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Quantifying and Transferring Contextual
Information in Object Detection

Wei-Shi Zheng, Member, IEEE, Shaogang Gong, and Tao Xiang

Abstract— Context is critical for reducing the uncertainty
in object detection. However, context modelling is challenging
because there are often many different types of contextual
information co-existing with different degrees of relevance to the
detection of target object(s) in different images. It is therefore
crucial to devise a context model to automatically quantify and
select the most effective contextual information for assisting
in detecting the target object. Nevertheless, the diversity of
contextual information means that learning a robust context
model requires a larger training set than learning the target
object appearance model, which may not be available in practice.
In this work, a novel context modelling framework is proposed
without the need for any prior scene segmentation or context
annotation. We formulate a polar geometric context descriptor
for representing multiple types of contextual information. In
order to quantify context, we propose a new maximum margin
context (MMC) model to evaluate and measure the usefulness
of contextual information directly and explicitly through a
discriminant context inference method. Furthermore, to address
the problem of context learning with limited data, we exploit
the idea of transfer learning based on the observation that
although two categories of objects can have very different visual
appearance, there can be similarity in their context and/or the
way contextual information helps to distinguish target objects
from non-target-objects. To that end, two novel context transfer
learning models are proposed which utilise training samples from
source object classes to improve the learning of the context model
for a target object class based on a joint maximum margin
learning framework. Experiments are carried out on PASCAL
VOC2005 and VOC2007 datasets, a luggage detection dataset
extracted from the i-LIDS dataset, and a vehicle detection dataset
extracted from outdoor surveillance footages. Our results validate
the effectiveness of the proposed models for quantifying and
transferring contextual information, and demonstrate that they
outperform related alternative context models.

Index Terms— Context modelling, object detection, transfer
learning

I. INTRODUCTION

It has long been acknowledged that visual context plays an

important role in visual perception of object [7], [3]. Conse-

quently, there has been an increasing interest in recent years

in developing computational models to improve object detection

in images by exploiting contextual information [20], [13], [45],

[25], [31], [28], [9], [48], [38], [24], [22], [13]. These existing

studies show that by fusing contextual information with object

appearance information, the uncertainty in object detection can be
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(a) Luggage detection on an underground platform (b) Vehicle detection at an airport forecourt

Fig. 1. Examples of improving object detection using contextual information.
The top row shows the detection results by a HOG detector [12] without
context modelling, and the second row shows the results obtained by using the
same detector with the proposed context model. The green and red bounding
boxes indicate false detections and true detections respectively.

reduced leading to more accurate and robust detection, especially

in images with cluttered background, low object resolution and

severe occlusions (see Figure 1 for examples). In particular, large

amount of false detections can be filtered out when the object

contextual information is examined, e.g. luggage is normally

carried by or in a vicinity of a person rather than on a wall or

train carriage (see Figure 1(a)).

However, modelling visual context remains a challenging prob-

lem and is largely unsolved mainly due to the following reasons:

1) Diversity of contextual information – There are many

different types of context often co-existing with different degrees

of relevance to the detection of target object(s) in different images.

Adopting the terminology in [25], objects in a visual scene can be

put into two categories: monolithic objects or “things” (e.g. cars

and people) and regions with homogeneous or repetitive patterns,

or “stuffs” (e.g. roads and sky). Consequently, there are Scene-

Thing [31], Stuff-Stuff [44], Thing-Thing [38], and Thing-Stuff

[25] context depending on what the target objects are and where

the context comes from. Most existing work focuses only on one

type of context and ignores the others. It remains unclear how

different types of contextual information can be explored in a

unified framework. 2) Ambiguity of contextual information –
Contextual information can be ambiguous and unreliable, thus

may not always have a positive effect on object detection. This is

especially true in a crowded public scene such as an underground

train platform with constant movement and occlusion among

multiple objects. How to evaluate the usefulness and goodness

of different types of context in a robust and coherent manner is

crucial and has not been explicitly addressed. 3) Lack of data for
context learning – It is well known that visual object detection

is a hard problem because of the large intra-class variation of

object appearance; learning an object appearance model thus often

faces the problem of sparse training data which can lead to
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Fig. 2. Transferrable knowledge can be extracted and shared between object
categories. (a) Cars and motorbikes have similar contextual information. (b)
It is not the case for people and bicycles but context in general provides a
similar level of assistance in detection. In both cases, transfer learning can
help to address the problem of learning context from limited data.

model over-fitting. However, the problem of learning with limited

training data is much more acute for context learning because the

variation of contextual information and the variation of its degree

of relevance to the detection of target object can be larger. For

instance, some objects such as people can appear everywhere and

certain contextual information (e.g. on top of a sofa) can be more

useful than others (e.g. on top of grass).

In this paper, the three aforementioned problems are tackled by

a novel context modelling framework with three key components:

• A polar geometric descriptor for context representation
– We formulate a polar geometric context descriptor for

representing multiple types of contextual information. This

representation offers greater flexibility in capturing different

types of context including Thing-Thing and Thing-Stuff

context compared to existing representation methods most

of which focus on a single type of contextual information. It

avoids the tedious and unreliable process of manual labelling

of object context required by most existing methods.

• A maximum margin context model (MMC) for quanti-
fying context – More does not necessarily mean better as

not all contextual information is equally useful and reliable.

To evaluate and measure the relevance and usefulness of

different contextual information, we propose a context risk

function and formulate a MMC model which is a discrimi-

nant context inference model designed to minimize the risk

of model misfitting and solve the problem of fusing context

information with object appearance information.

• A context transfer learning model for context learning
with limited data – We exploit the idea of transfer learning

based on the observation that although two categories of

objects can have different visual appearance, there can be

similarity in their context and/or the way contextual in-

formation helps to disambiguate target objects from non-

target-objects. For instance, as shown in Figure 2(a) cars

and motorbikes can look quite different, but due to their

similar functionalities (transport tools for human), there can

be common contextual information that has a similar effect

on detecting cars and motorbikes (e.g. roads underneath a

candidate object). The availability of a set of training images

of cars can thus be useful for learning a context model for

motorbikes and vice versa. It is also noted that even for

seemingly unrelated object categories, there can be useful

knowledge about the contextual information that can be

transferred across categories. For example, people and bicy-

cles, although often appearing together, have very different

appearance as well as associated context (see Figure 2(b)).

However, it is still possible to exploit the prior knowledge

that both can appear in very diverse environments (indoors

and outdoors), and thus context in general may provide a

similar level of assistance in detecting both categories. In this

paper, a novel context transfer learning method is proposed

which utilises training samples from object classes of source

task to improve the learning of the context model for a

target object class based on a joint maximum margin learning

framework. Specifically, two transfer maximum margin con-

text models (TMMC) are devised. The first model is applied

for knowledge transfer between objects that share similar

context (e.g. cars and motorbikes), the second for related

objects with different context benefiting from modelling

context in general (e.g. people and bicycles).

The effectiveness of our approach is evaluated using the

PASCAL Visual Object Classes challenge 2005 dataset [15] and

2007 dataset [16], a luggage detection dataset extracted from the

UK Home Office i-LIDS database [27], and a vehicle detection

dataset extracted from outdoor surveillance footages. Our results

demonstrate that the proposed MMC context model improves

the detection performance for all object classes, and our TMMC

model is capable of further improving the performance of object

detection by incorporating the transferrable contextual informa-

tion extracted from training data of object categories from source

task when the available target data are limited. In addition, it is

also shown that our context model clearly outperforms the related

state-of-the-art alternative context models, and the improvement

is especially significant in the more challenging i-LIDS luggage

and surveillance vehicle datasets.

II. RELATED WORK

Most existing context modelling works require manual annota-

tion/labelling of contextual information. Given both the annotated

target objects and contextual information, one of the most widely

used methods is to model the co-occurrence of context and object.

Torralba et al. [46], Rabinovich et al. [38] and Felzenszwalb

et al. [18] infer the semantic information about how a target

object category co-occurs frequently with other categories (e.g. a

tennis ball with a tennis bracket) or where the target objects tend

to appear (e.g. a TV in a living room). Besides co-occurrence

information, spatial relationship between objects and context has

also been explored for context modelling. The spatial relationship

is typically modelled using Markov Random Field (MRF) or Con-

ditionally Random Field (CRF) [28], [9], [22], or other graphical

models [24]. These models incorporate the spatial support of

target object against other objects either from the same category

or from different categories and background, such as a boat on a

river/sea or a car on a road. Along a similar line, Hoim et al. [26]

and Bao et al. [2] proposed to infer the interdependence of object,

3D spatial geometry and the orientation and position of camera

as context; and Galleguillos et al. [21] inferred the contextual

interactions at pixel, region and object levels and combine them

together using a multi-kernel learning algorithm [21], [47].

Although different context representation and models have been

adopted in these works, they all suffers from the same drawback

that laborious manual efforts are required in order to either label

contextual objects or parts of a scene that can provide contextual

support for the target object/class, or specify the location and/or

assign the spatial relationship between target objects and context.

In contrast, our context model does not need any manually

labelling of contextual information or its spatial relationship

with target objects, thus is able to learn contextual information

for improving object detection in a more unsupervised way.

Moreover, many existing context learning works first learn an
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object appearance model and a context model independently and

then fuse them together for detection [48], [36], [37], [13]. On the

contrary, our model quantifies contextual information conditioned

on the appearance model for a target object category, so that

more effective and useful contextual information can be selected

explicitly to leverage the detection performance.

Recently Heitz and Koller [25] also investigated the use of

context in an unsupervised way in order to reduce the cost of

human annotation. The proposed Things and stuff (TAS) model

in [25] first segments an image into parts and then infers the

relationship between these parts and the target objects detected by

a base detector in a Bayesian framework using a graphical model.

Compared to TAS, our MMC model differs in that (1) we develop

a discriminative rather than a generative context model so that no

prior manually defined rules are required to describe the spatial

relationship between context and target objects; (2) Our model

is not limited to the Thing-Stuff context; (3) No global image

segmentation is required which could be unreliable especially for

a cluttered scene; (4) Our model can be extended to perform

transfer learning for context learning given limited data.

To the best of our knowledge, this work is the first attempt

to context transfer learning. However, transfer learning has been

exploited extensively for learning a detector by object appearance

modelling using training data of both target object category and

source object categories. The existing object transfer learning

methods mainly fall into three broad categories according to the

relationship between the target and source object categories: 1)

cross-domain but from the same categories [34], [35], [49], [14]

(e.g. detecting fastback sedan cars using hatchback sedan cars

as source data), 2) cross-category but relevant using hierarchical

category structure [52] (e.g. detecting giraffes using other four-leg

animals as source data), and 3) cross category and irrelevant [17],

[5], [39] (e.g. detecting people using motorbike as source data).

Nevertheless none of the existing transfer learning techniques

designed for object appearance transfer learning can be applied

directly to the object context transfer learning problem. This is

due to the fundamental difference between the two problems: an

object appearance model is only concerned with the appearance

of a target object category, whilst to learn an object context

model one must model both context and object appearance with

the emphasis on their relationship, i.e. how different contextual

information can assist in the detection of the target object; in other

words a context model is not just about context because context

is defined with respect to a target object and without the object

modelling context itself is meaningless. Correspondingly, object

appearance transfer learning aims to extract similarity between the

appearance of target object class and source classes, whilst object

context transfer learning is concerned with extracting similarities

between the ways in which different contextual information can

help to detect a target object class and source object classes.

In summary, compared to existing context learning approaches,

the proposed framework has two major advantages:

1) Our context model is able to explicitly and directly quantify

context by learning a context risk function, which combines

the prior detection confidence and contextual information in

a selective and discriminant framework.

2) Our context model can be learned with limited training

data due to a novel context transfer model which utilises

data from related source object classes even when they are

visually very different from the target object.

The maximum margin context (MMC) model was first pro-

posed in our preliminary work [51]. In this paper, apart from

providing more detailed formulation and in-depth analysis, and

evaluating the model using more extensive experiments, the major

difference between this paper and [51] is the introduction of the

new context transfer learning methods. Our experiments suggest

that with this context transfer learning method, the MMC model

can be better learned given limited target object data, leading to

further improvement of detection performance. In addition, HOG

features rather than SIFT features are used in this work for context

feature extraction which also improves the performance.

III. LEARNING A DISCRIMINANT CONTEXT MODEL FOR

QUANTIFYING CONTEXT

Assume we have a training set images of a target object class

with the ground truth locations of the target objects in each

image known. First, a detector is learned to model the object

appearance which is called a base detector. In this paper the

histogram of oriented gradients (HOG) detector [12] is adopted,

but any sliding window based object detector can be used. Second,

the base detector is applied to all the training images to obtain a

set of N candidate object windows (bounding boxes), denoted as

O = {Oi}N
i=1, which yield the highest scores among all candidate

windows using the detector. Without loss of generality we let

the first � candidate detections Op = {Oi}�
i=1 be true positive

detections and the last N − � detections On = {Oi}N
i=�+1 be

false positive ones. Let us denote the context corresponding to

Oi by hi and define Hp = {hi}�
i=1 and Hn = {hi}N

i=�+1. We

call Hp the positive context set and Hn the negative context set.

For our detection problem, we wish to compute the confidence

of an object being the target object based on both its appearance

and its visual context. Specifically, given an object Oi and its

context hi, the confidence of an candidate detection window

containing an instance of the target object class is computed as:

D(Oi,hi) = Do(Oi) · Dc(hi), (1)

where Do(Oi) is the prior detection confidence of an object

being the target class obtained based on the output of the

object appearance detector (base detector), Dc(hi) is the context

score which is to be learned, and D(Oi,hi) is the posterior

detection confidence which will be used to make the decision on

object detection using context. In our work, Do(Oi) is computed

based on the detection score of the base detector si(∈ (0, 1])

parameterised by α as follows

Do(Oi) = sα
i . (2)

In the above equation, α determines the weight on the prior

detection score si in computing the posterior detection confidence

D(Oi,hi). More specifically, the higher the value of α, the more

weight is given to the object appearance model which indicates

that context in general is less useful in detecting the target object

class. The value of α will be automatically estimated along with

context quantification through learning, as described later.

We wish to learn a context model such that the confidence

D(Oi,hi) for true positive detections is higher than the false

positive detections in the training set so that it can be used

for detection in an unseen image. Before describing our context

model in details, let us first describe how the context for the i-th

candidate window hi is computed.
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Fig. 3. Examples of the polar geometric structure for context modelling. The
target object classes are car (left image) and people (right image).

A. A Polar Geometric Context Descriptor

Given a candidate object window Oc, we use a polar geometric

structure [30] expanded from the centroid of the candidate object

(see Figure 3) to explore and represent the contextual information

associated with the object detection window. With r orientational

and b + 1 radial bins, the context region centred around the

candidate object is divided into r · b + 1 patches with a circle

one at the centre, denoted by Ri, i = 1, · · · , (r · b + 1). In this

paper b is set to 2 and r is set to 16. The size of the polar context

region is proportional to that of the candidate object window Oc.

Specifically, the lengths of the bins along the radial direction are

set to 0.5σ, σ and 2σ respectively from inside towards outside

of the region, where σ is the minimum of the height and width

of the candidate detection window Oc. As shown in Fig. 3, our

polar context region bins have two key characteristics: 1) It can

potentially represent many existing spatial relationships between

objects and their context used in the literature, including inside,

outside, left, right, up, down, co-existence. 2) The regions closer

to the object are given bins with finer scale. This makes perfect

sense because intuitively, the closer the context is, the more

relevant it is, from which more information should be extracted.

The polar context region is represented using the Bag of

Words (BoW) method. To build the code book, the HOG features

[12] which is robust to partial occlusion and image noise are

extracted densely as described in [8]. These features are invariant

to scale and robust to changes in illumination and noise. They

are thus well suited for representing our polar context region.

More specifically, given a training dataset, HOG features are

extracted from each image and clustered into code words using

K-means with K set to 100 in this paper. Subsequently for each

bin in the polar context region outside the detection window

of the candidate object, a normalised histogram vector [19] is

constructed, entries of which correspond to the probabilities of

the occurrences of visual words in that bin. These histogram

vectors are then concatenated together with the context inside the

detection window which is represented using a single histogram

vector to give the final context descriptor for the object candidate,

denoted as the context associated to the object as described above

by hi. The high order information of the interaction between the

context inside and outside of the detection window can then be

inferred by the proposed selective context model as described in

the next section.

Note that with the proposed polar geometric structure for

context modelling, context is always captured from adjacent

regions of candidate object, and the potentially useful information

in regions farther away may be neglected. There are a number of

reasons for choosing the current setting: (1) for object detection in

a surveillance environment where the scene background is fixed

but objects presented in the scene are small, dynamic and are often

in large numbers, the regions adjacent to each object detection

window is more relevant. Importantly, in this case, including the

regions farther away could have an adverse effect as all candidate

object windows will have similar context in those regions which

makes the task of distinguishing true detections from false posi-

tives harder. For instance, in the underground luggage detection

example shown in Figure 1, the local contextual information

(objects next to luggage) is more useful than the global one

(e.g. other objects on the train platform). (2) increasing the context

regions size will also lead to the increase of computational cost

during both training and testing. Nevertheless, it could in general

be beneficial to explore contextual information from farther away

regions when these information is not overly noisy. This can be

achieved by simply increasing the context region size.

Our polar context descriptor differs from alternative polar

context descriptors [48], [36], which also describe the context

expanded from the centre of the object, in that 1) Bag-of-Words

method is employed for robustness against noise; 2) Pixels within

context region need not be labelled; and 3) Context features are

extracted more densely to cope with low image resolution and

noise in our method. In contrast, only some predetermined sparse

pixel locations were considered for context feature extraction in

[48], [36]. The proposed contextual descriptor is also related to a

number of existing descriptors for object appearance representa-

tion, including the shape context descriptor [6], the correlogram

descriptor [42], the spatial pyramid representation [23], [29] and

the spatial-temporal descriptor for describing pedestrian activity

[10]. In particular, as most polar geometric structure based de-

scriptors, our descriptor is inspired by the shape context work of

Belongie et al. [6]. The main difference here is that our descriptor

is designed for context representation. It is thus centered at the

candidate object location and captures contextual information

from mainly the surrounding area of an object. Our context

descriptor could incorporate the idea of correlogram [42] to better

capture the spatial co-occurrences of features cross different bins,

although this would lead to an increase in computational cost.

The works by Choi et al. [10], [11] would be a natural way

to extend our context descriptor for modelling dynamic context

for action/activity recognition. The spatial pyramid matching

approaches [23], [29] which were originally formulated for object

categorisation could be considered if we want to replace the

exponent X 2 distance kernel (to be detailed next) used in our

framework with a more sophisticated kernel.

B. Quantifying Context

Without relying on segmentation, our polar context region

contains useful contextual information which can help object

detection to different extents, as well as information that is

irrelevant to the detection task. Therefore for constructing a

meaningful context model, these two types of information must be

separated. To that end, we introduce a risk function to evaluate

and measure the usefulness of different contextual information

represented using our polar geometric context descriptor.

A context model is sought to utilise contextual information to

leverage the prior detection score obtained using the base detector

so that the posterior detection score of the true positive detection

is higher than the false positives 1. Specifically, the objective of

context modelling is to minimize the following risk function with

the positive and negative context sets Hp and Hn:

L =
∑

hi∈Hp

∑

hj∈Hn

δ(D(Oi,hi) ≤ D(Oj ,hj)), (3)

1Note that the detection score of the base detector for a false positive
detection window can be higher than that of a true positive window.
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where hi is the polar context descriptor corresponding to true

positive detection windows as described in Section III-A, hj is

the context descriptor corresponding to the false positives, and δ

is a Boolean function with δ(true) = 1 and 0 otherwise. This risk

function measures the rank information between true positives and

false positives. The smaller the value of the risk function is, the

more confident the detection would be for unseen data.

In order to compute the posterior detection score D(Oi,hi)

defined in Eqn. (1), we need to compute both Do(Oi) and Dc(hi).

Do(Oi) is obtained by Eqn. (2), and we compute Dc(hi) as

Dc(hi) = exp{f(hi)}, (4)

where f(hi) is a leverage function that outputs the confidence

score of the context descriptor hi, and the higher the value of f

is the more positive the contextual information is. We consider to

learn the leverage function f as a kernel linear function:

f(hi) = wT ϕ(hi) + b, (5)

where ϕ is a nonlinear mapping implicitly defined by a Mercer

kernel κ such that ϕ(hi)
T ϕ(hj) = κ(hi,hj). Kernel trick is used

here because the descriptor we introduce (i.e. a histogram) is a

distribution representation of high dimension; the exponent X 2

distance kernel [19], which is a Mercer kernel, can thus be used

to measure the distance between two discrete distributions. Note

that the variable b in Eqn. (5) does not have any impact on the

risk function up to now, but it will be useful for learning a much

better w in an approximated way. This is because a more flexible

solution for w can be found by utilising b at the training stage,

as we shall describe next (see Eqn. (10)). Now Eqn. (3) becomes

L =
∑

hi∈Hp

∑

hj∈Hn

δ(sα
i · exp{f(hi)} ≤ sα

j · exp{f(hj)}), (6)

The ideal case to minimize the risk function in Eqn. (6) is to learn

a leverage function f fulfilling all the following constraints:

sα
i · exp{f(hi)} > sα

j · exp{f(hj)}, ∀hi ∈ Hp,hj ∈ Hn. (7)

Directly solving this problem is hard if not impossible and

would also be a large scale optimization problem. For example,

if #Hp = 100 and #Hn = 100, there will be 10000 inequalities

for consideration. Therefore, an approximate solution is required.

By taking logarithm on both sides of Eqn. (7), we approach

the problem of minimizing the risk function by investigating a

solution constrained by a margin ρ(≥ 0) as follows:

f(hi) + log sα
i ≥ ρ, ∀hi ∈ Hp,

f(hj) + log sα
j ≤ −ρ, ∀hj ∈ Hn.

(8)

Ideally, the constraints in Eqn. (7) would be satisfied if the

above constraints are valid. For approximation, we would like to

learn the function such that the margin ρ is as large as possible.

Therefore, we aim to find the optimal w, b, and α such that ρ is

maximized (or −ρ is minimized) as follows:

min −ρ

s.t. wT ϕ(hi) + b ≥ ρ − log sα
i , ∀hi ∈ Hp,

wT ϕ(hj) + b ≤ −ρ − log sα
j , ∀hj ∈ Hn,

ρ ≥ 0.

(9)

Note that without regularization, the margin ρ can be made

as large as possible by simply scaling w, b, and α in the above

criterion. In order to avoid this problem, for non-negative ν and

C, we introduce the following regularized criterion:

{wt, bt, αt} = arg min
w,b,α ρ

−ν · ρ +
1

2
(||w||2 + C2 · α2) +

1

N

N∑

i=1

ξi

s.t. wT ϕ(hi) + b ≥ ρ − ξi − log sα
i , ∀hi ∈ Hp,

wT ϕ(hj) + b ≤ −ρ + ξj − log sα
j , ∀hj ∈ Hn,

ρ ≥ 0, ξi ≥ 0, i = 1, · · · , N,

(10)

where positive slack variables {ξi}N
i=1 are additionally added to

the margin ρ for each constraint, because completely satisfying

all the constraints without the slack variables in model (10) would

be very difficult.

With the criterion above learning our context model becomes a

constrained quadratic programming problem. Next, we show that

we can reformulate the problem so that the popular SVM [43]

technique can be used to find the optimal solution. Let α′ = C ·α
and define z = [wT , α′]T and ψC(hi, si) = [ϕ(hi)

T , log si

C ]T ,

Eqn. (10) can be rewritten as:

{zt, bt} = arg min
z,b,ρ

−ν · ρ +
||z||2

2
+

1

N

N∑

i=1

ξi

s.t. zT ψC(hi, si) + b ≥ ρ − ξi, ∀hi ∈ Hp,

zT ψC(hj , sj) + b ≤ −ρ + ξj , ∀hj ∈ Hn,

ρ ≥ 0, ξi ≥ 0, i = 1, · · · , N.

(11)

Now any SVM solver such as [43] can be used to learn the

model parameters w, b, and α. Note that with the formula-

tion above, a new mercer kernel κ̇ for ψC can be defined as

κ̇({hi, si}, {hj , sj}) = κ(hi,hj) + C−2 · log si · log sj . In this

work, for the two free parameters C and ν, we set C = 1 and

estimate the value of ν using cross-validation.

We refer the above model as the maximum margin context
model (MMC). It utilises the prior detection results obtained

by a sliding window detector (si) and enables the model to

selectively learn useful discriminant context information so that

the confidence of those marginal true positive detections are

maximised conditioned on the prior detection confidence. After

selecting and quantifying contextual information using the MMC

model, a posterior detection confidence score for a candidate

detection Oi in a test image is computed as:

D(Oi,hi) = Do(Oi) ·Dc(hi) = sαt
i · exp{wT

t ϕ(hi)+ bt}. (12)

Context aware object detection can then be performed on a test

image by thresholding the posterior detection confidence score

for each candidate window.

It should be noted that when a linear kernel is used the proposed

MMC can be seen as a feature selector for the simple concatena-

tion of detection score and contextual features. However, since the

detection score and the contextual features are lying in different

spaces or manifolds, the linear kernel is not a suitable similarity

measurement for such kind of combination. Hence, the nonlinear

exponent X 2 distance kernel is adopted to measure the similarity

between histogram based contextual features.

Comments on α. Intuitively for different target object classes,

contextual information has different levels of usefulness in dis-

ambiguating the target object class from background and other

object classes. For instance, context is much more important for

an object class with very diverse appearance but always appearing

with a fixed surroundings than one that has uniform appearance

but can appear anywhere. As mentioned earlier, the value of α
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in our MMC model, which is learned from data, indicates how

important context information in general is for detecting the target

object class. This is different from the model parameter w which

corresponds to the relevant importance of different high order

context information with regard to each other. Specifically, α = 0

means that the prior probability would not have any effect on

the maximum margin model and should also be ignored in the

risk function and the posterior detection score. For α > 0, the

larger it is, the more important the prior detection probability

is and the less useful the contextual information in general will

be. In particular, a very large α value will mean the contextual

information is completely discarded. Note that the value of α is

not restricted to be non-negative. When α has a negative value, the

smaller the prior detection probability is, the larger the posterior

detection score is expected. This is because si ∈ (0, 1] and the

leverage function f(hi) is always bounded by investigating the

dual problem formulated in Eqn. (10). Although theoretically

possible, it is unlikely that a negative value of α will be obtained

in practice unless a poor base detector is used which completely

fails to capture the object appearance information.

IV. CONTEXT TRANSFER LEARNING

Compared with an object appearance model, a context model

requires much more data to learn due to the diversity of contextual

information. Context model is thus more likely to suffer from

model over-fitting problem caused by the limited availability

of training data. In this section, we formulate a novel context

transfer learning model which utilises training samples from

source object classes to improve the proposed MMC model for

a target object class based on a joint maximum margin learning

framework. Specifically, two transfer maximum margin context

models (TMMC) are devised. The first model is applied for

knowledge transfer between objects that share similar context

(e.g. cars and motorbikes) and the second for related objects that

have different context but similar level of benefit from modelling

context in general (e.g. people and bicycles).

Let us first formally define the context transfer learning prob-

lem. Assume we have a set of training samples for context

aware detection of Q categories, where context samples from

each category contain both a positive and negative context sets.

Let {(hi, si, yi, τi)}N
i=1 be the training dataset, where hi is the

associated contextual information of candidate object window

Oi, si is the corresponding prior detection score (obtained using

different base detectors trained for different object categories),

yi ∈ {+1,−1} is the ground truth label of the contextual

information (either positive or negative), and τi indicates the

category label of the candidate object Oi. For Q tasks of object

detection, i.e. τi ∈ {1, · · · , q, · · · , Q}, there are Nq candidate

windows for each task (category). Let the first category (q = 1) be

the target object class and the rest be the source categories (q > 1)

which are used to facilitate the context quantification for target

class. We wish to develop two joint maximum margin learning

models for context transfer learning based on the assumption on

how contextual information can be shared across the target and

source object categories.

A. TMMC-I: Transferring Discriminant Contextual Information

Our first transfer MMC model assumes that the usefulness of

different discriminant contextual information is shared between

categories; that is different categories can have similar projection

w in Eqn. (5) which weights the usefulness of higher-order

contextual information, whilst having different prior importance

weight αq on the detection confidence, different margin ρq and

constant bq . Similar to Eqn. (8), the MMC context models for

the target object category can thus be learned using the following

model with samples from both the target and source categories

as training data:

wT ϕ(hi) + bq + αq · log si ≥ ρq − ξi, ∀ yi = 1 & τi = q,

wT ϕ(hj) + bq + αq · log sj ≤ −ρq + ξj , ∀ yj = −1 & τj = q.

(13)

We then consider the following optimization problem, which

we call TMMC-I,

{wt, b
t
q, α

t
q} = arg min

w,bq,αq,ρq,ξi

1

2
(||w||2 +

Q∑

q=1

α2
q)

+
1

N

N∑

i=1

ξi − υ

N

Q∑

q=1

Nq · ρq

s.t. yi(w
T ϕ(hi) + bq + αq log si) ≥ ρq − ξi, if τi = q,

ξi, ρq ≥ 0.

(14)

To solve Eqn. (14) by convex optimization, we first derive the

Lagrange equation of its optimization problem as follows:

f =
1

2
(||w||2 +

Q∑

q=1

α2
q) +

1

N

N∑

i=1

ξi − ν

N

Q∑

q=1

Nq · ρq

−
Q∑

q=1

∑

τi=q

ci(yi(w
T ϕ(hi) + bq + αq · log si) − ρq + ξi)

−
N∑

i=1

λiξi −
Q∑

q=1

γqρq,

(15)

where ci, λi, γi ≥ 0. Note that

∂f

∂w
= 0 ⇒ w =

N∑

i=1

ciyiϕ(hi), (16)

∂f

∂αq
= 0 ⇒ αq =

∑

τi=q

ciyi log si, (17)

∂f

∂bq
= 0 ⇒

∑

τi=q

ciyi = 0, (18)

∂f

∂ρq
= 0 ⇒

∑

τi=q

ci ≥ ν
Nq

N
, (19)

∂f

∂ξi
= 0 ⇒ ci ≤ 1

N
, (20)

According to the dual and primal problem as well as the

Karush-Kuhn-Tucker (KKT) conditions [32], the dual problem

of Eqn. (14) can then be formulated as follows:

{ct
i} =arg max

ci

−1

2

N∑

i=1

N∑

j=1

cicjyiyjκ(hi,hj)

− 1

2

Q∑

q=1

∑

τi,τj=q

cicjyiyj log si log sj

s.t.
∑

τi=q

ciyi = 0, q = 1, · · · , Q

∑

τi=q

ci ≥ υ · Nq

N
, 0 ≤ ci ≤ 1

N
.

(21)
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The optimal projection wt and weights αt
q are determined by

wt =

N∑

i=1

ct
iyiϕ(hi), αt

q =
∑

τi=q

ct
iyi log si. (22)

B. TMMC-II: Transferring the Weight of Prior Detection Score

The second context transfer model is designed for the case

where the target object category and the related source ones

could have little in common in both appearance and context, but

contextual information can provide similar level of assistance in

detection. As we discussed in the previous section, the usefulness

of contextual information in general for a specific object class

can also be indicated by the learned model parameter α. This

is because that although α is an importance weight on the prior

detection confidence, it is not independent of context information

because it is learned, not set manually, using both the detector

scores and context descriptors from both positive and negative

examples. Since the more important (trustworthy) context detector

score is, the less important context information is for detection,

the learned α value is an indication of both the importance of

detector score and the importance of contextual information. The

importance of contextual information is thus also quantified by

α during the optimisation of the context model in Eqn. (10).

In TMMC-II, we aim to learn the maximum margin context

with different margin variables ρq , different projections wq and

constant bq but with the same importance weight α on the prior

detection score for different categories as follows:

wT
q ϕ(hi) + bq + α · log si ≥ ρq − ξi, ∀ yi = 1 & τi = q,

wT
q ϕ(hj) + bq + α · log sj ≤ −ρq + ξj , ∀ yj = −1 & τj = q.

(23)

We then consider the following optimization function

{wt
q, bt

q, αt} = arg min
wq,bq,α,ρq,ξi

1

2
(

Q∑

q=1

||wq||2 + α2)

+
1

N

N∑

i=1

ξi − υ

N

Q∑

q=1

Nq · ρq

s.t. yi(w
T
q ϕ(hi) + bq + α log si) ≥ ρq − ξi, if τi = q,

ξi, ρq ≥ 0.

(24)

Following a similar derivation as for TMMC-I, the dual prob-

lem of Eqn. (24) can be formulated as follows:

{ct
i} =arg max

ci

−1

2

Q∑

q=1

∑

τi,τj=q

cicjyiyjκ(hi,hj)

− 1

2

N∑

i=1

N∑

j=1

cicjyiyj log si log sj

s.t.
∑

τi=q

ciyi = 0, q = 1, · · · , Q

∑

τi=q

ci ≥ υ · Nq

N
, 0 ≤ ci ≤ 1

N
.

(25)

The optimal projections wt
q and weight αt are learned by

wt
q =

∑

τi=q

ct
iyiϕ(hi), αt =

N∑

i=1

ct
iyi log si. (26)

In the above formulations for TMMC-I and TMMC-II, we

could obtain the MMC model parameters for all Q categories

jointly by solving a single optimization problem, which is why

our TMMC is a joint maximum margin learning framework. Our

TMMC model is also closely related to the multi-task learning

[1]. However, note that there is one free parameter υ in our

model which needs to be estimated via cross-validation. Since the

model we are after is the one for the target object category, υ is

estimated using the training samples from the target category only.

Therefore, our TMMC model is different from the conventional

symmetric multi-task learning which treats all tasks equally. Nev-

ertheless, there is sometimes no clear boundary between transfer

learning and general multi-task learning. According to [50], our

context transfer models can be seen as a kind of asymmetric

multi-task learning, which has a target task among the learned

tasks. Compared to existing multi-task learning methods, TMMC

is specifically designed for transferring the useful way/manner

how contextual information help detect related source categories

(tasks) for object detection to target category (task), and thus is

more appropriate for solving the data sparsity problem for our

context transfer learning for target object detection. It is also

worth pointing out that there are different flavours of transfer

learning. Since TMMC aims to transfer useful context informa-

tion from related object categories for improving the detection

performance on target class, we follow the terminology in [33]

and consider our TMMC as an inductive transfer learning method.

V. EXPERIMENTS

A. Datasets and settings

We evaluate the proposed context model and transfer learning

framework against alternative models using four datasets: the

PASCAL Visual Object Classes (VOC) 2005 challenge dataset

[15] and 2007 dataset [16] for detecting a total of 10 different

categories of objects, a subset of the UK Home Office i-LIDS

[27] called i-LIDS Luggage for detecting two types of luggage

(suitcases and bags) (see Fig. 10), and a dataset captured at an

airport forecourt called Forecourt Vehicle for detecting vehicles

(including private cars, buses, vans, taxis) (see Fig. 11). Among

these datasets, the Forecourt Vehicle dataset is a new dataset

captured by us. The Forecourt Vehicle dataset is mainly featured

with low resolution images taken from cameras mounted near and

far away from the forecourt of an airport at different times of a

day. Compared with the VOC2005 and VOC2007 datasets, the

i-LIDS Luggage and Forecourt Vehicle datasets are much harder

due to much more crowded scenes causing more severe occlusion,

and lower image resolution with smaller object size. In addition,

the Forecourt Vehicle dataset suffers from challenging outdoor

lighting and image blurring caused by dirty camera lens.

• PASCAL VOC. The PASCAL VOC2005 dataset includes

four object categories: car, motorbike, people and bicycle

[15]. All four categories were used in our experiments.

Among the PASCAL VOC2007 object categories, six cat-

egories that are different from the four in VOC2005 dataset

were chosen. They include aeroplane, bus, cat, cow, horse,

and train. The setting of the experiments for our MMC model

was the same as that in [25]. That is a HOG detector [12] was

first learned as a base detector and applied to the training set

to get a set of candidate detection windows with associated

prior detection scores, based on which the MMC context

model was then learned.

• i-LIDS Luggage. For i-LIDS, we selected 1045 image

frames of an image size of 640 × 480 from the i-LIDS
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Fig. 4. Precision-Recall curves for the detection of four object categories in PASCAL VOC2005.
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Fig. 5. Precision-Recall curves for the detection of four object categories in PASCAL VOC2007.

underground scenario, with 656 for training and the rest for

testing. For context model training on i-LIDS for luggage

detection, we first trained a pair of HOG luggage detectors

using 540 positive samples for each of the two types of

luggage (suitcases and bags), and 7278 and 5047 negative

samples for the two detectors respectively. Separate i-LIDS

testing image frames consisting of 1170 true luggage in-

stances were selected with ground truth manually annotated

for performance evaluation.

• Forecourt Vehicle. For the Forecourt Vehicle dataset 2, we

selected 275 image frames of 720×576, from which 104

images were used for training. For context model training

on Forecourt Vehicle dataset for vehicle detection, we first

trained a HOG vehicle detector using 1038 vehicle images

and 2300 background (non-vehicle) images. The context

model was then evaluated on a separate testing set consisting

of 1583 true vehicle instances from the 171 testing images.

The parameter ν in the MMC and TMMC models was esti-

mated by five-fold cross-validation in a candidate set {ν = η2|η ∈
[0.01 : 0.01 : 1]}. The threshold of the overlap rate between the

correct object detection bounding box and the ground truth one

was set to 0.5 according to the PASCAL VOC protocol [15]. We

evaluate the detection performance by average precision rate and

precision-recall curves [15].

B. Evaluation of Context Models

MMC vs. no context (HOG) and using only context
Our MMC model utilises both the object appearance infor-

mation (via the base detector score) and contextual information

for both fusion and contextual information selection. To evaluate

its effectiveness, we first compare its performance with the base

detector (HOG) without context modelling and a detector learned

using only contextual information represented by our proposed

contextual descriptor (termed as Context Only). Specifically, for

2The dataset has been made publically available and can be downloaded at
http://www.eecs.qmul.ac.uk/∼jason/forecourt/.
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Fig. 6. Precision-Recall curves for luggage detection on i-LIDS dataset.
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Fig. 7. Precision-Recall curves for vehicle detection on the Forecourt Vehicle
dataset.

the latter, we train a SVM classifier using the positive context set

Hp and the negative context set Hn without utilizing the prior

detection score of the base detector.

The results for the PASCAL VOC2005 dataset are presented in

Table I and Figure 4, whilst the results for the PASCAL VOC2007

dataset can be seen in Table II and Figure 5. For PASCAL

VOC2005 dataset, it is evident from Table I and Figure 4 that

by modelling context, MMC significantly improves the detection

performance of the base detector especially on car, motorbike

and people. For PASCAL VOC2007, Table II and Figure 5 show

that even bigger improvements are obtained for all six classes

except aeroplane using our MMC model over the base detector

without context modelling. It is noted that in the case of aeroplane,

the candidate detection windows produced by the base detector
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tend to include a large proportion of background. This is because

since the aeroplane shape is not rectangular, the annotated training

samples of aeroplane in rectangular boxes contain lots of context

information (mostly sky). As a result, context information has

already been utilised by the base detector. MMC as well as other

context models are thus unlikely to offer significant help.

Table I and Table II also show the result of the Context Only

detector. It is observed that although for a number of object

classes (e.g. motorbike in VOC2005 and Horse in VOC2007),

better performance over the base HOG detector can be obtained

using context only, its performance is much weaker compared

to MMC. Overall, the results show that without combining with

the prior detection score for context evaluation and selection, the

contextual information itself is not reliable enough for detection.

This is because contextual information inevitably contains irrel-

evant information for detecting the target object category, and

without utilizing the prior detection score, the most discriminant

context could not be identified.

TABLE I

AVERAGE PRECISION RATES ON PASCAL VOC2005.

Object Class HOG [12] TAS [25] Context Only HOG+Context MMC

Car 0.325 0.363 0.3135 0.3437 0.3741
Motorbike 0.341 0.390 0.3594 0.3981 0.4020

People 0.346 0.346 0.3528 0.3710 0.3862
Bicycle 0.281 0.325 0.2503 0.2621 0.2878

TABLE II

AVERAGE PRECISION RATES ON PASCAL VOC2007.

Object Class HOG [12] TAS [25] Context Only HOG+Context MMC

Aeroplane 0.0915 0.0930 0.0926 0.0922 0.0926
Bus 0.0817 0.0834 0.1475 0.1711 0.1674
Cat 0.0147 0.0242 0.0312 0.0696 0.1056
Cow 0.0234 0.0193 0.0562 0.0937 0.0929
Train 0.1471 0.1619 0.1847 0.2123 0.2209
Horse 0.1312 0.1606 0.2227 0.2479 0.2472

The comparative results on two visual surveillance datasets, i.e.

the i-LIDS Luggage and Forecourt Vehicle datasets are shown

in Table III and Table IV respectively in the form of average

precision rate, and Figures 6 and 7 in terms of precision-recall

curve. The results show that for these more challenging datasets,

the improvement of our MMC model over detection using base

detector only and context only is more significant compared

with most object categories in the two PASCAL VOC datasets.

This suggests that contextual information is more useful for

disambiguating the target objects from background and other

objects for these two datasets. This is mainly due to the fact that

there is less distinctive appearance information extractable for the

target object categories in i-LIDS and Forecourt because of the

low image resolution and lack of colour and texture information in

the case of luggage. As a consequence, the contextual information

is more useful, which also explains why the context only detector

outperforms the base detector for both i-LIDS Luggage and

Forecourt Vehicle detection.

MMC vs. TAS
We compared MMC with a state-of-the-art context model

TAS [25] which is closely related to our model in that both do

not require annotation of contextual information. The results of

MMC against the best reported results of TAS on the PASCAL

VOC2005 and VOC2007 datasets are shown in Table I and Table

TABLE III

AVERAGE PRECISION RATE ON LUGGAGE DETECTION ON I-LIDS.

HOG [12] TAS [25] Context Only HOG+Context MMC

0.1195 0.1167 0.1348 0.1435 0.1460
TABLE IV

AVERAGE PRECISION RATE ON THE FORECOURT VEHICLE DATASET.

HOG [12] TAS [25] Context Only HOG+Context MMC

0.2818 0.2927 0.3591 0.3806 0.3838

II respectively. The results of TAS on PASCAL VOC2005 has

been reported in [25]. In our experiments, we re-ran the TAS

model provided by the authors3. Note that TAS is an EM based

method thus sensitive to initialisation. Our results using TAS (see

the blue-dashed plots in Figures 4 and 5) are either very similar

or slightly better (e.g. motorbike) than those originally reported

in [25]. To test TAS on PASCAL VOC2007, we segmented each

image frame using the superpixel technique [40] and represented

each region using 44 features (color, shape, energy responses)

similar to the ones used in [25], [4], and then we run the TAS

model provided by the authors several times and the best results

are shown, where the model parameters were set according to the

values given by the authors in their code available on the web.

The results show that MMC outperforms TAS on the detection

of 8 out of 10 categories in the two datasets.

In particular, MMC improved the detection of people with a

fairly large margin (a 4.22% increase in the average precision

rate). As acknowledged by the authors in [25], the TAS model

struggles with people detection in PASCAL VOC2005. This can

be caused by two factors. First, as people appear more randomly

compared to other rigid objects such as cars on a road, the con-

textual information for people is more ambiguous and uncertain

than the other three object classes. Without measuring the risk of

using contextual information for detection explicitly, the existing

context models such as TAS could not utilise effectively the am-

biguous contextual information for object detection improvement.

Second, the TAS model focuses on Thing-Stuff context, i.e. the

context between people and the background regions. The useful

contextual information between people and other objects could

be thus ignored (e.g. luggage and people). In contrast, our model

is able to utilise any contextual information that is relevant and

captured by the polar context descriptor regardless the type of the

context. The performance of MMC is also much superior to TAS

on the detection of bus, cat, cow, train, and horse in the VOC2007

dataset and almost equal to TAS on aeroplane.

Note that MMC achieves lower average precision rate than TAS

on bicycle. The bicycle class is unique with no clear boundary

between the object and background (one can see the background

through a bicycle). In this case, alternative models such as

TAS with scene segmentation may be less affected, although

segmentation itself is challenging in a cluttered scene.

We also implemented TAS for luggage detection using the i-

LIDS dataset and vehicle detection using the Forecourt dataset.

We performed TAS on i-LIDS and Forecourt Vehicle datasets

as similarly done on PASCAL VOC2007. The results are shown

in Tables III, IV, Figures 6 and 7. As can seen clearly, MMC

outperforms TAS on both datasets with a significant margin. In

particular, the detection performance of luggage using TAS is

worse than that of a HOG detector which was also used as the

3http://ai.stanford.edu/∼gaheitz/Research/TAS/
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Fig. 8. Examples of object detections using HOG, TAS and MMC models on PASCAL VOC2005. The left-hand side two columns are for people detection,
the middle two are for car detection, and the right-hand side two are for motorbike detection. The following setting of illustration applies to Figures 8, 9,
10 and 11: The first row corresponds to results from HOG without threshold, the second, third and fourth rows correspond to HOG, TAS and MMC with
threshold respectively. The red bounding box indicates true positive detections and the green one is for false positives.

Fig. 9. Examples of object detections using HOG, TAS and MMC models on PASCAL VOC2007. The left-hand side two columns are for train detection,
the middle two are for horse detection, and the right-hand side two are for cat detection.

Fig. 10. Examples of object detections using HOG, TAS and MMC models for luggage detection on i-LIDS.
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Fig. 11. Examples of object detections using HOG, TAS and MMC models for vehicle detection on the Forecourt dataset.

base detector in TAS. This again demonstrates that without any

segmentation of a whole image, more effective context informa-

tion can be learned when contextual information is evaluated and

selected explicitly and directly. In addition, it demonstrates the

benefit of utilising multiple types of context.

MMC vs. HOG+Context
One of the existing context modelling strategy is to learn a

context only detector and an object appearance based detector

independently and then fuse these two information by multiplying

the two detector scores to compute the final detector score [45],

[36], [37], [13]. It essentially performs naive score level fusion

of context and object appearance. It assumes that the context and

object are independent and treats them equally during learning,

rather than inferring the most useful and reliable contextual

information conditioned on the prior object detection score as

our method does. Directly comparing with [45], [36], [37], [13]

is unfair because different context only detector and object appear-

ance detector were used. We thus use the same HOG detector as

the appearance based object detector and fuse its score with that

of our context only detector using our polar context descriptors

for context representation (termed as HOG+Context model). The

difference in performance thus is solely due to the different

context modelling strategies adopted. The results in Tables I,

II, III and IV show that overall fusing the inferred contextual

information conditioned on the prior detection score, whose

importance weight is automatically estimated, is more effective

than direct and blind fusion using HOG+Context. In particular,

the results of MMC is either markedly better than or similar to

those of HOG+Context. A closer examination reveals that the

advantage of performing context selection is more apparent when

the contextual information is more diverse, e.g. the context for

the cat, people, and bicycle categories. In this case, the explicit

and direct evaluation of contextual information becomes more

critical. Blindly fusing contextual information with appearance

information with equal weight assigned to each is thus less likely

to assist in detection and may even have an adverse effect, as

in the case of bicycle in the PASCAL VOC2005 dataset (see

Tables I). On the contrary, if contextual information is relatively

more dominant than object appearance, either because the object

always appears within a certain context or the object appearance

is more diverse, a blind fusion of context and appearance could

give comparable results. This is expected because when context is

more dominant, context selection becomes less critical. Examples

of these object categories include, e.g. i-LIDS luggage, bus, cow

and horse. For these object classes, the Context Only detector

also performs stronger than the basic appearance only detector as

can be seen in Tables I-IV.

Examples of reducing false positive detections using context.

We now show some visual examples to illustrate the benefit of

our MMC model on reducing false positive detections. Figures 8,

9, 10 and 11 give some typical examples of false positive removal

in PASCAL VOC2005, VOC2007, i-LIDS, and Forecourt respec-

tively. For all methods, we illustrate the detection results when

the recall-rate is at 0.3 for PASCAL VOC2005 and Forecourt and

0.1 for PASCAL VOC2007 and i-LIDS. It is evident from these

examples that our MMC model is more capable of removing false

positives whilst keeping true positives compared to both TAS and

HOG. More specifically, without context modelling, HOG often

cannot differentiate true positives and false positives. Although

both TAS and MMC can filter out false positive detections, MMC

is more effective. Particularly, it is note that TAS tends to either

remove both false positive and true positives or preserves more

false positives, in particular in the case of luggage detection in

i-LIDS. Again, this is because the crucial contextual information

between luggage and other objects (people in this case) could not

be effectively captured by TAS. Figure 12 shows some examples

of failed detections by all three models. This is mainly due to

drastic illumination condition that is not captured in the training

data, and severe occlusion.

Our results (Tables I-IV) show that, in some categories, our

method only achieves limited improvement over alternative meth-

ods. For instance, the performance of MMC and HOG+context

can be close and HOG+context even fares slightly better in a

few cases. As we discussed earlier, this is because when the

contextual information is relatively dominant, context selection

becomes less critical and a blind fusion could be equally ef-

fective. However, it is worth pointing out that one of the main
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Fig. 12. Examples of failed detections. The first, second and third rows
correspond to results of HOG, TAS and MMC with threshold respectively.
The green bounding box shows false positive detections.

TABLE V

EVALUATION OF THE EFFECTIVENESS OF TMMC-I. THE RESULTS OF OUR

MMC MODEL WITHOUT TRANSFER LEARNING ARE IN BRACKETS FOR

COMPARISON.

Target Category Source Category Model Average Precision Rate

car motorbike TMMC-I 0.4006 (0.3741)
motorbike car TMMC-I 0.4253 (0.4020)
vehicle car TMMC-I 0.3952 (0.3838)
people car TMMC-I 0.3963 (0.3862)
people bicycle TMMC-I 0.3887 (0.3862)
people motorbike TMMC-I 0.3916 (0.3862)
bicycle people TMMC-I 0.2703 (0.2878)
car people TMMC-I 0.3607 (0.3741)
motorbike people TMMC-I 0.3954 (0.4020)

strengths of MMC is that it yields consistent improvement over

detection without context, over all tested object categories and

regardless of the usefulness of context, due to its ability to select

context. In contrast, for some categories in PASCAL VOC2005

and VOC2007, particularly those with very diverse context, the

TAS and HOG+Context models failed to improve the detection

performance even with context modelled (e.g. people for TAS and

bicycle for HOG+Context). Overall, our experiments suggest that

the performance of those alternative models are much less stable.

C. Evaluation of Context Transfer Learning Models

We compare the two proposed context transfer learning models

(TMMC-I and TMMC-II) with our MMC model to evaluate the

effectiveness of transferring contextual information from source

object categories to a target object category when the target data

are limited. Specifically, among the 5 object categories in the three

datasets used in our experiments that consist of limited target data

(people, car, motorbike and bicycle in PASCAL VOC2005, and

vehicle in Forecourt), we select one as the target category and

another as an source category and perform detection using both

TMMC-I and TMMC-II. The performance is then compared with

TABLE VI

EVALUATION OF THE EFFECTIVENESS OF TMMC-II. THE RESULTS OF

OUR MMC MODEL WITHOUT TRANSFER LEARNING ARE IN BRACKETS

FOR COMPARISON.

Target Category Source Category Model Average Precision Rate

bicycle people TMMC-II 0.3063 (0.2878)
people bicycle TMMC-II 0.3964 (0.3862)
vehicle car TMMC-II 0.4019 (0.3838)
car motorbike TMMC-II 0.3724 (0.3741)
motorbike car TMMC-II 0.3835 (0.4020)
car people TMMC-II 0.3720 (0.3741)
motorbike people TMMC-II 0.3932 (0.4020)

that obtained by our MMC model using the target category data

only. The results of the two transfer learning models are shown

in Table V and Table VI respectively.

Recall that the two models are designed for transferring con-

textual information when it is shared between the target and

source categories in two different ways. In particular, TMMC-

I should be used when the objects have similar context, i.e.

likely to appear in similar environment or next to similar ob-

jects due to, e.g. similarity in functionality. TMMC-II, on the

other hand, should be deployed when the objects have different

context but their detections have a similar level of benefit from

context, e.g. both are likely to appear in specific (albeit different)

context or very diverse context. Table V and Table VI show that

for different target and source pairs, different performance was

achieved. Specifically, we have the following findings:

• The result in Table V suggests that when the target and

source objects share similar context, TMMC-I does the

job it was designed for, that is, improving the detection

performance by utilising contextual information from source

object categories. For instance, for car and motorbike, the AP

rate is increased by 7% when car is the target category and

6% with motorbike as the target category.

• It is interesting to note that when people is the target

category, its detection can benefit from transferring context

from various other object categories including car, bicycle

and motorbike using TMMC-I. But the same cannot be

said when it is the other way around, i.e. people as source

category. For example, the people detection performance is

increased by about 3% when car is the source category,

whilst the detection of car is decreased by about 4% (called

negative transfer) when people is used as the source data.

It can be because people often appear next to car, bicycle,

or motorbike so they do share context. However, people

also appear in much more diverse context, e.g. on a sofa.

Therefore, the context of car, bicycle or motorbike can be

considered as a subset of that of people. Consequently it

is not a problem to transfer the context of car, bicycle or

motorbike to people, but the effect can be adverse if the

opposite is done, e.g. a car rarely appears on top of a sofa.

• As expected, TMMC-II improves the detection performance

when the usefulness of context for the target and source

categories are similar. For instance, people and bicycle not

only share similar context but also similar weight of context.

The detection of people is thus improved using both TMMC-

I and TMMC-II. However, when the assumption made for

TMMC-II does not hold, negative transfer is observed.

For instance, car and motorbike share similar context but

the context for motorbike could be more diverse than car

probably due to its smaller size, resulting in negative transfer

between them using TMMC-II. However, since TMMC-I

is able to select the most common high-order contextual

information shared between cars and motorbikes, TMMC-I

is more effective in this case. Similarly transferring context

weighting from people to car or motorbike would not help

as shown in Table VI.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we argue that contextual information should be

quantified and selected explicitly before combining it with object

appearance information for detection. To that end, we introduced
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a context risk function and formulated a maximum margin con-

text (MMC) model to quantify the contextual information of a

candidate object, which is modelled by an object centred polar

geometric context descriptor. In order to overcome the problem of

lack of training context samples for context learning, we further

proposed two transfer maximum margin context (TMMC) models

under a joint maximum margin learning framework for context

transfer learning. Compared to the state-of-the-art context models,

the proposed MMC model utilises a novel context risk function

on measuring the goodness of context in order to selectively

employ context for more robust object detection. The proposed

MMC model also differs from existing models that utilise graph

based context information mining in that our MMC model directly

addresses the maximization of the confidence of true positive de-

tections defined by the context risk function, whilst a graph model

addresses indirectly by classification without any knowledge or

measurement on the rank information between true and false

positive detections. Moreover, our MMC model does not require

any prior image segmentation and labelling of image patches.

More importantly our TMMC models are able to transfer the

useful related contextual information from other source categories

in order to further reduce the ambiguity of context for target

object detection. The effectiveness of the proposed models have

been validated using both public benchmark datasets and datasets

extracted from surveillance videos of busy public spaces.

It is worth pointing out that although in this work contex-

tual information is represented by the proposed polar geometric

context descriptor in order to capture multiple types of context,

the MMC model is not restricted to any context representation.

Due to the context selection ability, one may consider integrating

different context representations combined with PGCD in the

proposed MMC framework. For instance, our context descriptor

may not be suitable enough to capture Scene-Thing context due

to its object centred nature. However, a Scene-Thing context

representation such as the one in [31] can be easily combined with

our descriptor and selected in the same MMC model. Similarly,

the HOG feature used in our descriptor sometimes may not be

good enough for capturing ‘Stuff’ context (e.g. sky, road). One

could thus combine HOG features with colour features to better

represent both Thing-Thing and Thing-Stuff context. In addition,

a potential improvement of the proposed method is to exploit

contextural information from farther away regions. However, care

also needs be taken when the farther away regions are non-

stationary and distractive, or overly cluttered and noisy, e.g. in

a crowded public scene, resulting in diminished benefit whilst

increasing the computational cost.

One of the key contributions of this work is that for the first

time a context transfer learning model is developed to address

the over-fitting problem caused by lack of training data for

context learning. Our experiments show both the potential of the

proposed models and a limitation of the current models, that is,

one has to use prior knowledge to select manually a suitable

model to apply given the available training object categories.

Overcoming this limitation by automatically selecting source

categories is necessary for applying the proposed method to

address a large-scale object detection problem when the number

of object categories can be over thousands. This, however, is a

very challenging problem. In particular, when a unsuitable model

is applied, negative transfer learning which leads to unsatisfactory

detection performance can happen. This is not a unique problem.

Existing popular transfer learning methods for object appearance

learning [34], [35], [49], [14], [52] also rely on prior knowledge to

manually select suitable source object categories in order to avoid

negative transfer. Although there are unsupervised methods that

are applicable using any object categories as source data [17], [5],

[39], as pointed out in [33], the problem of unsupervised transfer

learning with negative transfer prevention given any auxiliary data

is far from being solved. Developing such a method for context

transfer could be even more challenging. This is because, as we

explained in the related work, there are fundamental differences

between object appearance and context transfer learning and none

of these methods can thus be directly used for our problem. One

obvious option is to detect and minimise negative transfer learning

via cross validation. However, the very reason for using transfer

learning is because of the lack of training data which will pose

challenges for using cross validation to avoid negative transfer.

Among the few existing unsupervised transfer learning work, the

idea in self-taught learning [39] can be considered which infers

the sparse coding for target contextual information over source

context anchors. However, how this kind of sparse coding can be

derived optimally for assisting object detection without negative

transfer still needs more investigation. Another possible solution

is to directly measure the similarity between different categories

in order to identify whether certain aspects of the context of the

two categories can be shared. Nevertheless, the challenge is about

which or what technique should be selected or developed to com-

pute the similarity and how the similarity score can be integrated

into the TMMC models. Again it is more straightforward to find

out whether two object categories are related in their appearance.

For instance, one could perform attribute correlation by mining

tags of Fickr images [41]. However, to infer the relationship

automatically between the contexts of two object categories is

much harder. We believe that context transfer remains an open

problem and we wish that this work will help to attract more

interests on this problem from the computer vision community.
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