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Efficient 3D Geometric and Zernike moments
computation from unstructured surface meshes
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Abstract—This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation
of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational
complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation
of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the
object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order
N, with respect to previously proposed exact algorithms, from N to N6. The approximate series algorithm appears as a power series
on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of
the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N3.

In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments,
with a computational complexity N4, while the previously proposed algorithm is of order N©.

The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of
error and computational time is analyzed for different moment orders.

Index Terms—Image analysis, geometric moments, 3D Zernike moments, shape characterization, object characterization.
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1 INTRODUCTION for homogeneous objects is a surface mesh defining
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A STANDARD tool used in computer vision and image
analysis for very general purposes, like classifica-
tion, search and recognition of objects or features, is
the computation of moments from an image [1], [2].
Classically, this technique has been applied to 2D images.
But with the current broad availability of 3D images and
models, these tools have been rapidly extended to 3D.
One of the most basic moments are geometric moments,
which are trivially extendible to any dimension. These
moments are simple to compute and are often used as a
basis for the computation of other, more elaborate, sets
of moments.

Many different algorithms have been proposed for the
computation of geometric moments, most of them are
specific to 2D, but still there are several valid for 3D or
even general to any dimension. In computational imag-
ing, the most used representation of the target object is
a volumetric image grid. But a convenient alternative
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its boundary. For general inhomogeneous objects, the
computational complexity is L? for a grid with L voxels
per dimension. For homogeneous objects, the use of the
boundary allows reducing the computational complexity
to L2

In this direction, Yang et al.[3] presented a fast al-
gorithm based on a discrete version of the divergence
(Gauss’s) theorem, applicable to voxel-like object bound-
aries in a binary grid. However, a characteristic property
of this method, common to most of the grid-based
methods, is that the volume integral defining the mo-
ments is approximated by a summation over the voxels,
where each voxel contributes only as a point-like object
located at its center. This approximation introduces a
discretization error, which escalates as the order of the
moments increases [4], [5], and makes the scale and
rotation invariants obtained from the moments only
approximately invariant [6]. Moreover, in the case of mo-
ments with non-square domains, like Zernike moments,
the discretization of the domain definition also limits
their precision [5].

A more convenient representation of 3D object bound-
aries is a polygonal mesh. An exact formula of moments
from a general 3D polyhedron with arbitrary shape and
topology was first obtained by Lien and Kajiya [7],
where the integral in the polyhedron is decomposed
into integrals in the oriented tetrahedra defined by the
origin and each triangle of the surface. Cattani and
Paoluzzi [8] reformulated it and extended the idea to
the boundary integration for a thin polyhedral surface
object. Bernardini [9] extended it to general dimensional
polyhedra. Sheynin and Tuzikov [10], [11] presented a
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similar algorithm also extended to general dimensions.
However, the exact formulas for the integration on a
single tetrahedron, on which all these works are based,
can be traced back to [12]. All of them involve an
affine transformation of each tetrahedron into a standard
tetrahedron, becoming the most expensive operation in
their computation. This transformation was formalized
using matrix products by DiCarlo and Paoluzzi [13] for
up to second order moments. An alternative approach
is based on the application of the divergence theorem,
already suggested in [14] and linked to the oriented
tetrahedron integration in [7]. Several algorithms have
been proposed following this approach [15], [16], [17],
[18], [19]. Most of these works develop symbolic for-
mulas for any order but specify them only for low
orders (up to 2nd or 3rd). Only a few introduce explicit
general algorithms. Since they are based on a boundary
representation, their computational complexity is linear
in the number of facets. With respect to the order N up
to which the moments are computed, all the proposed
exact algorithms have computational complexity N°.

Some approximate integration formulas using quadra-
tures have been also proposed for the moments of a
single tetrahedron [20], [21], [22], [23], [24]. However an
evaluation of their accuracy for high orders in general
polyhedra is not available. In addition, moment com-
putation from smoother boundary representations have
been also proposed as the scheme using polynomial
patches described by Gonzalez-Ochoa et al.[25].

2D Zernike moments are classically used because they
have shown robustness against image noise and good
discriminatory power for object detection and recog-
nition [26], [27]. In contrast to geometric moments,
they constitute an orthonormal basis, enabling the easy
reconstruction of the original object from its Zernike
moments. Since they form an infinite series, the recon-
struction obtained from Zernike moments up to order
N provides an approximation of the original object. The
higher the order, the more accurate the reconstruction.
An important advantage of Zernike moments is that
their domain of definition is the unit circle and their
natural definition appears in terms of polar coordinates
in the complex plane. This facilitates obtaining rotational
invariants, which are essential for the characterization
and recognition of objects independently of their pose.
Non-circular objects can be fit within this circular do-
main by centering, scaling and zero-padding.

Motivated by the good properties of Zernike moments
in 2D, Canterakis [28], [29] generalized them to 3D. The
criterion was the substitution of the complex exponential
in polar coordinates by the spherical harmonics in spher-
ical coordinates. Then, the series of radial factors were
fixed by imposing the condition of orthonormality to the
moments, and a predetermined increasing order to their
polynomial degree. This generalization, especially the
computation of the radial factors, is far from straightfor-
ward. This 3D version of the Zernike moments and their
rotational invariants have been tested for their retrieval
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capabilities of different classes of 3D objects [30], [31] and
have been applied, for instance, to the morphological
characterization of cerebral aneurysms [19]. Although
in these papers the name used has been 3D Zernike
moments, the authors of the present paper believe that it
would be more accurate to call them Zernike—Canterakis
moments (Z-C moments for short)

In [30] an algorithm was introduced for the com-
putation of Zernike—Canterakis moments from previ-
ously computed geometric moments. A formula for the
coefficients relating each one of the Z-C moments as
a linear combination of geometric moments is given.
These coefficients can be computed off-line since they
are independent of the object. However, their storage
requires a large amount of memory for high orders. The
computational complexity of the object-dependent part
of the algorithm is N, with N being the order up to
which the moments are computed.

In this paper, we propose two new algorithms for
the computation of geometric moments of homogeneous
objects from their boundary when represented as a trian-
gular mesh. The starting point of both algorithms follows
the same approach as in [7], [10], [11] obtaining the exact
formula for moments of tetrahedra. As in their case,
our algorithms are valid for objects with arbitrary shape
and topology. However, in all three cases, the general
formula was presented without focusing on reducing
its high computational complexity with respect to the
moments order N. Their interest was in low order mo-
ments and only presented explicit formulas up to order
N = 3. Here we obtain more efficient general formulas,
which greatly reduce the computational complexity. In
addition, following also [11], with a slight modification,
the algorithms can be adapted for the computation of
the geometric moments of a surface as an object in itself,
which we call surface-like moments, in contrast to volume-
like moments.

The first presented algorithm (Section 3) is exact, in
the sense that, given an object defined exactly by a par-
ticular triangle mesh, the algorithm provides the exact
geometric moments of this object. However, in general
the object of interest is never the triangle mesh itself, but
this mesh models the desired object with some precision
or resolution, which depends on the number of triangles
and on how the mesh was generated and processed,
as well as its provenance. This algorithm reduces the
computational complexity from N? in [11] to N°.

The second algorithm (Section 4) allows one to com-
pute an approximation of geometric moments. Indeed,
the algorithm provides a series of approximations which
can be truncated at any desired degree. It is a power
series in a parameter, A\, dependent on the ratio of
triangle size to object size. Thus, the larger the number
of triangles, the smaller the error introduced by the
approximation. If the series is computed up to power
AN, with N being the maximum desired order of the
geometric moments, then the algorithm becomes exact.
The advantage of the approximate algorithm is that the
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computational complexity is notably reduced from N
in the exact algorithm to N?.

If the error introduced by the chosen approximation
is smaller than the precision of the mesh in modeling
the object, then this error can be ignored and the use
of the approximate algorithm will be practically indis-
tinguishable from the exact algorithm. In Section 6 some
experiments and analytical computations estimating and
comparing the different errors are presented, together
with a cost-benefit analysis of the computational time.

In addition, the paper introduces (Section 5) an ef-
ficient algorithm for the computation of Z-C moments
from geometric moments, decreasing the computational
complexity of the previous algorithm presented in [30]
from N°® to N*. This reduces the computational time
of Z-C moments from geometric moments to the order
of milliseconds, making it negligible with respect to the
computation of geometric moments.

2 MOMENTS FROM SURFACE MESHES

An object in computational imaging can be represented
by a scalar field, f(p), defined in a finite region, where
the intensity value corresponds to some property of the
represented object. This can be applied to both 2D and
3D objects, but we will focus on 3D. Given a collection
of functions M;(p), together with their proper domain
D, the moments of the scalar field with respect to this
collection are defined by

M(f)r = /D £(p) Mi(p) dV (1)

where dV is the volume element. One of the most well
known moments are geometric moments, whose defining
collection of functions is the set of monomials of any
order on the Cartesian coordinates:

Giji(p) = z'y! 2

and their domain is, in principle, the whole of R3.
Observe that the index I is split into 3 integer indices
i,j,k > 0. The other moments considered in this work
are the 3D Zernike—Canterakis moments. Their defining col-
lection of functions are the Zernike—Canterakis polynomials
[29]:

ne(P) = Rue(r)Y{" (0, ¢)

where {r,0,p} are the spherical coordinates and Y;”
are the spherical harmonics. Written in Cartesian coor-
dinates they are polynomials of order n. Note that since
Z-C polynomials are derived from spherical harmonics,
they are complex. The range of the indices are 0 < ¢ < n,
with n — £ even, and —¢ < m < /.

As opposed to geometric moments, Z-C moments
constitute a complete collection of orthonormal func-
tions. This property allows a direct reconstruction of the
original scalar field from the Z-C moments. In addition,
the natural domain of Z-C moments is the interior of the
unit sphere. This domain is by construction invariant to
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rotations, enabling the natural calculation of rotational
invariants from the moments.

The simplest model to represent an object without
texture or substructures is a binary field with value 1
inside the object and 0 outside. However, the actual
realization of this field does not need to be a volumetric
image. A homogeneous volumetric object is completely
determined by its boundary. Thus a convenient repre-
sentation is a surface. Typically, this boundary represen-
tation is less expensive in terms of memory than the
image representation, since for a given object resolution
the number of points in the surface are, in general,
significantly less than in the volume.

Although computed using a boundary mesh, the mo-
ments computed by integrating over the interior of the
solid will be called wvolume-like moments. A different
possibility is to treat the surface as a thin object of
which to compute the moments. This second type will
be called surface-like moments. Observe that for volume-
like moments the surface must be closed, separating
the space into an interior region and an exterior region,
while for surface-like moments this is not necessary.

The mathematical definition of the two types of mo-
ments is, respectively

Mgv) :/VdVMI(p) and M§5> Z/SdSMI(p)

where dV is the volume element in the volume V
and dS the area element on the surface S. For their
implementation we shall start from these two formulas.
However, they can be formalized, consistently with (1),
as moments of the density functions, respectively:

M (p) = {

where ¢ is the 3D Dirac-delta function and d.S|, the area
element evaluated at point g. In the volume-like case,
f™) is the indicator function of the object interior.

1 ifpeV

0 ipev and f®(p) :/SdSquY(pfq)

3 EXACT ALGORITHM FOR GEOMETRIC MO-
MENTS

3.1 Volume-like geometric moments

Using the notation introduced above, the geometric mo-
ments of the homogeneous object defined by the volume
V are

gi(;/) :/ ztyl 28 dedydz
v

The object is modeled by a closed triangle-mesh defining
its boundary. Each triangle is characterized by three ver-
tices: p1, p2, ps, oriented consistently counter-clockwise
when seen from the exterior. Using the origin, each of
these triangles defines an oriented tetrahedron. As these
tetrahedra are all oriented, an integral over the whole
object can be expressed as a sum of integrals over them,
irrespectively of the object topology and the point chosen
as origin [7], [11].
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The oriented volume is given by the determinant

1 1 X2 I3
Vol=clmn 12 ys
Z1 k2 Z3

obtained from the Cartesian coordinates of the three
ordered vertices of the triangle. The sign of this determi-
nant gives the orientation of the tetrahedron. Thus, the
integral over the whole object can be decomposed into
a summation of the integrals over each tetrahedron 7,
defined by each triangular facet ¢, with its corresponding
sign:

k dedydz

gz]k - Z Sign(VOL:)/ z'y

c€Facets Te

The integral over each tetrahedron can be obtained
analytically. The first step is to perform a change of
basis, parameterizing the tetrahedron in terms of the
barycentric coordinates of the triangle and the fractional
distance to the origin:

p=pp, P =api+Lp2+ps 2)

with o, 8,7 >0, a+S+v=1and 0 < p < 1. The volume

element in the coordinates «, 3, p is given by the Jacobian

of the transformation from Cartesian coordinates, which

is proportional to the volume of the tetrahedron: J =

6Vol p?. Thus, the geometric moments can be expressed
gzyk -

as
11—«
6Vol,. / dpp”'w/ da/
cEFacets

(azy + Bro +vy23)" (ayr + By2 +7y3)? (az1 + Bz +y23)"

withn =i+ j+kand v = 1 — a — 3, and where
Vol. includes the corresponding sign. Observe that the
integral over p is mdependent of the others, resulting in

a simple factor fo dp p"t? = L= Hence,
v 1
= — > 6Vol. Siji 3)

c€Facets

where

1 11—«
(ayl + Bya + vy3)? (21 + Bza +vz3)"  (4)

Before advancing more in the expansion, we introduce
the surface-like geometric moments, since the subse-
quent steps will be in common.

(w1 + Bxo + y13)°

3.2 Surface-like geometric moments

Surface-like geometric moments of a surface S (not
necessarily closed) are defined by

gfjs,i = / ds z* yj 2k
s

The object is still modeled by a triangular mesh. But,
in this case, the object is the surface itself. The integral
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can be decomposed into the sum for all the facets of the
integral performed for each triangle:

”kf Z /dS:z:yz

c€eFacets

As for tetrahedra in the volumetric case, the integral
over each triangle can be obtained analytically. Any
point on the triangle can be expressed in barycentric
coordinates in terms of the three vertices with the same
expression as p’ in (2). Taking v = 1 — a — 3, we can
express the area element in each triangle as

dS = 2Area dadp

where

1
Area = 5“(1’1 —p3) A (py — ps3)|

is the area of the triangle.
Thus, the surface-like geometric moments can be ex-
pressed as
gff,l = Z 2Area. Siji ®)

c€Facets

where S;;i; is defined by (4).

3.3 Common factor for both types of geometric mo-
ments

Observe that the formulas for volume-like (3) and
surface-like (5) geometric moments are very similar. The
only difference is the use of the volume or the area
respectively, and the appearance of the factor ? in the
volume-like ones. The following steps correspond to the
computation of the common factor S;jy.

When expanding some of the powers in the following

formulas, there will appear binomial coefficients:

() =aoar

and trinomial coefficients:
(a+b+c)!

(@bl =g

Expanding the powers in (4) and taking the Cartesian
coordinates of the three vertices out of the integral, we
get

Sijik =

> > )

i1+ig+izg=1i j1+io+iz=i ki+kotkz=k
0<iy,ig,iz  0<j1,j2,43 O0<ki,ka,k3
(i1 | dg | ig) 21" wo™ mg™
X (1 | g2 | gs) yn?* yo?* ys”
X (k’l | kg ‘ ]Cg)zlkl 22k2 ng?’

1 l—«
% / da/ dﬁ a11+]1+k1 ﬁ12+]2+k2 ,y13+13+k3 (6)
0 0

Then we need to solve the series of integrals

Lo = /da/ df a®f(1—a— B)°
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for all a, b, c. They are coefficients depending only on the
numbers a, b, ¢, and independent of the triangle vertices:

7 a!b! c!
e @t b+t 2)

which is a particular case of a general formula proved in
[12]. Using this expression and expanding the trinomial
coefficients in (6), a collection of factorial factors appear.
These can be rearranged to obtain a more convenient
set of trinomials, enabling us to take some factorials out
of the summations and to group the point-dependent
factors by vertices instead of by coordinate axes:

il L k!
CEST P DD VDS

i1+ig+ig=i j1+i2+iz=j kitkotkz=k
0<ijy,ig,iz 0<ji,j2.d3 O0<kj,ka,k3

Sijk =

(iv | g1 | k1) a1 g7 2™
x (ig | ja | k2) 22 yo?2 29
X (ig | ja | k3) 3% yz72 23"

This rearrangement is crucial in order to reduce the
computational time. Using the notation

Cll = (i 151 k) 2o’ ya’ 2" )
and

3)
Dape = Z Z Z 1272’€2 a iz,b—j2,c—k2’ ®)

120]20k20

we arrive to the expression

lk;l :
Z Z Z 11J1k1 Di— i1,j—j1,k—k1- )

11=071=0k1=0

Sijk =

Observe that the intermediate quantities Dy, are inde-
pendent of the indices i, j1 and k;. Hence, they can be
computed independently and collected in an array.

3.3.1 Implementation

An array collecting the trinomial factors is precomputed
for n < order. Then the algorithm runs through each
facet sequentially, with the computation in each facet
being independent from the others.

For each facet, the three vertices of the triangle,
P1, Ds, D3, are taken. Then, for each vertex independently,
the series of monomial combinations of its components
(7) is computed and stored. These three point-like combi-
nations are then combined in two steps. First, monomials
of p, and p; are combined (8), and second, the result is
combined with p; (9). The result is multiplied by the
facet area (3) or volume (5), according to the moment
type, and is added to the corresponding geometric mo-
ment.

This structure allows to compute the contribution of
each facet to all the geometric moments with two loops
of depth 6, instead of one loop of depth 9. In addition,
the symmetry of the formulas simplifies the implemen-
tation, and the independence of the contribution from
each facet allows an easy parallelization.
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4 APPROXIMATE SERIES ALGORITHM FOR GE-
OMETRIC MOMENTS

The algorithm described in the previous section is exact
in the sense that, given an object defined exactly by a
particular triangle mesh, the algorithm gives the exact
geometric moments of this object. In this section, an
algorithm to compute an approximation of geometric
moments is described. Indeed, the algorithm provides a
series of approximations which can be truncated at any
desired degree, thus controlling the approximation error.
It appears as a power series in a parameter, A, dependent
on the ratio of the average triangle size to the model size.
Thus, the error introduced by the approximation at any
degree falls off with the number of triangles modeling
the object. If the series is computed up to the power AV,
with N the maximum desired order of the geometric
moments, then the algorithm becomes exact.

In the definition of S;ji (4) the points on the triangle
are written (2) in terms of the three vertices of the
triangle:

p' =ap1 + Bp2 + (1 —a— B)ps.

with o, 8 > 0 and a + 8 < 1. Applying the change of
variables, o = o/ + % and 8 = 3 + %, and using the
triangle centroid p = (p1 + p2 + p3)/3 and the vectors
u = p1 —ps and v = p3 — p3, the point can be expressed
as

p =p+du+pv.

with o/, > —% and o/ + ' < }
Considering this change of variables we can rewrite
(4) as

CRE S
Sijk = da
_l _l

(T + ug + Bvg) (G + o'uy + B'vy) (Z+ a'u, + Bv)E.

Expanding the powers using the trinomial coefficients
we get

Sijk = Z Z Z Jistjatka,ististks
i1tigt+ig=i j1+ja+i3=j kitkotkz=k
0<iy,ig,ig 0<j1,j2,53 O0<ki,ko,k3
(ix | g1 | ka) Gz | g2 | k2) (is | js | ks)
Th ?Jd k1 uxiz uyj2 usz Uxi3 ijs Uzks (10)

defining J,; as the series of integrals

ab—/ da/ dg a*p

3
which is solved in appendix A, yielding an expression
not as compact as the integrals Tope-

Vectors u and v have the length of the triangle edges.
Let us assume that the object is centered at the origin
and the triangle mesh is uniform so that all the triangles
are almost equilateral and of similar size. This size can
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be quantified with respect to the object radius with the
parameter

4 3
)\_ \/% (Facet area) \/Ti\/5 (X" cracets Areac)
<||ﬁ"> EceFacets "p” Areac

where ( ) denotes the mean on the mesh, T is the
number of triangles and V3 /4 is the area of an equilateral
triangle with unit edges. This parameter is defined for
the sake of a correct formalization of the aproximate
series. However, it will not be explicitly used in the
final algorithm formula and implementation. Using this
parameter we can normalize the two vectors:

and v

U

u/A

v/

Note that they are not unit vectors but their modulus
will be of the same order of the object mean radius:

(Ipl)
(lullvl)

Including these definitions, (10) becomes

la] = Ju] =~ ([p[)-

Sae= D, > D
i1+ig+ig=i j1+j2+iz=ij kitkotkz=k
0<iy,ig,ig 0<j1.j2,33 O0<kjy,ko,k3
(i1 [ Jr | k1) (2 | g2 | k) (i | js | ks)

Th y]l k1 T2 ﬂyj2 ’&zk2 0,73 ,[)yjs ,[)st
in-tis+jatis+hatk
Ji2+j2+k27i3+j3+k3 ARSI SRR,

This expression can be rearranged as a power series in
the parameter A:

Sk =Y XS
r=0

The contribution to each degree is

min(%,r) min(j,r—i4)

 _ ) Nk
Sie= > () > ()
iy=max(0,r—j—k) jir=max(0,r—k—iy)
iy J+ ki
TGO (5 Titsotkar—in—in—ho
i2=0 §2=0 ko=0
Fh ?jl Elﬁ awiz ﬂyj2 ﬁzk2 ,ﬁzig ,ﬁng @ZI%’ (11)

where we have used iy =i—iy, j1 =j—jy, k1 =k—ky,
i3 = i+—i2, j3 = j+—j2, k/’g = k+—k2 and k+ = T—’L'+—j+.

41 Degree 0

Implementing the degree 0 of this approximate series al-
gorithm is extremely simple. The coefficients are reduced
to

SO = Joo T 7.
Using that Jyo = 1/2 we obtain

Sijk = TP 2 + O(N).

4.2 Degree 1
For degree 1 the coefficients are
SG) =17 g 2 (ot + Jor0s)
+ B P 2 (Jody + Jordy)
+ kT yj Ekil(Jlo’az + J()lf}z).

But Ji9 = Jo1 = 0. Hence, the contribution of the degree
1 identically vanishes:

Sijk = %fq ﬂj z" + O(/\Q).
This is an interesting property, which makes the approx-

imation at degree 0 more accurate than expected.

4.3 Degree 2

For degree 2, the coefficients Si@lz use the values Ji; =
—1/72 and Jy9 = Jo2 = 1/36, which lead to the approxi-
mation of degree 2:

1—i—j5 =k 1 i\ =i—2 —7j =k 2 2
Sijk = §mlyjz +%<(2) T yjz (uac — Up Vg + Uy )

+ (;) Ty Ek(uy — uyvy +vy°)

+ (;) TP 22 (0, — uyv, 4+ v.2)

+ijE gt Ek(umuy - l(umvy + vgty) + v0y)
+ikT g Y

2
Ugll, — %(umvz + VU ) F VyUz)
1
2

+ kTP (uyu, — L (uyv, +vyus) + vyvz))

Observe that the factor A\? has been reintegrated into
the vectors u and v. Thus, as announced, the parameter
A does not appear explicitly in the final formulas, but
it plays an essential role in their conceptualization and
formalization.

5 ZERNIKE—CANTERAKIS MOMENTS ALGO-
RITHM
The definition of Z-C moments is given in [28], [29].

Their defining series of functions are the Z-C polyno-
mials:

nt(P) = Rne(r)Y" (0, ¢),

where {r,0, ¢} are the spherical coordinates. These poly-
nomials are based on the spherical harmonics:

(£—m)/2
Yr0,0) = S Vi (cos )2 (sing)" e,
3=0
where
. (20—
NGTE (m|j| gm?])( (E—j)>
Y= (-1 —
2 (m | m|€—m)

(12)
And they include a factor which is polynomial in the
radial coordinate:

k
Rnl(r) = Z QkZVTZV—i_Z
v=0
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with k& = (n — £)/2. The coefficients are defined by

(kv [20+4k+3
4k 3
20+v+1+ k))

vlk—-v| €+1/+1)( vtk
20+v+1)
f+v+1
Although their definition is given in spherical coordi-

nates, Z-C polynomials are actually polynomial func-
tions on Cartesian coordinates:

(e—m)/2

k
77172(19) — Z le” Z Y'Z]n TZ(u+j) Zé—m—2j (a? + Zy)m
§=0

Qkél/ =

X

v=0

Observe that the definition of spherical harmonics
used (12) follows the 4m-normalization convention (see
appendix B for more details and comparison with other
formulations). Following this convention, and in analogy
with the exponential Fourier series, the definition of Z-C
moments [28] is given by

3
t= e | ie) Zw,

where the over-line denotes the complex conjugate.

We propose an efficient algorithm for computing Z-C
moments from geometric moments. The strategy is based
on the definition of a chain of four auxiliary series of
polynomials:

Vabe = 272" (2 + iy)*Te
Wape = (2% + y?) 20 (x + iy)°
Nape = 12" (a + iy)°

(t—m)/2

Z Y-[T r2(u+j)zf—m—2j (.’E + iy)m.
=0

omo __ 2v+bym
YVEV_T Y-Z -

The associated moments for each of these series of
polynomials will be denoted by the corresponding calli-
graphic character. They can be computed recursively as

o a—+c
Vabc = Z ia( > g2a+c—a,a,b (13&)
a=0 «
- aga—af @
Wabc = Z:O(_]-) 2 (Oé) Vafa,b,c+2oc (13b)
° a
Xabc = Z;) <a) Wa—a,b+2oz,c (13C)
(L—m)/2
V=Y Y2 Xyiemo2im (13d)
j=0
e R
Zh = I I;J Qrev Vi - (13e)

In order to compute Z-C moments up to order n = N,
Vaber Wape and Xype need to be computed for a,b,c > 0
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and2a+b+c§N,J>gﬁ for0<m</<Nand 0<v <
(N—4)/2,and 27, for 0 < m < ¢ <n < N with n — ¢
even.

This formulation of the Z-C moments of an object
in terms of its geometric moments passing through the
chain of auxiliary moments gives a very efficient algo-
rithm for their computation, involving 5 loops of depth
4. In contrast, the algorithm proposed in [30] involves
one loop of depth 6.

6 ALGORITHM EVALUATION
6.1 Computational complexity analysis
6.1.1

Both algorithms introduced for the computation of geo-
metric moments, exact and approximate series, are linear
in the number of triangles of the mesh. Compared with
a volumetric image with L? grid dimension, the number
of triangles, and thus the complexity of the presented
algorithm, can be considered of the order of L.

Regarding the maximum order N of the computed
geometric moments, the exact algorithm is of order N 6.
This complexity coincides with the direct extension to 3D
of the correct (in the simplest case considering constant
function value in each voxel) algorithm for 2D images
[4]. However, in computer vision and image analysis
it is common to approximate the moments applying a
summation over the image grid instead of an integral.
The straightforward algorithm from this discrete approx-
imation is of order N3.

The Oth-degree algorithm proposed in this paper is a
kind of discrete version for surface-based computation
of moments. Thus, it shares the low computational com-
plexity of both approaches: L? x N3.

The introduction of the approximate series algorithm
is meant to improve the accuracy of the approximation
of the discrete approach. For any degree r, the rth-
degree algorithm is of the same order with respect to
N. However, their computational complexity depends
on the degree: L? x N3 x r5. For this reason, using high
degrees (r ~ N) can be counterproductive. But for low
degrees (r < N), the accuracy is significantly improved
while the computational complexity is kept low.

Geometric moments

6.1.2 Zernike—Canterakis moments

As mentioned above, the proposed algorithm for the
computation of Z-C moments involves 5 loops of depth
4. Hence, its computational complexity is N4. Observe
that it is completely independent of the image or mesh
resolution since it is applied to the computed geometric
moments. In addition, it can be pipelined to whatever
algorithm used for computing geometric moments. If
the approximate rth-degree algorithm is used, then the
total computational complexity is L? x N?® x r® + N*.
As in general L > N, the computational time involved
in computing Z-C moments from geometric moments is
negligible.
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6.2 Estimation of the power series behavior

In general, an accurate and smooth object representation
requires the use of sufficiently small triangles. We can
then assume that the parameter satisfies A < 1. As an
example, a rough estimation for a uniform mesh of 20K
triangles gives \? ~ 1073

The expression of 57(;,2

».r. (11) includes the triangle-
dependent factors

Th yjl k1 ﬂmiz ﬁyjz ﬁsz ﬁ$i3 {)yj?, f)zk3.

The points and vectors p, 4 and ¥ are in general all
of the same order (|p|, @], |v| ~ (|P|)). There can be
always some proportion of triangles with some of the
coordinates close to zero, so that they will be of a lower
order of magnitude. Thus, these factors will satisfy:

Eil yjl zkl ’LALQ«ZQ ﬂyh ﬁzkz @Tm @yjz @st 5 <||T)”>n

However, it is expectable that their summation over all
the facets will be dominated by the order of magnitude
(Ipl)™, which is independent of the degree r. Taking this
value as an approximation for estimating the coefficients
Sl(jz, we can recompute the series from the integral. After
some algebra we obtain:

o (BnA 45X = 3)(3+ A)" T 4 (3 —2X)" T2
3nt2(n+1)(n 4+ 2)A2

Sije = (|Pl)

and

. i 3T+ (=2)"2 (n
5 ~ (Ipl) (2) )( )

3r+2(r+1)(r+2

For r =0 and r = 2 it gives

SO~ (Ipl)"

1 1 /n

3 and S5 = mhgg (3)

Fig. 1 shows the behavior of this estimation of S;;, and
its Oth- and 2nd-degree approximations as a function
of A for different values of n. The error introduced by
the approximations increases with the order n and with
the value of A, and the use of 2nd-degree instead of
Oth-degree approximation reduces the relative error by
almost 2 orders of magnitude.

6.3 Experimental results

Four types of experiments have been performed to
evaluate the reconstruction correctness, accuracy, com-
putational time and numerical stability of the different
algorithms. The algorithms have been implemented in
C++ using double float arithmetic and their behavior has
been tested on different publicly available shapes and
from some of our own databases. All the evaluations
were run on a Pentium® IV 3GHz with 2Gb of RAM.
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Fig. 1. Left: Estimated behavior of S;;x as a function of J,
compared with its Oth-degree S{) and 2nd-degree S.) +S)\?

approximations. Right: Relative error (|AS|/.S) of using Oth- and
2nd-degree approximations with respect to the exact S;;x.

6.3.1

Two series of meshes with different number of triangles
modeling a sphere and a torus have been synthetically
produced with Paraview 2.6 (Kitware, Inc., lllinois, USA).
For all the meshes, the number of triangles has been kept
small, and the triangle size uniformity and quality rather
poor. The goal of this experiment is to qualitatively test
the limits of the approximate algorithms of Oth- and 2nd-
degree, when the number of triangles is reduced and
when the moment order is increased. Z-C moments have
been computed for every mesh up to different orders
with Oth-degree, 2nd-degree and exact algorithms. Then,
the object indicator function has been reconstructed from
the computed Z-C moments using (15), and its isosurface
at 0.5 has been extracted using marching cubes.

Fig. 2 compares the reconstruction for a sphere from
a very sparse mesh (64 triangles) with Oth-degree and
exact algorithms. For Oth-degree, when the order in-
creases, the effect of approximating each triangle by its
centroid becomes more evident. Whereas, for the exact
algorithm, there appears an excessive adaptation to the
particular mesh, which is in general an undesired effect
when modeling a smooth object.

Fig. 3 shows the reconstructions up to different orders
with each of the three algorithms and from two different
meshes (400 and 1K triangles) representing a torus. It can
be seen that as the order increases, the reconstruction
from the approximate moments becomes more sensitive
to the triangles size, but that 2nd-degree algorithm is less
sensitive than Oth-degree algorithm.

Reconstruction correctness

6.3.2 Accuracy

As commented above, in general when an object is
modeled by a triangle mesh some error is introduced.
This error depends on all the combined imaging and



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Order 10

Order 15 Order 20 Order 40

Fig. 2. Reconstruction obtained for a 64 triangle mesh repre-
senting a sphere, from the Z-C moments computed with Oth-
degree and exact algorithms up to different orders.

1K TRIANGLE MESH
Order 20 Order 30 Order 40

400 TRIANGLE MESH
Order 20 Order 30 Order 40

Exact

Fig. 3. Reconstruction obtained for a 400 triangle mesh and a
1K triangle mesh representing a torus, from the Z-C moments
computed with Oth-degree, 2nd-degree and exact algorithms up
to different orders.

modeling process. The error introduced by this modeling
results in the corresponding error in the geometric and
Z-C moments computed from the mesh. The order of
magnitude of this error in the moments will be taken as a
reference error level. Thus, an approximate computation
introducing an error smaller than this error level can be
considered negligible.

One of the relevant factors in the modeling, which
is likely independent of the application and completely
controllable, is the quality and number of triangles used
in the final mesh. For 4 different objects (see Fig. 4), a
smooth, uniform and high quality triangle mesh with
1 million facets has been considered as the reference
model. From the reference model, the Z-C moments have
been computed with the exact algorithm to obtain the
reference Z-C moments. Then a series of meshes has been
created by sequentially reducing the number of triangles
down to 4K using the software Remesh [33]. Two differ-

% D1

Fig. 4. Smooth 1M-triangle models of the 4 shapes used for the
accuracy experiments. The two models on the left are a cerebral
aneurysm and a heart from our own medical image databases.
The two models on the right have been generated from the m73
and the m95 shapes of the Princeton Shape Benchmark [32].
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Fig. 5. Detail of the 1M-triangle reference mesh (left) for the
fourth shape and the corresponding 4K triangle meshes of
both types: uniform (middle) and adaptive (right). For uniform
meshes, the triangles are optimized for being as equilateral and
equally sized as possible. For adaptive meshes, the triangles
adapt their shape and size to the curvature of the represented
object boundary.

ent processes have been followed for this facet number
reduction. In the first one, all the meshes are constrained
to be uniform with nearly equilateral triangles. In the
second one, the triangles size and shape are allowed
to adapt according to the object curvature (see Fig. 5).
Then the error in the Z-C moments computed from the
reduced meshes compared to the reference moments
has been computed for each mesh size, for uniform
and adaptive meshes, using the exact algorithm and the
approximate algorithms of Oth and 2nd-degree, and for
orders 10, 20 and 30. The error has been measured using
the Euclidean distance of the Z-C moments divided by
the Euclidean modulus of the reference:

V12 - Zeeop
SIEATIE

Error =

Fig. 6 shows the results obtained with the first shape
model, for both surface-like and volume-like moments.
The results obtained with the other 3 shapes are very
similar.

For uniform meshes the error introduced by the 2nd-
degree algorithm is indistinguishable from the one ob-
tained with the exact algorithm, while for the Oth-degree
algorithm the error is only slightly larger. As expected,
for the exact algorithm, adaptive meshes introduce less
error than uniform meshes with the same number of
triangles. Despite this, it is interesting to observe that,
for the Oth-degree algorithm and N > 20, the error on
adaptive meshes is larger than on the corresponding uni-
form meshes. This is reasonable since adaptive meshes
have more elongated triangles, causing the approxi-
mation to be less accurate. However, the 2nd-degree
algorithm with adaptive meshes produces errors sub-
stantially smaller than the exact algorithm with uniform
meshes. For example, for surface-like moments with
N = 20, the error for an adaptive mesh of 30K triangles
with the 2nd-degree algorithm is 3.6 x 10~*, while for
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Fig. 6. Error in the surface-like and volume-like Z-C moments of the first shape computed up to orders 10, 20 and 30 with exact,
Oth-degree and 2nd-degree algorithms, from meshes of different size and quality. For uniform meshes, the circles corresponding
to the error of the exact algorithm are completely superposed with the stars displaying the error of the 2nd-degree algorithm. It
is visible that there is also some superposition for adaptive meshes with more than 30K triangles between exact and 2nd-degree
algorithms. The dashed line displays the error introduced in the mesh by one step of Laplacian smoothing in the reference model.

the equally sized uniform mesh the error with the exact
algorithm is 2.2 x 1072 and it would be necessary to use
a uniform mesh with 150K triangles to obtain a similar
€rTOr.

We can also observe that the higher the order, the
larger the error for all the algorithms. But the errors for
the approximate algorithms increase faster than the ones
for the exact algorithm. This is especially evident for the
Oth-degree algorithm with adaptive meshes, but can also
be seen for the 2nd-degree algorithm.

It is also interesting to notice that surface-like mo-
ments are more sensitive than volume-like moments to
both mesh accuracy and approximate algorithm errors.
Observe that the errors of volume-like moments for
orders N = 20 and N = 30 are similar to the errors
of surface-like moments for order N = 10 and N = 20

respectively.

In order to complement the estimation of the acceptable
error level, a series of pairs of uniform meshes represent-
ing the same object with the same number of triangles
have been created. A Laplacian smoothing of one step
with 100% neighbor weighting has been applied to the
reference model with 1 million facets used above. This
produces a second model where the only difference with
respect to the original is a minor remeshing operation
considered almost trivial in many applications. Then,
the same process as described above to reduce the
facet number keeping uniform meshes is applied to the
smoothed copy to produce another series of differently
sized meshes. The union of both series is a paired series
of uniform meshes ranging from 1 million to 4K facets,
where each mesh is differentiated from its pair by this
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smoothing step. The Z-C moments of each pair have
been computed with the exact algorithm. Then, the Z-C
moments error of each mesh with respect to its pair has
been computed as an estimate of the error introduced
by this processing step. This error is displayed in Fig. 6
by the solid dashed lines. Observe that it is very stable
between 1072 and 10~ for all the cases. Thus, it seems
that for most applications a computational error below
10~* can be considered negligible.

The accuracy of the approximate algorithms, isolated
from the mesh representation error, can be measured
with the error of the approximate Z-C moments with
respect to the exact Z-C moments of the same mesh,
instead of with respect to the reference moments from
the 1 million triangle mesh. Fig. 7 (left) displays this
error for volume-like moments up to order N = 20
against the number of triangles. In Fig. 7 (right) the same
error is plotted against the corresponding parameter A
and superimposing the results for the 4 different shapes.
We can observe that, for uniform meshes, the values
are in agreement with the estimation of the relative
error displayed in Fig. 1. The error for adaptive meshes
is larger than for uniform meshes with the same X,
since the hypothesis of nearly equilateral and similarly
sized triangles made for the accuracy estimation is not
satisfied. In this sense, it can be seen that the difference
between the errors for adaptive meshes and uniform
meshes increases as A grows since, in the series used for
the experiments, adaptive meshes with fewer triangles
are less regular. It is also worth observing that the
error of the 2nd-degree algorithm on both, uniform and
adaptive meshes, is markedly smaller than the error
introduced by a Laplacian smoothing on the 1-million-
triangle mesh.

These results allow to compare the accuracy obtained
by using the 2nd-degree algorithm on a uniform mesh
of T triangles with the accuracy obtained using the Oth-
degree algorithm but after subdividing the triangles. For
comparable computational times, the ratio of the relative
errors between the 2nd- and Oth-degree algorithms for
N = 20 will be around 5/v/T, which decreases in favor of
the precision of the 2nd-degree algorithm as the number
of triangles increases.

6.3.3 Computational time

The same meshes of different sizes used for the accuracy
experiments have been used for obtaining the com-
putational times involved in computing Z-C moments
up to orders 10, 20 and 30 using the exact and the
Oth- and 2nd-degree algorithms. Fig. 8 shows the error
for each algorithm and mesh size and quality against
its computational time. It can be seen that, concerning
these two factors, the optimal choice is the 2nd-degree
algorithm applied to adaptive meshes. This fact becomes
more evident when increasing the order. However, if the
available mesh is uniform the best option is the Oth-
degree algorithm. By far, the worst option is the exact
algorithm applied to uniform meshes, which for the
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Fig. 7. Error in the volume-like Z-C moments computed up to
order 20 with the 0th- and 2nd-degree algorithms, with respect
to the Z-C moments computed with the exact algorithm from the
same mesh. It is plotted against the number of triangles for the
first shape (left) and against the corresponding parameter X for
the four shapes (right). The dashed line is the error introduced
by one step of Laplacian smoothing in the reference model.

same error level introduces a factor in the computational
time with respect to the best option of around 60, 300 and
1000 for orders N = 10, 20 and 30, respectively. For order
N = 20 and error 1073, for instance, the computational
time is 0.6s for 2nd-degree on adaptive meshes, 1.2s
for Oth-degree either on adaptive meshes or uniform
meshes, 4s for 2nd-degree on uniform meshes, 30s for
exact algorithm on adaptive meshes, and 170s for exact
algorithm on uniform meshes.

As commented in Subsection 6.1.2, all exact algo-
rithms previously presented have higher computational
complexity (N®). For comparison, the algorithm in [19]
has been applied to some of the meshes used in this
experiment. The computational times obtained increase
the time needed for our exact algorithm with a multi-
plicative factor of 30, 110 and 310, for orders N = 10, 20
and 30, respectively. For order N = 20 and error 1073,
the computational time increases to 3300s for adaptive
meshes and 19000s for uniform meshes.

Let us remark that these computational times are
mainly due to the geometric moment computation. In
agreement with the computational complexity analysis
done in Subsection 6.1.2, the time involved in the com-
putation of Z-C moments from geometric moments is
negligible: 0.1 ms, 0.9ms and 3.9ms for orders N = 10,
20 and 30 respectively, regardless of the mesh size.
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Fig. 8. Computational time required for volume-like Z-C moments of the first shape computed up to orders 10, 20 and 30 with
exact, Oth-degree and 2nd-degree algorithm from meshes of different size and quality against their error with respect to reference.

6.3.4 Numerical stability

An important issue in any algorithm is its numerical sta-
bility when, say, double float computer precision is used
instead of infinitely precise real numbers. To test this
aspect, we have considered a solid cube of edge length
0.5 aligned with the positive Cartesian axes and with a
vertex in the origin, because its geometric moments can
be analytically computed:

90— (i+j+k+3)

Gisk = (i+1)(G+1)(k+1)

(14)

and can be exactly represented by a finite mesh. Oth
and 2nd-degree algorithms for geometric moments up to
order N = 150 have been applied to 2K, 125K and 2M-
triangle meshes representing this cube. Exact algorithm
has been applied only to the 2K-triangle mesh due to its
computational cost. Figure 9 (top) shows the maximum
relative errors with respect to analytically computed
geometric moments for each order. The relative errors for
the exact algorithm (~ 107'*) correspond to the double
float precision. For Oth and 2nd-degree algorithms up to
order 90 and 110 for 2M and 125K triangles respectively,
the error seems to be attributable to the approximate
algorithm accuracy. From these orders the numerical
error is still small, at least up to order 125, where a rapid
divergence appears for 2M-triangle mesh.

Z-C moments up to order 60 have been computed
from the previously computed geometric moments and
also from their analytical expression (14), using both
the new algorithm and the previous one [30]. From the
orthonormality of Z-C polynomials and the homogeneity
of the object from which the moments are computed, it

follows the identity

DI

n=0 ¢ m

_ =0
- ZOO

This implies that the Euclidean norm of Z-C moments
up to order N converges to \/ZJ, when N increases,
which can be used as a test for the numerical stability of
the algorithm. Figure 9 (bottom) shows this convergence
for the computed Z-C moments, which breaks down at
N = 50 for the new algorithm and at slightly larger order
N = 53 for the previously published method. Very likely,
this divergence is caused by the addition and subtraction
of terms including binomial factors (13ab), which exceed
double float precision for N ~ 50.

7 CONCLUSION

In this paper two types of algorithms have been pre-
sented for the computation of geometric moments of an
homogeneous volumetric or a thin surface-like object,
from a triangle mesh representing the object boundary
or the object itself respectively. The first algorithm is
exact for the particular triangular mesh, while the second
one is an approximation, expressed as a power series
in a parameter A\ proportional to the mesh triangle size
and can be truncated at any desired degree r. The exact
algorithm already represents a reduction in the compu-
tational complexity with respect to the moment order,
N, from N?, for the previously proposed algorithms
[71, [8], [16], [18], [11], [19], to NS. The approximate
algorithm with » < N further reduces the computational
complexity to N3 x r5.

In addition, an algorithm for the computation of 3D
Zernike-Canterakis moments from geometric moments
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Fig. 9. Numerical stability tested on the moments of a cube.
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computed with exact, Oth-degree and 2nd-degree algorithm
from meshes of 2K, 125K and 2M triangles with respect to the
exact analytical values. Right: Euclidean norm of Z-C moments
up to order N computed with the previously existing algorithm
and the new algorithm, from geometric moments computed
analytically and with 2nd-degree algorithm.

has been introduced. It reduces the computational com-
plexity with respect to the only previously existing algo-
rithm [30] from NS to N*.

The accuracy of the approximation increases with the
number of triangles of the mesh and with the approxi-
mation degree r. From the experiments performed, even
for low degrees as 0 and 2, the error introduced can be
acceptable or even negligible. In particular, this error has
been compared with the error introduced by modeling
a smooth object with a finite-number-of-triangle mesh.
While both errors are of the same level for the Oth-
degree algorithm applied to uniform meshes, the error
introduced by the 2nd-degree algorithm is substantially
smaller for both, uniform meshes and adaptive meshes.
The error of the 2nd-degree algorithm is also smaller
than the error derived from applying an additional one-
step Laplacian smoothing during the mesh generation.

Regarding the computational time needed for each
algorithm in order to obtain a predetermined error level,
the most efficient algorithm is the 2nd-degree algo-
rithm applied to adaptive meshes, followed by the Oth-
degree algorithm applied to uniform meshes. By far the
least efficient is the exact algorithm applied to uniform
meshes. Besides, the time involved in the computation of
Zernike—Canterakis moments from geometric moments
with the proposed algorithm is negligible.
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Both types of algorithms for geometric moments have
a good numerical stability at high orders. In the worst
case, for dense meshes, approximate algorithms are sta-
ble up to order 125. And no instability has been found
for the exact algorithm in our tests up to order 150.
The stability of the presented algorithm for Zernike-
Canterakis moments is much lower (up to order 50), but
is only slightly lower than the only previously existing
algorithm. Hence, new algorithms for Z-C moments (or
a higher precision or exact arithmetics implementation)
should be developed if orders higher than 50 are re-
quired.

These results enable us to conclude that the pro-
posed 2nd-degree algorithm for computing 3D geometric
moments, together with the algorithm for computing
Zernike—Canterakis moments from them, is an efficient
and accurate method for obtaining moments from an
object modeled by a triangular mesh, surpassing by 2
to 3 orders of magnitude the computational time of the
exact algorithm, and by 2 additional orders of magnitude
the previously proposed algorithms.

APPENDIX A
COMPUTATION OF THE INTEGRALS J,;

Section 4 presented the series of integrals

Jab:/3 da [ dB a® g
-+ 4
To solve them, first we apply the change of variables
o =3a and ' = 36:

1 2 1—a’ b
Jap = 7/ da’/ dg o« ",
3a+b+2 _ 1

Solving the integral for 5’

1 1 2 /ra nb+1 b+1
Jab do’ o* [(1 — o)t — (—=1)"F1].

T 3atbr2p 41 .

We then define the quantities
2
Ko = / do/ o/*(1—a/)b,
-1

giving
1 1

Job = g 1

Kapir = (=1)" Kap).

In its turn, K, can be computed recursively:
Ka,b+1 - Kab - KaJrl,b

with
(2a+1 _ (_1)a+1).

al =

a+1

These formulas allow us to compute the integrals Jg;,
for any value of a and b. Their expression as a closed
formula could be written using hypergeometric func-
tions, but it would be hardly useful. Observe also that,
although they are by construction symmetric: Jo; = Jpq
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and K,, = Kj,, the obtained formulas do not manifest
these symmetries.
For the lower values, we get:

Koo =3, Ko =Ko = %7 Kag = Koz = 3,
Ki=-3, Kyp=Kois=7, Kn=Ks=-}
and

1 1 1
Joo =13, Jor=Jio=0, Juu=—=, Jo2=J2 =35

APPENDIX B
COMPARISON WITH OTHER FORMULATIONS OF
ZERNIKE—CANTERAKIS MOMENTS

In Section 5 the definition of Zernike—Canterakis mo-
ments is explicitly written. A component of this def-
inition is the set of spherical harmonics. The coeffi-
cients defining these functions (12) correspond to the
4mr-normalization without Condon-Shortley phase. This
is the normalization used for its definition in [28], al-
though the phase convention is not explicitly stated.
However, a non-standard ™ phase is used in [30]. There,
a further confusion could follow, since first a definition
with complete normalization is given, but later the 4r-
normalization is used.

Coherently with this 47-normalization, Z-C polynomi-
als are defined to satisfy the normalization

3 —_— /
-— i Zm = Onn'O¢e e
T /VdV nt(P) Z7770 (D) = O Oper 0

The original definition of Z-C moments in [28] includes
this factor:

m o__ i m
e = o /V AV f(p) Z},(p)-

Thus, the reconstruction of the function (or inverse trans-
formation) does not include any factor:

[eS) n l
o= > W Zi)  (15)
n=0 (=0 m=—{
{+n even

In [30], [19] and [31] the used Z-C moments follow this
convention. And it is the one followed in this paper.
However, in [29] Canterakis himself presents the Z-C
moments with a different convention: the factor 3/4w
was moved from the moments definition to the recon-
struction formula.
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