorting should make clear, expressing a problem in terms of optimization can sometimes
obscure the solution.

Since the optimization paradigm is so general we should not expect to find a single algorithm
that works well on most optimization problem. This leads to the perhaps counter-intuitive
notion that to solve any specific problem it is usually preferable to use the most specialized
technique that can be applied. This ensures that we exploit the structure of the specific problem
to the greatest extent possible.

3 Graph algorithms
Many discrete optimization methods have a natural interpretation in terms of a graph

, given by a set of vertices and a set of edges (vertices are sometimes called
nodes, and edges are sometimes called links). In a directed graph, each edge e is an ordered
pair of vertices e = (u, v), while in an undirected graph the vertices in an edge e = {u, v} are
unordered. We will often associate a non-negative weight we to each edge e in a graph. We say
that two vertices are neighbors if they are connected by an edge. In computer vision, the vertices

 usually correspond to pixels or features such as interest points extracted from an image,
while the edges encode spatial relationships.

A path from a vertex u to a vertex v is a sequence of distinct vertices starting at u and ending
at v such that for any two consecutive vertices a and b in the sequence either or

 depending on whether or not the graph is directed. The length of a path in a weighted
graph is the sum of the weights associated with the edges connecting consecutive vertices in
the path. A cycle is defined like a path except that the first and last vertices in the sequence are
the same. We say that a graph is acyclic if it has no cycles. An undirected graph is connected
if there is a path between any two vertices in . A tree is a connected acyclic undirected graph.

Now consider a directed graph with two distinguished vertices s and t called the terminals. An
s-t cut is a partition of the vertices into two components S and T such that s ∈ S and t ∈ T.3 The
cost of the cut is the sum of the weights on edges going from vertices in S to vertices in T.

A matching M in an undirected graph is a subset of the edges such that each vertex is in at most
one edge in M. A perfect matching is one where every vertex is in some edge in M. The weight
of a matching M in a weighted graph is the sum of the weights associated with edges in M. We
say that a graph is bipartite if the vertices can be partitioned into two sets A and B such that
every edge connects a vertex in A to a vertex in B. A perfect matching in a bipartite graph
defines a one-to-one correspondence between vertices in A and vertices in B.

3There is also an equivalent definition of a cut as a set of edges, which some authors use [14, 20].

Felzenszwalb and Zabih Page 7

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3.1 Shortest path algorithms
The shortest paths problem involves finding minimum length paths between pairs of vertices
in a graph. The problem has many important applications and it is also used as a subroutine to
solve a variety of other optimization problems (such as computing minimum cuts). There are
two common versions of the problem: (1) in the single-source case we want to find a shortest
path from a source vertex s to every other vertex in a graph; (2) in the all-pairs case we look
for a shortest path between every pair of vertices in a graph. Here we consider mainly the
single-source case as this is the one most often used in computer vision. We discuss its
application to interactive segmentation in section 5.1. We note that in general solving the single-
source shortest paths problem is not actually harder than computing a shortest path between a
single pair of vertices.

The main property that we can use to efficiently compute shortest paths is that they have an
optimal substructure property: a subpath of a shortest path is itself a shortest path. All of the
shortest paths algorithms use this fact.

The most well known algorithm for the single-source shortest paths problem is due to Dijkstra
[31]. For a directed graph Dijkstra's algorithm runs in time assuming that there
is at least one edge touching each node in the graph. The algorithm assumes that all edge weights
are non-negative and builds shortest paths from a source in order of increasing length.

Dijkstra's algorithm assumes that all edge weights are non-negative. In fact, computing
shortest-paths on an arbitrary graph with negative edge weights is NP-hard (since this would
allow us to find hamiltonian paths [68]). However, there is an algorithm that can handle graphs
with some negative edge weights, as long as there are no negative length cycles. The Bellman-
Ford algorithm [24] can be used to solve the single-source problem on such graphs in

 time. The method is based on dynamic programming (see section 4). It sequentially
computes shortest paths that uses at most i edges in order of increasing i. The Bellman-Ford
algorithm can also be used to detect negative length cycles on arbitrary graphs. This is an
important subroutine for computing minimum ratio cycles and has been applied to image
segmentation [53] and deformable shape matching [93].

The all-pairs shortest paths problem can be solved using multiple calls to Dijkstra's algorithm.
We can simply solve the single-source problem starting at every possible node in the graph.
This leads to an overall method that runs in time. This is a good approach to
solve the all-pairs shortest paths problem in sparse graphs. If the graph is dense we are better
off using the Floyd-Warshall algorithm. That algorithm is based on dynamic programming and

runs in time. Moreover, like the Bellman-Ford algorithm, it can be used as long as
there are no negative length cycles in the graph. Another advantage of the Floyd-Warshall
method is that it can be implemented in just a few lines of code and does not rely on an efficient
priority queue data structure (see [24]).

3.2 Minimum cut algorithms
The minimum cut problem (“min-cut”) is to find the minimum cost s-t cut in a directed graph.
On the surface, this problem may look intractable. In fact, many variations on the problem,
such as requiring that more than two terminals be separated, are NP-hard [28].

It is possible to show that there is a polynomial-time algorithm to compute the min-cut, by
relying on results from submodular function optimization. Given a set and a function f
defined on all subsets of , consider the relationship between f(A) + f(B), and

. If the two quantities are equal (such as when f is set cardinality), the
function f is said to be modular. If , f is said to be

Felzenszwalb and Zabih Page 8

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

submodular. Submodular functions can be minimized in high-order polynomial time [91], and
have recently found important applications in machine vision [64, 66] as well as areas such as
spatial statistics [69].

There is a close relationship between submodular functions and graph cuts (see, e.g., [27]).
Given a graph, let be the nodes of the graph, and f(A) be the sum of the weights of the edges
from nodes in A to nodes not in A. Such an f is called a cut function, and the following argument
shows it to be submodular. Each term in also appears in f(A) + f(B). Now
consider an edge that starts at a node that is in A, but not in B, and ends at a node in B, but not
in A. Such an edge appears in f(A) + f(B) but not in . Thus, a cut function
f is not modular. A very similar argument shows that the cost of a s-t cut is also a submodular
function: consists of the non-terminal nodes, and f(A) is the weight of the outgoing edges
from , which is the cost of the cut.

While cut functions are submodular, the class of submodular functions is much more general.
As we have pointed out, this suggests that special-purpose min-cut algorithms would be
preferable to general-purpose submodular function minimization techniques [91] (which, in
fact, are not yet practical for large problems). In fact, there are very efficient min-cut algorithms.

The key to computing min-cuts efficiently is the famous problem reduction of Ford and
Fulkerson [37]. The reduction uses the maximum flow problem (“max-flow”), which is defined
on the same directed graph, but the edge weights are now interpreted as capacity constraints.
An s-t flow is an assignment of non-negative values to the edges in the graph, where the value
of each edge is no more than its capacity. Furthermore, at every non-terminal vertex the sum
of values assigned to incoming edges equals the sum of values assigned to outgoing edges.

Informally speaking, most max-flow algorithms repeatedly find a path between s and t with
spare capacity, and then increase (augment) the flow along this path. For a particularly clear
explanation of max-flow and its relationship to min-cut see [60]. From the standpoint of
computer vision, max-flow algorithms are very fast, and can even be used for real-time systems
(see, e.g., [65]). In fact, most of the graphs that arise in vision are largely grids, like the example
shown in Figure 1. These graphs have many short paths from s to t, which in turn suggests the
use of max-flow algorithms that are specially designed for vision problems, such as [16].

3.3 Example application: binary image restoration via graph cuts
There are a number of algorithms for solving low-level vision problems that compute a
minimum s-t cut on an appropriately defined graph. This technique is usually called “graph
cuts” (the term appears to originate in [19]).4 The idea has been applied to a number of problems
in computer vision, medical imaging and computer graphics (see [17] for a recent survey). We
will describe the use of graph cuts for interactive object segmentation in section 5.3, and for
stereo in section 7.1. However, their original application to vision was for binary image
restoration [42].

Consider a binary image where each pixel has been independently corrupted (for example, the
output of an error-prone document scanner). Our goal is to clean up the image. This can be
naturally formulated as an optimization problem of the form defined by equation (2). The labels
are binary, so the search space is {0, 1}n where n is the number of pixels in the image, and
there are 2n possible solutions. The function Di provides a cost for labeling the i-th pixel using
one of two possible values; in practice, this cost would be zero for it to have the same label
that was observed in the corrupted image, and a positive constant λ for it to have the opposite

4Despite the similar names graph cuts are not closely related to normalized cuts.

Felzenszwalb and Zabih Page 9

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

label. The simplest choice for Vi,j(xi, xj) is a 0-1 valued function, which is 1 just in case pixels
i and j are adjacent and xi ≠ xj. Putting these together we see that E(x1 . . . , xn) equals λ times
the number of pixels that get assigned a value different from the one observed in the corrupted
image, plus the number of adjacent pixels with different labels. By minimizing this energy we
find a spatially coherent labeling that is similar to the observed data.

This energy function is often referred to as the Ising model (its generalization to more than 2
labels is called the Potts model). [42] showed that the problem of minimizing this energy can
be reduced to the min-cut problem on an appropriately constructed graph.5 The graph is shown
in Figure 1, for a 9-pixel image. In this graph, the terminals s, t correspond to the labels 0 and
1. Besides the terminals, there is one vertex per pixel; each such pixel vertex is connected to
the adjacent pixel vertices, and to each terminal vertex. A cut in this graph leaves each pixel
vertex connected to exactly one terminal vertex. This naturally corresponds to a binary labeling.
With the appropriate choice of edge weights, the cost of a cut is the energy of the corresponding
labeling.6 The weight of edges cut between pixel vertices will add to the number of adjacent
pixels with different labels; the weight of edges cut between pixel vertices and terminals will
sum to λ times the number of pixels with opposite labels to those observed in the input data.

It is important to realize that this construction depends on the specific form of the Ising model
energy function. Since the terminals in the graph correspond to the labels, the construction is
restricted to 2 labels. As mentioned above, the natural multi-terminal variants of the min-cut
problem are NP-hard [28]. In addition, we cannot expect to be able to efficiently solve even
simple generalizations of the Ising energy energy function, since minimizing the Potts energy
function with 3 labels is NP-hard [20].

3.4 Bipartite matching algorithms
In the minimum weight bipartite matching problem we have a bipartite graph with
and weights we associated with each edge. The goal is to find a perfect matching M with
minimum total weight. Perfect matchings in bipartite graphs are particularly interesting
because they represent one-to-one correspondences between elements in A and elements in
B. In computer vision the problem of finding correspondences between two sets of elements
has many applications ranging from three-dimensional reconstruction [30] to object
recognition [9].

The bipartite matching problem described here is also known as the assignment problem. We
also note that there is a version of the problem that involves finding a maximum weight
matching in a bipartite graph, without requiring that the matching be perfect. That problem is
essentially equivalent to the one described here (they can be reduced to each other) [68].

We can solve the bipartite matching problem in O(n3) time using the Hungarian algorithm
[80], where n = |A| = |B|. That algorithm relies on linear programming duality and the
relationship between matchings and vertex covers to sequentially solve a set of intermediate
problems, eventually leading to a solution of the original matching problem.

One class of practical algorithm for bipartite matching rely on the following generalization of
the maximum-flow problem. Let be a directed graph with a capacity ce and weight we
associated with each edge . Let s and t be two terminal nodes (the source and the sink)
and let f be an s-t flow with value f(e) on edge e. The cost of the flow is defined as

5As [66] points out the actual construction dates back at least 40 years, but [42] first applied it to images.
6There are two ways to encode the correspondence between cuts and labelings. If pixel p gets labeled 0, this can be encoded by cutting
the edge between the vertex for p and the terminal vertex for 0, or to leaving this edge intact (and thus cutting the edge to the terminal
vertex for 1). The different encodings lead to slightly different weights for the edges between terminals and pixels.

Felzenszwalb and Zabih Page 10

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

. In the minimum-cost flow problem we fix a value for the flow and search for
a flow of that value with minimum cost. This problem can be solved using an approach similar
to the Ford-Fulkerson method for the classical max-flow problem, by sequentially finding
augmenting paths in a weighted residual graph. When the capacities are integral this approach
is guaranteed to find a minimum-cost flow with integer values in each edge.

The bipartite matching problem on a graph can be reduced to a minimum-cost flow problem.
We simply direct the edges in so they go from A to B and add two nodes s and t such that
there is an edge of weight zero from s to every node in A and to t from every node in B. The
capacities are all set to one. An integer flow of value n in the modified graph (n = |A| = |B|)
corresponds to a perfect matching in the original graph, and the cost of the flow is the weight
of the matching.

4 Dynamic programming
Dynamic programming [8] is a powerful general technique for developing efficient discrete
optimization algorithms. In computer vision it has been used to solve a variety of problems
including curve detection [3, 39, 77], contour completion [95], stereo matching [5, 79], and
deformable object matching [4, 7, 25, 34, 32].

The basic idea of dynamic programming is to decompose a problem into a set of subproblems,
such that (A) given a solution to the subproblems, we can quickly compute a solution to the
original problem, and (B) the subproblems can be efficiently solved recursively in terms of
each other. An important aspect of dynamic programming is that the solution of a single
subproblem is often used multiple times, for solving several larger subproblems. Thus in a
dynamic programming algorithm we need to “cache” solutions to avoid recomputing them later
on. This is what makes dynamic programming algorithms different from classical recursive
methods.

Similar to shortest paths algorithms, dynamic programming relies on an optimal substructure
property. This makes it possible to solve a subproblem using solutions of smaller subproblems.

In practice we can think of a dynamic programming algorithm as a method for filling in a table,
where each table entry corresponds to one of the subproblems we need to solve. The dynamic
programming algorithm iterates over table entries and computes a value for the current entry
using values of entries that it has already computed. Often there is a simple recursive equation
which defines the value of an entry in terms of values of other entries, but sometimes
determining a value involves a more complex computation.

4.1 Dynamic programming on a sequence
Suppose we have a sequence of n elements and we want to assign a label from to each
element in the sequence. In this case we have a search space where a candidate solution
(x1, . . . , xn) assigns label xi to the i'th element of the sequence. A natural energy function for
sequence labeling can be defined as follows. Let Di(xi) be a cost for assigning the label xi to
the i'th element of the sequence. Let V(xi, xi+1) be a cost for assigning two particular labels to
a pair of neighboring elements. Now the cost of a candidate solution can be defined as

(3)

This objective function measures the cost of assigning a label to each element and penalizes
“incompatible” assignments between neighboring elements. Usually Di is used to capture a

Felzenszwalb and Zabih Page 11

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

cost per element that depends on some input data, while V encodes a prior that is fixed over
all inputs. Optimization problems of this form are common in a number of vision applications,
including in some formulations of the stereo problem as discussed in section 7.2, and in visual
tracking [29]. The MAP estimation problem for a general hidden Markov model [84] also leads
to an optimization problem of this form.

Now we show how to use dynamic programming to quickly compute a solution
minimizing an energy function of the form in equation (3). The algorithm works filling in tables
storing costs of optimal partial solutions of increasing size. Let Bi[xi] denote the cost of the
best assignment of labels to the first i elements in the sequence with the constraint that the i'th
element has the label xi. These are the “subproblems” used by the dynamic programming
procedure. We can fill in the tables Bi in order of increasing i using the recursive equations,

(4)

(5)

Once the Bi are computed, the optimal solution to the overall problem can be obtained by taking

 and tracing back in order of decreasing i,

(6)

Another common approach for tracing back the optimal solution involves caching the optimal
(i – 1)'th label as a function of the i'th label in a separate table when computing Bi,

(7)

Then, after we compute we can track back by taking starting at i = n. This
simplifies the tracing back procedure at the expense of a higher memory requirement.

The dynamic programming algorithm runs in O(nk2) time. The running time is dominated by
the computation of the tables Bi. There are O(n) tables to be filled in, each table has O(k) entries
and it takes O(k) time to fill in one table entry using the recursive equation (5).

In many important cases the dynamic programming solution described here can be sped up
using the distance transform methods in [33]. In particular in many situations (including the
signal restoration application described below) is a subset of and the pairwise cost is of
the form V(xi, xj) = |xi – xj|

p or V(xi, xj) = min(|xi – xj|
p, τ) for some p > 1 and τ > 0. In this case

the distance transform methods can be used to compute all entries in Bi (after Bi–1 is computed)
in O(k) time. This leads to an overall algorithm that runs in O(nk) time, which is optimal
assuming the input is given by an arbitrary set of nk costs Di(xi). In this case any algorithm
would have to look at each of those costs, which takes at least O(nk) time.

4.2 Relationship to shortest paths
Many dynamic programming algorithms can be viewed as solving a shortest path problem in
a graph. Here we outline the construction for the dynamic programming method from above,
for minimizing the energy in equation (3). Figure 2 illustrates the underlying graph. One could
solve the optimization problem by building the graph described here and using a generic
shortest paths algorithm. However, both theoretically and in practice it is often more efficient

Felzenszwalb and Zabih Page 12

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

to implement the dynamic programming solution directly. While the dynamic programming
method runs in O(nk2) time, using a generic algorithm such as Dijkstra's shortest paths we get
an O(nk2 log(nk)) method. The problem is that Dijkstra's algorithm is more general than
necessary since it can handle graphs with cycles. This illustrates the benefit of using the most
specific algorithm possible to solve an optimization problem.

Let be a directed graph with nk + 2 vertices . The
case for n = 5 and k = 4 is shown in Figure 2. Except for the two distinguished vertices s and
t, each vertex (i, xi) in this graph corresponds an assignment of a label to an element of the
sequence. We have edges from (i, xi) to (i + 1, xi+1) with weight Di+1(xi+1) + V(xi, xi+1). We
also have edges from s to (1, x1) with weight D1(x1). Finally we have edges from (n, xn) to t
with weight zero. In this graph a path from s to t contains exactly one vertex per element in the
sequence, which corresponds to assigning a label to each element. It is easy to show that the
length of the path is exactly the cost of the corresponding assignment. More generally, the
length of a shortest path from s to (i, xi) equals the value Bi[xi] in equation (5). We conclude
that a shortest path from s to t corresponds to a global minimum of the energy function E.

4.3 Extensions
The dynamic programming procedure described above can be generalized to broader class of
energy functions. For example suppose each element in a sequence can get a label from a
different set, i.e. . Let Di(xi) be a cost for assigning the label to the
i'th element. Let Vi(xi, xi+1) be a cost for assigning the labels and to the i'th
and i + 1'th elements respectively. In this case there is a different pairwise cost for each pair
of neighboring elements. We can define an energy function assigning a cost to a candidate
solution (x1, . . . , xn) by taking the sum of the individual costs Di and the pairwise costs Vi. A
global minimum of this energy can be found using a modified version of the recursive equations
shown above. Let . Now the table Bi has ki entries and it takes O(ki–1) time to fill in one
entry in this table. The algorithm runs in O(nk2) time, where k = max ki.

Another class of energy functions that can be solved using a modified version of the method
described here is one where the prior also includes an explicit cost, H(xi, xi+1, xi+2), for
assigning particular labels to three consecutive elements in a sequence.

Consider an energy function of the form

(8)

This type of energy has been used in active contour models [3], where D is defined by the
image data, V captures a spring model for the contour and H captures a thin-plate spline model
(see section 5.2). In this case the dynamic programming algorithm builds n – 1 tables with k2

entries each. The entry Bi[xi–1, xi] denotes the cost of the best assignment of values to the first
i elements in the sequence with the constraint that the i–1'th element has the label xi–1 and the
i'th element has the label xi. These entries can be defined using recursive equations,

(9)

(10)

Felzenszwalb and Zabih Page 13

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Now the Bi can be computed in order of increasing i as before. After the tables are filled in we
can find a global minimum of the energy function by picking

 and tracing back in order of decreasing i,

This method takes O(nk3) time. In general we can minimize energy functions that explicitly
take into account the labels of m consecutive elements in O(nkm) time.

4.4 Example application: 1-D signal restoration via dynamic programming
As an example consider the problem of restoring a one-dimensional signal. We assume that a
signal s is defined by a finite sequence of regularly spaced samples s[i] for i from 1 to n. Figures
3(a) and 3(b) show a clean signal and a noisy version of that signal. The goal here to estimate
the original signal s[i] from its noisy version n[i]. In practice we look for a signal s[i] which is
similar to n[i] but is smooth in some sense. The problem can be formulated using an objective
function of the form in equation (3).

We can define the restored signal in terms of an assignment of labels to the sequence of sample
points. Let be a discretization of the domain of s (a finite subset of). Now take Di(xi) =
λ(xi – n[i])2 to ensure that the value we assign to the i'th sample point is close to n[i]. Here λ
is a non-negative constant controlling the relative weighting between the data and prior cost.
The form of V depends on the type of smoothness constraint we want to impose on s. If we
assume s is smooth everywhere we can take V(xi, xi+1) = (xi – xi+1)2. If we assume that s is
piecewise-smooth we can take V(xi, xi+1) = min((xi – xi+1)2, τ) where τ controls the maximum
cost we assign to a “discontinuity” in the signal. This second choice of V is often called the
weak string model in vision, following [11], who popularized this model and its solution via
dynamic programming.

Figure 3 shows the result of restoring a noisy signal using these two choices for the pairwise
costs. Note that with either choice for the pairwise cost we can use the distance transform
methods mentioned above to find an optimal solution to the restoration problem in O(nk) time.
Here n is the number of samples in the signal and k is the number of discrete choices for the
value of the signal in each sample point.

4.5 Dynamic programming on a tree
The dynamic programming techniques described above generalize to the situation where the
set of elements we want to label are connected together in a tree structure. We will discuss an
application of this technique for object recognition in section 6.3.

Let be tree where the vertices are the elements we want to label and the edges
in indicate which elements are directly related to each other. As before, let Di(xi) be a cost

for assigning label xi to the i'th element. For each edge we let Vij(xi, xj) = Vji(xj,
xi) be a cost for assigning two particular labels xi and xj to the i'th and j'th element respectively.
Now an objective function can be defined by analogy to the sequence case,

(11)

Felzenszwalb and Zabih Page 14

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

An optimal solution can be found as follows. Let vr be an arbitrary root vertex in the graph
(the choice does not affect the solution). From this root, each vertex vi has a depth di which is
the number of edges between it and vr (the depth of vr is zero). The children, Ci, of vertex vi
are the vertices connected to vi that have depth di + 1. Every vertex vi other than the root has
a unique parent, which is the neighboring vertex of depth di – 1. Figure 4 illustrates these
concepts.

We define n tables Bi each with entries such that Bi[xi] denotes the cost of the best
labeling of vi and its descendents assuming the label of vi is xi. These values can be defined
using the recursive equation,

(12)

For vertices with no children we have, Bi[xi] = Di(xi). The other tables can be computed in
terms of each other in decreasing depth order. Note that Br[xr] is the cost of the best labeling
of the whole graph, assuming the label of the root is xr.

After all tables are computed we can find a global minimum of the energy function by picking

 and tracing back in order of increasing depth,

where vj is the parent of vi. The overall algorithm runs in O(nk2) time. As in the case for
sequences, distance transform techniques can often be used to obtain an O(nk) time algorithm
[34]. This speedup is particularly important for the pictorial structure matching problem
discussed in section 6.3. In that problem k is on the order of the number of pixels in an image
and a quadratic algorithm is not practical.

We note that dynamic programming can also be used to minimize energy functions defined
over certain graphs with cycles [4, 32]. Although the resulting algorithms are less efficient they
still run in polynomial time. This method is called non-serial dynamic programming. Its
asymptotic running time depends exponentially on a measure of graph connectivity called

treewidth; trees have treewidth 1, while a square grid with n nodes has treewidth . When
the underlying graph is not a path, the problem can not usually be solved via shortest paths
algorithms, because there is no way to encode the cost of a solution in terms of the length of a
path in a reasonably sized graph. However, a generalization of Dijkstra's shortest paths
algorithm to such cases was first proposed in [61] and more recently explored in [35].

4.6 Matching sequences via dynamic programming
Let A = (a0, . . . , an–1) and B = (b0, . . . , bm–1) be two sequences of elements. Here we consider
the problem of finding a set of correspondences between A and B that respects the natural
ordering of the elements. This is an important problem that arises both in stereo matching [5,
79] (see section 7.2) and in matching deformable curves [7, 94] (see section 6.2).

Intuitively we want to consider correspondences between A and B that do not involve crossings,
as shown in Figure 5. The precise definition is that if ai is matched to bj and i′ > i then ai′ can
only be matched to bj′ such that j′ > j. This is often called the ordering constraint.

Correspondences that satisfy the ordering constraint are equivalent to alignments defined by
putting the two sequences on top of each other after inserting spaces in each one. This is exactly

Felzenszwalb and Zabih Page 15

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the sequence alignment approach commonly used in biology for comparing DNA sequences.
It is also related to dynamic time warping methods used in speech recognition to compare one-
dimensional signals. When a person says a word in two different speeds there is a
correspondence between the two sounds that satisfies the ordering constraint. In vision time
warping methods have been used to recognize activities such as hand gestures [81].

Here we assume that there is a cost C(ai, bj) for matching ai to bj. There is also a cost ε for
leaving an element of A or B unmatched. Our goal is to find a valid set of correspondences that
minimizes the total sum of costs. This can be done by finding a shortest path in a graph.

Let be a directed graph where the nodes in are the points in an n + 1 by m + 1 grid. There
are two types of edges in . Diagonal edges connect nodes (i, j) to nodes (i + 1, j + 1). These
edges have weight C(ai, bj). Horizontal and vertical edges connect nodes (i, j) to nodes (i + 1,
j) and (i, j + 1). These edges have weight ε. Paths from (0, 0) to (n, m) in correspond to valid
matchings between A and B in a simple way: if a path follows a diagonal edge out of (i, j) we
match ai with bj. If a path takes a horizontal edge out of (i, j) we leave ai unmatched, while a
vertical step out of (i, j) corresponds to leaving bj unmatched. Its not hard to show that the
length of a path is equal to the cost of the corresponding matching. Since the graph is acylic
we can compute shortest paths from (0, 0) to (n, m) in O(nm) time using dynamic programming.
The graph described here does not have to be constructed explicitly. In practice we define a
table of values D[i, j] to represent the distance from (0, 0) to node (i, j). We can fill in the entries
in the table in order of increasing i and j value using the recursive equation,

After D is filled in we can find the optimal set of correspondences between A and B by implicitly
tracing the shortest path from (0, 0) to (n, m).

5 Discrete optimization algorithms for interactive segmentation
Interactive segmentation is an important problem in computer vision where discrete
optimization techniques have had a significant impact. The goal is to allow a user to quickly
separate a particular object from the rest of the image. This is done via an iterative process,
where the user has the opportunity to correct or improve the current segmentation as the
algorithm progresses. We will describe three different ways in which discrete optimization
techniques can be used for interactive segmentation: intelligent scissors [78], which relies on
shortest paths; active contour models [3, 56], which use dynamic programming; and GrabCut
[87], which uses graph cuts.

Segmentation, of course, is a major topic in computer vision, and there are a number of common
issues that segmentation algorithms face. For example, it is very difficult to evaluate a
segmentation algorithm.7 One of the advantages of interactive segmentation, which makes it
more tractable, is that it involves a human user, rather than being fully automatic.

5.1 Intelligent scissors (shortest paths)
One way to perform interactive segmentation is for the user to select a few points on the
boundary of the target object while an algorithm completes the gaps between selected points.
However, a user may not know in advance how many points they need to select before the
algorithm can complete the gaps accurately. With intelligent scissors a user starts by selecting

7Note that two recent papers [65, 75] provided hand-labeled segmentations for hundreds of images.

Felzenszwalb and Zabih Page 16

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

a single point on the object boundary and then moves the mouse around. As the mouse pointer
moves, a curve is drawn from the initial boundary point to the current mouse location; hopefully
the curve will lie along the object boundary. [78] pointed out that this problem can solved via
shortest paths in a graph. The graph in question has one vertex per pixel, and the edges connect
a pixel to the 8 nearby pixels.

Let be a graph where the vertices are the pixels in the image, and the edges connect
each pixel to its 8 closest neighbors. The whole trick to intelligent scissors is to make the weight
of an edge small when it lies along an object boundary. There are a number of ways in which
this can be accomplished, but the basic idea of [78] is to use features that detect intensity edges,
since these tend to occur on the boundary. For example, we can let the weight of an edge
connecting neighboring pixels be near zero if the image gradient is high along this edge, while
the weight is high if the image gradient is low. This encourages shortest paths in to go along
areas of the image with high gradient magnitude. It also encourages the path to be straight.

Given an initial pixel p we can solve a single-source shortest paths problem in to get an
optimal curve from p to every other image pixel. As the user moves the mouse around we draw
the optimal curve from p to the current mouse position. At any point in time the user can click
the mouse button to select the current curve. The process then restarts with a new initial point
defined by the current mouse location. In practice this process allows a user to select accurate
boundaries with very little interaction. Further ideas described in [78] include on-the-fly
training of the specific type of boundary being traced, and a mechanism for segmentation
without mouse clicks.

Figure 6 shows an example of boundary tracing using the approach, created using the livewire
plugin for the ImageJ toolbox.

5.2 Active contour models (dynamic programming)
Active contour models [56] are a popular tool for interactive segmentation, specially in medical
image analysis. In this setting the user specifies an initial contour close to a target object. The
active contour then seeks a nearby boundary that is consistent with the local image features
(which typically means that it lies along intensity edges), and which is also spatially smooth.

While the original paper [56] viewed active contours as continuous curves, there is an
advantage to taking a discrete approach, since the problem can then be solved via dynamic
programming [3]. Under this view, a contour is represented by a sequence of n control points
that define a closed or open curve (via a polygon, or some type of spline). A candidate solution
specifies a position for each control point, from a set of k possible positions. We can write such
a candidate solution as (x1, . . . , xn) and there are kn candidate solutions.

There is a simple energy function we can define to formalize the problem. A per-element cost
Di(xi) indicates how good a particular position is for the i'th control point. Typically Di is low
where the image gradient is high, so the contour is attracted to intensity boundaries. A pairwise
cost V encodes a spring-like prior, which is usually of the form V(xi, xi+1) = α∥xi – xi+1∥2. This
term encourages the contour to be short.8 Finally a cost H encodes a “thin plate spline” prior,
H(xi, xi+1, xi+2) = β∥xi – 2 * xi+1 + xi+2∥2. This term penalizes curves with high curvature.

Both V and H can be understood in terms of finite difference approximations to derivative
operators. Note that we are assuming for the moment that we have an open curve. The energy

8The pairwise cost can also take into account the image data underneath the line segment connecting two control points. This would
encourage the entire polygonal boundary to be on top of certain image features.

Felzenszwalb and Zabih Page 17

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

function is of the form given in equation (8), and thus can be solved in O(nk3) time with dynamic
programming.

Active contour models provide a good example of the tradeoffs between local and global
minimization. At one extreme, suppose that the set of possible positions for each control point
was very large (for example, each control point could be anywhere on the image). In this case
the solution is independent of the initial placement of the contour. However, because k is so
large the cost of computing an optimal solution is high. In practice, we usually consider
positions for each control point that are very near their initial position. The process is iterated
several times, with the previous solution defining the search neighborhood for the next
iteration. This is effectively a local improvement method with a neighborhood system where
each solution has kn neighbors. As we increase k, we find the optimal solution within a larger
neighborhood, but at a greater computational cost.

A similar tradeoff occurs once we consider closed curves. In this case there should be terms V
(xn, x1), H(xn–1, xn, x1) and H(xn, x1, x2) in the energy function. Naively, this would prohibit
the use of dynamic programming because the terms introduce cyclic dependencies in the energy
function. However, we can fix the position of x1 and x2 and find the optimal position for the
other control points using dynamic programming, and then minimize this over all k2 possible
positions of x1 and x2. This would compute the optimal solution for a closed curve in O(nk5)
time. In practice this is often too expensive, and another option is to pick two control points
that are next to each other and fix them in their current position. In O(nk3) time, this produces
a curve that is optimal over a smaller set of candidates, where all control points except two are
allowed to move to any of their k nearby positions. Thus, by reducing the neighborhood system
among candidate solutions, we can obtain a more efficient algorithm.

In practice, these optimization steps are done repeatedly until convergence. The set of possible
positions, k, is relatively small for a given iteration, but multiple iterations are performed until
convergence. If we handle closed curves by freezing the position of two control points at each
iteration, it is natural to change the chosen points between iterations. Figure 7 illustrates two
iterations of this process.

5.3 GrabCut (graph cuts)
In section 3.3 we pointed out that the global minimum of the Ising model energy function can
be efficiently computed [42]. This is a very natural energy function for capturing spatially
coherent binary labelings, of which binary image restoration is a special case. Another
compelling application of this result is the interactive segmentation technique introduced by
[15] and further refined in an application called GrabCut [87].

The graph cuts construction for spatially coherent binary labelings is easy to apply to an image;
essentially all that is required is the data term Di(xi) for the two possible labels of each pixel.
For many segmentation tasks, the natural labels are foreground and background. In [15], the
user marks certain pixels as foreground or background. To ensure that these pixels are given
the correct labels, the algorithm makes the relevant Di costs large enough to guarantee that the
incorrect label is never chosen. For other pixels, the data term is computed based on the marked
pixels. There are a number of ways that this can be accomplished, but typically a simple model
of foreground and background intensity is used. For example, intensity histograms can be
computed from marked foreground and background pixels, and the cost Di(xi) reflects how
popular the intensity at pixel i is among pixels marked as foreground and background. It is also
reasonable to take into account the distance from the nearest user-marked pixel.

The algorithm of [15] can be run interactively, which is important for many applications. Once
the user has marked a set of pixels, an initial segmentation is computed. The user can then

Felzenszwalb and Zabih Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

refine this segmentation by marking additional pixels as foreground or background, which in
turn updates the costs Di. Since the graph changes little from iteration to iteration, [15] describes
a way to re-use much of the underlying max-flow computation (a more general technique to
accomplish this was provided by [63]). An recent overview of the use of graph cuts for
segmentation, that discusses these issues and quite a few others, is given in [14].

The GrabCut application [87] adds a number of refinements to the basic interactive
segmentation scheme of [15]. GrabCut iteratively alternates between estimating intensity
models for the foreground and background, and computing a segmentation. This EM-style use
of graph cuts has proven to be very powerful, and has been exploited in a number of applications
[57, 58, 72] since it was first used [10]. GrabCuts also supports drawing a rough boundary
instead of the user marking points inside and outside of the object, and uses sophisticated
techniques for border matting.

6 Discrete optimization algorithms for object recognition
Modern object recognition algorithms often rely on discrete optimization methods to search
over correspondences between two sets of features, such as features extracted from an image
and features extracted from a model. Sections 6.1 and 6.2 describe two examples of this
approach. Another class of recognition algorithms use discrete optimization methods to
implicitly search over a very large set of possible object configurations in an image. An example
of this approach is discussed in section 6.3.

6.1 Recognition using shape contexts
[9] described a method for comparing edge maps (or binary images) which has been used in a
variety of applications. The approach is based on a three stage process: (1) a set of
correspondences are found between the points in two edge maps, (2) the correspondences are
used to estimate a non-linear transformation aligning the edge maps, and (3) a similarity
measure between the two edge maps is computed which takes into account both the similarity
between corresponding points and the amount of deformation introduced by the aligning
transformation.

Let A and B be two edge maps. In the first stage of the process we want to find a mapping π :
A → B putting each point in A in correspondence to its “best” matching point in B. For each
pair of points pi ∈ A and pj ∈ B a cost C(pi, pj) for mapping pi to pj is defined which takes into
account the geometric distribution of edge points around pi and pj. This cost is based on a local
descriptor called the shape context of a point. The descriptor is carefully constructed so that it
is invariant to translations and fairly insensitive to small deformations. Figure 8 illustrates two
points on different shapes with similar shape contexts.

Given the set of matching costs between pairs of points in A and B we can look for a map π

minimizing the total cost, , subject to the constraint that π is one-to-
one and onto. This is precisely the weighted bipartite matching problem from section 3.4. To
solve the problem we build a bipartite graph such that and there is an edge
between each vertex pi in A to each vertex pj in B with weight C(pi, pj). Perfect matchings in
this graph correspond to valid maps π and the weight of the matching is exactly the total cost
of the map.

To handle outliers and to find correspondences between edge maps with different numbers of
points we can add “dummy” vertices to each side of the bipartite graph to obtain a new set of

vertices . We connect a dummy vertex in one side of the graph to each non-dummy
vertex in the other side using edges with a fixed positive weight, while dummy vertices are

Felzenszwalb and Zabih Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

connected to each other by edges of weight zero. Whenever a point in one edge map has no
good correspondence in the other edge map it will be matched to a dummy vertex. This is
interpreted as leaving the point unmatched. The number of dummy vertices in each side is
chosen so that |A′| = |B′|. This ensures that the graph has a perfect matching. In the case where
A and B have different sizes some vertices in the larger set will always be matched to dummy
vertices.

6.2 Elastic curve matching
Now consider the problem of finding a set of correspondences between two curves. This is a
problem that arises naturally when we want to measure the similarity between two shapes. Here
we describe a particularly simple formulation of this problem. Similar methods have been used
in [7, 73, 94].

Let A = (a0, . . . , an–1) and B = (b0, . . . , bm–1) be two sequences of points along two open
curves. It is natural to look for a set of correspondences between A and B that respect the natural
ordering of the sample points. Figure 9 shows an example. This is exactly the sequence
matching problem described in section 4.6.

Different curve matching methods can be defined by choosing how to measure the cost of
matching two points on different curves, C(ai, bj). There should also be a cost ε for leaving a
point in A or B unmatched. The simplest approach for defining C(ai, bj) is to measure the
difference in the curvature of A at ai and B at bj. In this case the cost C(ai, bj) will be low if the
two curves look similar in the neighborhood of ai and bj.

When C(ai, bj) measures difference in curvature, the minimum cost of a matching between A
and B has an intuitive interpretation. It measures the amount of bending and stretching
necessary to turn one curve into the other. The costs C(ai, bj) measure amount the bending
while the “gap-costs” ε measure the amount of stretching.

In the case of closed curves the order among points in each curve is only defined up to cyclic
permutations. There are at least two different approaches for handling the matching problem
in this case. The most commonly used approach is to independently solve the problem for every
cyclic shift of one of the curves. This leads to an O(mnk) algorithm, where k = min(m, n). An
elegant and much more efficient algorithm is described in [74] which solves all of these
problems simultaneously in O(mn log k) time. That algorithm is based on a combination of
dynamic programming and divide and conquer.

6.3 Pictorial structures
Pictorial structures [36, 34] describe objects in terms of a small number of parts arranged in a
deformable configuration. A pictorial structure model can be represented by an undirected
graph where the vertices correspond to the object parts and the edges represent geometric
relationships between pairs of parts. An instance of the object is given by a configuration of
its parts x = (x1, . . . , xn) where specifies the location of the i'th part. Here might be
the set of image pixels, or a more complex parameterization. For example, in estimating the
configuration of a human body, could specify a position, orientation and amount of
foreshortening for a limb. Let Di(xi) be a cost for placing the i'th part at location xi in an image.
The form of Di depends on the particular kinds of objects being modeled (though typically it
measures the change in appearance); we will simply assume that it can be computed in a small
amount of time. For a pair of connected parts let Vij(xi, xj) measure the deformation of a virtual
spring between parts i and j when they are placed at xi and xj respectively.

Felzenszwalb and Zabih Page 20

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The matching problem for pictorial structures involves moving a model around an image,
looking for a configuration where each part looks like the image patch below it, and the springs
are not too stretched. This is captured by an energy function of the form in equation (2). A
configuration with low energy indicates a good hypothesis for the object location.

Let n be the number of parts in the model and k be the number of locations in . [34] showed
how to solve the optimization problem for pictorial structures in O(nk) time when the set of
connections between parts forms a tree and the deformation costs, Vij, are of a particular form.
Note how this running time is optimal since it takes O(nk) to evaluate Di(xi) for each part at
each location. This means that we can find the best coherent configuration for the object in the
same (asymptotic) time it would take to find the best location for each part individually.

For tree models the energy function for pictorial structures has exactly the same the form as
the energy in equation (11). The algorithm from [34] works by speeding up the dynamic
programming solution outlined in section 4.5 using generalized distance transforms.

Let f be a function from locations in a grid to . The quadratic distance transform, , of f is

another function from grid locations to , . If f and are defined
in a regular grid with k locations then Df can be computed in O(k) time using computational
geometry techniques [33].

Consider the case where corresponds to image pixels and for each pair of connected parts
vi and vj there is an ideal relative displacement lij between them. That is, ideally xj ≈ xi + lij.
We can define a deformation cost Vij(xi, xj) = ∥(xi + lij) – xj∥2. We can think of the tables Bi
used in the dynamic programming algorithm from section 4.5 as functions from image pixels
to costs. For the special type of deformation costs defined here, equation (12) can be expressed
as,

In this form Bi can be computed in amortized O(k) time once are computed.

Figure 10 shows the result of matching a model of the human body to two images, using a
model from [34]. In this case the model has 10 body parts that are connected together in a tree-
structure corresponding to some of the main joints in a human body. A label for a part specifies
a 2D location, scale, orientation and foreshortening.

7 Discrete optimization algorithms for stereo
As described in section 2.1, energy functions of the form given in equation (2) have been
applied to pixel labeling problems for many years. Stereo is perhaps the vision problem where
discrete optimization methods have had their largest impact; historically, it was one of the
earliest examples where dynamic programming was applied [5, 79], while many top-
performing methods rely on graph cuts [92]. Most of the issues that we consider here arise in
a wide range of pixel labeling problems in early vision. This is particularly true of the graph
cuts techniques we discuss, which have been applied to many problems outside of stereo, as
well as to problems in related fields such as computer graphics (see [17] for a survey).

The stereo problem is easily formulated as a pixel labeling problem of the form in equation
(2), where the labels correspond to disparities. There is usually a simple way to measure the

Felzenszwalb and Zabih Page 21

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

local evidence for a label in terms of intensity differences between pixels in different images,
while a prior is used to aggregate evidence from nearby pixels.

In stereo, and pixel labeling in general, it is important to have a prior that does not oversmooth.
Both the complexity of the energy minimization problem and the accuracy of the solutions turn
out to depend heavily on the choice of prior. Here we assume that Vij = V for a pair of
neighboring pixels and zero otherwise. If V never exceeds some value, we will refer to it as
bounded. Such choices of V are sometime referred to a re-descending, robust or discontinuity-
preserving (the first two terms come from robust statistics [45]). If V is not bounded, then
adjacent pixels will be forbidden to have dramatically different labels. Such a V is believed to
oversmooth boundaries, which accounts for the generally poor performance of such methods
on the standard stereo benchmarks [92] (also see [100, Figure 3.10] for a good example of this
oversmoothing effect). Some popular choices of V are summarized in Figure 11.

If we assume V is a metric, then the energy minimization problem is called the metric labeling
problem, which was introduced by [59] and has been studied in the algorithms community.
Constant factor approximation algorithms were given by [20, 59] for the Potts model, and by
[43] for the truncated L1 distance. The approximation algorithms of [59] are based on linear
programming, and do not appear to be practical for realistic sized images, while the
approximation algorithms of [20, 43] rely on graph cuts.

7.1 Graph cut algorithms for pixel labeling problems
The construction that was used to reduce binary labeling problems to min-cuts, which we
described in section 3.3, uses edges between pixels and terminals to encode labelings. For a
pixel p, there is an edge between p and each terminal, and the choice of which of these edges
to cut determines the label of p. There are two known methods that generalize this construction
to handle more labels without introducing more terminals. One approach is to build a graph
with additional edges per pixel. The other is to keep the graph more or less the same, but to
change the meaning of the two labels represented by the terminals.

If we consider adding more edges per pixel, the simplest solution is to construct a chain of k –
1 vertices per pixel, which gives rise to k possible edges that may be cut, one per label. Such
an encoding is the basis of the graph cut algorithms of [50, 51, 52, 89, 90]. The most general
version of these algorithms is due to [52], who showed how to find the global minimum for an
arbitrary choice of Di as long as V is a convex function of the difference between labels. The
special case where V is the L1 distance was originally solved by [51], relying on a construction
very similar to that proposed by [90]; this construction is shown for 3 labels in Figure 12(B).

The main limitation of this approach is that it is restricted to convex V, which typically leads
to oversmoothing. In addition, the graph has nk nodes, which makes its memory requirements
problematic for applications with a large number of labels.

An alternative approach is to apply graph cuts iteratively, to define local improvement
algorithms where the set of candidate solutions considered in each step is very large. These
methods are defined by the notion of a “move” from an initial labeling, where every pixel can
either keep its current label or adopt a new label. Such “move-making” techniques are related
to the active contour technique described in section 5.2 and to the classical line-search
subroutine used in continuous optimization [83], as well as to the idea from [2] of a local
minimum within a large neighborhood.

The primary difference among these algorithms concerns how a move is defined. The best-
known algorithm performs expansion moves [20], where in each step a pixel can either keep

Felzenszwalb and Zabih Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

its current label or adopt another label α, and α changes at each iteration. Other interesting
algorithms include swap moves [20] and jump moves [100].

Consider minimizing an energy function of the form given in equation (2), where we have a
current labeling x, and we seek the move with the lowest energy. Every pixel is faced with a
binary decision, either to keep its old label under x or to adopt a new label, so a move can be
viewed as a binary image (b1, . . ., bn). The energy of a move starting at x, which is the function
we seek to minimize, can be written as

(13)

Here, Bi comes from D in the original energy E, while Bi,j comes from V. The notation Ex
emphasizes the dependence of the energy function on the initial labeling x.

The problem of minimizing energy functions of this form has been studied for a number of
years in the Operations Research community, principally by P. Hammer and his colleagues
(see [12] for a recent survey). For arbitrary Bi,j the problem is NP-hard; however, if

(14)

it can be minimized via graph cuts [12, 64]. This inequality is called regularity by [64], and is
a special case of submodularity.9 There is no restriction on Bi. For the expansion move, if V
is a metric then equation (14) holds. [64] gives a general-purpose graph construction for
minimizing Ex, assuming regularity. The graph has the same structure shown in Figures 1 and
12(A).

For expansion moves there is a different graph construction to minimize Ex that was originally
given [20], which is shown in Figure 12(C). Recall that in an expansion move the binary label
0 represents a pixel keeping its current label in x, while the binary label 1 represents adapting
the new label α. These two choices are asymmetric; for example, two neighboring pixels that
get the binary label 1 will end up with the same label α, and hence no cost from V, while two
pixels that get the binary label 0 can have a cost from V if they have different labels in x. This
asymmetry is reflected in the graph construction, which includes a new node plus additional
edges that impose the correct cost. This construction is slightly less efficient than applying the
general-purpose technique of [64], due to the larger size of the graph.

The expansion move algorithm has proved to be perhaps the most effective graph cuts
technique. Some of the most compelling evidence in favor of this method comes from a recent
experimental comparison of discrete optimization methods [97], which found that this method
had the best overall performance on a range of benchmarks. On their benchmarks, the expansion
move algorithm obtained solutions whose energy is within 0.018% to 3.6% of the global
minimum. The algorithm provides some interesting theoretical properties [20]; for example,
if V is the Potts model, the algorithm produces a 2-approximation, while [67] gave a
generalization of the expansion move algorithm that also provides per-instance lower bounds.

Given the success of the expansion move algorithm, there has been considerable interest in
applying it broadly. The paper that proposed the expansion move algorithm [20] proved that
it could be applied when V is a metric.10 As [64] showed, we can find the best expansion move
if Ex is regular, which is equivalent to

9Consider subsets of {a, b}. Submodularity says that , which is regularity if we represent the
sets with indicator vectors.

Felzenszwalb and Zabih Page 23

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(15)

Equation (15) defines a Monge property, which has been studied for years in the theoretical
computer science community, and is known to be closely related to submodularity (see [22]
for a review). It is also a generalization of a metric; if we assume V(α, α) = 0, then equation
(15) is just the triangle inequality.

The largest class of energy functions where the optimal expansion move can be computed by
graph cuts is provided by [88] and by [66]. [88] showed how to incorporate certain hard
constraints (i.e., terms with infinite penalties) even though such a V violates equation (15).
[66] points out that a relaxation due to [44, 12] can compute the optimal expansion move for
another class of V's that violate equation (15). However, it is highly unlikely that the optimal
expansion move can be computed efficiently for an arbitrary choice of V, due to an NP-hardness
result provided by [64].

It is possible to use the expansion move algorithm for an arbitrary choice of V, at the price of
no longer guaranteeing that the expansion move computed is optimal, using the methods of
[88] or [66]. In particular, it is possible to compute an expansion move that does not increase
the energy. According to [88], their method is most likely to succeed on choices of V where
few terms violate equation (15). This occurs (for instance) in some important graphics
applications [1, 70] as well as a range of recent benchmarks [97].

7.2 Dynamic programming
Suppose we consider the the stereo correspondence problem one scanline at a time (i.e., we
view it as a set of independent problems, where each problem is to find the disparities for the
pixels along a given scanline). In this case, the pixel labeling problem we obtain for each
scanline is equivalent to the sequence labeling problem from section 4.1, and it can be solved
via dynamic programming. Classical algorithms for stereo using dynamic programming ([5,
79]) often impose an additional ordering constraint and solve the correspondence problem
using the sequence matching approach discussed in section 4.6. This additional constraint
implies that certain scene configurations, such as the “double nail”, do not occur. This is often
true in practice, but not always.

The assumption that the stereo problem can be solved independently for each scanline is
appealing from a computational point of view. However, this assumption usually causes
dynamic programming algorithms for stereo to give poor experimental results, since the
inconsistency between adjacent scanlines produces a characteristic streaking artifact. This is
clearly visible on the Middlebury stereo benchmarks [92].

Obviously, it is desirable to have a prior that imposes spatial coherence horizontally as well as
vertically. There have been a number of attempts to enforce inter-scanline consistency while
still making use of dynamic programming. A particularly interesting example is due to [99],
who applied the tree-based dynamic programming technique described in section 4.5.

8 Recent developments
Since optimization is an important area of emphasis within computer vision, the pace of new
developments is rapid. Most ongoing work can be broadly characterized as either (a) increasing
the set of energy functions that can be efficiently solved; (b) making existing optimization

10If V is a metric, their choice of edge weights ensures that only one of the three edges connected to the new node in Figure 12(C) will
be cut in the min-cut.

Felzenszwalb and Zabih Page 24

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

methods more computationally efficient; or (c) showing how existing optimization techniques
can be applied to new vision applications. Strikingly few optimization problems have exact
solutions, and yet their impact has been substantial. So the highest payo would likely come
from developing methods to minimize entirely new energy functions, although this is
technically extremely challenging.

Below we briefly describe representative examples of ongoing work. Since the impact of
discrete optimization methods on computer vision comes primarily from their practical
efficiency, any substantial speedup is important, whether or not it comes with mathematical
guarantees. One promising approach exploits the structure of typical problem instances to
reduce running time.

Finding new applications for existing discrete methods is perhaps the most active area of current
research. Higher-order cliques are a natural generalization of the energy functions we
emphasized, and serve to illustrate several important techniques. The techniques we describe
below, which draw on relaxation methods, do not solve the discrete optimization problem
exactly, and there is currently no proof that the solution computed is close to the global
minimum.

8.1 Data-dependent speedups
Some existing methods can be made substantially faster in practice by taking advantages of
usual properties of the input data. For example, in dynamic programming it is not always
necessary to fill in the entire set of tables Bi described in section 4. For some problems if we
use Dijkstra's algorithm, A* search or generalizations of these methods [35] many of the entries
in these tables will remain empty when the optimal solution is found. Similarly, coarse-to-fine
methods can often exploit regularities in the input data to good effect [86, 85].

A common property of these techniques is that they do not usually improve the worst case
running time of the energy minimization problem. Instead, they may use heuristics that
significantly speed up the computation on typical instances. For example, [40] considers the
problem of road detection and gives an algorithm inspired in the “twenty questions” game for
finding the most likely location of the road while doing as little computation as possible.

In some cases it is possible to prove good expected running time if we assume a particular
distribution on the input. The method for road detection in [26] assumes the input comes from
a particular distribution to obtain an algorithm that will quickly find an optimal or near optimal
solution with high probability. This basic idea first appeared in [55] for the problem of finding
an optimal path from the root to a leaf in a binary tree with random costs. If the costs on each
edge are assumed to be independent [55] shows how a path of near-optimal cost can be found
very quickly with high probability.

The method in [85] is particularly interesting in the way that it combines dynamic programming
with coarse-to-fine computation to obtain an algorithm that is still polynomial in the worst
case. Consider the sequence labeling problem from section 4.1. Dynamic programming can
find an optimal labeling in O(nk2) time where n is the number of elements in the sequence and
k is the number of possible labels. Even though the running time is polynomial in the number
of labels, if this is very large the computation will be infeasible. The method in [85] constructs
a series of coarse approximations to the original problem by aggregating possible labels for
each element into “superlabels”. Initially we have a small number of possible superlabels for
each element. An optimal solution to the coarse problem is found using standard dynamic
programming and the superlabel that is assigned to an element is refined into a set of smaller
superlabels to define a new problem. The process is iterated until the optimal solution uses
only singleton labels. If the coarse problems are defined in a particular way the final solution

Felzenszwalb and Zabih Page 25

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

is a global minimum of the original problem. In many cases this leads to a much faster algorithm
in practice. It is possible to prove the method has good expected running time if we assume
the input data has certain regularities, but in the worst case the method can actually be slower
than the dynamic programming solution to the original problem.

8.2 Efficient algorithms for higher-order cliques
Many of the energy functions we have discussed are of the form given in equation (2), where
the prior involves pairs of adjacent pixels. Yet many natural priors cannot be expressed this
way; for example, to limit the curvature of a boundary requires considering three or more
adjacent pixels at a time. It is straightforward to incorporate such a constraint in a dynamic
programming algorithm for sequence labeling, as described in section 4.3, at some additional
computational cost. It is much more difficult to incorporate such constraints into the energy
functions that arise in pixel labeling problems such as stereo.

Dynamic programming cannot be easily applied to pixel labeling problems because the grid
has high treewidth. Priors that depend directly on more than two variables are referred to as
“higher-order cliques” (the term comes from the MRF literature). Certain higher-order cliques
can be handled by generalizing the graph cut methods of [20]; for example, [62] showed how
to do this for a natural generalization of the Potts model, where a group of variables pays a
uniform penalty unless they all take on the same value.

A representative example of current research is provided by [49], which draws on several
important developments in graph cuts. To use a move-making technique, such as the expansion
move algorithm, with higher-order cliques it is necessary to solve a binary problem that is more
complex than equation (13). The main result of [49] is a transformation of this more complex
binary problem into the form of equation (13), at the price of introducing additional binary
variables.

There are two additional challenges that [49] addresses. First, the resulting binary problem is
usually not regular, so max flow cannot be used to solve it exactly. [49] relies on a relaxation
technique originally invented by [12], which was introduced into computer vision by [66]. This
technique (called either roof duality or QPBO) uses max flow to compute a partially optimal
solution to the binary problem. Only a subset of the variables are given a value, but if we start
at an arbitrary labeling and assign this subset their corresponding values, the energy will not
increase. This implies that there is an optimal solution that is an extension of these values.
While this relaxation method can perform well in practice, there are few theoretical guarantees
(for example, it is possible that no variable is given a value).

The second challenge that [49] addresses is that for some applications a better move-making
algorithm is needed than expansion moves or swap moves. A generalization known as fusion
moves [71] can be applied to many such problems. In a fusion move, two candidate solutions
are merged and every pixel makes a binary decision as to which candidate solution's label to
adopt. The expansion move algorithm can be viewed as a fusion move, where one candidate
solution is the current labeling and the other assigns a single label to every pixel.

By relying on roof duality and fusion moves, [49]'s main result can be applied to several
applications with higher-order cliques. While these methods use established graph cut
techniques as subroutines, they do not guarantee an exact solution. Yet they can perform quite
well for practical applications such as [103].

Felzenszwalb and Zabih Page 26

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

9 Conclusions
The power of discrete optimization techniques such as dynamic programming and graph
algorithms arises from exploiting the specific structure of important problems. These
algorithms often provide strong guarantees about the quality of the solutions they find, which
allows for a clean separation between how a problem is formulated (the choice of objective
function) and how the problem is solved (the choice of optimization algorithm). The methods
are versatile, and arise in very different vision applications; for example, sequence matching
via dynamic programming can be used for both shape recognition and for stereo. Similarly
min-cut algorithms can be used both for stereo and binary image segmentation. These
apparently unrelated problems share structure that can be exploited by discrete optimization
methods.

Acknowledgments
We received help from many people with the content and presentation of this material, and especially wish to thank
Jon Kleinberg, David Kriegman, Eva Tardos and Phil Torr, as well as the anonymous reviewers. This research has
been supported by NSF grants IIS-0746569 and IIS-0803705 and by NIH grants R21EB008138 and P41RR023953.

Biography

Pedro F. Felzenszwalb received the BS degree in computer science from Cornell University
in 1999. He received the MS and PhD degrees in computer science from the Massachusetts
Institute of Technology in 2001 and 2003. After leaving MIT he spent one year as a postdoc
at Cornell University. He joined the Department of Computer Science at the University of
Chicago in 2004, where he is currently an Associate Professor. His work has been supported
by the National Science Foundation, including a CAREER award received in 2008. His main
research interests are in computer vision, geometric algorithms and artificial intelligence. He
will be a program chair for the 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) and is currently an Associate Editor of the IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Ramin Zabih received the BS and MS degrees from the Massachusetts Institute of Technology
and the PhD degree from Stanford University. He is a professor of computer science at Cornell
University, where he has taught since 1994. Beginning in 2001, he has also held a joint
appointment at Cornells Weill Medical College in the Department of Radiology. His research
interests lie in discrete optimization in early vision and its applications in areas such as stereo

Felzenszwalb and Zabih Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

and medicine. He is best known for his groups work on graph cuts, for which he shared the
best paper prize at ECCV in 2002. He has been involved in the main vision conferences for
several years, including serving as a program chair for CVPR in 2007, and recently has been
running smaller workshops as well. He was appointed to the editorial board of the IEEE
Transactions on Pattern Analysis and Machine Intelligence in 2005, and since 2009 has served
as Editor-in-Chief.

References
1. Agarwala A, Dontcheva M, Agrawala M, Drucker S, Colburn A, Curless B, Salesin D, Cohen M.

Interactive digital photomontage. ACM Transactions on Graphics (SIGGRAPH). 2004; 23(3):292–
300.

2. Ahuja, Ravindra K.; Ergun, Özlem; Orlin, James B.; Punnen, Abraham P. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics. 2002; 123(1–3):75–102.

3. Amini, Amir; Weymouth, Terry; Jain, Ramesh. Using dynamic programming for solving variational
problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990; 12(9):
855–867.

4. Amit Y, Kong A. Graphical templates for model registration. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1996; 18(3):225–236.

5. Baker HH, Binford TO. Depth from edge and intensity based stereo. International Joint Conference
on Artificial Intelligence. 1981:631–636.

6. Barnard, Stephen. Stochastic stereo matching over scale. International Journal of Computer Vision.
1989; 3(1):17–32.

7. Basri R, Costa L, Geiger D, Jacobs D. Determining the similarity of deformable shapes. Vision
Research. 1998; 38:2365–2385. [PubMed: 9798005]

8. Bellman, R. Dynamic Programming. Princeton University Press; 1957.

9. Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE
Transactions on Pattern Analysis and Machine Intelligence. Apr; 2002 24(4):509–522.

10. Birchfield S, Tomasi C. Multiway cut for stereo and motion with slanted surfaces. International
Conference on Computer Vision (ICCV). 1999:489–495.

11. Blake, A.; Zisserman, A. Visual Reconstruction. MIT Press; 1987.

12. Boros E, Hammer PL. Pseudo-boolean optimization. Discrete Applied Mathematics. 2002; 123(1-3)

13. Boyd, Stephen; Vandenberghe, Lieven. Convex Optimization. Cambridge University Press; 2004.

14. Boykov, Yuri; Funka-Lea, Gareth. Graph cuts and efficient N-D image segmentation. International
Journal of Computer Vision. 2006

15. Boykov, Yuri; Jolly, Marie-Pierre. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. International Conference on Computer Vision (ICCV). 2001;
I:105–112.

16. Boykov, Yuri; Kolmogorov, Vladimir. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2004; 26(9):1124–1137. [PubMed: 15742889]

17. Boykov, Yuri; Veksler, Olga. Graph cuts in vision and graphics: Theories and applications.. In:
Paragios, N., editor. Mathematical Models in Computer Vision: The Handbook. Springer; 2005. p.
79-95.

18. Boykov, Yuri; Veksler, Olga; Zabih, Ramin. Markov Random Fields with efficient approximations.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1998:648–655.

19. Boykov, Yuri; Veksler, Olga; Zabih, Ramin. Fast approximate energy minimization via graph cuts.
International Conference on Computer Vision (ICCV). 1999:377–384.

20. Boykov, Yuri; Veksler, Olga; Zabih, Ramin. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001; 23(11):1222–1239.

21. Brown, Myron Z.; Burschka, Darius; Hager, Gregory D. Advances in computational stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2003; 25(8):993–1008.

Felzenszwalb and Zabih Page 28

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

22. Burkard, Rainer; Klinz, Bettina; Rudolf, Rudiger. Perspectives of monge properties in optimization.
Discrete and Applied Math. 1996; 70(2):95–161.

23. Cook, W.; Cunningham, W.; Pulleyblank, W.; Schrijver, A. Combinatorial Optimization. John Wiley
& Sons; 1998.

24. Cormen, TH.; Leiserson, CE.; Rivest, RL. Introduction to Algorithms. MIT Press; McGraw-Hill;
1989.

25. Coughlan J, Yuille A, English C, Snow D. Efficient deformable template detection and localization
without user initialization. CVIU. Jun; 2000 78(3):303–319.

26. Coughlan J, Yuille AL. Bayesian A* tree search with expected O(N) node expansions: Applications
to road tracking. Neural Computation. 2006; 14(8):1929–1958. [PubMed: 12180408]

27. Cunningham WH. Minimum cuts, modular functions, and matroid polyhedra. Networks. 1985;
15:205–215.

28. Dahlhaus E, Johnson D, Papadimitriou C, Seymour P, Yannakakis M. The complexity of
multiterminal cuts. SIAM Journal on Computing. 1994; 23(4):864–894.

29. Darrell TJ, Demirdjian D, Checka N, Felzenszwalb PF. Plan-view trajectory estimation with dense
stereo background models. International Conference on Computer Vision (ICCV). 2001

30. Dellaert, F. PhD thesis. CMU; Sep. 2001 Monte Carlo EM for Data-Association and its Applications
in Computer Vision..

31. Dijkstra EW. A note on two problems in connection with graphs. Numerical Mathematics. 1959; 1

32. Felzenszwalb PF. Representation and detection of deformable shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Feb; 2005 27(2):208–220. [PubMed: 15688558]

33. Felzenszwalb PF, Huttenlocher DP. Distance transforms of sampled functions. Technical report,
Cornell Computing and Information Science. Sep.2004 TR2004-1963.

34. Felzenszwalb PF, Huttenlocher DP. Pictorial structures for object recognition. International Journal
of Computer Vision. 2005; 61(1)

35. Felzenszwalb PF, McAllester D. The generalized A* architecture. Journal of Artificial Intelligence
Research. 2007; 29:153–190.

36. Fischler MA, Elschlager RA. The representation and matching of pictorial structures. IEEE
Transactions on Computer. 1973; 22(1)

37. Ford, L.; Fulkerson, D. Flows in Networks. Princeton University Press; 1962.

38. Garey, Michael; Johnson, David. Computers and Intractability. W. H. Freeman and Co.; 1979.

39. Geiger D, Gupta A, Costa LA, Vlontzos J. Dynamic-programming for detecting, tracking, and
matching deformable contours. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Mar; 1995 17(3):294–302.

40. Geman D, Jedynak B. An active testing model for tracking roads in satellite images. IEEE Transactions
on Pattern Analysis and Machine Intelligence. Jan; 1996 18(1):1–14.

41. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984; 6:721–741.
[PubMed: 22499653]

42. Greig D, Porteous B, Seheult A. Exact maximum a posteriori estimation for binary images. Journal
of the Royal Statistical Society, Series B. 1989; 51(2):271–279.

43. Gupta, Anupam; Tardos, Eva. A constant factor approximation algorithm for a class of classification
problems. ACM Symposium on Theoretical Computer Science. 2000

44. Hammer PL, Hansen P, Simeone B. Roof duality, complementation and persistency in quadratic 0-1
optimization. Mathematical Programming. 1984; 28:121–155.

45. Hampel, FR.; Ronchetti, EM.; Rousseeuw, PJ.; Stahel, WA. Robust Statistics: The Approach Based
on Influence Functions. Wiley; 1986.

46. Hanna, Marsha Jo. PhD thesis. Stanford University; 1974. Computer Matching of Areas in Stereo
Images..

47. Holland, John. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press; 1975.

48. Horn BKP, Schunk B. Determining optical flow. Artificial Intelligence. 1981; 17:185–203.

Felzenszwalb and Zabih Page 29

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

49. Ishikawa, H. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2009. Higher-
order clique reduction in binary graph cut..

50. Ishikawa H, Geiger D. Occlusions, discontinuities, and epipolar lines in stereo. European Conference
on Computer Vision (ECCV). 1998:232–248.

51. Ishikawa H, Geiger D. Segmentation by grouping junctions. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1998:125–131.

52. Ishikawa, Hiroshi. Exact optimization for Markov Random Fields with convex priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 2003; 25(10):1333–1336.

53. Jermyn IH, Ishikawa H. Globally optimal regions and boundaries as minimum ratio weight cycles.
IEEE Transactions on Pattern Analysis and Machine Intelligence. Oct; 2001 23(10):1075–1088.

54. Kannan R, Vempala S, Vetta A. On clusterings: good, bad, and spectral. Journal of the ACM. 2004;
51(3):497–515.

55. Karp RM, Pearl J. Searching for an optimal path in a tree with random costs. Artificial Intelligence.
1983; 21(1):99–116.

56. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer
Vision. 1987; 1(4):321–331.

57. Kim, Junhwan; Kolmogorov, Vladimir; Zabih, Ramin. Visual correspondence using energy
minimization and mutual information. International Conference on Computer Vision (ICCV).
2003:1033–1040.

58. Kim, Junhwan; Zabih, Ramin. Automatic segmentation of contrast-enhanced image sequences.
International Conference on Computer Vision (ICCV). 2003:502–509.

59. Kleinberg, Jon; Tardos, Eva. Approximation algorithms for classification problems with pairwise
relationships: metric labeling and Markov Random Fields. Journal of the ACM. 2002; 49(5):616–
639.

60. Kleinberg, Jon; Tardos, Eva. Algorithm Design. Addison Wesley; 2005.

61. Knuth D. A generalization of Dijkstra's algorithm. Information Processing Letters. Feb; 1977 6(1):
1–5.

62. Kohli, Pushmeet; Kumar, M. Pawan; Torr, Philip H.S. P3 and beyond: Move making algorithms for
solving higher order functions. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2008; 31:1645–1656. [PubMed: 19574624]

63. Kohli, Pushmeet; Torr, Phil. Efficiently solving dynamic Markov Random Fields using graph cuts.
International Conference on Computer Vision. 2005

64. Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2004; 26(2):147–59. [PubMed: 15376891]

65. Kolmogorov, Vladimir; Criminisi, Antonio; Blake, Andrew; Cross, Geoffrey; Rother, Carsten.
Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2006; 28(9):1480–1492. [PubMed: 16929733]

66. Kolmogorov, Vladimir; Rother, Carsten. Minimizing nonsubmodular functions with graph cuts-a
review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007; 29(7):1274–1279.
[PubMed: 17496384]

67. Komodakis, Nikos; Tziritas, Georgios. A new framework for approximate labeling via graph cuts.
International Conference on Computer Vision (ICCV). 2005

68. Korte, B.; Vygen, J. Combinatorial Optimization: Theory and Algorithms. Springer; 2005.

69. Krause, Andreas; Singh, Ajit; Guestrin, Carlos. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research.
2008; 9:235–284.

70. Kwatra, Vivek; Schodl, Arno; Essa, Irfan; Turk, Greg; Bobick, Aaron. Graphcut textures: Image and
video synthesis using graph cuts. ACM Transactions on Graphics (SIGGRAPH). 2003

71. Lempitsky V, Rother C, Roth S, Blake A. Fusion moves for Markov Random Field optimization.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010 To appear.

72. Lin MH, Tomasi C. Surfaces with occlusions from layered stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2004; 26(8):1073–1078. [PubMed: 15641736]

Felzenszwalb and Zabih Page 30

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

73. Ling H, Jacobs DW. Using the inner-distance for classification of articulated shapes. IEEE Conference
on Computer Vision and Pattern Recognition. 2005; II:719–726.

74. Maes M. On a cyclic string-to-string correction problem. Information Processing Letters. Jun.1990
35(2)

75. Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness,
color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence. May; 2004
26(5):530–549. [PubMed: 15460277]

76. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations
by fast computing machines. Journal of Chemical Physics. 1953; 21:1087–1091.

77. Montanari U. On the optimal detection of curves in noisy pictures. Communications of the ACM.
1971; 14(5)

78. Mortensen, Eric N.; Barrett, William A. Intelligent scissors for image composition. SIGGRAPH.
1995:191–198.

79. Ohta Y, Kanade T. Stereo by intra- and inter-scanline search using dynamic programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1985; 7(2):139–154. [PubMed:
21869253]

80. Papadimitriou, C.; Stieglitz, K. Combinatorial Optimization: Algorithms and Complexity. Prentice
Hall; 1982.

81. Pavlovic VI, Sharma R, Huang TS. Visual interpretation of hand gestures for human-computer
interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence. Jul; 1997 19
(7):677–695.

82. Poggio, Tomaso; Torre, Vincent; Koch, Christof. Computational vision and regularization theory.
Nature. 1985; 317:314–319. [PubMed: 2413361]

83. Press, William; Teukolsky, Saul; Vetterling, William; Flannery, Brian. Numerical Recipes in C.
Cambridge: 1992.

84. Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE. 1989; 77(2):257–286.

85. Raphael C. Coarse-to-fine dynamic programming. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2001; 23:1379–1390.

86. Raphael C, Geman S. A grammatical approach to mine detection. SPIE, 3079. 1997:316–337.

87. Rother C, Kolmogorov V, Blake A. “GrabCut” - interactive foreground extraction using iterated graph
cuts. ACM Transactions on Graphics (SIGGRAPH). 2004; 23(3):309–314.

88. Rother C, Kumar S, Kolmogorov V, Blake A. Digital tapestry. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2005

89. Roy S. Stereo without epipolar lines: A maximum flow formulation. International Journal of
Computer Vision. 1999; 1(2):1–15.

90. Roy S, Cox I. A maximum-flow formulation of the n-camera stereo correspondence problem.
International Conference on Computer Vision (ICCV). 1998

91. Satoru, Iwata; Lisa, Fleischer; Satoru, Fujishige. A combinatorial, strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM. 2001; 48(4):761–777.

92. Scharstein, Daniel; Szeliski, Richard. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision. 2002; 47:7–42.

93. Schoenemann T, Cremers D. Matching non-rigidly deformable shapes across images: A globally
optimal solution. IEEE Conference on Computer Vision and Pattern Recognition. 2008:1–6.

94. Sebastian TB, Klein PN, Kimia BB. On aligning curves. IEEE Transactions on Pattern Analysis and
Machine Intelligence. Jan; 2003 25(1):116–124.

95. Shashua A, Ullman S. Structural saliency: The detection of globally salient structures using a locally
connected network. IEEE International Conference on Computer Vision. 1988:321–327.

96. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2000; 22(8):888–905.

97. Szeliski, Rick; Zabih, Ramin; Scharstein, Daniel; Veksler, Olga; Kolmogorov, Vladimir; Agarwala,
Aseem; Tappen, Marshall; Rother, Carsten. A comparative study of energy minimization methods

Felzenszwalb and Zabih Page 31

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

for Markov Random Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008;
30(6):1068–1080. [PubMed: 18421111]

98. Tikhonov, A.; Arsenin, V. Solutions of ill-posed problems. Winston and Sons; 1977.

99. Veksler O. Stereo correspondence by dynamic programming on a tree. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2005:384–390.

100. Veksler, Olga. PhD thesis. Cornell University; 1999. Efficient Graph-based Energy Minimization
Methods in Computer Vision..

101. Wainwright M, Jaakkola T, Willsky A. Map estimation via agreement on trees: message-passing
and linear programming. IEEE Transactions on Information Theory. 2005; 5(11):3697–3717.

102. Weiss Y, Yanover C, Meltzer T. Map estimation, linear programming and belief propagation with
convex free energies. Uncertainty in AI. 2007

103. Woodford, Oliver; Torr, Philip; Reid, Ian; Fitzgibbon, Andrew. Global stereo reconstruction under
second-order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2009; 31:2115–2128. [PubMed: 19834135]

Felzenszwalb and Zabih Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Cuts separating the terminals (labeled 0 and 1) in this graph correspond to binary labelings of
a 3 by 3 image. The dark nodes are the pixel vertices. This graph assumes the usual 4-connected
neighborhood system among pixels.

Felzenszwalb and Zabih Page 33

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Paths in this graph correspond to assignments of labels to 5 elements in a sequence. Each of
the columns represents an element. Each of the rows represents a label. A path from s to t goes
through one vertex per column, which corresponds to an assignment of labels to elements. A
shortest path from s to t corresponds to a labeling minimizing the energy in equation (3)

Felzenszwalb and Zabih Page 34

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
(a) A one-dimensional signal. (b) Noisy version of the signal. (c) Restoration using the prior
V(xi, xi+1) = (xi – xi+1)2. (d) Restoration using the prior V(xi, xi+1) = min((xi – xi+1)2, τ).

Felzenszwalb and Zabih Page 35

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Dynamic programming on a tree. A tree where the root is labeled r and every other node is
labeled with its depth. The dashed vertices are the descendents of the bold vertex. The best
labels for the dashed verticies can be computed as a function of the label of the bold vertex.

Felzenszwalb and Zabih Page 36

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Matching two sequences, A and B, with the ordering constraint. Matchings satisfying the
ordering constraint lead to pairings with no crossing. The solid lines show a valid matching.
The dotted line shows an extra correspondance that would violate the ordering constraint.

Felzenszwalb and Zabih Page 37

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
Tracing a boundary using intelligent scissors. Selected points (mouse clicks) are marked by
white squares, while the current mouse position is marked by the arrow. The image on the left
shows the shortest path from the first selected point to a point on the ear. Selecting this path
would cut through the paw of the Koala. The image on the center shows how the paw can be
selected with a few more clicks. The last image shows the result after more interaction.

Felzenszwalb and Zabih Page 38

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Segmentation with an active contour model (snake). In each step of the optimization two control
points are fixed, and we optimize the locations of the other control points, while constraining
them to be near their previous position. Images (a) and (c) show the current position of the
control points and the search neighborhoods for the non-fixed control points in blue boxes.
Images (b) and (d) show the result of finding a global optimum of the energy within the
allowable positions for the control points. The runtime of a step depends on the size of the
search neighborhoods.

Felzenszwalb and Zabih Page 39

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
The shape context at a point p is a histogram of the positions of the remaining points relative
to the position of p. Using histogram bins that are uniform over log-polar space we obtain a
reasonable amount of invariance to deformations. Here we show two points on different shapes
with similar descriptors. In this case the cost of matching the two points would be small.

Felzenszwalb and Zabih Page 40

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Matching two curves. We can think of the goal of matching as bending and stretching the curves
to make them identical. The cost of bending is captured by the matching cost between two
points. An unmatched point in one curve corresponds to a local stretch in the other. In this case
a3, a6 and b2 are left unmatched.

Felzenszwalb and Zabih Page 41

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
Matching a human body model to two images using the pictorial structures formulation. The
model has 10 parts connected together in a tree-structure. The connections correspond to some
of the main joints of the human body. A matching assigns a location for each part. In this case
the location of a part specifies its position, orientantion and foreshortening.

Felzenszwalb and Zabih Page 42

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 11.
Popular choices of V and their properties, along with a few important algorithms. Except for
the Potts model, we assume that the labels xi, xj are scalars. For the first two choice of V, the
global minimum can be efficiently computed via graph cuts [51, 52, 90], under some reasonable
assumptions about the label set. The last two problems are NP-hard [20].

Felzenszwalb and Zabih Page 43

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 12.
The basic graph cut constructions, for two pixels. (A) The graph used in section 3.3, and by
[64]. (B) The graph used by [51], for 3 labels. (C) The graph used in the expansion move
algorithm of [20].

Felzenszwalb and Zabih Page 44

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

