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Detecting Carried Objects
from Sequences of Walking Pedestrians
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David Hogg, Member, IEEE
School of Computing, University of Leeds, UK.

Abstract —This paper proposes a method for detecting objects carried by pedestrians, such as backpacks and suitcases, from video
sequences. In common with earlier work [14], [16] on the same problem, the method produces a representation of motion and shape
(known as a temporal template) that has some immunity to noise in foreground segmentations and phase of the walking cycle. Our
key novelty is for carried objects to be revealed by comparing the temporal templates against view-specific exemplars generated
offline for unencumbered pedestrians. A likelihood map of protrusions, obtained from this match, is combined in a Markov random
field for spatial continuity, from which we obtain a segmentation of carried objects using the MAP solution. We also compare the
previously used method of periodicity analysis to distinguish carried objects from other protrusions with using prior probabilities for
carried-object locations relative to the silhouette. We have re-implemented the earlier state of the art method [14] and demonstrate a
substantial improvement in performance for the new method on the PETS2006 dataset. The carried-object detector is also tested on
another outdoor dataset. Although developed for a specific problem, the method could be applied to the detection of irregularities in
appearance for other categories of object that move in a periodic fashion.

Index Terms —baggage detection, carried-objects detection, silhouette analysis, temporal templates, template matching, periodicity
analysis.

✦

1 INTRODUCTION

The detection of carried objects is a potentially important
objective for many security applications of computer
vision. However, the task is inherently difficult due to
the wide range of objects that can be carried by a person,
and the different ways in which they can be carried.
This makes it hard to build a detector for carried objects
based on their appearance in isolation or jointly with the
carrying individual. An alternative approach is to look
for irregularities in the silhouette of a person, suggesting
they could be carrying something. This is the approach
that the method presented in this paper adopts, and
whilst there are other factors that may give rise to
irregularities, such as clothing and build, experiments
on two datasets are promising.

The detector assumes a static background and starts
by averaging aligned foreground segmentations of a
walking pedestrian to produce a representation of mo-
tion and shape (known as a temporal template) that has
some immunity to noise in foreground segmentations
and phase of the walking cycle. This representation,
introduced in [8], was used in [14], [16] for the same
application. A ground-plane homography is used to
estimate the walking direction of the person relative to
the camera’s viewing direction. The temporal template is
then matched against a pre-compiled exemplar temporal
template of an unencumbered pedestrian viewed from
the same direction. Protrusions from the exemplar are
detected as candidate pixels for carried objects. Finally,

Fig. 1. Foreground blobs (obtained from background
subtraction) from one trajectory, each centred around the
median, are first aligned. The temporal template repre-
sents the frequency of each aligned pixel being part of the
foreground. The exemplar temporal template from a sim-
ilar viewing angle is transformed (translation, scaling and
rotation) to best match the generated temporal template.
By comparing the temporal template to the best match,
protruding regions are identified. A Markov random field
(MRF) with a trained spatial prior is used to segment
carried objects.

prior information about the expected spatial position
of carried objects relative to the body is incorporated,
together with a spatial continuity assumption in order
to improve the segmentation of pixels representing the
carried objects. Figure 1 summarises, along with an
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example, the process of detecting carried objects. It is
worth mentioning that the detector does not require re-
training when applied to a different scene, as will be
shown in the experiments section.

Section 2 reviews previous work on the detection of
carried objects. Section 3 presents our method, based
on matching temporal templates. It studies the pros
and cons of using periodicity analysis to classify pro-
trusions, and then incorporates spatial priors and a
continuity assumption for segmenting carried objects.
Experiments comparing the performance with the ear-
lier work from Haritaoglu et al. [16] on the PETS2006
dataset [11] are presented in Section 4. It shows an
improved performance when using template matching
and a spatial prior. The approach was applied, without
any re-training, to a dataset recorded on the campus of
the University of Leeds over a full day (LEEDS2009).
Results show the ability to detect carried objects from
longer video sequences where the viewpoint changes
along the trajectory. Section 5 shows how this detector
can be used to relate people entering and exiting a
building by relating their carried objects, which is one
of the applications of this detector.

2 PREVIOUS WORK

Several previous methods have been proposed for de-
tecting whether an individual is carrying an object. The
Backpack [14], [16] system detects the presence of carried
objects from short video sequences of pedestrians (typi-
cally lasting a few seconds) by assuming the pedestrian’s
silhouette is symmetric, and that people exhibit periodic
motion while moving unencumbered. Binary foreground
segmentations are aligned using edge correlation. The
aligned foreground segmentations are averaged to cre-
ate the temporal template that records the proportion
of frames in the video sequence in which each pixel
was segmented within the foreground. Next, symmetry
analysis is performed. The principal axis is computed
using principal component analysis of two-dimensional
locations, to find the dominant direction and the median.
For each location, asymmetry is detected by reflecting
the point in the principal axis (Figure 2). The proportion
of frames in which each location was asymmetric is
calculated. Temporally-consistent asymmetric locations
are grouped into connected components representing
candidate blobs.

Backpack then distinguishes between blobs represent-
ing carried objects and those being parts of limbs by
analysing the periodicity of the horizontal projection his-
tograms. The periodicity analysis calculates the periodic
frequency of the full body, as well as the periodicity
of each horizontal slice (perpendicular to the principal
axis) containing an asymmetric connected component.
Backpack assumes the frequency of a horizontal slice
that contains a limb is numerically comparable to that
of the full body. Otherwise, it is believed to contain
a carried object. Figure 3 reviews the process using a

Fig. 2. For each foreground segmentation, the principal
axis is found and is constrained to pass through the
median coordinate of the foreground segmentation. Light
grey represents the asymmetric regions.

re-implementation of Backpack [14], [16]. From the re-
implementation, errors in the Backpack method arise from
two main sources. Firstly, the position of the principal
axis is often displaced by the presence of the carried ob-
ject. This might be slightly improved by forcing the prin-
cipal axis to pass through the centroid of the head [15] or
the ground position of the person’s feet [17]. Secondly,
accurate periodicity analysis requires a sufficient number
of walking cycles to successfully retrieve the frequency
of the gait. In Section 3.1 we review a method for
periodicity that gives better results than computing over
a horizontal slice.

Later work by Benabdelkader and Davis [1] expanded
the work of Haritaoglu et al. by dividing the temporal
template perpendicular to the principal axis into three
equal-size slices. The periodicity and amplitude of the
time series along each slice are studied to detect devi-
ations from the ‘natural’ walking person and locate the
vertical position of the carried object. They concluded
that the main limitation in Haritaoglu et al.’s method is
the sensitivity of the axis of symmetry to noise, as well
as to the location and size of the carried object(s).

The work of Lee and Elgammal also uses silhouettes
for detecting carried objects on a per-frame basis [18].

Fig. 3. Light grey represents the two asymmetric con-
nected components, and the corresponding horizontal
slices. The slices are projected onto the horizontal pro-
jection histogram (right). The periodicity is computed for
the full histogram [freq = 21] and for slices 1 [freq = 11]
and 2 [freq = 21]. As slice 2 has the same frequency as
the full body, it is not considered a carried object.
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The training process finds a low-dimensional represen-
tation of the kinematic manifold given the joint angles
in three dimensional space over time. For the silhou-
ette at each frame, the best match of the foreground
shape with training shapes is found. An iterative pro-
cess fills the holes in the foreground segmentation to
find better matches, as matching relies on aligning the
centres of gravity. Carried objects are then defined as
the unmatched pixels in the foreground region. The
approach was only qualitatively analysed. This work is
similar to the method proposed in this paper as pixels
outside an aligned shape are considered carried objects,
yet detection is performed on single frames which is
sensitive to noise and errors in foreground segmentation.

Branca et al. [4] try to identify intruders in archae-
ological sites. Intruders are defined as those carrying
objects such as a probe or a tin. They assume a person
is detected and segmented. Their approach thus tries
to detect such carried objects within the segmented
foreground region. Detection is based on wavelet decom-
position, and the classification uses a supervised three-
layer neural network, trained on examples of probes and
tins in foreground segmentations.

Differentiating people carrying objects, without locat-
ing the carried object, has also been studied. One exam-
ple is the work by Nanda et al. [21]. Supervised learning
was accomplished based on examples of unencumbered
pedestrians and outliers. Outliers are “unusual-looking
pedestrians... caused by wearing a hat or carrying an
object”. A three-layer neural network was trained for
classification. This work’s performance depends on the
presence of a similar object within the same viewpoint in
the training data. Alternatively, the work of Tao et al. [25]
tries to detect pedestrians carrying heavy objects by
performing gait analysis. The task was performed using
general tensor discriminant analysis, and was tested on
the USF HumanID gait analysis dataset.

The work of Ghanem and Davis [13] detects aban-
doned baggage by comparing the person before ap-
proaching a region of interest and after leaving it. Car-
ried objects are detected by comparing the temporal tem-
plates (the term ‘occupancy map’ is used in their work
to reference the same concept) and colour histograms of
the ‘before’ and ‘after’ sequences. The approach assumes
the person is detected twice, and that the trajectory of
the person before approaching the region of interest
and after departing are always correctly connected. It
also assumes all observed individuals follow the same
path, and thus uses two static cameras to record similar
viewpoints.

Similarly, Chuang et al. assume the person is seen
with and without the carried object [5]. The ratio of the
colour histograms between consecutive frames is used
to detect the change in colour components and thus the
removal of an object. By observing people approaching
one another, the work detects the exchange of carried
baggage indicating suspicious events like thefts. The
assumption of observing the person before and after

the change in carrying status is application-specific and
cannot be used as a general carried-object detector.

The novel method in this paper (Section 3) also uses
the temporal template but differs from earlier work [13],
[14] in matching the generated temporal template against
an exemplar temporal template generated offline from
a 3D model of a walking person. Several exemplars,
corresponding to different views of a walking person,
are generated from binary silhouettes. The temporal tem-
plates provide better immunity to noise in foreground
segmentations, and enable matching for video sequences
as opposied to individual frames. The approach does not
require the pedestrian to be detected with and without
the carried object, and can handle different viewpoints. It
detects any type of carried object (not merely bags and
backpacks), and can be considered a general approach
for detecting protrusions from deformable tracked ob-
jects for which there is a 3D model.

3 THE METHOD

Our method starts by creating the temporal template
from a sequence of tracked pedestrians as proposed by
Haritaoglu et al. [16]. Background subtraction tracker
based on a Kalman filter is used to retrieve trajectories
of moving connected components. For each trajectory,
foreground segmentations are extracted for each frame
by cropping around the trajectory’s centre point using a
window of a fixed size h×w. The foreground segmenta-
tions at each frame are often noisy due to shadows and
camouflage. The temporal template is created by align-
ing and then averaging these foreground segmentations.
Figure 4 shows a set of foreground segmentations for a
single trajectory and their corresponding temporal tem-
plate. To align the segmentations, Haritaoglu et al. used

Fig. 4. Foreground segmentations along with the created
temporal template.

an edge correlation over a 5×3 search window. To avoid
a predefined displacement window, we use Iterative
Closest Point (ICP) [26] to align successive boundaries.
Experimentally, it gives a more accurate alignment in the
presence of shape variations between consecutive frames
(Figure 5). While the method in [16] averages all aligned
silhouettes, we introduce an additional step to further
decrease the noise in the temporal templates.

All the frames are ranked in ascending order by their
L1 difference from the generated temporal template. The
top p% of the frames are used to re-calculate a more
stable template. p is set to 80 in the results shown below.
The more expensive Least Median of Squares (LMedS)
estimator [23] gave similar results. Section 4 compares
the LMedS estimator to the L1 ranking method.
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Fig. 5. Edge correlation temporal template over 15 × 15
(left) and 30× 30 (middle) search windows. ICP temporal
template (right) does not require any parameters.

In aligning foreground segmentations to create the
temporal template, the method assumes that the peo-
ple do not change their walking direction, otherwise
the averaged temporal template would be ill-formed.
Therefore, each trajectory is partitioned into clips of
2 seconds (the last clip will typically be shorter). The
temporal template is created separately for each clip.
The trajectories are partitioned uniformly regardless of
whether the viewpoint, the direction of motion or the
scale have changed. An alternative that we did not
explore would be to use a sliding window.

Having derived a temporal template from a tracked
clip, it is compared to an exemplar temporal template
viewed from a similar direction to identify protrusions
by matching. The exemplar temporal templates are de-
rived from a 3D model of an unencumbered walking
person. We have used a dataset, gathered at the Swiss
Federal Institute of Technology (EPFL) [9]. This dataset
is collected from 8 people walking at different speeds
(3 to 7 km/h) on a treadmill. Their motion was mapped
onto a 3D Maya model and the dataset consists of binary
silhouettes from eight simulated views (Figure 6). The
EPFL dataset of silhouettes has previously been used
for pose detection, 3D reconstruction and gait recogni-
tion [9], [12].

The exemplar temporal templates are created by align-
ing and averaging the silhouettes as explained above
for each camera view. We have used 8 directions to
correspond to the 8 cameras available from the EPFL
dataset (Figure 7). This seems sufficient to cover varying
viewpoints, but we have not tested using a different
number of models. Nothing restricts our method from
extending to more exemplars covering finer sampling of
the viewing hemisphere (including different elevations).
We did not have access to the Maya model from the
EPFL dataset [9], but to silhouettes from 8 directions

Fig. 6. Eight cameras for capturing the Silhouettes at
EPFL. Diagram from [9]

Fig. 7. Eight exemplar temporal templates, created to rep-
resent eight viewpoints. The model number corresponds
to the camera number in the EPFL dataset (Figure 6)

only. With access to the Maya model (or similar), the
temporal template for any given view could in principle
be generated on the fly.

To decide on which exemplar to use, a homography is
estimated from the image plane to a coordinate frame
on the ground-plane. This is estimated manually, but
automatic calibration methods could be used instead.
These methods vary between utilising trajectories of
walking pedestrians [19] or moving cars [27], [2], to
estimating calibration parameters from line segments in
the static scene [22]. The point on the ground-plane
directly below the camera is estimated from the vertical
vanishing point. The angle between the line connecting
this point to the pedestrian and the direction of the
pedestrian’s motion gives the viewing direction, assum-
ing the pedestrian is facing the direction of motion (Fig-
ure 8). This ignores the elevation of the camera above the
ground. The mean of the computed viewing directions
over the clip’s frames is used to select the corresponding
exemplar.

The chosen exemplar is first scaled so that its height is
the same as that of the generated temporal template. The
median coordinate of the temporal template is aligned
with that of the corresponding exemplar. An exhaustive
search is then performed for the best match over a
range of transformations. In the results, the search ranges
for scales, rotations and translations are [0.75:0.05:1.25],
[-15:5:15] degrees and [-30:3:30] pixels respectively. The
match between two temporal templates is an L1-like

Fig. 8. For each frame, the foot projection is mapped from
the image plane to the ground plane using an estimated
homography. The viewpoint angle is that between the
walking direction and the line connecting the vertical
projection of the camera to the foot position.
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metric, weighted by the vertical coordinate of each pixel,
giving higher weight to the head and shoulder region.
The cost of matching a transformed model (MT ) to the
person’s temporal template (P ) is shown in (1), where
y ranges from 1 at the bottom to h at the top of the
temporal template.

d(P,MT ) =

(w,h)∑

(x,y)=(1,1)

|P (x, y)−MT (x, y)|y (1)

The best transformation T̂ is the one that minimises
the matching cost

T̂ = argmin
T

d(P,MT ) (2)

Figure 9 shows an example of such a match and the
located global minimum. The best transformation T̂ is
then used to identify areas protruding from the temporal
template:

v(x, y) = max(0, P (x, y)−M
T̂
(x, y)) (3)

Pixels where P (x, y) < (M)
T̂
(x, y) are assumed to have

been caused by noise, or poor foreground segmentation.
Carried objects can then be detected from the temporal
protrusion of the pixels represented by v (Figure 9c)
using one of two methods. The first method uses the
periodicity of these pixels to differentiate the limbs from
other protrusions. Section 3.1 explains how the periodic-
ity analysis is performed. A simplified version of this
method has been used in [16] to classify asymmetric
regions into detected objects and other protrusions. Al-
ternatively, Section 3.2 segments detected objects using
a binary-labeled MRF formulation, combining prior in-
formation and spatial continuity.

(a) (b) (c) (d)

Fig. 9. The temporal template of the person (a) is
matched to the corresponding exemplar (b), the global
minimum (d) results in a map of temporal protrusion v
of the pixels (c). In (d), the matching cost of the best
translation for different scales and rotations is shown.

3.1 Classification by periodicity analysis

Periodicity analysis was proposed by Haritaoglo et al.
to distinguish carried objects from other asymmetric
regions. The algorithm for periodicity analysis described
here is based on the original work by Cutler and
Davis [6], [7].

After aligning foreground segmentations using ICP, L1

is used to compare two aligned foreground segmenta-
tions. For a sequence of n frames, an n×n matrix records

(a) (b) (c) (d) (e)

Fig. 10. The sequence on top shows 12 frames repre-
senting half a walking cycle. The frequency (f=12) is found
using periodicity analysis. First, the similarity matrix is
calculated (a). When (a) is used to compute the autocor-
relation matrix (b), the periodicity is not obvious. Adaptive
histogram equalisation is applied to (a) to generate a con-
trast enhanced image (c). The resultant autocorrelation
matrix (d) shows clear periodicity, and the chosen square
lattice (e) represents the correct frequency (f=12).

the L1 difference between each pair of frames in the
sequence, and is referred to as the ‘similarity matrix’.
Figure 10a illustrates the similarity matrix (S) where
darker cells indicate higher similarity. The contrast in
the similarity image is sometimes not so clear. Thus
adaptive histogram equalisation is used to enhance the
contrast. This contrast-enhancement step is added to the
original Cutler and Davis algorithm as it improves the
performance for noisy foreground segmentations. Next,
the similarity matrix (S) is converted to an autocorre-
lation matrix (A) using (10) from [7]. The size of the
autocorrelation matrix depends on the autocorrelation
region R around each point in the similarity matrix.

A(dx, dy) =

∑
(x,y)∈R

(V (x, y)V (x + dx, y + dy))

√ ∑
(x,y)∈R

V (x, y)2
∑

(x,y)∈R

V (x+ dx, y + dy)2

(4)
In (4), V (x, y) = S(x, y)−SR(x, y) where SR is the region
of size R centred around (x, y). The function V subtracts
the mean of the values in region R centred at (x, y) from
the similarity value S(x, y).

After obtaining the autocorrelation matrix (Fig-
ure 10d), 45◦ square lattices are used to find the dom-
inant frequency. For a range of possible frequencies
d ∈ [minFreq,maxFreq], an R×R lattice is created with
the frequency d. A normalized L1 measure (i.e. divided
by the number of points in the lattice) between the
autocorrelation matrix and the binary lattice is used com-
pare different frequencies. The frequency of the lattice
with the minimum normalised L1 measure is selected as
the dominant frequency. If multiple minima are found,
the frequency with the smallest value is chosen as the
sequence’s frequency. Figure 10 presents an example of
how the dominant frequency is found. The confidence
of the periodicity is defined as the percentage of points
in the lattice that correspond to a local maximum with
an error below a specified threshold.

In addition to the periodicity analysis performed for
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the full body, a similar analysis is performed for each
protruding region. A threshold for v(x, y) from (3) is
selected, and the pixels are grouped into connected
components. Small connected components, composed of
less than a minimum number of pixels, are removed. For
each remaining connected component, the foreground
images are masked by the connected component, and
the masked foreground images are re-analysed for peri-
odicity. If fb is the dominant frequency of the full body,
and fc is the frequency of the connected component
then the difference is used to classify protrusions using
a threshold. Each connected component c is labeled as
belonging to a carried object (mc = 1) or not (mc = 0).

mc =

{
1 |fb − fc| > α

0 otherwise
(5)

This periodicity analysis requires a sufficient number
of cycles to produce useful autocorrelation matrices. The
carried-object detector presented in this paper relies on
short video sequences, to ensure the person does not
change walking direction during the sequence. Short
sequences often fail to show any detectable periodicity.
Section 3.2 introduces a different approach to segment
carried objects.

3.2 Classification using a spatial prior and
continuity

Protrusions from the exemplar temporal template can
be at locations where carried objects are not expected,
due, for example, to the wearing of hats on top of heads
or undetected shadow under the feet. We construct a
spatial prior for carried objects in each of the eight views
(d = 1..8). Thus θd(x, y) is the probability that the pixel
(x, y) in view d belongs to a carried object.

These probabilities are estimated from the occurrence
of carried objects at each pixel in ground-truth temporal
templates. Training values are also used to estimate the
distribution of protrusion values conditioned on their
labelling. Finally, this information is combined into a
binary Markov Random Field (MRF), determining an
energy function which is minimised. The spatial prior for
carried objects is estimated from training data by map-
ping the protrusion map (Figure 9c), using the inverse
of the best transformation, to align to its corresponding
exemplar. Each spatial position x = (x, y) has to be
labeled as belonging to a carried object (mx = 1) or not
(mx = 0). Using the raw protrusion values v(x) calcu-
lated in (3), the class-conditional densities p(v|mx = 1)
and p(v|mx = 0) are modeled as Gaussians based on
training data.

The energy function to be minimised E(m) over Image
I is given by (6).

E(m) =
∑

x∈I

(
φ(v|mx) + ω(mx|θd)

)
+

∑

(x,z)∈C

ψ(mx,mz)

(6)

φ(v|mx) represents the cost of assigning a label to x based
on its protrusion value v(x) in the image:

φ(v|mx) =

{
− log(p(v|mx = 1)) if mx = 1

− log(p(v|mx = 0)) if mx = 0
(7)

ω(mx|θd) is based on the map of prior probabilities θd
given a specified walking direction d:

ω(mx|θd) =

{
− log(θd(x)) if mx = 1

− log(1− θd(x)) if mx = 0
(8)

The interaction potential ψ follows the Ising model
over the cliques, where C represents all the pairs of 4-
connected neighboring pixels in the image I :

ψ(mx,mz) =

{
λ if mx 6= mz

0 if mx = mz

(9)

The interaction potential ψ is fixed regardless of the
difference in protrusion values v at x and z, because
the protrusion values represent the temporal continuity,
and not the colour or texture information. The smooth-
ness cost term λ in (9) affects the size of connected
components in the resulting segmentation. Smaller λ
segments smaller protrusions and detects smaller carried
objects, yet increases the chance of segmenting other
small protrusions resulting from clothing or body build.
In the experiments, the term λ was optimised over a
training set then used in testing.

3.3 Relative height for combining detections

In most cases, the same carried object will be detected
in several clips along the trajectory. Detections from all
clips are combined, so the carried object is detected
throughout the trajectory’s frames when visible. This
is done exhaustively, starting from the first clip along
the trajectory. For each carried object, Figure 12 shows
the vertical extent of the temporal template (h1, h2) and
that of the detected bag (b1, b2). The relative height for
a carried object vbounds(c) is a normalized tuple as
follows:

vbounds(c) =

[
b2 − h2
h1 − h2

,
b1 − h2
h1 − h2

]
(10)

Fig. 12. The height of the baggage relative to the tempo-
ral template is used to relate the detections of the same
carried object across the clips of a single trajectory.
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Fig. 11. Frame detections are compared to ground-truth (yellow). When more than 50% of frames result with an
overlap above 15% (green), a detection is labelled as true-positive. Two true-positives are marked (cyan).

For the same trajectory, the relative heights of two
carried objects in different clips are matched using the
interval overlap in (11) where relative height tuples
are treated as closed intervals. Two detections c1, c2 are
considered of the same carried object if (11) is satisfied.

|vbounds(c1) ∩ vbounds(c2)|

|vbounds(c1) ∪ vbounds(c2)|
> 0.5 (11)

When multiple detections are recorded and a carried
object from one clip matches more than one carried
object at another clip, the one with the highest overlap
is chosen.

4 EXPERIMENTS AND RESULTS

This section presents results on two datasets. First the
method is evaluated on the publicly available PETS2006
dataset. Next, the estimated priors from PETS2006 are
used to detect carried objects in an outdoor dataset
recorded on the campus of the University of Leeds
(LEEDS2009). The ground truth of carried objects was
manually obtained for both datasets. For each carried
object, a ground-truth bounding box bgt is recorded for
each frame in which the object is present. For a detected
carried object, the bounding box bp is calculated by pro-
jecting the detection onto the foreground segmentation
in every frame in the clips where the object was detected.
The detection is then labeled as true positive if (12) is
satisfied in more than 50% of the frames in the sequence.

area(bp ∩ bgt)

area(bp ∪ bgt)
> 0.15 (12)

This measure of overlap is the same as that defined
in [10]. A low overlap threshold is chosen because
the ground truth bounding boxes enclose the whole

Fig. 13. Ground-truth bags are shown in yellow, true-
positive in green and false-positive in red.

carried object, while the methods compared in this pa-
per (including [16]) only detect the parts of the object
that do not overlap the body. Bounding boxes were
chosen instead of pixel masks for simplicity. Figure 11
shows frames from a single trajectory that result in two
true positive detections. Multiple detections of the same
object are counted as false positives. As the method
cannot deal with groups of people moving together, such
trajectories were manually removed from both datasets
after tracking.

4.1 PETS2006

The seven sequences of the PETS2006 dataset are used,
and the third camera is selected, as there is a greater
number of people seen from the side. The ground-
plane homography was established using the calibration
measurements provided as part of the dataset. Moving
objects were tracked using an off-the-shelf tracker [20] to
retrieve foreground segmentations. Trajectories shorter
than 10 frames in length were discarded. The number of
individually tracked people was 106.

The carried objects in the dataset varied between
boxes, hand bags, briefcases and suitcases. Unusual ob-
jects are also present, like a guitar in one example. The
PETS2006 dataset is recorded at a train station. Travel
bags and dragged suitcases are thus frequent in the
sequences. In some cases, people were carrying more
than one object. Ground truth for carried objects was
obtained manually for all 106 individuals. 83 carried
objects were tracked, and the bounding box of each
was recorded for each frame (Figure 14). The results

Fig. 14. PETS2006 third camera viewpoint showing
ground truth bounding boxes representing carried objects.
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compare the re-implementation of Backpack as specified
in [14], [16] with the proposed method (Section 3). The
same temporal templates are used as the input for both
methods.

(a) (b) (c) (d)

Fig. 15. Three examples (a), along with their tempo-
ral templates (b) are assessed using both techniques.
The asymmetric regions (c-top) thresholded (d-top) and
the protruding regions (c-bottom) thresholded (d-bottom)
show some examples of how template matching retrieves
better estimate of the carried objects.
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Fig. 16. PR curves for detecting carried objects by the
method proposed in this paper (Exemplar Matching) com-
pared to [16] (Asymmetry) without (left) and with (right)
periodicity analysis to filter the retrieved blobs.

First, we compare asymmetry used in Haritaoglu’s
work [16] with detecting protrusions by matching to a
view-specific exemplar. The pixels resulting from both
methods are thresholded and grouped into connected
components. Figure 15 shows some examples compar-
ing asymmetry analysis with matching to an exemplar
temporal template. Two parameters are varied to draw
the Precision-Recall (PR) curves in Figure 16 (left), one
for the threshold Figure 15(c-d) and one for the min-
imum size of the accepted connected component. The
curves are generated by linearly interpolating the points

Fig. 17. For the second exemplar (left), θ2,6 was gener-
ated using the first (middle) and the second (right) training
sets. The spatial prior θ has high values where stronger
evidence of carried objects had been seen in training. A
prior of 0.2 was used when no bags were seen.

representing the maximum precision for each recall.
Maximum precision on a recall of 0.5, for example, was
improved from 0.25 to 0.51. Maximum recall was 0.74 for
both techniques, as noisy temporal templates and non-
protruding carried objects affect both techniques.

The results are then compared with periodicity analy-
sis. To achieve that, all optimal setting points along the
curves in Figure 16 (left) are used to detect protrusions.
For each pair of parameters, the frequencies of connected
components are compared to that of the full body. Two
thresholds for periodicity analysis are varied. These are
for the minimum confidence and the threshold α in (5).
Figure 16 (right) shows PR curves analogous to those
in Figure 16 (left) but now combined with periodicity
analysis, again taking the maximum precision for each
recall. For periodicity analysis, the region R is set to 30 in
all experiments, and the frequency range to d ∈ [8:1:20].
By implementing the Cutler-Davis periodicity analysis
(Section 3.1), only 35% of the retrieved protrusions
showed any detectable periodic motion. The improved
performance of the matching method is still apparent.
In addition, comparing the corresponding curves shows
that periodicity analysis helps improve the performance
for both methods.

Next, spatial continuity is assumed along with trained
priors (Section 3.2). The pedestrians in the dataset were
divided into two sets, the first containing 56 pedestrians
(Sets 1-4 in PETS2006) and the second containing 50
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Fig. 18. Pixel values distribution for objects (left) and non-
objects (right) v(x). Thresholded pixels (>0.5) that match
true detections are grouped and compared to ground
truth, then are used to train p(v|mx = 1). The rest are
used to train p(v|mx = 0).
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pedestrians (Sets 5-7). The results are presented using
two-fold cross validation. At each fold, one set is used
to estimate the spatial prior θd, and carried objects are
detected in the other test set. To estimate the priors,
connected components are obtained from the map of
protrusions v using a threshold of 0.5. Correct detections,
by comparing to bounding boxes from the ground truth,
are used to train for spatial priors of carried objects
separately for each directionally-specific exemplar. To
make use of the small training set, maps of opposite
exemplars are combined. For example, the first and the
fifth exemplars are separated by 180◦. θ1 and θ5 are thus
combined by horizontally flipping one and calculating
the weighted average θ1,5 (by the number of blobs). The
same applies for θ2,6, θ3,7 and θ4,8. Figure 17 shows θ2,6
using the two disjoint training sets. A sufficient number
of carried objects from each viewing angle is required
for good spatial priors. We have shown that the same
spatial priors can be applied over a range of viewing
angles without a substantial reduction in performance
(Section 4.2). Alternatively, simulated training for carried
object locations can be used. In principle, view-specific
priors could be generated automatically given examples
of simulated carried bags associated with the 3D Maya
model.

Figure 18 presents the distribution of v(x) for carried
objects (mx = 1) and other protrusions (mx = 0). By
studying these density distributions, p(v|mx = 1) was
approximated by two Gaussian distributions, one for sta-
ble carried objects, and another for swinging objects. The
parameters of the two Gaussians were manually chosen
to approximately fit the training density distributions.

p(v|mx = 1) = γN (v; 0.6, 0.3)+(1−γ)N (v; 1.0, 0.05) (13)

The density distribution p(v|mx = 0) resembles a recip-
rocal function. It was thus modeled as:

p(v|mx = 0) =
1/(v + 0.01)

log(1 + 0.01)− log(0.01)
(14)

The denominator represents the area under the curve for
normalisation. The max-flow algorithm, proposed in [3],
and its publically available implementation, minimises
the energy function (6) retrieving regions representing
carried objects. Both γ in (13) and λ in (9) were optimised
on each training set (Table 1).

Set1 Set2
γ in 13 0.64 0.66
λ in 9 2.2 2.5

TABLE 1
Parameter optimisation for two-fold cross validation on

the PETS2006 dataset

Table 2 presents the precision and recall results along
with the actual counts for the complete dataset, showing
that classification using spatial prior and continuity -
implemented as a MRF - produces higher precision

and recall results. The results show that the periodicity
analysis approach used in [16] did not achieve more than
27% recall rate as the horizontal projection histogram
often results in a different periodicity than that of the
carried object, and similar to the periodicity of the full
body.

Precision Recall TP FP FN
Thresholding 39.8% 49.4% 41 62 42
Periodicity [16] 27.7% 27.4% 23 61 60
Periodicity [7] (Sec 3.1) 45.2% 50.6% 42 52 41
Spatial prior - MRF (Sec 3.2) 50.5% 55.4% 46 45 37

TABLE 2
Better performance was achieved by introducing spatial

prior and continuity. Results are compared to simple
thresholding and periodicity analysis. The Cutler and

Davis [7] periodicity algorithm outperforms the horizontal
slicing approach from [16].

When analysing the periodicity results using the
method from [7] on the 106 trajectories from the PETS
dataset, 15 trajectories failed to show any periodic pat-
tern. All the 15 trajectories were less than 26 frames in
length. For the remaining 91 trajectories, the estimated
periodicity varied between 8 and 14 frames with an
average of 10.7 frames (σ = 1.22). The number of frames
required to estimate a periodic motion (with a confidence
above 80%) varied between 23 and 30 frames, with an
average of 24.27 frames (σ = 1.15).

The results above used the ranking technique pro-
posed in Section 3 for generating the temporal template.
When the temporal template is generated using the more
expensive LMedS estimator, the precision and recall
values are exactly the same as those in Table 2. The time
required to compute the temporal template increases
from an average of 2µs when ranking is used to an av-
erage of 64µs when LMedS estimator is used (computed
using Matlab on a 2.53GHz desktop). Figure 19 shows
an example of visual differences between the temporal
templates generated using the two methods.

To evaluate the effect of the spatial prior, we ex-
periment with removing the term ω(mx|θd) from the

(a) (b) (c) (d)

Fig. 19. An example of the visual differences between the
temporal template and difference images generated using
the ranking (a,c) and the LMedS estimator (b,d). The
three carried bags (Figure 22(c)) are correctly detected
in both cases.
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energy function. The PR curves in Figure 20 demonstrate
the advantage of introducing spatial priors, and the
examples in Figure 21 show how prior models affect
estimating carried objects.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MRF With Prior

MRF Without Prior

Fig. 20. PR Curves for detecting carried objects using
MRF. Introducing spatial priors for carried objects pro-
duces better performance. λ in (9) was varied between
[0.1:0.1:6] to produce the PR curves.

Reasons behind FP detections
Protruding parts of clothing 15
Protruding body parts 10
Extreme body proportions 6
Incorrect template matching 5
Noisy temporal template 5
Duplicate matches 4

Total 45
Reasons behind FN detections

Bag with little or no protrusion 9
Dragged bag tracked separately by tracker 6
Carried object between legs 5
Carried object not segmented from background 4
Little evidence of spatial prior in training 3
Swinging small object 3
Noisy template 3
Incorrect template matching 2
Merging two protruding regions into one 2

Total 37

TABLE 3
Reasons behind False Positive (FP) and False Negative

(FN) detections.

Quantitatively, for the 45 false positive, and 37 false
negative cases in the last row of Table 2, Table 3 dissects
these results according to the reason of their occurrence.
Figure 22 presents a collection of results highlighting
reasons for success and the main sources of failure.

4.2 LEEDS2009

The second dataset consists of a continuous 12 hour
period recorded during a working day (7am - 7pm).
The tracker retrieved the set of trajectories that passed
through the zone surrounding a building entrance
(marked with a grey rectangle in Figure 23). Trajecto-
ries thus correspond to staff and students entering and
exiting a university building entrance. After manually

(a)

(c)

(b)

(d)

Fig. 21. Carried object detections with spatial prior (yel-
low) and without (red). Prior information drops candidate
blobs at improbable locations (a,b), and better segments
the object (a,c). It nevertheless decreases support for
carried objects in unusual locations (d).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 22. The proposed method can identify single (a)
or multiple (b,c) carried objects. (d) shows its ability to
classify true negative cases. Objects extending over the
body are split into two (e). Failure cases may result
from poor temporal templates due to poor foreground
segmentation (f). The spatial prior could favor some false
positive objects (g). This method is not expected to cope
with extreme body proportions (h). The second row shows
the detections projected into the temporal templates, and
the third row shows detections projected into a single
frame of the sequence.

removing groups of people walking together, 326 tra-
jectories remained for baggage detection. The ground
truth consists of 233 carried objects that vary between
backpacks, handbags, suitcases, shopping bags, boxes
and carried coats.

Figure 23 shows the dataset’s viewpoint along with
three frames for the same person at different times. This
dataset differs from PETS2006 in that a person is tracked
with a significant change in the viewing angle (relative
to the camera) along the trajectory. The depth of view
also introduces a change in scale along the trajectory
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Fig. 23. A collage showing the viewpoint for the
LEEDS2009 dataset, with the entrance zone shaded in
gray, along with three frames from one trajectory showing
the different viewpoints.

for people walking toward or away from the camera.
The ground-plane homography was manually obtained,
along with finding the vanishing point. The baggage
detections for the complete dataset were based on the
same spatial priors and smoothness cost trained using
the PETS2006 dataset. The results demonstrate the ability
of spatial priors to be transformed between different
camera viewpoints and elevations as they are mapped
to the same exemplars.

Figure 24 shows the baggage detection results for the
same trajectory from three clips (showing one frame
from each clip). As the baggage detector assumes the
bag is protruding from the normal silhouette, different
viewpoints give rise to different detections. While no
protrusions are apparent from the first viewpoint, the
second viewpoint enabled detecting the carried bag,
while the third viewpoint showed both the carried bag
and carried jacket as protrusions.

Table 4 presents the results for the LEEDS2009 dataset
when compared to the ground truth. Notice that no
training was performed on the current scene. All pa-
rameters were estimated from the PETS2006 dataset. On

Fig. 24. Three clips from the same trajectory. Different
viewpoints result in different carried object detections.

Precision Recall TP FP FN
MRF - Prior 34.51% 76.52% 176 334 54

TABLE 4
Results for the LEEDS2009 full sequence detections

this dataset, for all true-positive carried objects, the mean
percentage of frames along the trajectory with an overlap
that exceeded 15% with the ground-truth bounding box
was 83% (σ = 16%). For false-positive carried objects, the
frames with an overlap above 15% had a mean of 5% (σ
= 12%).

Fig. 25. LEEDS2009 - a collection of correctly detected
carried objects.

A selected collection of success and failure carried-
object detections are shown in Figures 25 and 26. Fig-
ure 25 shows 8 trajectories with successful detections.
The detections are shown on the temporal template and
projected on a single frame in each case. Figure 26 shows
7 incorrect detections. They cover a range of cases in
which the detector fails. Case (a) results from poor fore-
ground segmentation. The tracked individual is wearing
a jacket which is very similar to the background’s colour.
Camouflaging results in a noisy temporal template and
incorrect detections. Failure case (b) results from the
baggage not being segmented as part of the foreground.

(a) (b) (c) (d) (e) (f) (g)

Fig. 26. LEEDS2009 - a collection of incorrect baggage
detections.
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The stationary arm holding the bag is detected as the
carried object instead. Cases (c), (d) and (e) are false
negative cases where the carried object is not sufficiently
protruding to be detected. Case (f) detects two carried
objects but the bounding box extends to include the sta-
tionary arms carrying the objects as well as a protruding
coat. The last case (g) fails in matching the temporal
template to the unencumbered model. By reviewing the
matching cost in (2), the match gives higher weight to
matching the head and the shoulders of the model. In
this example, the head and the shoulders are occluded by
the carried object, which resulted in an incorrect match.
Table 5 gives assumed reasons for all the false positive
and false negative detections in Table 4.

Reasons for FP detections
Protruding parts of clothing 48
Protruding body part 31
Static limbs 28
Extreme body proportions 11
Incorrect template matching 116
Noisy temporal template 48
Duplicate matches 4
Undetected shadow 9
Insufficient overlap with GT 39

Total 334
Reasons for FN detections

Bag with little or no protrusion 12
Carried object between legs 9
Carried object not segmented from background 12
Little evidence of spatial prior in training 2
Noisy template 8
Incorrect template matching 11

Total 54

TABLE 5
LEEDS2009 - Reasons behind FP and FN detections.

5 APPLICATION

The carried-object detector presented in Section 3 is
implemented in MATLAB and can be downloaded from:
http://www.comp.leeds.ac.uk/vision/BaggageDetection. The
system operates at around 5fps and assumes the fore-
ground segmentation is available. This section presents
one application in which the detector was utilised.

Applied to the LEEDS2009 dataset (Section 4.2), the
baggage detector is used to assist linking people as
they enter and exit a building entrance. Trajectories are
classified into those entering or exiting the building
based on their walking direction. A trajectory can be
connected to one earlier trajectory of a different type,
thus allowing to connect people entering a building
to them exiting later, or a person exiting the building
and returning to it later. People are matched by their
clothing colour and projected height. The application
tests whether the presence of carried objects can better
connect the different appearances of the same individual.
The height overlap criterion in (11) as well as an RGB his-
togram intersection [24] of the segmented pixels match
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Fig. 27. Trained Gaussians for carried-object matches.
Correct and incorrect relative height (left) and colour his-
togram intersection (right) are estimated as Gaussians.

the carried objects between trajectories. A separate 2
hour training sequence is used to fit a Gaussian to correct
and incorrect values of the histogram intersection and
height overlap. Figure 27 shows the trained Gaussians
for the sequence.

The Hungarian algorithm (the Munkres algorithm) is
used to find one-to-one optimal person matches. When
carried-object detection is incorporated in the matching,
the number of correctly connected trajectories increases
from 7 to 15 while the number of falsely connected tra-
jectories decreases from 175 to 131 trajectories. Figure 28
shows a collection of carried objects matched between
different appearances of the same individual separate by
a few hours each. The detector might be used in other
applications like detecting abandoned baggage in hidden
areas, exchanging objects and thefts.

Fig. 28. Three examples of people correctly linked only
when carried objects are considered in matching. Notice
that in the last example, the two appearances are cor-
rectly linked despite some change in clothing.

6 CONCLUSION

We have proposed a novel method for detecting carried
objects, aiming at higher robustness than noisy single
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frame segmentations. Carried objects are assumed to
protrude from the normal silhouette. We adopt the use
of a temporal template, introduced for the same appli-
cation in [16], but match against exemplars rather than
assume that unencumbered pedestrians are symmetric.
Evaluated on two dataset, one indoors and one out-
doors, the method achieves a substantial improvement
in performance over the state of the art. Training for
spatial priors of carried objects and using an MRF to
encode spatial constraints results in further improved
performance. Results demonstrate that the spatial prior
for carried object need not be trained for each new scene,
and can be transformed to different datasets.

The method assumes that parts of the carried objects
are protruding from the body’s silhouettes. Due to its
dependence on protrusion, the method cannot detect
non-protruding carried objects. It may not be able to
distinguish carried objects from protruding clothing or
non-average build. Future improvements to this method
might be achieved using texture templates to assist
segmentation based on appearance. The detector can be
used in different applications. The paper presents the
results of one application that matches carried objects
between different temporally-separate appearances of
the same individual.
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