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Abstract—In this paper we present Linear Discriminant Projections (LDP) for reducing dimensionality and improving discriminability
of local image descriptors. We place LDP into the context of state-of-the-art discriminant projections and analyze its properties. LDP
requires large set of training data with point-to-point correspondence ground truth. We demonstrate that a training data produced
by a simulation of image transformations leads to nearly the same results as the real data with correspondence ground truth. This
makes it possible to apply LDP as well as other discriminant projection approaches to the problems where the correspondence
ground truth is not available such as image categorization. We perform an extensive experimental evaluation on standard datasets
in the context of image matching and categorization. We demonstrate that LDP enables significant dimensionality reduction of local
descriptors and performance increases in different applications. The results improve upon the state-of-the-art recognition performance

with simultaneous dimensionality reduction from 128 to 30.

Index Terms—Linear discriminant projections, dimensionality reduction, image descriptors, image recognition, image matching.

1 INTRODUCTION

ANY recent and successful computer vision ap-
Mproaches are based on local image descriptors.
Local descriptors have been applied to image retrieval,
recognition, panorama building, robot navigation, visual
data mining, text matching, biometrics etc. Significant ef-
fort has been made to develop discriminative descriptors
such as Geometric Blur [1], SIFT [14], GLOH [15] and
the recent DAISY [17], color-SIFT [46]. The descriptors
differ in the design and implementation, each trying
to optimize the general performance. In this paper we
propose a general method for improving the descriptors
and reducing their dimensionality by learning their dis-
criminant projections from sample data.

In most application scenarios local descriptors are
used to establish correspondences between similar parts
of images. The descriptors are characterized by proper-
ties such as invariance, robustness, distinctiveness, com-
pactness, and scalability. The descriptors can be made
insensitive to small image perturbations, for example,
by quantization or integration, that is robust to those
perturbations. The level of distinctiveness is related to
the entropy of the descriptor. Compactness and distinc-
tiveness are two competing properties and improving
the first without decreasing the second would already be
a significant progress in scalability. The compactness is
directly related to the number of feature dimensions and
it is crucial for large scale applications that become the
main interest of the research community. These various
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properties are related and cannot be optimized at the
same time. Existing designs of local descriptors propose
different property trade-offs driven by requirements of
particular applications or even a dataset only. Further-
more, various interest point detectors select different
types of local image patterns that define the support
regions for the descriptors but also introduce different
type and amount of noise [22]. Discriminant projections
can learn a descriptor given a sample of the data, which
allows us to avoid re-designing the algorithms or tun-
ing their parameters experimentally. In many computer
vision tasks, higher performance has been achieved by
increasing the sampling density and descriptor complex-
ity. In contrast, our aim is to improve the performance
by projecting local descriptors into more discriminant
but fewer dimensions.

In this paper, we build on the top of our initial work
from [12], present Linear Discriminant Projections (LDP),
analyze in depth their properties as well as relations to
other approaches and show that it outperforms PCA.
In the context of interest point descriptors very few
attempts have been made to use discriminative methods
for reducing dimensionality [11], [12], in contrast to
widely used PCA [19], [15], [20], [21]. Discriminative
methods may lead to significant improvements in a
particular setup if trained on annotated sample data
from that setup.

LDP requires intra-class covariance, which is esti-
mated on a dataset with point-to-point correspondence
ground truth. The ground truth provides matched de-
scriptor pairs, where each pair represents similar image
pattern or comes from the same physical point of the
scene/object. However, the requirement for annotated
training data makes this method less attractive than
PCA. While in wide baseline matching it is possible to
establish unique correspondences by applying geometric



constraints, it is more ambiguous to define such corre-
spondences in object recognition and it requires tedious
manual annotation. Global image transformations such
as homography cannot be used here as similar features
may occur in different location on objects of the same
category (cf. section 4.1, Table 2). Similarly, object or
scene parts of the same semantic meaning may have very
different appearance, thus different descriptors. Geomet-
ric blur [1] or other techniques based on similar idea [23],
[18], [17], model the signal variations by averaging it
over a range of acceptable geometric transformations.
However, this idea has not been used for learning dis-
criminant projections of local descriptors. In this paper,
we show that the training based on simulated data can
be successfully used for obtaining discriminant projec-
tions, and that it overcomes the issues related to data
annotation and makes the LDP approach applicable to
any dataset and any descriptor. Our simulation strategy
can also be easily used for any supervised dimensional-
ity reduction techniques which require matched features
for training. This opens new application possibilities for
such techniques. We evaluate the discriminant projec-
tions using new training approach and different datasets.
The method improves state-of-the-art SIFT descriptor
and image categorization approach from [20], [25], with
the number of descriptor dimensions reduced from 128
to 30.

LDP has a number of appealing properties that make
it a method of choice for projecting descriptors. LDP is a
global technique and it is not as sensitive to noise as local
methods discussed in section 2. Unlike in local methods,
there is no need to search for the k-nearest neighbors
for each point, which makes it faster and independent
of kNN parameters. In contrast to many distance metric
learning approaches, its complexity is low. LDP projec-
tions can be directly applied to the descriptors and there
is no need to re-optimize the projections if the required
number of output dimensions changes. Finally, LDP has
been reported to improve matching performance in [11],
to result in more efficient search in various tree-like data
structures in [12] and to increase image categorization
accuracy in [13]. Consistent improvements in different
test scenarios indicate that the approach generalizes well
for different vision problems.

The main contributions of the paper are:

1) Linear discriminant projections applied to local
image descriptors and their formulation in a graph
embedding framework [2].

2) In depth analysis of LDP as well as a review of
other discriminant projection methods.

3) An approach to train the projections for any data
by generating simulated training set also applicable
to other discriminant projection methods.

4) Extensive evaluation on 2 image matching and 3
image categorization benchmarks.

5) State of the art results in all 3 recognition bench-
marks with significant dimensionality reduction.

6) Projection matrices and software libraries for re-

ducing dimensionality with discriminant projec-
tions made available to the community for com-
parisons [31].

This article is structured as follows. We first review the
related literatures on the projection methods potentially
applicable to local features in section 2. In section 3,
we analyze linear discriminant projections. A simulating
strategy for learning the projection vectors from any
unannotated data is proposed in section 4. Next, exper-
iments are carried out for image matching in section 5
and for recognition in section 6. Finally, conclusions and
discussion on this work end this article.

2 RELATED WORK

Dimensionality reduction techniques can be categorized
into unsupervised and supervised methods that use data
without and with ground truth, respectively. The most
widely used linear approach that belongs to the first
category is PCA. Unsupervised nonlinear techniques in-
clude manifold learning approaches such as ISOMAP [3],
Locally Embedded Analysis [4], Laplacian Eigenmap [5],
which have been reviewed in [35]. Despite the fact
that the nonlinear methods achieve considerable per-
formance improvements on some datasets, their crucial
limitation is that the embedding does not generalize
well from training to test data [35]. The unsupervised
approaches are convenient to use but their discriminat-
ing capabilities are limited since no class discriminatory
information is used during training. We therefore focus
on supervised LDP and discuss the related supervised
linear approaches.

Supervised approaches aim to map the original space
to a lower dimensional space and to preserve the class
discriminatory information from labeled point. Although
many techniques with different optimization objectives
have been proposed, they share the same goal. The dis-
tance between the points with the same label is reduced
in the projected space while at the same time differently
labeled points are made apart to avoid the problem of
shrinking the entire data space. The differently labeled
points can be either from different classes (any or near-
est neighbors) or any points regardless the label. The
method is global [11], [12], [7], [26], [34] if all points with
the same label are considered or local [8], [2], [33], [9] if
only k nearest neighbor pairs are used. Below, we discuss
a number of methods that focus on the same goal. The
projections provided by these methods are illustrated in
Fig. 1.

All dimensionality reduction methods can be formal-
ized by the following notation that is used in the re-
minder of the paper. Given a set of data points xi,...,xx,
x; € R™, the goal of dimensionality reduction is to
find a mapping F : R — R™, m' < m:y; = F(x;),
yi € R If the mapping is linear, it can be formulated
as y; = WTx; by considering W € R™*™ a5 a linear
projection matrix W = [w1, ..., Wy ].
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Fig. 1. 2-dim simulated feature set of 80 Gaussian distributed clusters and their projections. Each cluster has 50
features generated with the same covariance. All the features in the same cluster are considered matched, while those
from different clusters are unmatched. LDP projections P and U have the same orientation, but different magnitude.
A combination of RCA and U-projected features is equivalent to P-projected features. LDA produces the similar
orientations as U in this set. LDE finds the same projections as LDP if it considers all matched features (49) and all
unmatched features (3950). LDE projections differ from LDP, if nearest neighbors (k = 3) are considered only.

LDA. Among supervised approaches, the most popular
method is LDA, with the objective to maximize the ratio
of between-class (Sg) to within-class (Sw) scatters along
direction w:

wl Spw

)

WLDA = arg max —————
w wlSyw

Where Sy = S0 Dieime, (Xi = X)(x; = x)T, Sp =
SN ne(x° — %)(x° — %)7, x° and % denote the mean
vectors of the c-th class and the whole dataset, respec-
tively. n. is the number of samples in the c-th class and
N, is the number of classes. Sy captures the data dis-
tribution in each class, and Spg represents the separation
of the class means. LDA is optimal in the Bayes sense,
if all classes have identical Gaussian distribution, which
is not always the case. LDA can have at most N, — 1
projections and suffers from small sample size problem
in the case of high-dimensional data, which may lead to
singular within-class scatter matrix.

LDE. Linear Discriminant Embedding (LDE) [8] was
proposed to integrate the information of nearest neigh-
bors and class relations between data points. The same

method called Marginal Fisher Analysis (MFA) was pro-
posed in [2] within their graph embedding framework.
The idea is to maintain the original neighbor relations
of points from the same class while pushing apart the
neighboring points of different classes. Compared to
LDA, LDE has two merits. First, the number of pro-
jections are not limited. Second, there is no assumption
about the Gaussian distribution.

LDP. An embedding technique was proposed in [11],
which can be viewed as a global version of LDE or
MFA. Based on the same idea, our LDP approach ini-
tially proposed in [12], simultaneously diagonalizes the
inter- and intra-class covariance matrices. We discuss the
properties of this approach in more detail in section 3.
This global dimensionality reduction method can also be
included in the graph embedding framework from [2] as
we demonstrate in section 3.2.

MDML. Linear projections have close relation with Ma-
halanobis Distance Metric Learning (MDML) [35], where
a positive semi-definite matrix M € R™*™ is learned
to define a new distance metric: d3;(x;,%;) = (x; —
x;)TM(x; — xj). M can be decomposed as M = VTV,



where V' = [vy, Vs, ..., V] corresponds to a linear pro-
jection matrix from the original space to a new space.
If M is a full-rank matrix, then m’ = m and the pro-
jected space has the same dimensionality as the original
space. However, many MDML methods combine metric
learning with dimensionality reduction by solving for a
rectangular projection matrix V € R™*™" (m/ < m). Be-
low, we discuss the commonly used supervised MDML
approaches such as GDML, RCA, NCA, SVM-RC and
LMNN .

GDML, RCA and NCA. The goal of Global Distance
Metric Learning method [7] is to minimize the sum
of all distances between same-labeled points under the
constraint that the sum of distances between different-
labeled points is large. Relevant Component Analysis
(RCA) [26] learns a global linear transformation from the
equivalence constraints and applies whitening transform
to the intra-class covariance. Neighborhood Component
Analysis (NCA) [33] is a local method that extends
nearest neighbor classifier with metric learning. It learns
the projections by maximizing k-nearest neighbor clas-
sification with leave-one-out cross validation. However,
it is argued in [35] that NCA tend to overfit to training
data in high dimensional spaces and it suffers from the
convergence as well as scalability problems.

SVM-RC and LMNN. In supervised distance metric
learning, SVM-like convex optimization for learning
from relative comparisons (SVM-RC) [34] has also been
investigated. The constraints involve relative compar-
isons of individual image pairs in contrast to the ap-
proaches discussed above with only one constraint on
the global sum of distances. Two typical approaches
SVM-RC [34] and Large Margin Nearest Neighbor
(LMNN) [9] have achieved considerable performance
in some recognition benchmarks. Both methods share
the same constraints except that all the same labeled
pairs are considered in SVM-RC while only k-nearest
neighbors of the same labeled points are used in LMNN.
Furthermore, the objective function of SVM-RC mini-
mizes the hinge loss with the ¢y regularization, while
LMNN minimizes the distance of the same labeled im-
age pairs and the hinge loss. The motivation for these
two methods is very similar to the graph embedded
approaches [2] although SVM-RC and LMNN cannot be
formulated in this framework. SVM-RC seeks distance
metric to bring all the same labeled points closer and
keep the differently labeled points apart, which is very
similar to the idea of LDA, LDP [11], [12] and GDML][7].
LMNN [9] shrinks the k-nearest neighbors of the same
class while separating all different class pairs, which is
similar to LDE [8] / MFA [2]. This similarity is illustrated
in Fig. 1 for k = 3.

Table 1 summarizes the optimization objectives of the
discussed approaches. S is a set of pairs of points that
belong to the same class and D is a set of pairs of points
that belong to different classes. The method is global
or local depending whether it uses all pairs from set
S or kNN pairs only. Local methods can also use the

heat kernel on the distance between points to weight
the influence of kNN pairs.

TABLE 1
Linear projections. S and D stand for the same labeled
points and differently labeled points, respectively. 'all’
and '’kNN'’ indicate whether all the pairs (global) are
considered or k-nearest neighbors only (local).

reduce increase
distance distance
dataset S D SUD
method all kNN [ all kNN | all kNN
PCA Vv
LDA Vv Vv
LDE [8], [2] v v
LDP [11], [12] Vv Vv
GDML [7] Vv Vv
NCA [33] NV v/
RCA [26] vV vV
SVM-RC [34] vV vV
LMNN [9] vV vV

3 LINEAR DISCRIMINANT PROJECTIONS

In this section, we present details on linear discriminant
projections, demonstrate equivalence of the methods
proposed in [12] and [11], as well as discuss the relations
to other methods. In [11], a projective direction u is
designed to maximize the ratio of variance of differently
labeled points (D) to that of same labeled points (S). It
can be formulated as follows:

arg max 2(ij)eD la”x; —u”x;
u ) iges lufxi —uTx;?

ul’Cpu

urLpp =

= argmax 2)
u

Where Cp and Cs represent the inter- and intra-class

covariance matrices of differently labeled points (un-

matched features in image descriptor space) and same

labeled points (matched features), respectively.

u’Csu

Cp T Y (xi—xp)(xi — ;)7 ®)
(1,9)€D

Cs = D7 (i —x)(x —x;)7 4)
(i,)€S

Note that these are not the same matrices as the between-
class Sp and within-class scatters Sy in equation (1) for
LDA, although they are related (see section 3.3) . The
solution is the generalized eigenvectors:

U = eig(C5'Cp) (5)

The projection matrix is U € R™*™', with m’ < m eigen-

vectors corresponding to the m' largest eigenvalues.
LDP was initially proposed in [12] and consists of

two parts. The first one is the inverse of the square

_1
root of intra-class covariance matrix Cg *, which is used
for whitening of the original feature space. The second



part is PCA of the inter-class covariance matrix in the
~ _1
whitened space Y = {Cs*x|x € X}:

P=Cg? eig(Cs?CpCg?) (6)

After the projection the features are normalized such that
1P| = [U"x] = )

where ¢ is a constant. Projection matrix U € R™x™
and P € R™*™ are used to refer to the two linear
discriminant projections from [11] and [12], respectively.

3.1 Relations Between LDP and U

Although the approaches to obtain the projection vectors
LDP (P) [12] and U [11] differ, both methods use the
same covariance matrices of pairwise matched feature
distances and pairwise unmatched feature distances.
Furthermore, these methods can be considered equiv-
alent as they find the same projection directions. The
analytical proof is in Appendix A and the experimental
results in section 5 validate this equivalence. Fig. 1
shows P and U projections for a simulated feature set.
Fig. 2 shows P and U for Normalized Gray value (NG)
patches, i.e., gray values normalized to zero-mean and
one-variance, as well as for SIFT features. Both figures
show that the projection directions are the same.
However, the magnitudes of the projective vectors
differ, in particular the sign difference can be observed in
Fig. 2. According to equation (6), P rotates the feature

space as well as scales the dimensions by O_%, while
U only rotates the space. If P; and U; define the i-
th projective vectors of P and U, then |P;|| # 1 and
IU;|| = 1. By comparing the U- and P-projected fea-
tures in Fig. 1, we observe that both projections have
diagonalized the intra- and inter-class covariances and
P additionally applies the whitening to the intra-class
covariance. Since RCA is such a whitening transform, a
combination of U and RCA is equivalent to P, which is
verified in Fig. 1.

Descriptors projected with P and U should lead to
similar performance due to the same projection direc-
tions. The whitening process however normalizes the
space and makes it optimal for nearest-neighbor search
with Euclidean distance, thus P projections may provide
better results in applications relying on NNs. Compari-
son results are presented in section 5.2.

In Fig. 2, we also observe that projections P and U
are concentrated on the center of the patches in contrast
to PCA. Note that similar spatial weighting is also
implemented in SIFT using Gaussian kernel.

3.2 Graph Embedding of LDP

A number of methods for dimensionality reduction have
recently been included in a general framework [2] called
Graph Embedding. It unifies dimensionality reduc-
tion techniques including Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA) [27],
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Fig. 2. Projective vectors of P, U and PCA. 100,000 patch
pairs (50% matched and 50% unmatched) randomly
picked in Liberty set from [10] are used for estimating the
projections. Top: The top 20 projections from left to right
of Normalized Gray value (NG) feature. The patches have
been normalized to zero-mean one-variance. Bottom: The
top 5 projections of SIFT feature.
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ISOMAP [3], Locally Embedded Analysis (LEA) [4],
Laplacian Eigenmap (LE) [5], Locality Preserving Projec-
tion (LPP) [6], and Marginal Fisher Analysis (MFA) [2].
We extend this set by formulating Linear Discriminant
Projections (LDP) in this framework.

Following [2], an intrinsic graph G = {X,W} and
a penalty graph G’ = {X,W’} are two undirected
weighted graphs with vertex set X = [x1, X2, ..., xn], and
with the affinity matrices W € RV*Y and W’ € RV*V,
Their elements W;; and Wi,j represent the edge weights
between features x; and x;. It has been shown in [2] that
many linear dimensionality reduction approaches share
the same graph-preserving criterion.

x - T Ty (|2
W= arngXIg)l(nTw_dg W% — w2 Wi,
i#j
min ~ w!X(D-W)XTw (8)

= arg
wT'XBXTw=d

where D is a diagonal matrix with diagonal elements
D, = Zj Wi;, d is a constant and B is a constraint
matrix detined to avoid a trivial solution of the objective
function. PCA, LDA, LDE/MFA, LPP, LEA can all be
included in this framework with different definition
of W and B in (8). We formulate LDP in the Graph
Embedding framework by modifying equation (2):

u _ . N uX (D' —W"XTua
Lpp = Aargmax-- (D W)XTu
= D—-W)X"u9
aJrguTX(D/ 11”))(7111 d ( ) l( )
where W;; = 1if (i,j) € S, Wij = 1if (z,5) € D, and

B = D' —W'. The formula is the same for LDE/MFA [2]
except that W and W’ are defined there locally i.e., W;; =
1, if (i,j) € Spxn and Wy, = 1, if (i,j) € Denw. Thus,



LDP can be viewed as a global version of LDE/MFA and
it is not as sensitive to noise as local methods that use
nearest neighbors only. Another advantage over LDE is
that LDP can be trained significantly faster as there is
no need to search for the k-nearest neighbors for each
point. Moreover, the performance of LDE depends on
parameters ki for Synn and kz for Dy, that have to
be chosen experimentally.

3.3 Relations Between LDP and LDA

It has also been demonstrated in [2] that LDA can be
formulated in the graph embedding scheme, with W;; =
Ocivc;/ne;y W'ij = 1/N. Hence, we observe that LDP
and LDA have the same W when each class contains
the same number of samples n., = n.,. LDA inter-
class covariance is typically estimated from matched and
unmatched pairs (S U D), while LDP uses unmatched
pairs (D) only. If the number of data points is large
compared to the number of classes then Cp ~ Csup
since |S| < |D|. Both methods assume Gaussian distri-
bution of data points. The main difference between LDA
and LDP is therefore in the estimation of the covariance
matrices which in LDP are based on pair-wise descriptor
differences and in LDA on point-to-mean differences.
The illustration in Fig. 1 shows that for this particular
experimental setup, LDA and LDP result in similar pro-
jections. There are 80 clusters and each cluster contains
same number of features (50), thus |Cs| = 1.24%|Cp|,

Cs| = (%) x 80, |Cp| = (79 x 50) x (80 x 50)/2.

4 COVARIANCE ESTIMATION

The main problem in computing discriminant projec-
tions is the estimation of the intra-class covariance matrix
Cs. In this section we investigate methods for estimating
this matrix and discuss the impact they may have on the
projection vectors. The main interest is in the simulation
approach which does not require annotated training
data.

4.1 Feature Transformations

The intra-class covariance matrix estimation requires
matched features and inter-class matrix uses unmatched
features. The definition of matched and unmatched fea-
tures may differ to some extent in different applica-
tions. Three categories of matched pairs are illustrated
in Table 2. In matching images of planar scenes or 3D
structures, matched features are local descriptors from
the same physical point on the object, while in image
or object categorization, matched features correspond
to points on the objects that are visually similar and
usually belong to the same object category. The main
sources of descriptor variations and noise in local feature
applications are:

» geometric image transformations, due to viewpoint
change and camera zoom,

TABLE 2
Matched features in various vision problems. From
planar scenes to image/object categorization, the
appearance changes of matched features increase.

planar scene [ 3D scene
same physical points
of the scene

[ 7
i L

e ]
————
T

image category
corresponding
object/scene parts

e

e
XisE
valN
Em
LB

appearance

variations

occlusion

geometric and photometric transformations, noise,
spatial, brightness and color quantization

LEE K71
WK E

o photometric transformations, due to brightness and
color of scene illumination or varying camera expo-
sure,

o occlusion and self occlusion of 3D structures due to
viewpoint change or moving objects,

o noise introduced by inaccuracy of the region de-
tector which mainly consists of small geometric
deformations,

o appearance/shape variations of object/scene parts
that belong to the same category (in image catego-
rization).

It is possible to model analytically to some extent
the variations from the first two variations, if the patch
is planar, unfortunately the other variations are unpre-
dictable and can only be captured from training exam-
ples. The computation of the projections should therefore
be based on the training examples that represent the
statistics of the data as well as statistics of the region
detector. In section 5.2, we investigate to what extent
the variations between matched features illustrated in
Table 2 can be modeled by simulation.

4.2 Ground-Truth Data

In [11] and [12], the linear discriminant projections re-
quire a large amount of ground-truth data for intra-class
covariance estimation. Matched feature pairs are pro-
duced by bundle adjustment in images of 3D scenes [10]
and by homography of image pairs [31]. The matched
pairs are then used to compute the intra-class covariance
according to equation (4). To overcome the problem of
insufficient training data especially for high dimensional
features, this estimation is often followed by a regular-
ization [11].
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4.3 Simulated Data

In order to learn the projections for data without the
ground truth, we investigate possibilities of modeling
the expected variations artificially. It has been observed
in other experiments [22], [15] that the photometric in-
variance of features is sufficient to survive the most com-
mon illumination changes, therefore there is little benefit
from explicit modeling of such variations. Furthermore,
we assume uniform noise distribution from occlusion as
well as quantization and focus on geometric transforma-
tions in a similar way to [1], [23], [18], [17]. Given that
the descriptors are computed locally and assuming local
smoothness, affine transformation is sufficient to model
the geometric changes. The affine transformation can
be decomposed to rotation, scaling, skewing, stretching
and translation. The remaining issue is therefore the
estimation of the parameter values that should be used
to model the affine changes. To address this problem
we investigate the geometric changes between matched
patches in real data with ground truth.

4.3.1 Parameter Estimation

We use 15 image sequences from [31]with homography
ground truth for estimating the distribution of affine

parameters. The matched regions are identified by their
overlap error using the homography. These regions are
then normalized with their scales and dominant an-
gles [14]. The transformation parameters between nor-
malized regions are estimated using the homography.
These parameters can be considered as errors remain-
ing after the normalization or as the inaccuracy of the
interest point detector.

Fig. 3 shows the distributions of the 6 parameters
for multi-scale Harris (blue) and MSER (red) detectors,
which can be approximated by normal distributions. We
also observe that these distributions differ for multi-
scale Harris and MSER detectors. This confirms the
observations from [15] that different parameter estima-
tion accuracy can be achieved for different types of
regions provided by various detectors. For example, the
rotation angle seems to be more accurate for multi-
scale Harris than MSER. This also holds for skewing
n and stretching log(q), while scale log(s) estimation
error is smaller for MSER. MSER features are centered
on blob-like structures while Harris on strong gradient.
Scale estimation is known to be more reliable for blob
like structures than for corners [16] but the dominant
gradient orientation is more ambiguous for blobs which
explains the observations. Fig. 4 shows how the overlap
error affects the variance for each transform. Intuitively,
the larger the overlap error is, the more variation in the
parameter values, which is consistent for all parameters
in Fig. 4.

4.3.2 Discussion

Our simulation strategy for estimating the projections
can also be considered as modeling variation in descrip-
tors by simulating the image transformations to improve
its robustness to small signal changes. This idea is similar
to the geometric blur [1], which averages the signal
over a range of acceptable transformations (small affine
transformations are also considered in [1], [23], [18],
[17]). This average is computed by convolving the signal
with a spatially varying kernel. If I(x) and I(T'(x)) are
matched patches and T is a transformation from a space
of transformations 7, then the aim of the geometric blur
is to integrate a patch over all possible T' € 7. We extend
this concept to a descriptor where ¢(I) is an operator
for computing a descriptor vector (instead of ¢(I(x)) to
simplify the notation). The geometric blur on patches
(GBr) and descriptors (GBy) is defined as:

GB; =

/T I(T(2))p(T)dT (10)
@

GB, = | ¢(T(D)p(T)dT ()

T

The intra-class covariance integrates over all possible
transformations 7" € 7 and image patches I € 7 :

E{o(I) — ¢(T(1) Ho(I) — o(T(I))}" =
[, o)™ (Dp(I)dI -2 [, $(I)GByp(I)AI + [; GByep(I)dl



The densities p(T') and p(I) model the transform and im-
age probability, respectively. The terms GBy and G B
are then geometric blurs on the descriptors. While it
is possible to model the integral of the signal transfor-
mations by a convolution with an appropriate kernel
GBi(z) = [, I(z — y)K.(y)dy, as in [1], GB, cannot be
directly implemented as a convolution with the descrip-
tor. Instead, the transformations can be applied to the
image region before computing the descriptors, which
can then be used to learn a robust feature.

5 MATCHING EXPERIMENTS

In this section we demonstrate the performance of the
proposed method in the context of wide baseline match-
ing. We demonstrate that LDP can adapt a descriptor
to this task and produce better results than other ap-
proaches.

5.1 Setup
5.1.1 Datasets

We use two benchmark datasets from [10] and [31] for
image matching. Dataset from [10] consists of clusters of
patches sampled from 3D reconstructions of the Statue
of Liberty, Notre Dame and Half Dome (Yosemite). Each
of the sets contains two subsets of patches detected
with DoG [14] and multi-scale Harris [22] detectors.
Each subset contains 400k patches with patch-to-patch
correspondence ground truth.

We also perform experiments on image sequences
from [31] with homography ground truth. We use 15
sequences with 198 image pairs for training and 3 se-
quences with 22 image pairs for testing, which include
rotation, scale, rotation-scale and viewpoint changes. We
refer to this data by Oxford. Patches from this set are
considered matched if the overlap error between the
corresponding regions is less than 50%. The data subsets
and the number of matched (S) and unmatched (D)
patch pairs used for training and testing in different
experiments are summarized in Table 3.

5.1.2 Descriptors

We use grayvalue patches (NG) normalized to 0-mean
and 1-variance and SIFT as the baseline descriptors. The
patches from [10] are 64 x 64 pixels, with a canonical scale
and orientation but all the experiments are performed on
the center 36 x36 pixels part to avoid boundary problems
in the simulation process. We refer to the descriptors as
DoG-NG, DoG-SIFT and Har-SIFT.

In addition, for the dataset from Oxford [31], we
extract patches with multi-scale Harris [22] as well as
MSER [28] and compute SIFT descriptors (Har-SIFT,
MSER-SIFT).

The projections are trained and applied to the original
descriptors. The projected feature vectors are normalized
to a constant length [11]. This normalization stabilizes
the descriptors and improves their performance.

PCA(20), DOG-SIFT, intersection:0.115

— matched
2.5 — unmatched
matched(original, 128)

2 unmatched(original 128)

Fig. 5. Experiment MO01. Distance distributions of
matched and unmatched features for the 1296-dim NG
features and their 15-dim projections. Left: P. Middle:
U. Right: PCA. The intersection/union area ratio for the
projected feature is given at the top of the figures and can
be compared to the original one (0.281).

5.1.3 Evaluation

We follow the evaluation protocols that have been intro-
duced with the datasets. The Euclidean distance between
each pair of test patches is calculated and thresholded.
The matches are then compared with the ground truth.
ROC curve is obtained for the data from [10] by varying
the distance threshold. The true positive rate is given by
TP/S and false positive rate is FP/D, where TP is the
number of correctly matched pairs, F'P is the number
of incorrectly matched pairs, S is the total number of
matched test feature pairs and D is the number of
unmatched feature pairs used for the evaluation. The
performance is then reported by the true positive score
(T'P/S) at equal error rate (eer matching score).

Precision-recall curves are estimated for data from
Oxford [31], where the recall is TP/S and the precision
is TP/(TP + FP). The area of the precision-recall curve
(average precision) is used for evaluation.

5.2 Matching Results
5.2.1 Experiment MO1. Distance Distributions

This experiment compares the distance distributions for
matched and unmatched NG features before and after
the projections as shown in Fig. 5. The ratio of the
intersection area between the distance distributions of
matched and unmatched features to their union area
indicates the discriminability of the feature. The inter-
section area ratio significantly decreases after the projec-
tions resulting in a better separation of matched and un-
matched features with 15 dimension only. In particular,
15-dim P (0.143) and U (0.148) have lower intersection
area than both 15-dim PCA (0.172) and the 1296-dim NG
(0.281).

5.2.2 Experiment M02. Performance vs. Dimensionality

Fig. 6 compares the matching performance of low di-
mensional projected features with that of the original
NG on Liberty set. P and U yield best matching score
followed by PCA. Compared with PCA and 1296-dim
NG, 15 dimensional projections P improve the score
by 1.7% and 8.5%, respectively. Consistent improvement
are achieved with 1.6% over PCA and 8.4% over NG
on Notre-Dame, as well as 1.4% over PCA and 8.1%



TABLE 3
Summary of matching experiments. S and D indicate matched and unmatched feature numbers.
Experiments T data Tost descriptor
Experiment MO1. Fig.5 intra- vs. inter-class distance distributions Liberty DoG-NG
Experiment M02. Fig.6 performance vs. dimensionality (50000 S, 50000 D) Lib
Experiment M03. Fig.7 simulation with various transformation iberty
pert 1.7 St 10 ous translormations i (50000 S, 50000 D)
Experiment M04. Fig.8 simulation vs. ground truth Liberty ! DoG-SIFT
(50000 S, 50000 D)
Experiment M05. Fig.9 simulation vs. ground truth distribution Oxford Oxford Har-SIFT
(~50000 S, ~50000 D) | (~8000 S, ~50000 D) MSER-SIFT
. Liberty Liberty Har-SIFT DoG-SIFT
Experiment M06. Fig.10 generalization across detectors and data N;)tre-dgrne (50000 S, 50000 D) DoG-SIFT
osemite DoG-SIFT
Experiment M07. Table 4 simulation vs. ground truth Sl)égi?] (~8000 (;)SffgrSC%JOOO D) Har—S%e}lE_SDI(I):g—SIFT

over NG on Yosemite. The improvement is larger for
low false positive rate as displayed in Fig. 6 (Right).
PCA already improves the performance significantly by
removing many noisy dimensions. We observe a de-
creasing performance with increasing dimensionality of
NG descriptors, in particular for P-projected features.
P-projections scale the dimensions by the eigenvalues of
the intra-class covariance which are unstable. This is due
to insufficient training data in high dimensional feature
space such as NG, but it has little effect on 128-dim SIFT,
as shown in Fig. 8.
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Fig. 6. Experiment M02. Comparison of the matching per-
formance of P, U and PCA with DoG-NG. Left: Matching
score at equal error rate (eer matching score) as a func-
tion of projected feature dimension. Right: ROC curve for
matching with 15-dim projected features compared with
the 1296-dim NG. Matching score at eer corresponds to
the intersection point of the ROC curve and the diagonal.

5.2.3 Experiment M03. Affine Transformations

In this experiment, we investigate how different com-
binations of affine changes affect the matching perfor-
mance. Unlike in the experiment with ground-truth data,
no training set is needed, that is, the simulation is
directly performed on patches in the test set, which is
possible in a practical scenario.

The main issue is the choice of the affine parameters
to match the distribution of the real transformations.
We first estimate the 6 affine parameter distributions
in the patch dataset using an accurate registration soft-
ware. We remove the large values which are due to the
registration error and use the remaining ones to esti-
mate the distributions. Similar to the distributions from

Fig. 3, all 6 parameters are Gaussian distributed with
standard deviations {04, , Olog(s0)s Tnos Tlog(qo)s Twos Tyo } =
{0.164,0.120,0.184,0.100, 4.81,4.88}. The original patch
is transformed with parameters sampled from the Gaus-
sian distributions. We use these 6 standard deviations to
initialize the search for optimal patch transformations.
We vary the parameter values and test different combi-
nations of affine transformations. For each transform, 6
standard deviations of the Gaussian are tested: o, = %0*0
where 7 = 0,1,2,...,5 indicates how much variance is
allowed for each parameter *. No transformation is done
for i = 0. As there is little difference between standard
deviations for x and y translation, only 5 parameters
are considered. Hence, there are 7666 (=6°> — 1) possible
combinations.

Fig. 7 displays the results for the best combinations of
the individual transformations. Rotation ("20000") yields
training patches that gives significantly better projec-
tions than any other individual transform. Its perfor-
mance is even higher than that of the original SIFT
descriptor. Among the combinations of 2 changes, 'ro-
tation+scale” produces the highes performance. The per-
formance slightly increases with more changes. The best
performance is produced by the combination 45115,
which is very close to that obtained by using the training
data with the ground truth and higher than the PCA-
projected as well as the original SIFT feature.

5.2.4 Experiment M04. Simulation Performance

Fig. 8 compares the performance of projections obtained
from simulation parameters '45115" with that of the
ground-truth data. The main observation is that the
performance of projections from simulated data is very
close to the one from the ground-truth data. Both P
and U projections of SIFT improve upon the original
descriptor as well as its PCA projections for any number
of dimensions larger than 10. Moreover, both projections
result in very similar improvement. The performance
increase is up to 4% with dimensionality reduction from
128 to 20. Interestingly, PCA also improves upon the
original SIFT. This is due to the additional normalization
(cf. equation (7)) of feature vectors that is performed after
the projections.
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Fig. 7. Experiment M03. The matching performance with P-projected 20-dim features from simulated data with various
combinations of 5 transformations (rotation, scale, skewing,stretching and translation). The five-digit number indicates
the best values for a combination of these transformation parameters i.e. '45100’ is the combination of the first three
changes, without stretching and translation. Among all different parameters, the best parameters for rotation-scale-
skewing combination are oy = 4/5 X 0g,, Olog(s) = 5/5 X Olog(se) AN 0 = 1/5 X 0y,
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Fig. 8. Experiment M04. Comparison of the projection
performance obtained from the simulated data (sim) with
that from the ground-truth data (gt). The simulated data
are generated by the best transformation combination
'45115’ in Fig. 7.

5.2.5 Experiment M05. Simulation Distance Distribu-
tions

Fig. 9 compares the distance distributions of the fea-
tures generated from the ground-truth data with those
generated from the simulated data. Fig. 9 (Left) shows
distributions for 20 dimensional P-projected features on
Liberty set. The intersection/union area ratio given at
the top of the figures is very similar for the ground-
truth data and the simulated data. These, as well as the
results from M04, demonstrate that the simulation can
model the real data distribution sufficiently close such
that the projections achieve comparable performance to
the ground-truth data. Moreover, Fig. 9 (middle, right)
shows the corresponding results for different interest
point detectors (Har-SIFT and MSER-SIFT) and on a
different dataset (Oxford), which further validate this
claim.

5.2.6 Experiment M06. Generalization

This experiment investigates whether the projections
learnt on one dataset can improve matching performance
on another dataset. We also test whether the projections
trained on patches from one interest point detector can
be used for another detector. Fig. 10 (Left) and (Middle)

P(20), DOG-SIFT
N inters.: gt(0.085), sim(0.091)

Har-SIFT,
inters.: gt(0.045), sim(0.042)

MSER-SIFT,
inters.: gt(0.045), sim(0.050)
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Fig. 9. Experiment M05. Comparison of the distance
distribution of projected 20-dim features from simulated
data (sim) with those from ground-truth data (gt). Left:
P projected features on Liberty. Middle: Har-SIFT and
Right: MSER-SIFT features on 15 image sequences from
Oxford set. The intersection/union area ration is given
at the top of the figures for ground-truth data (gt) and
simulated on (sim).

show the results for projections trained from one dataset
(Notre-Dame, Yosemite) and tested on another one (Lib-
erty). Note that there is no intersection between training
and testing sets but the sets are likely to have similar
distribution if sampled from the same scene. The results
show that the performance is lower compared to the
projections trained and tested on patches from the same
scene (Liberty, Fig 8). However, the performance gain is
larger for the Notre-Dame/Liberty test in Fig. 10 (Left)
as these two datasets were obtained from structured
building scenes, while Yosemite/Liberty score is lower
as Yosemite was sampled from natural, well textured
scenes. Finally, generalization from one interest point
detector to another is also poor, in particular when com-
pared with the PCA score. This is due to the difference
in local structures detected by DoG and Harris, as the
former responds to blobs and the latter to corners mainly.

Following the observation above, we conclude that
the generalization property between different types of
interest points and different types of scenes is weak.
The projections generalize if the training and test set
share similar statistics. While this may be seen as a dis-
advantage of the discriminant projections, the approach
proposed in this paper provides a solution, as it allows
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Fig. 10. Experiment M06. Generalization across different
datasets and different interest point detectors. All the
projections here are tested on Liberty with DoG-SIFT. The
projections are trained for: Left: DoG-SIFT from Notre-
Dame. Middle: DoG-SIFT from Yosemite. Right: Har-SIFT
from Liberty.

to train the projections for any detector and any data
without the ground truth.

5.2.7 Experiment M0O7. Oxford Dataset

In this experiment we further investigate the perfor-
mance of discriminant projections on the Oxford match-
ing benchmark from [31] using the area of precision-
recall curves [15]. We test the performance using four
different training strategies. The projections are first
trained with ground-truth data (GT) on 15 training
image sequences (50000 matched descriptor pairs) and
tested on 3 test image sequences. Second strategy (TR) is
to use the transformations estimated for each patch from
the ground truth homography, to generate the matched
patch with this transformation and to use these pairs for
training the projections. The goal of the second strategy
is to demonstrate how well local affine transformations
can model the true transformation between the images
if the true transformation parameters are known. Third
approach (SIM) is to sample patches from the test images
and to generate the simulated data with parameters
estimated in experiment M03 for training the projections,
which is possible in practical application scenario. Fi-
nally, fourth strategy (GT-Patch) is to use the projections
trained on Liberty set provided by DoG detector and test
on patches from Oxford data given by Harris detector.
This experiment further tests the generalization across
different data and detector.

As shown in Table 4, the projections result in higher
scores than the original descriptor and the PCA. P gives
slightly better performance than U, which is consistent
with the observations in M05. Compared to GT, a small
drop from 67.6% to 67.3% is observed for TR. This indi-
cates that the simulated affine changes can model well
the transformations in this dataset. Small decrease of per-
formance results from noise and photometric variations
which are not modeled by the affine transformation.

For the simulation approach, which can train the
feature projections for any data and for any detector-
descriptor combination, the performance is 66.4% (SIM).
This is only 1.2% lower than for the ground-truth data
(GT) but still 1.2% higher than for the original SIFT
features and 6.9% higher than for the PCA projected
features. It is important to note that this improvement
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TABLE 4
Experiment MO7. Average precision of the 40-dim
projected features with various training strategies. See
detailed explanation in the text.

training strategies
GT TR SIM GT-Patch

P@0) || 676 673 664 516
U @0) || 673 672 660 55.7
LDE (40) || 649 654 661 -

SIET (128): 65.2 PCA (40): 59.5

has been achieved with dimensionality reduction from
128 to 40.

The result from projections trained and tested on
different data and different detectors is 54.6% (GT-Patch),
which is 11.8% lower than the result from SIM training.
This demonstrates again the need for training data that
has similar statistics to the test data and the usefulness
of the simulation strategy.

In addition, we report results for LDE which con-
siders only the nearest neighbors among matched and
unmatched features. The intra-class covariance matrix
estimated from all features rather than from nearest
neighbors only (LDP) seems more stable and the pro-
jections result in higher performance.

5.2.8 Discussion.

In summary, the main observations from the experiments
in this section are:

o Linear discriminative projections enable significant
dimensionality reduction without compromising the
performance and work better than PCA. P performs
marginally but consistently better than U.

o The simulation is capable of generating the data
very similar to the real one in terms of distance
distributions, and performs nearly as well as the
ground-truth data.

o The generalization properties of LDP are weak if
the statistics of the data and feature detector differ
significantly.

o Simulation parameters have an impact on the pro-
jection performance and have to be re-estimated if
different features are used.

6 IMAGE RECOGNITION EXPERIMENTS

We further evaluate the LDP-projected feature in image
recognition task. Image or object category recognition
requires features that capture the dominant shape of the
image structures and are insensitive to small appearance
variations. We demonstrate on three standard recogni-
tion benchmarks that the proposed projection improves
feature performance in this task. In the following we
discuss the experimental setup and present the results
for different datasets.
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TABLE 5
Summary of recognition experiments.

Experiments Tan data Tost descriptor

Experiment RO1. Table 6 simulation parameters .

Exzerzment R02. Table 7 recognitionlc;)erformance Scene-15 (100 images/ cat.) Scene-15 Dense-SIFT

Experiment R03. Table 8 recognition performance Caltech101 (15 images/cat.) Caltech101

Experiment R04. Table 9 recognition performance VOC2007 (5011 images) VOC2007

Experiment R05. Table 10 generalization Liberty Scene-15 | DoG-SIFT Dense-SIFT
) Scene-15 Caltech101 VOC2007 Scene-15 Dense-SIFT

6.1 Setup
6.1.1 Recognition System

We incorporate the proposed projections into a recog-
nition system based on Spatial Pyramid Match Kernel
(SPMK) [25]. Given a set of labeled training images the
system extracts local regions and computes descriptors,
from which it constructs a codebook with the k-means
clustering (k = 2000). The image is first partitioned into
L levels (L = 1) of increasingly fine location grids (1x1,
2x2). Then a histogram of codeword occurrences is built
for each location cell on each level. The similarity of two
images is defined as a level-weighted sum of histogram
intersections. A one-versus-all SVM classifier is then
trained with these similarities. Given a query image the
features are extracted, mapped to the codebook to build
a multi-resolution histogram, which is then classified
with the trained SVM.

6.1.2 Descriptors

Unlike in the matching experiment, we use uniform sam-
pling of regions which was shown [32] to produce higher
performance than the interest points. The features are
extracted using regions of radius 16, 24, 32, 40, sampled
uniformly every 8, 14, 20, 26 pixels, respectively. The re-
gions are represented with SIFT descriptor, referred to as
Dense-SIFT. 1.5 x 10° randomly selected regions (< 5%)
from all training regions are used to estimate projections
with the simulating strategy. For each selected region,
we simulate 9 regions with Gaussian distributed affine
changes, which gives 10° matched features for the intra-
class covariance estimation.

6.1.3 Data and Evaluation

Three commonly used image recognition benchmark
datasets are used for evaluation. The experiments,
datasets and the number of images used for training are
summarized in Table 5.

Scene-15 dataset from [25], [24] contains fifteen scene
categories each containing 200 to 400 images. Follow-
ing [25] 100 images are used for training and the remain-
ing ones for testing. The average recognition rates across
categories are used for evaluation. All the experiments
are repeated 10 times with different randomly selected
training and testing images and the results averaged.

Caltech101 [29] consists of 101 object categories with
31 to 800 images per category. We run experiments 10
times with randomly selected 15 images for training, and

up to 50 remaining images for testing. The performance
is measured in the same way as in Scene-15 experiment,
with average recognition rates.

PASCAL VOC2007 [32] consists of 20 categories with
5011 training and 4952 test images. In contrast to Cal-
tech101, each image in PASCAL database may contain
multiple objects in various poses at different locations
within the image, with background clutter and occlu-
sion, which results in higher intra-class diversity than in
Caltech101. The average precision (AP) as defined in [32]
is used to measure the recognition performance.

6.2 Recognition Results
6.2.1 Experiment RO1. Simulation Parameters

Since no point-to-point annotation exists in image/object
categorization, the simulation strategy makes it pos-
sible to apply linear discriminant projections to local
descriptors in this task. We first evaluate a number of
combinations of different transformation parameters to
find the best simulation parameters for this application.
Table 6 shows standard deviations of Gaussian distribu-
tions from which the parameters were randomly sam-
pled and the recognition results for different transform
combinations on scene-15 dataset. The performance is
little affected by different combinations tested in this
experiment and it is always higher than PCA. SIM5 is
the combination that gave the best results in matching
experiments and it also optimizes the results in this test.
Skewing and stretching changes have been discarded
due to their limited effect on the performance. Similar
tests were done for other datasets and the observations
were consistent.

TABLE 6
Experiment RO1. Transformation combinations and their
performance on Scene-15. The number for each
transform is the standard deviation of Gaussian
distribution. SIM5 is the best combination from matching
experiment M03 with discarded skewing and stretching.

SIM1 SIM2 SIM3 SIM4 SIM5 SIM6

rotate (degree) 3 5 8 12 7.5 11.2
scale (ratio) 1.1 1.3 1.4 1.7 1.13 1.18
translate (pixel) 1 2 5 10 4.8 6.7
P (30), SPMK 83.4 83.9 84.5 84.2 84.6 84.0

SIET (128): 83,5 PCA (30): 82.9




6.2.2 Experiment R02. Scene-15

Table 7 displays the comparison of the average recogni-
tion rates for the original SIFT, PCA- and P-projected
features. P-projected features outperform the original
SIFT by 1.1% and PCA-projected by 1.7%. Our im-
plementation of SPMK with 128-dim SIFT gives 83.5%
which is higher than the performance of this approach
reported in the original paper [25] (81.4%) mostly due
to larger size codebook. The best performance of 83.7%
on this data was achieved in [38] where a probabilistic
Latent Semantic Analysis is applied to SPMK model
(SP-pLSA). Our P-projected features with 30 dimensions
give 84.6% and exceed the performance of all other state-
of-the-art approaches. The recognition system may ben-
efit from the projections and reduced dimensionality at
the codebook construction stage or feature to codebook
assignment. It is however not straightforward to identify
the most beneficial part of the system as the intermediate
results cannot be directly interpreted.

TABLE 7
Experiment R02. Comparison of the average correct rate
on 10 runs with 100 training images per category on

Scene-15.
P (30) | SIFT (128) | PCA (30) | [25] | [371 | 211 | I38]
84.6 83.5 82.9 814 | 833 | 77.0 | 83.7

6.2.3 Experiment R03. Caltech101

Table 8 shows the mean recognition rates for Caltech101
data averaged for 10 runs. Our method is a single kernel
approach with gray-value SIFT only on dense sampled
regions, we therefore only compare our results with the
state-of-the-art single-kernel approaches in Table 8. The
highest score of 63.2% was reported in [40], in which
an image specific distance metric is learned with paired
constraints. The P-projected 30-dim features outperform
this approach by 1.7%. The gain with respect to the
original SIFT and PCA-projected features is small. With
many variants of the recognition methods based on local
descriptors and SIFT in particular, the results reported
in the literature are saturated and further improvements
require more diverse measurements from the image.

TABLE 8
Experiment R03. Comparison of the average correct rate
on 10 runs with 15 training images per category on

Caltech101.
P (30) | SIFT (128) | PCA (30) | [44] | [43] | [25] | [45]
64.9 64.5 64.0 52.0 | 50.0 | 56.4 | 59.1
[38] | [40] | [30] | [39]
59.8 | 63.2 | 61.0 | 60.5

6.2.4 Experiment R0O4. PASCAL VOC2007

The Average Precisions (AP) from 20 object categories
from this benchmark are displayed in Table 9. The results
show that the P-projected 30-dim features yield a gain
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TABLE 9
Experiment RO4. Comparison of the average precision
on PASCAL VOC2007.

cat. P (30) SIFT PCA (30) [41] C-SIFT [46] [42]
plane 72.2 70.3 71.7 65.0 59.9 64.3
bicycle 55.7 55.6 53.6 44.3 43.5 52.0

bird 46.3 40.6 38.9 48.6 37.1 45.0

boat 65.9 63.7 63.1 58.4 55.5 60.4
bottle 26.8 26.1 20.0 17.8 20.7 20.3

bus 59.0 55.3 56.7 46.4 344 49.2

car 73.7 719 71.1 63.2 54.9 69.3

cat 55.3 54.7 53.4 46.8 36.7 47.9
chair 51.1 49.2 48.7 42.2 46.2 494

cow 36.2 36.6 35.9 29.6 27.8 34.0
table 46.1 46.6 43.9 20.8 39.2 375

dog 38.9 404 38.0 37.7 29.8 40.0
horse 722 72.7 72.7 66.6 66.9 712

bike 60.9 58.0 572 50.3 43.1 57.7
person 80.9 80.1 80.0 78.1 78.5 80.6
plant 25.7 24.0 23.8 272 31.0 32.6
sheep 36.4 35.1 33.3 32.1 41.5 35.7

sofa 47.7 43.0 42.7 26.8 324 42.6
train 75.5 71.3 70.8 62.8 61.7 68.0

monitor 47.0 45.6 43.9 333 35.5 47.7
MAP || 537 52.0 51.0 44.9 43.9 50.2

of 2.7% in terms of Mean AP (MAP) over the PCA-
projected ones and 1.7% over original 128-dim SIFT. It is
also observed that P outperforms PCA on 19 categories
and original SIFT on 16 categories.

We also compare our scores with the state-of-the-art
results. As demonstrated in Table 9, the P-projected
features obtain the best performance for 12 out of 20
categories and exceed the best reported result [42] by
3.5%. The improvement is even higher compared to the
other two approaches [41], [46]. It is worth noting that
all these methods combine color-based descriptors with
SIFT resulting in high dimensional features, e.g., 384
dimensions for the best color sift (C-SIFT) in [46]. There-
fore, the significant advantage of our approach is not
only the performance improvements but also much less
memory and computational time requirements, which is
crucial for large scale computer vision systems.

In addition, we also test on PASCAL VOC2008 Chal-
lenge [32] by training on 2111 training images and
testing on 2221 validation images, since ground truth
for test set is not available. Consistent improvement is
observed. P-projected 30-dim features, PCA-projected
30-dim features and 128-dim SIFT yield 41.3%, 40.8% and
39.7% in terms of MAP. The P-projected 30-dim features
also outperform the best single kernel score of 38.8% [36]
with 384-dim color-SIFT[46], which produced the best
result on this dataset. This confirms the superiority of
our P projection in both performance and scalability.

6.2.5 Experiment R05. Generalization

In this experiment the performance of the projections is
compared by training and testing on different datasets.
As shown in Table 10, the lowest performance is given by
the projections trained on patch dataset from matching
experiments in section 5. This is due to: 1) patches
in this dataset are sampled from one scene type only



TABLE 10
Experiment R0O5. SPMK recognition with descriptor
projections trained and tested with different datasets. All
the experiments are tested on Scene-15 with the
projections trained on different datasets.

training set
Patch | Caltech101 | VOC2007
82.9 83.9 83.8

PCA (30): 82.9

Scene-15
84.6

SIFT (129): 83.5

P (30)

(Liberty); 2) uniform sampling that is used in recognition
task results in more diverse local structures than from
the interest point detector used for the patch database.
Projections trained from Caltech101 or VOC2007 give
better scores as the sampling strategy and the data is
more similar to the test set. However, the highest per-
formance is still obtained by training and testing on the
sets from the same distribution. This further validates the
observations from section 5.2 that the projections should
be trained on the data as close to the test distribution as
possible.

7 DiscussioON AND CONCLUSIONS

In this paper, we have presented and evaluated LDP
approach and put it in the context of other discriminant
projections. A number of dimensionality reduction tech-
niques have been discussed with analytical and experi-
mental in depth analysis of the LDP.

We have applied LDP to state-of-the art descriptor
SIFT as well as normalized grayvalue patches, but the
approach can be used for any type of descriptors. We
have demonstrated that LDP can reduce the dimen-
sionality without compromising the performance and
outperforms the commonly used PCA. This makes it a
useful tool for computationally demanding large-scale
image recognition and retrieval problems.

We have shown that LDP-projected 30-dim features
combined with SPMK based recognition system improve
upon the original SIFT, PCA-projected features and also
state-of-the-art results for three recognition benchmarks.
This suggests that modeling of geometric changes gives
useful projections in the categorization problem, even
though the main changes are in the appearance/shape.

We have proposed a simulation based training method
and demonstrated its usefulness in two typical image de-
scriptor applications. The results show that the simulated
data distribution is similar to the real one and can be
used instead. It is a significant contribution as it makes it
possible to apply the LDP as well as other discriminant
projection approaches to the problems where point-to-
point correspondence ground truth is not available.

We have not been able to find a general projection that
would improve SIFT for any task despite many experi-
ments with different variants of projections, descriptors
and training methods. It seems that SIFT can be made
more compact, but better results have been achieved
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only by making the projections specific to the data. Inter-
estingly, this also suggests that the standard benchmarks
used in this paper have some specific properties and
very high performance on one may not generalize to
the other. As with any discriminative approach there is
a risk of overfitting the projections but our simulating
approach can provide sufficient number of data points
for training and it allows to control their variability.
The improvements are small but consistent in all ex-
periments. The data, projection matrices and software
libraries are made available at [31] and may serve as a
benchmark for future projections and descriptors.

In the future, we will investigate discriminant projec-
tions for other descriptor based applications i.e., image
retrieval from large databases. Another possible direc-
tion is to incorporate means of feature clusters into
the cost function being optimized. Non-linear projection
methods based on kernels, including kernel fusion of
various descriptor types are also of interest.

APPENDIX
In this section we demonstrate that projections P and U
defined in (6) and (5) have equivalent orientations.
_1 _1
Let R be a matrix of all eigenvectors of Cs*CpCg >
sorted by eigenvalue magnitude and let €2 be a diagonal
matrix of the corresponding eigenvalues:

C5*CpC5? R=R-Q (12)

If equation (12) is multiplied by O3 ?, then we obtain:

C5'0p-C5*R=C5°R-Q (13)

where C;%R are the eigenvectors of1 Cgle , which
means that U = eig(C5'Cp) = C5*R = P if only
orientations are considered. This equivalence is also ver-
ified by the theorem of simultaneous diagonalisation of
the covariance matrices. Let Y¥ be the projected feature
spaces: YZ = {PTz|z € X}.

Cslyr = cov(P" - (z; — 75))(ij)es = PT.Cs-P

_1 —1
= RTCS°CsC5°R (14)

Since R is an orthogonal matrix, then
Cslyr =1 (15)

This property is illustrated by the projected 2-dim data
points in Fig. 1 where each small cluster is circular.

z;))jep = PT - Cp- P
(16)

Cplyr = cov(PT - (z; —
= RTC;°CpC5°R

R is the matrix of all eigenvectors of C;%CDC;%, thus
Cplyr = Q (17)

From the above equations, P is a linear transformation
that diagonalizes two symmetric matrices Cs and Cp
simultaneously. According to the theorem in [27] (p.31),



1 and P are the eigenvalue and eigenvector matrices
of OglOp, which demonstrates that P has the same
orientations as U.
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