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Abstract—This paper addresses the problem of self-validated labeling of Markov random fields (MRFs), namely to optimize an MRF

with unknown number of labels. We present graduated graph cuts (GGC), a new technique that extends the binary s-t graph cut for

self-validated labeling. Specifically, we use the split-and-merge strategy to decompose the complex problem to a series of tractable

subproblems. In terms of Gibbs energy minimization, a suboptimal labeling is gradually obtained based upon a set of cluster-level

operations. By using different optimization structures, we propose three practical algorithms: tree-structured graph cuts (TSGC), net-

structured graph cuts (NSGC), and hierarchical graph cuts (HGC). In contrast to previous methods, the proposed algorithms can

automatically determine the number of labels, properly balance the labeling accuracy, spatial coherence, and the labeling cost (i.e., the

number of labels), and are computationally efficient, independent to initialization, and able to converge to good local minima of the

objective energy function. We apply the proposed algorithms to natural image segmentation. Experimental results show that our

algorithms produce generally feasible segmentations for benchmark data sets, and outperform alternative methods in terms of

robustness to noise, speed, and preservation of soft boundaries.

Index Terms—Self-validated labeling, Markov random fields (MRFs), graduated graph cuts, image segmentation, split-and-merge.
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1 INTRODUCTION

AS an intermediate process, image segmentation plays
an important role in many high-level vision tasks, such

as recognition [1], [2], [3] and authentication [4]. Recently,
many methods have been proposed for the K-labeling
segmentation, which mainly concerns the balance of
segmentation quality and computational efficiency, under
the assumption that the number of labels K is known [5],
[6], [7], [8], [9], [10]. However, this assumption makes them
highly unsuitable for recent content-based applications,
such as generic object recognition [11], since, for a large
number of images, it is very infeasible to ask the users to
input the “right” number of segments for each individual
image. Therefore, in image segmentation, we should
consider not only the labeling quality (i.e., the Gibbs energy
integrating labeling accuracy and spatial coherence) but
also the labeling cost (i.e., the number of labels). In general,
for a comparable segmentation quality (i.e., similar Gibbs
energy value), we should prefer the labeling with the least
number of labels due to Occam’s razor. For clarity, we use

the term self-validated labeling to denote the labeling problem
when the number of labels is unknown.1

Despite the practical importance, self-validated labeling
is far from being well-studied for image segmentation.
There seems a straightforward way to extend the K-labeling
segmentation to be self-validated—that is, we try several
particular K and choose the best labeling result with the
smallest K. However, this is highly impractical, especially
for a large number of images, where complexity is the most
obstacle (see Section 4.4 for details). In addition, some
K-labeling methods may lead to unsatisfactory segmenta-
tions, even when fed by the “correct” number of labels. See
Fig. 1b for example. For the synthesized image in Fig. 1a,
normalized cut [6], a state-of-the-art K-labeling method, is
unable to generate satisfying segmentation using the correct
number of labels, 5. It can produce all “right” boundaries,
together with many false-alarmed boundaries, only by
feeding with a much larger number of labels, 20. Indeed, the
drawback of K-labeling segmentation emphasizes the
practical necessity of self-validated labeling.

As shown in Fig. 1c, there exist some self-validated
methods in the literature [13], [14], [15], [16]. However, few
of them succeed in both computational efficiency and
robustness to noise distortion. For instance, split-and-merge
is a natural strategy for self-validated segmentation (see
GBS in Fig. 1c for example) and has a long history [17]. In
general, existing split-and-merge methods are able to
efficiently determine all salient regions of an image by
coarse-to-fine partitioning (e.g., IsoCut [18]) and/or fine-to-
coarse aggregation (e.g., SWA [19]). By using advanced
optimization techniques, such as spectral relaxation in
SWA, recent split-and-merge methods have largely im-
proved their accuracy and flexibility. More importantly,
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1. The term self-validated labeling (or self-validation) is borrowed from
clustering validation [12], where the number of clusters is a very important
aspect to be validated.
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most of them are self-validated and efficient. However,
these methods are usually not robust enough to noise
distortion. In contrast, K-labeling methods are accurate,
robust, but not self-validated. Therefore, a reliable labeling
method which can automatically determine the number of
labels and optimize a global objective function is of
significant importance both theoretically and practically.

In this paper, we address this problem and study how to
“suboptimally” label an MRF with unknown number of
labels. Our work aims at seeking a simple yet principled way
to decompose the intractable self-validated labeling problem
to a series of tractable subproblems. We start from the graph
theoretic formulation of image segmentation. It is Greig et al.
who first showed the binary labeling problem can be exactly
solved by s-t graph mincut/maxflow (s-t graph cut for short)
[20]. Recently, Boykov et al. horizontally extended the binary
s-t graph cut to solve the K-labeling problem [21], [22], [23],
which was further theoretically investigated by Kolmogorov
et al. [24], [25]. Except for being not self-validated, the
horizontal extension, as shown by our experiments, is highly
dependent on the initialization. We propose an alternative
way to vertically extend the binary s-t graph cut to solve the

self-validated labeling problem.2 The core of our approach is
to gradually reconstruct a suboptimal segmentation based on
a set of cluster-level operations: retaining, splitting, merging,
and regrouping. These operations lead to a suboptimal top-
down labeling refinement process which intrinsically solves
the self-validation problem of MRFs labeling. Because we
gradually refine the labeling using s-t graph cut, we name our
approach graduated graph cuts (GGC).

Using different optimization structures, we propose
three concrete algorithms: tree-structured graph cuts
(TSGC), net-structured graph cuts (NSGC), and hierarchical
graph cuts (HGC), within the GGC scheme. All of them
start by treating the whole image as a single segment, then
iteratively select the optimal operation for each segment,
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Fig. 1. Comparison of self-validated and K-labeling segmentation for the synthesized image (a) (of size 128� 128, consisting of 5 segments and with
40 percent Gaussian noise). We show the segmentation results of normalized cut (NCut) [6], which is a representative K-labeling method, and four
state-of-the-art self-validated methods (efficient graph-based segmentation (GBS) [13], MeanShift [14], tree-structured MRF (TS-MRF) [15], and
data-driven Markov Chain Monte Carlo (DDMCMC) [16]) in (b) and (c), respectively. The average running time of NCut for image (a) is 11.4 s.
However, NCut is unable to return satisfying result when fed by the correct number of segments, 5; it can produce all “right” boundaries, mixed with
many “wrong” boundaries, only when fed by a much larger number of segments, 20. Bottom-up methods, such as MeanShift and GBS, can
automatically determine the number of segments and are very fast (need about 1 s), but are either apt to oversegmentation or too sensitive to noise
corruption. TS-MRF uses split-and-merge strategy in the MRF framework, but the approximate optimization cannot guarantee spatially coherent
labeling. DDMCMC generates a reasonable result with the right number of segments, but it is very slow and needs about 210 s to reach a stable
labeling for image (a). The results of the proposed algorithms are shown in (d). Note that TSGC needs 2.96 s, NSGC needs 5.70 s, HGC needs
2.01 s, and all of them produce satisfying results with reasonable number of segments. (a) Original. (b) K-labeling segmentation (normalized cut).
(c) Self-validated segmentation (previous methods). (d) Self-validated segmentation (our methods).

2. The term vertical/horizontal extension is derived from the algorithmic
structure of segmentation methods, which refers to whether a segmentation
algorithm explores the space of all possible labelings directly or in a
hierarchical manner. As shown in Fig. 6, the proposed GGC scheme uses
the s-t graph cut to gradually refine the labeling between two consecutive
levels in the hierarchical structure and thus can be viewed as a vertical
extension to the binary s-t graph cut. In contrast, �-expansion and �-�-swap
use the s-t graph cut to iteratively refine the K-labeling at the same level,
thus belonging to horizontal extension.



and end when the overall energy stops decreasing. Based
on extensive experiments and a qualitative analysis, we
show that, by this process, the proposed algorithms always
obtain good local minima of the objective energy function.

2 RELATED WORK

Image segmentation remains a classical and active topic in
low-level vision for decades. Among the previous successful
methods, MRF-based ones account for a large percentage
[26]. In recent years, it is still a dynamic area that studies the
application of MRFs in image segmentation, such as double
MRF [27], data-driven MCMC [16], hidden Markov measure
field model [28], and tree-structured MRF [15]. MRF-based
methods can naturally represent the labeling accuracy and
spatial coherence within the Bayesian framework, but some
of them are computationally complex and converge slowly.

Recently, graph theoretic approaches have been success-
fully used in MRF labeling [5], [6], [7], [8], [9], [18], [29].
These methods treat image segmentation as a graph
partitioning problem. By using advanced optimization
techniques, they realize efficient energy minimization and
properly balance the labeling quality and computational
efficiency. According to the particular energy function they
minimize, graph theoretic approaches fall into two cate-
gories: continuous methods and discrete methods.

Representative continuous segmentation methods in-
clude spectral relaxation [6], [30], [31], [32], [33] and random
walk [7], [8], [9]. By encoding local pairwise similarity into a
graph, continuous methods usually minimize a relaxed
partitioning function by solving a constrained eigen-problem
[6] or a linear system [9]. Since continuous methods generate
fractional labeling, they were successfully used in image
matting [34], [35]. In contrast, typical discrete methods, such
as s-t graph cut [20] and its extensions [21], [22], [23], [24],
[25], directly solve the original integer-programming for
graph partitioning. One desirable property of discrete
methods is that, for a particular set of binary energy functions
(e.g., submodular functions [24], [25]), they can obtain a
globally optimal labeling in polynomial time. Since in image
segmentation the widely used pairwise terms based on the
Potts model are usually submodular, discrete segmentation
methods usually have a better theoretical guarantee, espe-
cially in the binary case. For instance, binary s-t graph cut has
achieved great success in interactive foreground segmenta-
tion [36], [37], [38]. Although discrete methods guarantee
global optima for some particular energy forms, they cannot
handle generic energy functions [39], while continuous
methods have no such limit. Moreover, continuous MRF
models have recently shown their potential in rectifying the
shrinkage bias of discrete models in seeded image segmenta-
tion [7], [8]. Despite the respective merits of discrete and
continuous methods in image segmentation, how to properly
take account of the labeling cost (i.e., the number of labels)
within the optimization framework (for either discrete or
continuous models) still remains an open problem.

Before image segmentation, graph partitioning was
widely used in parallel simulation and the design of VLSI.
There are some well-established graph partitioning
packages, such as METIS [40], which use multilevel split-
and-merge to seek a balanced minimal partition to the
graph using the Kernighan-Lin algorithm. Despite their
successes in other areas, they are not readily suitable for

image segmentation since they cannot maintain spatial
coherence well, are not guaranteed to be optimal, and are
biased for image segmentation. For instance, the normalized
cut criterion was proposed to rectify the small partition bias
of minimum cut criterion for image segmentation [6]. The
improvement can be clearly seen in Fig. 16. But, the split-
and-merge strategy does shed light on self-validated
labeling since many split-and-merge segmentation methods
are self-validated [13], [18]. Note that there is a long history
of split-and-merge in image segmentation [17]. Recent
methods, such as IsoCut [18] and GBS [13], integrate
advanced optimization techniques into the split-and-merge
scheme, thus significantly improving the performance.
However, as shown by our experiments (see Figs. 12 and
13), they are usually sensitive to noise distortion.

In this paper, we try to find a principled way to apply the
split-and-merge strategy to a global optimization frame-
work, thus integrating the merits of both schemes and
realizing reliable self-validated labeling. In contrast to
Boykov’s horizontal extension to binary s-t graph cut by
iteratively refining the labeling between theK segments [21],
our GGC approach can be viewed as a vertical extension. We
show how to gradually use the binary s-t graph cut to
efficiently minimize the Gibbs energy downward, thus
solving the self-validated labeling problem. Our work is
also partially related to clustering, e.g., AutoClass [41] uses a
mixture prior model and the Bayesian method to determine
the optimal classes, which intrinsically favors clustering with
less numbers of clusters. Another related work is TS-MRF
[15], which reduces the K-labeling segmentation into a
sequence of K � 1 simpler binary segmentations. However,
the suboptimality property of TS-MRF is unclear, and as
shown in our experiments, the approximate labeling of TS-
MRF may arbitrarily deviate from good local minima, thus
severely degrading the performance. Partial work and some
preliminary results of this paper were also reported in [29].

3 GRAPH FORMULATION FOR SEGMENTATION

The Bayesian framework and MRFs model form a solid
foundation for image segmentation, based on which an
image I is modeled as an MRF X with observation Y . The
MRF X ¼ fxpg represents the segmentation result that
considers both accuracy and contextual constraints, where
xp 2 L, p is an image pixel, and L ¼ fL1; L2; . . .g is the label
space. The goal of self-validated segmentation is to estimate
the optimal label for each pixel when the number of labels
K ¼ jLj is unknown.

As shown in Fig. 2a, we can equivalently interpret the
MRF model with a graph formulation, where the image I
and the contextual dependency is represented by an
undirected graph G ¼ hV; Ei. In particular, the vertex set
V ¼ fVL;VPg is composed of two components: the set of
label vertices VL and the set of pixel vertices VP. From Fig. 2,
we can see that each vp (vp 2 VP) corresponds to a pixel p,
with yp denoting its observation and xp (xp 2 VL) denoting
its potential label. The arc set E ¼ fEL; ECg also consists of
two parts: the likelihood arcs EL ¼ fðvl; vpÞjvl 2 VL and vp 2
VPg representing the likelihood of labeling pixel p with vl
(vl ¼ Ll), and the coherence arcs EC ¼ fðvp; vqÞjðvp; vqÞ 2
V2

P and ðp; qÞ 2 N 2g reflecting the pairwise dependency
between adjacent pixels. Here N 2 denotes the second order
neighborhood system. Although the proposed approach
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can handle dense graphs with long-range pairwise connec-
tions of any type, we focus on the 4-connected lattice in this
paper. Note that, in MRFs labeling, it has been shown that
properly encoding long-range connections helps to improve
the labeling specificity [42], [43], [44]. In image segmenta-
tion, this means that dense graphs with long-range
connections may benefit the preservation of soft bound-
aries. However, the cost is a significant increase to the
complexity of graph partitioning. In contrast, we show in
Fig. 14 that our approach is good at preserving soft
boundaries using the simple 4-connected lattice only, which
results in high computational efficiency.

In terms of MRFs, the statistically optimal labeling X̂
maximizes the posteriori probability (MAP) given observa-
tion Y , i.e., X̂ ¼ arg maxXP ðXjY Þ, which is equivalent to
minimizing the following Gibbs energy:

EðX j Y Þ ¼
X

ðxp; vpÞ2EL

Elikðxp j ypÞ þ
X

ðvp; vqÞ2EC

Ecohðxp; xqÞ; ð1Þ

where ElikðxpÞ is the likelihood energy representing the
goodness of labeling pixel p by xp and Ecohðxp; xqÞ is the
coherence energy denoting the prior of labeling spatial
coherence. For simplicity, in the rest of the paper, we use
EðXÞ to represent the Gibbs energy EðXjY Þ, use ElikðepÞ
(ep ¼ fxp; vpg 2 EL) to represent ElikðxpjypÞ, and use EcohðepqÞ
(epq ¼ fvp; vqg 2 EC) to represent Ecohðxp; xqÞ. Then, we can
rewrite (1) as

EðXÞ ¼
X
ep2EL

ElikðepÞ þ
X
epq2EC

EcohðepqÞ: ð2Þ

Referring to Fig. 2a, if we assign ElikðepÞ as the weight of
likelihood arc ep and EcohðepqÞ as the weight of coherence arc

epq, the optimal segmentation with minimal Gibbs energy

corresponds to the minimal multiway cut of weighted

graph G (see Fig. 2b).
Let SegðIÞ ¼ fSigKi¼1 represent the final segmentation of

image I consisting of K nonoverlapping segments

S1; . . . ; SK , each of which has a unique label LðSiÞ 2 L
and LðSiÞ 6¼ LðSjÞ when i 6¼ j. A particular segment S

corresponds to a set of pixels having the same label, i.e.,

S ¼ fvjv 2 VP and LðvÞ ¼ LðSÞg, where LðvÞ and LðSÞ de-

note the labels of pixel v and segment S, respectively. We

use F ðSÞ to represent the corresponding feature space of S,

i.e., F ðSÞ ¼ fypjvp 2 Sg. From (1) and (2), we can express the

likelihood and coherence energy functions of segment S as

ElikðSÞ ¼
X

ðLðSÞ; vpÞ2EL
vp2S

ElikðLðSÞ j ypÞ; ð3Þ

EcohðSÞ ¼
X

ðvp; vq Þ2EC
vp2S ^ vq 62S

Ecohðxp; xqÞ: ð4Þ

Specifically, the coherence energy of segment pair ðSi; SjÞ
(Si 6¼ Sj) is

EcohðSi; SjÞ ¼
X

ðvp; vq Þ2EC
vp2Si ^ vq2Sj

Ecohðxp; xqÞ: ð5Þ

It is clear that EcohðSiÞ ¼
P

j6¼i EcohðSi; SjÞ. Based on (1)-(5),

we can express the Gibbs energy of segmentation SegðIÞ as

E
�
SegðIÞ

�
¼
XK
k¼1

ElikðSkÞ þ
XK
i;j¼1

EcohðSi; SjÞ

¼
XK
k¼1

ElikðSkÞ þ
EcohðSkÞ

2

� �
:

ð6Þ

Graph formulation reveals the equivalence between MRF-

based segmentation and the NP-complete multiway

(K-way) graph cut problem [21], [45]. Furthermore, when

the number of labels K is unknown, the problem becomes

even more difficult. Nevertheless, for K ¼ 2, it is equiva-

lent to the classical graph mincut/maxflow problem, which

can be exactly minimized in polynomial time [21], [22],

[23], [24], [46].

3.1 Optimal Binary Segmentation

Let us first see how to use the s-t graph cut to achieve an

optimal binary segmentation, i.e., labeling all pixels with a

binary MRF Xb¼fxpg (xp 2 f0; 1g) based on observation Y .

When K ¼ 2, the Gibbs energy of segmentation becomes

EbðXÞ ¼
X
ep2EL

Eb
likðepÞ þ

X
epq2EC

Eb
cohðepqÞ: ð7Þ

As we have known, a particular difficulty in segmenta-

tion is that one has to estimate both the representative

model of each segment and its corresponding regions at the

same time [28]. Thus, we need an effective feature model to

represent each segment, and based on which to define the

concrete energy function of Eb
lik and Eb

coh.
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Fig. 2. Graph formulation of MRF-based segmentation (by 4-connected
lattice): (a) undirected graph G ¼ hV; Ei with K segments fL1; . . .LKg
and the observation Y ; (b) final segmentation corresponds to a multiway
cut of the graph G; (c) the relationship of vertices and edges in the graph
formulation.



3.1.1 Feature Space Representation

To achieve an effective energy assignment and efficient

computation, we use Algorithm 1 to derive a two-level

(component/subcomponent) nonparametric feature model for

a segment with observation feature space Y (see Fig. 3 for

illustration). Specifically, for a given segment S, its feature

space is characterized by 2 components (used to compute

the optimal segment splitting energy) and 2H subcompo-

nents (used to compute the segment retaining and merging

energies). Details about their functions can be found in (8)-

(11) and Section 4.

Algorithm 1. Two-level nonparametric feature model

Input: Feature space Y .

Output: Two-level component/subcomponent feature

model fC0; C1g ¼ ffM0
hg

H
h¼1; fM1

hg
H
h¼1g.

1. Dividing feature samples into two components C0 and

C1 by K-means;

2. Subdividing C0 and C1 into H subcomponents M0
h and

M1
h by K-means, respectively;

3. Deriving the representative center for each

subcomponent and obtaining the final model

Y ¼ fC0; C1g ¼ ffM0
hg

H
h¼1; fM1

hg
H
h¼1g;

Note that our feature model is nonparametric, which is

in contrast to the GMM modeling in GrabCut [38]. We

choose the nonparametric manner mainly due to the

consideration of efficiency. As we know, the EM estimation

of GMM model needs an iterative process. It is unsuitable

for self-validated segmentation since we may need to model

a large number of segments, as opposed to the two

segments in GrabCut. Instead, we use a fast K-means

algorithm in our scheme with triangle inequality accelera-

tion [47]. Besides, the nonparametric representation helps to

improve the ability of our model to handle non-Gaussian

color distributions in an image.

3.1.2 Energy Assignment

The likelihood energy measures the segmentation accuracy

and can be viewed as the intrasegment distance. Based on

the nonparametric representation of feature space, we

define the likelihood energy as

Eb
likðxpÞ ¼

�
d1
pxp þ d0

pð1� xpÞ
��
; ð8Þ

where d0
p ¼ Dðyp; C0Þ and d1

p ¼ Dðyp; C1Þ represent the

distance between yp and C0 and C1, respectively, and

Dðyp; CtÞ ¼ min
h

��yp �Mt
h

��; t 2 f0; 1g: ð9Þ

From (9), we can also define the distance between two
components as

DistðC0; C1Þ ¼ min
t2f0;1g

min
i
DðMt

i ; C
1�tÞ

� �
: ð10Þ

Note that in (8), � controls the influence of likelihood
energy Eb

lik on the Gibbs energy Eb. The larger the � is, the
more important is the likelihood energy Eb

lik.
The coherence energy measures the segmentation feasi-

bility that represents the contextual prior. We define the
coherence energy by extending the classical Potts model to
be data-driven [29]:

Eb
cohðxp; xqÞ ¼

jxp � xqj
kp� qk exp

�
� kyp � yqk

�

�
: ð11Þ

Our definition of Eb
coh encourages close pixels with similar

colors to have the same label. In (11), � controls the

influence of the coherence energy Eb
coh on the Gibbs energy

Eb. The larger the � is, the greater the role that the

coherence energy Eb
coh plays in Eb.3 Fig. 4 compares the

extended Potts model and the classical Potts model for

image segmentation. We can clearly see that the extended

model makes the coherence prior more flexible since, with a

comparable number of segments, the extended data-driven
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3. It has been shown that the Ising/Potts models cannot provide
sufficient smoothing guidance if used as an image-specific prior [48]. As a
general (i.e., image-independent) smoothing prior, however, the Potts
model has been widely used in MRF labeling [21], [22], [23], [24], [29], [36],
[37], [38].

Fig. 3. Nonparametric feature model for a segment with observation Y

(H ¼ 3): (a) is the two-level component/subcomponent representation,

(b) shows an example.

Fig. 4. Comparison of the extended and classical Potts model for image

segmentation.



Potts model generates more accurate labeling, while the
classical Potts model needs more than twice the number of
segments to achieve the similar accuracy.

4 GRADUATED GRAPH CUTS

In this section, we will show how to vertically extend the
binary s-t graph cut to solve the self-validated labeling
problem for image segmentation. The core of our
approach is to gradually refine the labeling according to
the Gibbs energy minimization principle. Our segmenta-
tion refinement is based on the following four types of
segment-level operations:

1. Retaining ð¼Þ: For segment S, keeping S unchanged,
as denoted by S ¼ S.

2. Splitting ð!Þ: For segment S, splitting S into two
isolated parts ~S0 and ~S1 with minimal binary Gibbs
energy (7) using s-t graph cut, as denoted by
S ! ð ~S0; ~S1Þ.

3. Merging ð[Þ: For segment S, merging S with its
nearest neighbor NearðSÞ to form a new segment S0,
expressed as S [NearðSÞ ¼ S0. NearðSÞ is defined by
Definition 3.

4. Regrouping: For each segment pair ðSi; SjÞ, merging
them together and then resplitting the merged
segment to S0i and S0j using binary s-t graph cut to
refine the labeling. This process is denoted as
Si [ Sj ! ðS0i; S0jÞ. Segment regrouping is particu-
larly useful in the HGC algorithm to refine the
labeling inherited from the coarse scale. A detailed
introduction can be found in Section 4.3.

Fig. 5 shows the working flow of the proposed GGC
scheme. In general, it is a top-down refinement process. The
image is treated as one segment at first. Each segment S is
modeled by a binary MRF Xb, based on which we
iteratively refine the labeling by adjusting each segment
with the optimal operation according to the energy
minimization principle. This refinement process is termi-
nated when all segments remain unchanged. Since optimiz-
ing a binary MRF with s-t graph cut is much easier than
solving a flat K-label MRF, the GGC labeling is much faster
than classical MRF methods [26]. Using different operations
and optimization structures, we propose three segmenta-
tion algorithms: tree-structured graph cuts (TSGC), net-
structured graph cuts (NSGC), and hierarchical graph cuts
(HGC). We will elaborate each algorithm in the following.

4.1 Tree-Structured Graph Cuts (TSGC)

We first analyze the situation of allowing only two types of

operations, i.e., segment retaining and splitting. Accord-

ingly, the GGC scheme shown in Fig. 5 is concretized to a

tree-structured evolution process, as shown in Fig. 6a.
At the beginning, the image I is treated as one segment,

i.e., Segð0ÞðIÞ ¼ fS0g. The initial segment S0 can be modeled

as a binary MRF Xb
0 . Based on the nonparametric feature

model F ðS0Þ of segment S0 and corresponding energy
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Fig. 5. Working flow of the proposed GGC scheme.

Fig. 6. Algorithmic structure of the proposed methods: (a) TSGC,

(b) NSGC, and (c) HGC.



assignment (7)-(11), we can obtain an optimal splitting of

S0 ! ð ~S0
0 ;

~S1
0Þ in terms of Gibbs energy minimization, where

~S0
0 and ~S1

0 are two tentative segments derived from S0 using

binary s-t graph cut. If the splitting is better than retaining S0

unchanged, we update S0 to ~S0
0 and ~S1

0 . Accordingly, the

segmentation is updated to Segð1ÞðIÞ ¼ fS1; S2g with S1 ¼
~S0

0 and S2 ¼ ~S1
0 . We then model each segment Si separately

with binary MRF Xb
i and find the best operation according

to the principle of energy minimization. We continue this

process iteratively until, for all segments, operation retain-

ing is better than splitting. We can see that this is an

iterative labeling evolution process, which is terminated

when all tentative segments remain unchanged; then we

obtain the final segmentation SegðIÞ. In the following, we

give formalized description of the TSGC algorithm:

Definition 1. Given two operations A and B, we say A is better

than B for segment S iff one of the following two conditions

satisfied:

1. ElikðAhSiÞ þ EcohðAhSiÞ<ElikðBhSiÞ þ EcohðBhSiÞ;
2. ElikðAhSiÞ þ EcohðAhSiÞ ¼ ElikðBhSiÞ þ EcohðBhSiÞ

and #segðAhSiÞ < #segðBhSiÞ.
Herein, AhSi and BhSi represent the tentative segments
generated by operation A and B, respectively, and #segð�Þ
represents the number of segments.

Definition 2. A segment S is splittable iff operation splitting is
better than retaining for segment S, i.e., EsplitðSÞ < EretainðSÞ
(see (12) and (13) for detailed definitions).

4.1.1 Segment Retaining Energy

For segment S, its retaining energy is defined as the
normalized likelihood energy, or, in other words, its average
intrasegment distance

EretainðSÞ ¼
ElikðSÞ
jSj ; ð12Þ

where jSj is the cardinality of S.

4.1.2 Segment Splitting Energy

For segment S, we can define its splitting energy as

EsplitðSÞ ¼ EretainðS ! ð ~S0; ~S1ÞÞ

¼ Elikð ~S0Þ þElikð ~S1Þ þ Ecohð ~S0; ~S1Þ
jSj :

ð13Þ

Refer to (3), (5), (8), and (11) for concrete definitions of

ElikðSÞ and EcohðSi; SjÞ, respectively.
Specifically, for segment S, the likelihood energy ElikðSÞ,

referring to (8), can be viewed as the overall distance
between all feature samples to the subcomponents, i.e.,
ElikðSÞ ¼

P
yp2F ðSÞDðyp; C

xpÞ. If treating S as one segment,
we use 2H subcomponents to construct its feature model
F ðSÞ. By splitting S into two segments ~S0 and ~S1, we use
4H subcomponents to represent F ðSÞ. Since all subcompo-
nents are derived by K-means, it is empirically true that
more subcomponents will result in less overall intraseg-
ment distance. Therefore, we have

Elikð ~S0Þ þElikð ~S1Þ � ElikðSÞ: ð14Þ

Besides, for the Potts-based coherence energy (11), it is easy
to see that Ecohðxp; xqÞ � 0 and Ecohðxp; xqÞ ¼ 0 if xp ¼ xq;
thus the following property satisfies:

EcohðSi; SjÞ � 0 and EcohðS; SÞ ¼ 0; ð15Þ

4.1.3 The Algorithm

Properties (14) and (15) reflect that operation splitting may
result in more accurate segmentation than retaining, but
operation retaining guarantees the spatial coherence.
Hence, the final segmentation of TSGC is a proper balance
between the accuracy and spatial coherence based on the
principle of Gibbs energy minimization. Algorithm 2 gives
the detailed process of TSGC segmentation.

Algorithm 2. TSGC Segmentation

Input: Input image I.

Output: Final segmentation SegðIÞ.
1. Treat I as one segment S0 and Set #change :¼ 1;
2. Start the TSGC process:

while #change 6¼ 0 do

Set #change :¼ 0;

for i ¼ 1 to #segments do

Derive the two-level nonparametric feature

model F ðSiÞ by Algorithm 1;

Compute EretainðSiÞ and EsplitðSiÞ;
if Si is splittable then

#changeþþ;

Split Si by s-t graph cut: Si ! ð ~S0; ~S1Þ;
else

Remain Si unchanged: Si ¼ Si;
end

end

end

It is easy to prove that in each iteration of TSGC the

overall energy decreases. Formally speaking, let SegðtÞðIÞ
represent the tentative segmentation of image I after t

iterations of TSGC. If Segðtþ1ÞðIÞ 6¼ SegðtÞðIÞ, then Segðtþ1ÞðIÞ
is better than SegðtÞðIÞ in that EðSegðtþ1ÞðIÞÞ < EðSegðtÞðIÞÞ.
This means that TSGC will finally converge to a local

minimum of the energy function. Its goodness will be

further discussed in Section 4.4. Since each segment updates

using the optimal operation in each iteration, TSGC

guarantees stepwise optimum.4 TSGC converts the K-class

segmentation problem to a series of binary segmentation

subproblems. Since it starts from regarding the whole

image as one segment and evolves based on the energy

minimization principle, it is self-validated. However, as

shown in Fig. 7, the rigid tree structure might lead to the

overpartitioning problem.

4.2 Net-Structured Graph Cuts (NSGC)

To remedy the overpartitioning problem of TSGC, we
introduce another operation, i.e., segment merging. With
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4. We say the proposed algorithms guarantee stepwise optimum, the
meaning of which is two-fold: 1) In each iteration, they select the best
operation for each tentative segment, thus it is stepwisely optimal in the
algorithm configuration; and 2) the binary splitting for each tentative
segment is globally optimal due to the s-t graph cut, which locally
contributes to the labeling refinement.



three types of operations, i.e., segment retaining, splitting,

and merging, the GGC scheme becomes a net-structured

segmentation process, i.e., NSGC, as shown in Fig. 6b.

Similarly to TSGC, NSGC also starts from regarding

image I as one segment Segð0ÞðIÞ ¼ fS0g, and iteratively

selects the best operation for each segment according to the

energy minimization principle. This refinement process is

terminated when all tentative segments remain unchanged.

Then we obtain the final segmentation SegðIÞ. Clearly,

NSGC is self-validated.
To quantize the optimality of operation merging, we

need a similarity measure of two segments Si and Sj,

DistðSi; SjÞ ¼ DistðF ðSiÞ; F ðSjÞÞ
¼ min

a;b2f0;1g
ðDistðCaðSiÞ; CbðSjÞÞÞ; ð16Þ

where F ðSÞ ¼ fC0ðSÞ; C1ðSÞg represents the two-level non-

parametric feature model of segment S. We measure the

distance between two segments as their minimal compo-

nents distance, which is defined in (10).

Definition 3. In segmentation SegðIÞ ¼ fSigKi¼1, for segment Si,

we say Sj is its nearest neighbor iff j 6¼ i and Sj ¼
arg min1�j�KDistðSi; SjÞ. We use NearðSiÞ to represent the

nearest neighbor of Si.

Definition 4. A segment S is mergeable to its nearest neighbor

NearðSÞ iff EmergeðS;NearðSÞÞ � Q, where Q is defined in

(17). The definition of Eretain, Esplit, and Emerge can be found in

(12), (13), and (18).

Q ¼ 1

jS [NearðSÞj

min

EretainðSÞ � jSj þ EretainðNearðSÞÞ � jNearðSÞj
þ EcohðS;NearðSÞÞ

EsplitðSÞ � jSj þ EretainðNearðSÞÞ � jNearðSÞj
þ EcohðS;NearðSÞÞ

EretainðSÞ � jSj þ EsplitðNearðSÞÞ � jNearðSÞj
þ Ecoh

�
S;NearðSÞ

�
EsplitðSÞ � jSj þ EsplitðNearðSÞÞ � jNearðSÞj

þ EcohðS;NearðSÞÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

ð17Þ

4.2.1 Segment Merging Energy

For segment S, its merging energy is defined as the

retaining energy of the merged segment S [NearðSÞ,

Emerge

�
S;NearðSÞ

�
¼ Eretain

�
S [NearðSÞ

�

¼
Elik

�
S [NearðSÞ

�
��S [NearðSÞ

�� :
ð18Þ

For segment S, Property (14) leads to the following
property of the merging energy (18):

EmergeðS;NearðSÞÞ � ElikðSÞ þ ElikðNearðSÞÞ
jS [NearðSÞj : ð19Þ

4.2.2 The Algorithm

Properties (14), (15), and (19) tell us that operation splitting
will result in more accurate segmentation, operation merging
will lead to more spatially coherent labeling, and operation
retaining keeps the good segments unchanged. In NSGC, the
final segmentation is a proper evolution result of the three
types of operations. The introduction of operation merging
will circumvent the overpartitioning problem of TSGC.
Algorithm 3 is the detailed process of NSGC segmentation.

Algorithm 3. NSGC Segmentation.

Input: Input image I.

Output: Final segmentation SegðIÞ.
1. Treat I as one segment S0 and Set #change :¼ 1;
2. Start the NSGC process:

while #change 6¼ 0 do

Set #change :¼ 0;

for i ¼ 1 to #segments do

Derive the two-level nonparametric feature

model F ðSiÞ using Algorithm 1;

Derive the nearest neighbor NearðSiÞ;
Compute EretainðSiÞ, EsplitðSiÞ and
EmergeðSi;NearðSiÞÞ;
if Si is mergeable then

#changeþþ;

Merge Si with NearðSiÞ: Si [NearðSiÞ;
else if Si is splittable then

#changeþþ;

Split Si by s-t graph cut: Si ! ð ~S0; ~S1Þ;
else

Remain Si unchanged: Si ¼ Si;
end

end

end

Formally, let SegðtÞðIÞ represent the tentative segmenta-

tion of image I after t iterations of NSGC. We have

EðSegðtþ1ÞðIÞÞ � EðSegðtÞðIÞÞ. Note that if EðSegðtþ1ÞðIÞÞ <
EðSegðtÞðIÞÞ, it is obvious that Segðtþ1ÞðIÞ is better than

SegðtÞðIÞ. I f Segðtþ1ÞðIÞ 6¼ SegðtÞðIÞ a n d EðSegðtþ1ÞðIÞÞ ¼
EðSegðtÞðIÞÞ, all segments of Segðtþ1ÞðIÞmust be derived from

SegðtÞðIÞ by either operation retaining or merging. Since

Segðtþ1ÞðIÞ 6¼ SegðtÞðIÞ, at least one segment in Segðtþ1ÞðIÞ is

derived by operation merging. That is, Segðtþ1ÞðIÞ has a

smaller number of segments than SegðtÞðIÞ and the same

overall Gibbs energy. Hence, by Occam’s razor, we can still

say that Segðtþ1ÞðIÞ is a better segmentation than SegðtÞðIÞ.

4.3 Hierarchical Graph Cuts (HGC)

Both TSGC and NSGC gradually approach a suboptimal
segmentation and guarantee stepwise optima. For each
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Fig. 7. Illustration of overpartitioning problem of the TSGC algorithm:
(a) The synthetic image is first treated as one initial segment S

ð0Þ
0 ;

(b) after one iteration it splits into two segments S
ð1Þ
0 and S

ð1Þ
1 ; (c) finally,

the synthetic image is segmented into four segments fSð2Þi g
3
i¼0. It is

obvious that S
ð2Þ
1 and S

ð2Þ
2 are erroneously partitioned, which can be

refined by an additional operation, i.e., segment merging.



segment S, the major computation burden of TSGC and
NSGC lies in three aspects: 1) establishing the nonparametric
feature model, 2) optimizing the binary MRF by s-t graph cut,
and 3) evaluating operation energies of EretainðSÞ, EsplitðSÞ,
andEmergeðSÞ. All of these aspects can be solved in polynomial
time; thus, both TSGC and NSGC are of polynomial complex-
ity. Furthermore, we have the following observations:

1. Both TSGC and NSGC can start from any initial
labeling.

2. For a graph with n vertices and m arcs, the worst-
case complexity of s-t graph cut is Oðmn2Þ [45], [46].
Recalling the graph formulation of image segmenta-
tion, we can find that a smaller image means fewer
vertices and much fewer arcs. This implies that we
could further improve the efficiency by running
TSGC and NSGC on an image pyramid.

3. In a two-level image pyramid, the distance between
two segments at the original scale is larger than that
at the coarse scale because segments at the original
scale may contain much more detail than the coarse
scale. Therefore, if a segment S is not mergeable at
the coarse scale, it is almost impossible for it to be
mergeable at the original scale.

These observations motivate a hierarchical graph cuts
(HGC) algorithm, as shown in Fig. 6c. For an image I, we
first establish a two-level Gaussian pyramid. Let LevcosðIÞ
be the downsampled image at coarse scale and LevorgðIÞ
be the image at original scale. We first use NSGC to obtain
an initial labeling of LevcosðIÞ at the coarse scale. The
labeling SegðLevcosðIÞÞ is then refined by the operation
regrouping at the original scale, which leads to an initial
segmentation Seg0ðLevcosðIÞÞ at the original scale. Finally,
starting from Seg0ðLevcosðIÞÞ, we run TSGC to obtain the
final segmentation SegðLevorgðIÞÞ. The detailed process of
HGC segmentation is given in Algorithm 4. We will show
in Section 5 that the HGC algorithm apparently improves
the computational efficiency of TSGC and NSGC and
produces comparable results.

Algorithm 4. HGC Segmentation

Input: Input image I.

Output: Final segmentation SegðIÞ.
1. Establish a two-level Gaussian pyramid for image
I: fLevcosðIÞ;LevorgðIÞg;

2. Run NSGC algorithm at the coarse scale and obtain

SegðLevcosðIÞÞ;
3. Regrouping the inherited segmentation at the original

scale and obtain Seg0ðLevcosðIÞÞ;
4. Using Seg0ðLevcosðIÞÞ as initialization, run TSGC

algorithm to obtain SegðLevorgðIÞÞ;
5. Set SegðIÞ :¼ SegðLevorgðIÞÞ;

Note that the HGC algorithm can also work on a
multilevel pyramid. However, we recommend using a
two-level pyramid because of two reasons. First, observa-
tion (3) indeed implies a two-level structure for HGC, i.e.,
considering retaining, splitting, and merging at the coarse
scale while considering retaining and splitting only at the
original scale. Second, although a multilevel partitioning
can be used to balance the accuracy and efficiency [40], the
main motive of HGC is for acceleration. As shown by our
experiments, we can already obtain an apparent speedup
using a two-level pyramid. As aforementioned, one major

computation burden of our approach lies in the computa-
tion of retaining, splitting, and merging energies. The
speedup of HGC mainly comes from TimeAþ TimeB �
TimeC, where TimeA refers to the time reduced by the
avoidance of merging energy evaluation at the finer scale,
TimeB is the time reduced by running NSGC at the coarse
scale, and TimeC is the additional time of refining the
labeling inherited from the coarser scale by regrouping
operation at the finer scale. Note that TimeC will be longer
if there are more segments needed to be refined. For a
multilevel pyramid, the accumulated splitting operations at
several finer scales might result in many tentative segments,
thus increasing TimeC and depressing the time reduction.
Although, using multilevel pyramid, we may still achieve
time reduction with carefully tuned parameters at each
scale, according to our tests, we find that a two-level
pyramid performs well in acceleration and needs much less
effort in parameter tuning.

4.4 Suboptimality Discussion

We now empirically validate the suboptimality of the
proposed algorithms based on a general criterion, and
qualitatively explain the rationale behind the observations.
Note that the only difference between the self-validated
labeling and K-labeling segmentation is that the number of
segments K is unknown in our formulation. Except for it,
the energy function, as defined by (1), (7), (8), and (11), of
our scheme also applies to K-labeling segmentation.
Therefore, we can measure the goodness of our labeling
results in terms of the standard K-labeling energy function
by using the particular K generated by our algorithms.

We use the pixel labels changing (PLC) ratio to measure
the labeling consistency of two segmentations,

PLCðSeg1; Seg2Þ ¼
1

n
IncðSeg1; Seg2Þ; ð20Þ

where IncðSeg1; Seg2Þ indicates the number of pixels with
inconsistent labels in Seg1 and Seg2, n is the number of pixels
in the image. For a given image, we first run our algorithms
and then refine the labeling using�-�-swap and�-expansion,
two state-of-the-art techniques to reach bounded local
minima forK-labeling problems [21]. The PLC ratio between
our labeling and the refined one represents the closeness of
our results to the bounded local minima, thus objectively
reflecting the goodness of our solutions.

To derive an unbiased validation, we constructed 200 test
cases that include 40 images and tried 5 different sets of
parameters for each image. Table 1 shows the results, from
which we have two major observations. First, the segmenta-
tions of our algorithms are quite close to the local minima
obtained by�-�-swap and�-expansion (using our labeling as
initialization and using the same K determined by our
algorithms). For the 200 test cases, the average PLC ratio of
TSGC, NSGC and HGC is lower than 12 percent for
�-expansion and lower than 5 percent for �-�-swap. Second,
although only less than 12 percent pixels may change their
labels, for a particularK, the refinement process is about 3 to
6 times slower than the proposed algorithms to obtain a self-
validated labeling. Thus, it is highly infeasible by trying
multiple K using �-�-swap or �-expansion to seek the best
number of labels, especially for segmenting a large number of
images. Fig. 8 shows an example of NSGC segmentation and
the refinement results. It is clear that the segmentations are
visually quite similar and only a very small part of labels are
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changed. It is also interesting to note that the PLC ratio of TS-
MRF by �-expansion is only 0.34 percent, but clearly the
segmentation is not good due to lack of spatial coherence.
Thus, Fig. 8 also reflects that �-�-swap and �-expansion (i.e.,
the horizontal extensions to binary s-t graph cut) are very
sensitive to the initialization. Consequently, we have empiri-
cally validated that our algorithms can obtain good local
minima with much less time than trying multiple K by �-�-
swap and�-expansion (see the time ratio reported in Table 1).

Note that the above suboptimality discussion is derived
from empirical experiments. Unlike stereo and image
restoration [21], in image segmentation, the feature model
of each segment needs to be iteratively updated. Thus, it is
difficult to strictly analyze the energy bound using the similar
way of �-expansion [21]. We can only qualitatively analyze
the two major reasons making our self-validated labelings
cannot be largely refined by �-�-swap. First, for those
segment pairs generated by a splitting operation of the same
tentative segment, the �-�-swap refinement is equivalent to
repeating the splitting using twice number of subcompo-
nents. Hence, with proper subcomponent number H, the
globally optimal binary splitting guarantees that almost all
labels of these segment pairs cannot be changed by�-�-swap.
Second, referring to the algorithmic structure shown in Fig. 6,
any segment pair that is not directly generated by a splitting
operation belongs to a subset of some ancestor tentative
segment. Again, the globally optimal splitting of the ancestor
tentative segment makes most labels of these segment pairs
survive under the �-�-swap refinement.

5 EXPERIMENTAL RESULTS

We evaluated the performance of the proposed algorithms
for natural image segmentation, and compared them with
eight state-of-the-art methods:5

1. Efficient graph-based segmentation (GBS) [13],
2. MeanShift [14],
3. Two K-way graph cuts methods: KGC-I (K-means +

�-expansion) and KGC-II (K-means + �-�-swap) [21],
4. Isoperimetric graph partitioning (IsoCut) [18],
5. Tree-structured MRF (TS-MRF) [15],
6. Data-driven Markov Chain Monte Carlo (DDMCMC)

[16], and
7. Normalized cut (NCut) [6], [33].

Our evaluation was based on three benchmark data sets:
the Berkeley database [49], the CityU data set, and the
Weizmann database [50]. To maintain a fair comparison, all

reported results of our algorithms were automatically
obtained using the same parameter setting: � ¼ 1:2,
� ¼ 0:8, and H ¼ 3.6 All tested methods used the color
information only (in CIE L�u�v� color space).

We first compared the segmentation accuracy and the
labeling cost. As we know, image segmentation partitions
an image into several salient regions according to the
similarity of low-level features. Since low-level distance
cannot always be consistent with the semantic dissimilarity,
objective evaluation of image segmentation is still a
challenging problem. In practice, segmentation accuracy is
usually evaluated either in the context of high-level
applications [4] or by comparing segmentations with
human-labeled ground truth [49], [50].

Fig. 9 shows the comparative results of human-labeled
segmentations and the results of 11 segmentation methods
on the Berkeley database. To make an apparent comparison,
all segmentations are shown by their segment boundary
maps. Among all tested methods, GBS and MeanShift
efficiently generate segments according to local similarity or
nonlinear filtering of neighboring pixels. This bottom-up
structure makes GBS and MeanShift tend to oversegment
the image and results in many spurious segments. In
contrast, KGC (I and II), IsoCut, TS-MRF, DDMCMC, NCut,
and the proposed algorithms have general objective func-
tions and converge to strong local optima, thus leading to a
fine balance between labeling accuracy and spatial coher-
ence. See the first image in Fig. 9, for example, GBS and
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TABLE 1
Average PLC Ratio (PR) and Running-time Ratio (TR, i.e.,
RefineTime/AlgTime) of Our Algorithms for 200 Test Cases

Fig. 8. An example of segmentation refinement by �-�-swap and
�-expansion: (a) is the NSGC segmentation result of the car image
shown in Fig. 5 with 20 percent noise; (b) is the refined NSGC
segmentation by �-�-swap of which only 6.71 percent pixel labels are
refined and 93.29 percent pixel labels remain unchanged; (c) shows the
refined NSGC segmentation by �-expansion where only 7.51 percent
pixel labels are changed; (d), (e), and (f) are the segmentation result of
TS-MRF and its refined labeling by �-�-swap and �-expansion,
respectively. Note that NSGC and TS-MRF shared the same energy
function and parameters. (a) NSGC (#seg ¼ 20). (b) �-�-swap refine-
ment (6.71 percent refined). (c) �-expansion refinement a (7.51 percent
refined). (d) TS-MRF (#seg ¼ 16). (e) �-�-swap refinement (17.80 per-
cent refined). (f) �-expansion refinement (0.34 percent refined).

5. All tested methods, except for KGC and TS-MRF, used the original
implementations of their own authors. KGC (I and II) and TS-MRF used the
same energy configuration of the proposed algorithms and different
optimization methods.

6. Note that, for other comparison methods, we used slightly different
parameters to segment different images based on a default setting. For each
method, the default parameter setting was chosen as the best one by trying
several sets of reasonable parameters for 20 validation images. The
following lists the default parameters used for each comparison method
in our experiments: 1) GBS (� ¼ 0:45, k ¼ 320, min ¼ 80); 2) MeanShift:
(spatial ¼ 7, color ¼ 6:5, min_reg ¼ 50); 3) KGC (K: adjusted for each
image, � ¼ 1:2, � ¼ 0:8, H ¼ 3); 4) IsoCut (stop ¼ 0:0004, scale ¼ 88); 5) TS-
MRF (� ¼ 1:2, � ¼ 0:8, H ¼ 3); 6) DDMCMC (scale ¼ 3:0, stop_temp ¼ 58:1);
7) NCut (K: adjusted for each image).



MeanShift produces 97 and 110 segments, respectively,
while TSGC generates 16 segments, NSGC 13 segments, and
HGC 18 segments. In all 11 tested methods, GBS, MeanShift,
IsoCut, TS-MRF, DDMCMC, and the proposed TSGC,
NSGC, and HGC algorithms are self-validated. We can
see that, compared to other self-validated methods, our
algorithms produce consistent segmentations that are
qualitatively similar to the human-labeled ground truth.

Besides, to make an overall quantitative comparison, we
used the local consistency error (LCE) [49] to measure the
segmentation difference. The LCE measure is defined as the
average refinement rate between Seg1 and Seg2, which
punishes conflict segmentations and allows mutual refine-
ment. Fig. 10 plots the histograms of LCE measure for all
tested methods versus human-labeled ground truth on the
Berkeley database [49]. In terms of LCE measure, our
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Fig. 9. Comparison of the segmentation accuracy of GBS, MeanShift, KGC (I and II), IsoCut, TS-MRF, DDMCMC, NCut, and the proposed TSGC,

NSGC, and HGC algorithms on the Berkeley database.



algorithms are appreciably better than KGC (I and II),
IsoCut, TS-MRF, and NCut, and comparable to DDMCMC,
GBS, and MeanShift.7

In Fig. 11, we compare the labeling cost of different
methods under a comparable accuracy level using the
Weizmann database. Fig. 11a shows the average F-measure
scores (reflecting the labeling consistency to human-labeled
ground truth) and corresponding standard derivations of
different methods. As shown in Fig. 11a, all tested methods
were tuned to generate comparable labeling accuracy. The
labeling cost, i.e., the number of segments to cover an object,
is shown in Fig. 11b. We can clearly see that the proposed
algorithms need much fewer labels and TS-MRF,
DDMCMC, and NCut also performed well.

Second, we tested the segmentation robustness to noise
distortion using the CityU data set. The noisy images were
synthesized by Inoise ¼ Ineat þ r Nð0; 1Þ, where Ineat and
Inoise are the neat and noisy image, respectively, Nð0; 1Þ is
standard Gaussian noise, and r (0�r�1) controls the noise
level. Fig. 12 compares the labeling consistency of
11 methods at increasing noise levels using two measure-
ments, i.e., the LCE measure [49] and the PLC ratio (20). It is
clear that NCut, DDMCMC, and the proposed algorithms
are quite stable and consistent at different noise levels, while
IsoCut is the most unstable one. Fig. 13 shows more results
at several noise levels. We found that the bottom-up
methods GBS and MeanShift are also very sensitive to noise
distortion. At middle noise levels, they tend to generate
many meaningless spurious segments and fail to capture the
global structure. They have relatively low LCE value in
Fig. 12a mainly because of the bias of LCE measurement
[49]. As shown in Fig. 12b, the bias of LCE can be rectified by
the PLC ratio. From Fig. 13, we can also see that NCut,
DDMCMC, and the proposed algorithms outperform the
rest methods in terms of robustness to noise, and that KGC-
II and TS-MRF are also not very sensitive to noise.

Figs. 9, 10, 11, 12, 13 also demonstrate the general
consistency of the proposed algorithms. In fact, TSGC may
obtain a comparable labeling quality with a few more labels
than NSGC and the introduction of operation merging
enables NSGC to produce more reasonable labeling than
TSGC, while HGC, working at two scales, may generate
more detailed segmentation and is apparently faster than
TSGC and NSGC. Table 2 lists the average running time of
11 methods, of which the bottom-up approaches GBS and
MeanShift are the fastest ones, and DDMCMC is much
slower than other methods.

We show the capability of our algorithms to preserve

long-range soft boundaries in Fig. 14. Note that all results of

our algorithms reported here were obtained using the simple

4-connected lattice formulation only, referring to Fig. 2a. The

desirable capability of preserving soft boundaries of our

algorithms mainly results from two aspects: 1) the stepwise

optimum property with large move and 2) a proper

combination of a generative model (i.e., the likelihood

energy for a given tentative segment) and a discriminative

model (i.e., the extended data-driven Potts model).
As shown in Fig. 15, coarse-to-fine segmentation is another

nice ability of the proposed algorithms. We can clearly see the
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7. Note that LCE measures the labeling accuracy only and prefers
oversegmentation to some extent.

Fig. 10. LCE histograms of different methods versus human-labeled ground truth on the Berkeley database.

Fig. 11. Comparison of segmentation accuracy and labeling cost on the
Weizmann database: (a) shows the average F-measure scores and
standard deviations of the segmentations to ground truth; (b) shows the
average numbers of segments generated to cover an object and
standard deviations.



labeling refinement process: Useful details are gradually
captured and the global profiles are either reconstructed or
preserved. Our algorithms iteratively add, erase, or adjust the
tentative segments until the overall Gibbs energy cannot be
decreased any more. As a result, the final segmentation
reaches a proper balance of the accuracy, spatial coherence,
and the labeling cost. We also believe that this hierarchical
coarse-to-fine labeling is more useful than a single flat
segmentation to reveal the structure of images [19].

In Table 3, we make a general comparison of the
11 segmentation methods from seven aspects: algorithmic
structure, spatial coherence, self-validation, robustness to
noise, preservation of soft boundaries, oversegmentation,
and computational efficiency. Particularly, algorithmic
structure refers to whether the segmentation algorithm
explores the space of all possible labelings directly or in a
hierarchical manner. Segmentation methods usually have

three kinds of algorithmic structures: flat (e.g., NCut, KGC-I,
and KGC-II), bottom-up (e.g., GBS and MeanShift), and top-
down (IsoCut and the proposed algorithms). The spatial
coherence is measured from two aspects: 1) the number of
isolated fragments in the labeling to obtain a satisfactory
accuracy and 2) the consistency between segment bound-
aries to the object boundaries. As for the efficiency, for
images with size 240� 160, we define four levels of
efficiency: very fast (�1 s), fast (�10 s), medium (�30 s),
and slow (�300 s). The ranking in Table 3 was determined by
the overall performance of different methods on three
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Fig. 12. Comparison of labeling consistency at increasing noise levels
measured by (a) LCE and (b) PLC ratio. At each noise level, the LCE
and PLC values were obtained by averaging the results of 30 images.
For a given noise level r, the LCE and PLC values of a method were
computed by comparing the segmentations of the noisy image and the
neat image.

Fig. 13. Robustness to noise distortion. For each test image, the first
column shows the noise-free image and corresponding segmentations
of different methods, the second column shows the segmentations at
noise level 16 percent, and the third column shows the segmentations at
noise level 36 percent.

TABLE 2
Average Running Time of Different Methods for 135 Images Randomly Selected from the Berkeley Data Set (of Size 240� 160)



benchmark data sets. Table 3 shows that our algorithms have
generally satisfying performance in all aspects.

Finally, we compare seven less sensitive methods (TS-

MRF, KGC-II, DDMCMC, NCut, and the proposed GGC

algorithms) for segmenting two specific images “shape” and

“woman” in Fig. 16. Note that TS-MRF and KGC-II are more

vulnerable to noise distortion than other methods.

DDMCMC is better than TS-MRF and KGC-II, but needs

much longer time to converge than other methods. NCut is

stable in performance and robust to noise distortion, but it

can only return all right segment boundaries only by setting

K ¼ 16, which is much larger than the “correct” number of

segments, 4, for image “shape.” And in such a condition,

NCut usually returns many oversegmented boundaries

besides the right ones. In contrast, the proposed GGC

algorithms are able to efficiently produce satisfying results

and generate reasonable numbers of segments. Specifically,

TSGC tends to generate more segments than NSGC and thus

is more suitable to those scenarios where labeling accuracy is

more important than labeling cost. HGC hierarchically

combines TSGC and NSGC and is faster than TSGC and

NSGC with comparable labeling quality and labeling cost. In

Fig. 16, we also show the results of a well-known multilevel

graph partitioning package METIS [40]. For fairness of

comparison, we used the graph construction of NCut in

METIS. It is clear that the “pMetis” algorithm performs

consistently better than the “kMetis” algorithm, but, as the

number of segments increases, both “pMetis” and “kMetis”

cannot satisfactorily maintain the spatial coherence.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a general scheme GGC for

self-validated labeling of MRFs and applied to image

segmentation. Based on different optimization structures,

we have proposed three algorithms: TSGC, NSGC, and

HGC, which gradually reconstruct the suboptimal labeling

according to the principle of Gibbs energy minimization,

and are able to converge to good local minima. Experiments

show that the proposed algorithms have generally satisfy-

ing properties for image segmentation, and outperform

existing methods in terms of robustness to noise, efficiency

and preservation of soft boundaries.
Although we only demonstrate the application of our

methods for image segmentation, we believe that they are

readily applicable to other perceptual grouping and

labeling problems in low-level vision, e.g., video segmenta-

tion, automatic story segmentation, and multicamera scene

reconstruction. Specifically, interesting future work

includes:

1. Combining bottom-up methods within the GGC
scheme to further improve both the feature model
and the efficiency,

2. Studying how to integrate various cues that is the
merit of DDMCMC [16],

3. Studying the application of higher-order (image-
specific or general) priors in image segmentation
[51], [52], and

4. Combining discrete and continuous optimization to
solve generic MRFs.
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Fig. 14. Preservation of long-range soft boundaries.
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Fig. 16. Comparison of several “robust” segmentation methods and the
multilevel graph partitioning package METIS (version 4.0) for synthe-
sized image “shape” and natural image “woman.” For each segmenta-
tion result, we show the number of segments and the running time in the
form of “#seg/time.” (a) Original. (b) TS-MRF. (c) KGC-II. (d) DDMCMC.
(e) kMetis. (f) pMetis. (g) NCut. (h) GGC.
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