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Abstract

In this paper, we go beyond recognizing the actions of individuals and focus on group activities. 

This is motivated from the observation that human actions are rarely performed in isolation; the 

contextual information of what other people in the scene are doing provides a useful cue for 

understanding high-level activities. We propose a novel framework for recognizing group activities 

which jointly captures the group activity, the individual person actions, and the interactions among 

them. Two types of contextual information, group-person interaction and person-person 
interaction, are explored in a latent variable framework. In particular, we propose three different 

approaches to model the person-person interaction. One approach is to explore the structures of 

person-person interaction. Differently from most of the previous latent structured models, which 

assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of 

the hidden layer as a latent variable and implicitly infer it during learning and inference. The 

second approach explores person-person interaction in the feature level. We introduce a new 

feature representation called the action context (AC) descriptor. The AC descriptor encodes 

information about not only the action of an individual person in the video, but also the behavior of 

other people nearby. The third approach combines the above two. Our experimental results 

demonstrate the benefit of using contextual information for disambiguating group activities.

For information on obtaining reprints of this article, please send e-mail to: tpami@computer.org, and reference IEEECS Log Number 
TPAMI-2010-10-0773.
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Index Terms
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1 Introduction

Vision-based human activity recognition is of great scientific and practical importance. 

Much work in the computer vision literature focuses on single-person action recognition. 

However, in many real-world applications, such as surveillance, reliably recognizing each 

individual’s action using state-of-the-art techniques in computer vision is unachievable. 

Consider the two persons in Fig. 1a; can you tell they are doing two different actions? Once 

the entire contexts of these two images are revealed (Fig. 1b) and we observe the interaction 

of the person with other persons in the group, it is immediately clear that the first person is 

queuing, while the second person is talking. Another example is from a nursing home 

surveillance video. The intraclass variation in action categories and relatively poor video 

quality typical of surveillance footage render this a challenging problem. With this type of 

video footage, many actions are ambiguous, as shown in Fig. 2. For example, falling down 

and sitting down are often confused—both can contain substantial downward motion and 

result in similarly shaped person silhouettes. A helpful cue that can be employed to 

disambiguate situations such as these is the context of what other people in the video are 

doing. Given visual cues of large downward motion, if we see other people coming to aid, 

then it is more likely to be a fall than if we see other people sitting down. In this paper, we 

argue that actions of individual humans often should not be inferred alone. We instead focus 

on developing methods for recognizing group activities by modeling the collective behaviors 

of individuals in the group.

Before we proceed, we first clarify some terminology used throughout the rest of the paper. 

We use action to denote a simple, atomic movement performed by a single person. We use 

activity to refer to a more complex scenario that involves a group of people. Consider the 

examples in Fig. 1b, each frame describes a group activity, queuing and talking, while each 

person in a frame performs a lower level action, talking and facing right, talking and facing 

left, etc.

Context is critical in recognition for the human visual system [1]. In computer vision, the 

use of context is also important for solving various recognition problems, especially in 

situations with poor-quality imagery. This is because features are usually not reliable in such 

circumstances; thus, analysis of an individual person or object alone cannot yield reliable 

results. Our proposed approach is based on exploiting two types of contextual information in 

group activities. First, the activity of a group and the collective actions of all the individuals 

serve as context (we call it the group-person interaction) for each other; hence they should 

be modeled jointly in a unified framework. As shown in Fig. 1, knowing the group activity 

(queuing or talking) helps disambiguate individual human actions which are otherwise hard 

to recognize. Similarly, knowing most of the persons in the scene are talking (whether facing 

right or left) allows us to infer the overall group activity (i.e., talking). Second, the action of 

an individual can also benefit from knowing the actions of other surrounding persons (which 
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we call the person-person interaction). For example, consider Fig. 1c. The fact that the first 

two persons are facing the same direction provides a strong cue that both of them are 

queuing. Similarly, the fact that the last two persons are facing each other indicates they are 

more likely to be talking.

In this paper, we develop a latent variable framework for recognizing group activities. Our 

framework jointly captures the group activity, the individual person actions, and the 

interactions among them. Person-person interaction is an important cue to understand the 

group activity, and a straightforward way to model it is to consider the co-occurrence 

relationships between every pair of persons. However, there are two problems with such an 

approach. First, this model would induce a dense model with connections between every pair 

of people, for which exact inference will be intractable. Second, not all people in a scene 

provide helpful context for disambiguating the action of an individual. Ideally, we would 

like to consider only those person-person interactions that are important for the group 

activity. To this end, we propose using adaptive structures that automatically decide on 

whether the interaction of two persons should be considered. Since this approach is to model 

the interaction in the structure level, we call it structure-level approach in the rest of the 

paper.

We also propose two other approaches to model the person-person interaction. One approach 

is to model the person-person interaction in the feature level, which we call feature-level 
approach in the rest of the paper. We propose a context descriptor that encodes information 

about an individual person in a video, as well as other people nearby. In contrast to the 

structure-level approach, this approach does not consider the high-level inter-label 

dependencies and thus inference in the model is tractable. The last approach (combined 
approach) integrates the two previous approaches, using the contextual feature descriptor 

while maintaining the adaptive structures.

We highlight the main contributions of our model. 1)Group activity: Much work in human 

activity understanding focuses on single-person action recognition. Instead, we present a 

model for group activities that dynamically decides on interactions among group members. 

2) Group-person and person-person interaction: Although contextual information has been 

exploited for visual recognition problems, ours introduces two new types of contextual 

information that have not been explored before. 3) Adaptive structures and context 
descriptor: We present three different approaches to model the person-person interaction in 

structure-level (adaptive structures),feature-level (context descriptor), and both. Portions of 

this paper appeared previously [2], [3]. Here, we present a unified view of the feature-level 

[3] and structure-level [2] formulations of group context, a novel combination, and 

experimental comparisons among them.

The rest of this paper is organized as follows: Section 2 reviews the previous work. Section 3 

presents our framework of modeling the group activities. The details of learning and 

inference of the model are given in Section 4. Section 5 shows our experimental results. 

Section 6 concludes this paper.
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2 Related Work

Using context to aid visual recognition has received much attention recently. Most of the 

work on context is in scene and object recognition. For example, work has been done on 

exploiting contextual information between scenes and objects [4], objects and objects [5], 

[6], [7], objects and so-called “stuff” (amorphous spatial extent, e.g., trees, sky) [8], etc. The 

work of Jain et al. [7] is close to our work in spirit, which also uses a learned structure 

instead of a fully connected model. Unlike their approach, which uses a nonparametric 

model for edge selection, we propose a latent structured model that captures group activity 

and individual person’s actions in a joint framework.

Much previous work in human action recognition focuses on recognizing actions performed 

by a single person in a video (e.g., [9], [10]). In this setting, there has been work on 

exploiting context provided by scenes [11] or objects [12], [13], [14] to help action 

recognition. In still image action recognition, object-action context (AC) [15], [16], [17], 

[18] is a popular type of context used for human-object interaction. In this paper, we focus 

on another type of contextual information—the action-action context, i.e., the interactions 

between people. Modeling interactions between people and their role in action recognition 

has been explored by many researchers. For example, sophisticated models such as dynamic 

Bayesian networks [19] and AND-OR graphs [20] have been employed. Gupta et al.’s [20] 

representation based on AND-OR graphs allows for a flexible grammar of action 

relationships. The sophistication of these models leads to more challenging learning 

problems. Other representations are holistic in nature. Zhong et al. [21] examine motion and 

shape features of entire video frames to detect unusual activities. Mehran et al. [22] build a 

“bag-of-forces” model of the movements of people in a video frame to detect abnormal 

crowd behavior. The work of Choi et al. [23] is the closest to ours. In that work, person-

person context is exploited by a new feature descriptor extracted from a person and its 

surrounding area.

There is also a line of work on modeling high-level group activities [24], [25], [26], [27], 

[28], [29], [30], [31], [32]. Most of the work on group activity focuses on a small range of 

activities with clear structural information. For example, Vaswani et al. [24] model an 

activity using a polygon and its deformation over time. Each person in the group is treated as 

a point on the polygon. The model is applied to abnormality detection. Khan and Shah [25] 

use rigidity formulation to represent parade activity. They employ a top-down approach 

which models the entire group as a whole rather than each individual separately. Intille and 

Bobick [28] use probabilistic techniques for recognizing hand-specified structured activities 

such as American football plays. Moore and Essa [27] recognize multitasked activities. 

Cupillard et al. [31] present an approach for recognizing specific activities such as violence 

or pickpocketing viewed by several cameras. Chang et al. [32] present a real-time system to 

detect aggressive events in prison. Two hierarchical clustering approaches are proposed to 

group individuals, and events are reasoned at a group level. The main limitation of this line 

of work is that the models are designed for specific activities with strict rules, e.g., parade, 

and thus cannot be applied to more general activities. Recently, Ryoo and Aggarwal [30] 

proposed a stochastic representation for more general group activities based on context-free 

grammar, which characterizes both spatial and temporal arrangements of group members. 
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However, the representation of activities is encoded manually by human experts. Differently 

from the above-mentioned approaches, our work employs a latent variable framework that is 

able to capture some structure of group activities, and the structures of group activities are 

learned automatically.

Our model is directly inspired by some recent work on learning discriminative models that 

allow the use of latent variables [16], [33], [34], [35], [36], particularly when the latent 

variables have complex structures. These models have been successfully applied in many 

applications in computer vision, e.g., object detection [37], [38], action recognition [35], 

[39], human-object interaction [16], objects and attributes [40], human poses and actions 

[41], image region and tag correspondence [42], etc. So far, only applications where the 

structures of latent variables are fixed have been considered, e.g., a tree-structure in [35], 

[37]. However, in our applications, the structures of latent variables are not fixed and have to 

be inferred automatically.

3 Modeling Contextual Group Activities

The main objective of our work is to evaluate the benefit of contextual information in group 

activity recognition. We propose a unified framework that encodes two new types of 

contextual information, group-person interaction and person-person interaction. Group-

person interaction represents the co-occurrence between the activity of a group and the 

actions of all the individuals. For example, given a group of people who are talking, the 

action of an individual in the scene is more likely to be talking (whether facing right or left) 

instead of crossing the street. Person-person interaction indicates that the action of an 

individual can benefit from knowing the actions of other people in the same scene.

We propose three ways to model the person-person interaction: One way is to explore the 

structures of all pairs of actions, i.e., the structure-level approach; another way is to propose 

a feature descriptor that captures both the action of an individual person and the behavior of 

other people nearby, i.e., the feature-level approach; the third way is to combine the two 

above-mentioned approaches.

3.1 Model Formulation

We assume an image has been preprocessed so the persons in the image have been found. 

Detecting people in the video frames is task specific (e.g., [37] or background subtraction); 

the details are described in the experiments section. From now on, we assume the locations 

of people are given. On the training data, each image is associated with a group activity 

label, and each person in the image is associated with an action label.

We now describe how we model an image I. Let I1, I2, …, Im be the set of persons found in 

the image I; we extract features x from the image I in the form of x = (x0, x1, …, xm), where 

x0 is the aggregation of feature descriptors of all the persons in the image (we call it global 
feature vector) and xi (i = 1, 2, …, m) is the feature vector extracted from the person Ii. We 

denote the collective actions of all the persons in the image as h = (h1, h2, …, hm), where hi 

∈  is the action label of the person Ii and  is the set of all possible action labels. The 

Lan et al. Page 5

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2012 October 15.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



image I is associated with a group activity label y ∈ , where  is the set of all possible 

activity labels.

Fig. 3 shows graphical representations of the three models. We can see that they are in a 

unified latent structured framework, differing in the way to encode contextual information.

In the structure-level approach (Fig. 3b), we assume there are connections between some 

pairs of action labels (hj, hk). We use an undirected graph  = ( , ) to represent (h1, h2, …, 

hm), where a vertex vi ∈  corresponds to the action label hi, and an edge (vj, vk) ∈ 

corresponds to the interactions between hj and hk. Differently from most of the previous 

work in latent structured models that assume a predefined structure for the hidden layer, e.g., 

a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly 

infer it during learning and inference. Intuitively speaking, this adaptive structure approach 

will automatically decide on whether the interaction of two persons should be considered, 

i.e., only the important interactions between people for the recognition task are considered.

For the feature-level approach (Fig. 3c), we use a similar model, the only difference is that 

there are no connections between variables h in the hidden layer—context is attained via 

features describing the actions of neighboring people. Intuitively, this model encodes 

correlations among action classes and the contextual feature descriptors that are constructed 

by the original feature descriptors x. One benefit of including feature-level context is that it 

does not complicate inference.

In the combined approach (Fig. 3d), we use the contextual descriptor from the feature-level 

approach while maintaining the interlabel dependencies from the structure-level approach.

We use fw(x, h, y, ) to denote the compatibility of the image feature x, the collective action 

labels h, the group activity label y, and the graph  = ( , ). Note that for the feature-level 
approach and combined approach, the feature vector for each person is actually a function of 

the original feature vectors x, which will be introduced in the next section. Here, we use the 

notation x for simplicity.

We assume fw(x, h, y, ) is parameterized by w and is defined as follows:

(1)

The model parameters w are simply the combination of four parts, w = {w1, w2, w3, w4}. 

The details of the potential functions in (1) are described in the following.

Image-action potential —This potential function models the compatibility 

between the jth person’s action label hj and its image feature xj. It is parameterized as:
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(2)

where xj is the feature vector extracted from the jth person and we use () to denote the 

indicator function. The parameter w1 is simply the concatenation of w1b for all b ∈ .

Action-activity potential —This potential function models the compatibility 

between the group activity label y and the jth person’s action label hj. It is parameterized as:

(3)

Action-action potential —This potential function models the 

compatibility between a pair of individuals’ action labels (hj, hk) and the group activity label 

y, where (j, k) ∈  corresponds to an edge in the graph. Note that only the models in Figs. 

3b and 3d have this pairwise term. It is parameterized as

(4)

Image-activity potential —This potential function is a global model which 

measures the compatibility between the activity label y and the global feature vector x0 of all 

people in the image. It is parameterized as

(5)

The parameter w0a can be interpreted as a global filter that measures the compatibility of the 

class label a and the global feature vector x0.

As stated previously, for the feature-level approach and combined approach, we introduce a 

contextual feature descriptor to replace the original feature vectors x in (1). Now, we will 

provide the details on the contextual descriptor in the following section.
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3.2 A Contextual Feature Descriptor

In this section, we describe how to encode contextual information into feature descriptors x. 

This is used by the feature-level approach and combined approach. Our approach enables 

analyzing human actions by looking at contextual information extracted from the behavior 

of nearby people. A representative example is shown in Fig. 2. With the surveillance video 

footage, many actions are ambiguous, e.g., falling down and sitting down. A helpful cue to 

disambiguate these two actions is the context of what other people in the video are doing. If 

we see other people coming to aid, then it is more likely to be a fall than if we see other 

people sitting down.

We develop a novel feature representation called the action context descriptor. Our AC 

descriptor is centered on a person (the focal person), and describes the action of the focal 

person and the behavior of other people nearby. For each focal person, we set a 

spatiotemporal context region around him (see Fig. 4a); only those people inside the context 

region (nearby people) are considered. The AC descriptor is computed by concatenating two 

feature descriptors: One is the action descriptor that captures the focal person’s action, and 

the other one is the context descriptor that captures the behavior of other people nearby, as 

illustrated in Figs. 4b and 4c.

Here, we employ a bag-of-words style representation for the action descriptor of each 

person, which is built in a two-stage approach. First, we train a multiclass SVM classifier 

based on the person descriptors (e.g., HOG [43]) and their associated action labels. We then 

represent each person as a K-dimensional vector (i.e., the action descriptor), where K is the 

number of action classes. The action descriptor of the ith person is: Fi = [S1i, S2i, …, SKi], 

where Ski is the score of classifying the ith person to the kth action class returned by the 

SVM classifier.

Given the ith person as the focal person, its context descriptor Ci is computed from the 

action descriptors of people in the context region. Suppose that the context region is further 

divided into M regions (which we call “subcontext regions”) in space and time, as illustrated 

in Fig. 4b, then the context descriptor Ci is represented as a M × K dimensional vector 

computed as follows:

(6)

where (i) indicates the indices of people in the mth “subcontext region” of the ith person.

The AC descriptor for the ith person is a concatenation of its action descriptor Fi and its 

context descriptor Ci: ACi = [Fi, Ci]. As there might be numerous people present in a video 

sequence, we construct AC descriptors centered around each person. In the end, we will 

gather a collection of AC descriptors, one per person. For the feature-level approach and 

combined approach, we replace the original feature descriptor xj in (2) with the AC 

descriptor ACi.
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Fig. 5 shows examples of the action context descriptors on the nursing home data set. Figs. 

5a and 5b are two frames that contain falling. The persons in the red bounding boxes are 

trying to help the fallen residents. Fig. 5 is a frame that does not contain the falling action. 

The person in the red bounding box is simply walking across the room. For our application, 

we would like to distinguish between the high-level activities in Figs. 5a, 5b, and 5c. 

However, this is difficult (even for human observers) if we only look at the person in the 

bounding box, since all three people are walking. But if we look at the context of them, we 

can easily tell the difference: People in Figs. 5a and 5b are walking to help the fallen 

residents, while the person in Fig. 5c is simply walking. This can be demonstrated by the 

action context descriptors shown in Figs. 5d, 5e, and 5f. Here, we use a 20-dimensional 

action context descriptor and visualize it as a 4 × 5 matrix so it is easier to compare them 

visually. We can see that Figs. 5d and 5e are similar. Both of them are very different from 

Fig. 5f. This demonstrates that the action context descriptor can help us to differentiate 

people walking to help fallen residents under a fall activity from other actions, such as 

walking under a nonfall activity.

The key characteristics of our action context descriptor are in two aspects: 1) Instead of 

simply using features of the neighboring people as context, the action context descriptor 

employs a bag-of-words style representation which captures the actions of people nearby. 2) 

In addition to static context, our descriptor also captures dynamic information, i.e., the 

temporal evolution of actions extracted from both the focal person and the people nearby.

4 Learning and Inference

We now describe how to infer the label given the model parameters, and how to learn the 

model parameters from a set of training data. If the graph structure  is known and fixed, we 

can apply standard learning and inference techniques of latent SVMs. For our application, a 

good graph structure turns out to be crucial since it determines which person interacts (i.e., 

provides action context) with another person. The interaction of individuals turns out to be 

important for group activity recognition, and fixing the interaction (i.e., graph structure) 

using heuristics does not work well. We will demonstrate this experimentally in Section 5. 

We instead develop our own inference and learning algorithms that automatically infer the 

best graph structure from a particular set.

4.1 Inference

Given the model parameters w, the inference problem is to find the best group activity label 

y* for a new image x. Inspired by the latent SVM [37], we define the following function to 

score an image x and a group activity label y:

(7)

We use the subscript y in the notations hy and  to emphasize that we are now fixing on a 

particular activity label y. The group activity label of the image x can be inferred as: y* = 
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arg maxy Fw(x, y). Since we can enumerate all the possible y ∈  and predict the activity 

label y* of x, the main difficulty of solving the inference problem is the maximization over 

 and hy according to (7). Note that in (7), we explicitly maximize over the graph . This is 

very different from previous work which typically assumes the graph structure is fixed.

The optimization problem in (7) is, in general, NP-hard since it involves a combinatorial 

search. We instead use a coordinate ascent style algorithm to approximately solve (7) by 

iterating the following two steps:

1. Holding the graph structure  fixed, optimize the action labels hy for the 〈x, y〉 
pair:

(8)

2. Holding hy fixed, optimize graph structure  for the 〈x, y〉 pair:

(9)

The problem in (8) is a standard max-inference problem in an undirected graphical model. 

Here, we use loopy belief propagation to approximately solve it. The problem in (9) is still 

an NP-hard problem since it involves enumerating all the possible graph structures. Even if 

we can enumerate all the graph structures, we might want to restrict ourselves to a subset of 

graph structures that will lead to efficient inference (e.g., when using loopy BP in (8)). One 

obvious choice is to restrict  to be a tree-structured graph since loopy BP is exact and 

tractable for tree structured models. However, as we will demonstrate in Section 5, the tree-

structured graph built from a simple heuristic (e.g., minimum spanning tree) does not work 

well. Another choice is to choose graph structures that are “sparse,” since sparse graphs tend 

to have fewer cycles and loopy BP tends to be efficient in graphs with fewer cycles. A 

simple way is to include edges if a positive weight is associated with that interaction and 

exclude edges with a negative weight. This will create a sparse graph if most of the pairwise 

interaction weights are not positive. However, sparsity is not guaranteed since people may 

interact strongly with each other in some activities. In this paper, we enforce the graph 

sparsity by setting a threshold d on the maximum degree of any vertex in the graph. When 

hy is fixed, we can formulate an integer linear program (ILP) to find the optimal graph 

structure (9) with the additional constraint that the maximum vertex degree is at most d. Let 

zjk = 1 indicate that the edge (j, k) is included in the graph, and 0 otherwise. The ILP can be 

written as

(10a)
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(10b)

(10c)

where we use ψjk to collectively represent the summation of all the pairwise potential 

functions in (1) for the pairs of vertices (j, k). Of course, the optimization problem in (10) is 

still hard due to the integral constraint in (10c). But, we can relax (10c) with a linear 

constraint 0 ≤ zjk ≤ 1 and solve a linear program (LP) instead. The solution of the LP 

relaxation might have fractional numbers. To get integral solutions, we simply round them to 

the closest integers.

4.2 Learning

Given a set of N training examples 〈xn, hn, yn〉(n = 1, 2, …, N), we would like to train the 

model parameter w that tends to produce the correct group activity y for a new test image x. 

Note that the action labels h are observed on training data, but the graph structure  (or, 

equivalently, the variables z) are unobserved and will be automatically inferred. A natural 

way of learning the model is to adopt the latent SVM formulation [36], [37] as follows:

(11)

where Δ(y, yn) is a loss function measuring the cost incurred by predicting y when the 

ground-truth label is yn. In standard multiclass classification problems, we typically use the 

0-1 loss Δ0/1, defined as

(12)

The constrained optimization problem in (11) can be equivalently written as an 

unconstrained problem:

where  = maxy maxhy max  (Δ(y, yn) + fw(xn, hy, y; )),
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(13)

We use the nonconvex bundle optimization in [44] to solve (13). In a nutshell, the algorithm 

iteratively builds an increasingly accurate piecewise quadratic approximation to the 

objective function. During each iteration, a new linear cutting plane is found via a 

subgradient of the objective function and added to the piecewise quadratic approximation. 

Now, the key issue is to compute two subgradients ∂w  and ∂w  for a particular w, which 

we describe in detail below.

First, we describe how to compute ∂w . Let (y*, h*, ) be the solution to the following 

optimization problem:

(14)

Then, it is easy to show that the subgradient ∂w  can be calculated as ∂w  = Ψ(xn, y*, h*, 

). The inference problem in (14) is similar to the inference problem in (7), except for an 

additional term Δ(y, yn). Since the number of possible choices of y is small (e.g., | | = 5) in 

our case), we can enumerate all possible y ∈  and solve the inference problem in (7) for 

each fixed y.

Now, we describe how to compute ∂w ; let  be the solution to the following optimization 

problem:

(15)

Then, we can show that the subgradient ∂w  can be calculated as ∂w  = Ψ(xn, yn, hn, ). 

The problem in (15) can be approximately solved using the LP relaxation of (10). Using the 

two subgradients ∂w  and ∂w , we can optimize (11) using the algorithm in [44].

5 Experiments

Most previous work in human action understanding uses standard benchmark data sets to 

test their algorithms, such as the KTH [10] and Weizmann [9] data sets. In the real world, 

however, the appearance of human activities has tremendous variation due to background 

clutter, partial occlusion, scale and viewpoint change, etc. The videos in those data sets were 

recorded in a controlled setting with small camera motion and clean background. The 

Hollywood human action data set [45] is more challenging. However, only three action 

classes: HandShake, HugPerson, and Kiss have more than one actor, but these are not 

contextual—the two actors together perform the one action. (One person does not perform 

HugPerson by himself.) In this work, we choose to use two challenging data sets to evaluate 

our proposed method. The first data set is a benchmark data set for collective human 
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activities [23]. The second data set consists of surveillance videos collected from a nursing 

home environment by our clinician collaborators.

In order to comprehensively evaluate the performance of the proposed models, we compare 

them with several baseline methods. The first baseline (which we call global bag of words) 

is an SVM model with linear kernel based on the global feature vector x0 with a bag-of-

words style representation. The other baselines are within our proposed framework, with 

various ways of setting the structures of the person-person interaction. The structures we 

have considered are illustrated in Figs. 6a, 6b, and 6c, including 1) no pairwise connection, 

2) minimum spanning tree, 3) graph obtained by connecting any two vertices within a 

euclidean distance ε (ε-neighborhood graph) with ε = 100, 200, 300 and inf (complete 

graph). Note that in the structure-level approach of our proposed model the person-person 

interactions are latent (shown in Fig. 6d) and learned automatically. The performances of 

different structures of person-person interaction are evaluated and compared. We also report 

the performance of the feature-level approach and combined approach. In the 

implementation, we use the AC descriptor to replace the feature vector xi (i = 1, 2, …, m) in 

the latent SVM framework. The parameters of the proposed AC descriptor and multiclass 

SVM are set according to cross validation in the training set. The regularization constant C 
in (11) is set empirically in the range of 0.1 to 10.

Person detectors—As mentioned earlier, how to localize people is task specific. For the 

Collective Activity Data Set, we apply the pedestrian detector in [37]. For the Nursing Home 

data set, however, pedestrian detectors are not reliable. We instead extract moving regions 

from the videos as our detected people. First, we perform background subtraction using the 

OpenCV implementation of the standard Gaussian Mixture Model (GMM) [46] to obtain the 

foreground regions. Then, we extract all the 8-connected regions of the foreground from 

each frame, which are considered as moving regions. Moving regions with size less than a 

threshold Th are deemed unreliable and therefore ignored. Person locations in the training 

set are manually labeled with bounding boxes, while person detectors are used to 

automatically localize each person in the test set.

Person descriptors—We also use different feature descriptors to describe people for the 

two data sets. HOG descriptor [43] is used for the Collective Activity Data Set. For the 

nursing home data set, standard features such as optical flow or HOG [43] are typically not 

reliable due to low video quality. Instead, we use a feature representation similar to the one 

introduced in [47], which has been shown to be reliable for low-resolution videos. The 

feature descriptor is computed as follows: We first divide the bounding box of a detected 

person into N blocks. Foreground pixels are detected using standard background subtraction. 

Each foreground pixel is classified as either static or moving by frame differencing. Each 

block is represented as a vector composed of two components: u = [u1, …, ut, …, uτ] and v 
= [v1, …, vt, …, vτ], where ut and vt are the percentage of static and moving foreground 

pixels at time t, respectively. τ is the temporal extent used to represent each moving person. 

As in [47], we refer to it as a local spatiotemporal (LST) descriptor in this paper. Note that 

rather than directly using raw features (e.g., HOG [43] or LST) as the feature vector xi in our 
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framework, we use a bag-of-words style representation discussed in Section 3.2 to reduce 

feature dimension.

5.1 Collective Activity Data Set

This data set contains 44 video clips acquired using low-resolution handheld cameras. In the 

original data set, all the people in every 10th frame of the videos are assigned one of the 

following five categories: crossing, waiting, queuing, walking, and talking, and one of the 

following eight pose categories: right, front-right, front, front-left, left, back-left, back, and 

back-right. Based on the original data set, we define five activity categories, including 

crossing, waiting, queuing, walking, and talking. We define 40 action labels by combining 

the pose and activity information, i.e., the action labels include crossing and facing right, 
crossing and facing front-right, etc. We assign each frame to one of the five activity 

categories by taking the majority of actions of persons (ignoring their pose categories) in 

that frame. We select one fourth of the video clips from each activity category to form the 

test set, and the rest of the video clips are used for training.

We summarize the comparison of our approaches and the baselines in Table 1. Since the test 

set is imbalanced, e.g., the number of crossing examples is more than twice that of the 

queuing or talking examples, we report both overall and mean per-class accuracies. As we 

can see, for both overall and mean per-class accuracies, our methods (structure-level 

approach, feature-level approach, and combined approach) achieve the top three 

performances. The proposed models significantly outperform global bag of words. The 

confusion matrices of our methods and the baseline global bag of words are shown in Fig. 7. 

We can see that by incorporating contextual information (Figs. 7b, 7c, and 7d), the 

confusions between crossing, waiting, and walking are reduced. This is because the relative 

facing directions (poses) in a group of people provides useful cues for disambiguate these 

activities: People always cross the street in either the same or opposite directions; people 

always wait in the same direction, they rarely wait facing each other; the poses in walking 

are not as regular as in the previous two activities, people can walk in different directions. 

These can be further demonstrated by the learned pairwise weights for the five activity 

classes, as visualized in Fig. 8. Besides the poses within the same action class, we can also 

get which actions tend to occur together in an activity. Generally speaking, the model favors 

seeing the same actions with different poses together under an activity class, e.g., actions of 

crossing with different poses are favored under the activity label crossing. However, in some 

cases, several different actions are also favored under the same activity class, e.g., the 

actions of talking and walking could be together under the activity label talking. This is 

reasonable since when a group of people are talking, some people may pass by.

We visualize the classification results and the learned structure of person-person interaction 

by structure-level approach in Fig. 9. Some interesting structures are learned, like a chain 

structure which connects people facing the same direction for the queuing activity, pairwise 

connections between people facing the same direction for waiting and people facing each 

other for talking. Note that in the correct classification example of talking, there is a line that 

connects the person in blue and the person in black who are facing the same direction. This 

is because we made an incorrect prediction of the pose of the person in blue, which was 
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predicted as front. Thus, according to our prediction, the connected people (the person in 

blue and the person in black) are facing each other; thus, the learned structure of the talking 

example is reasonable.

5.2 Nursing Home Data Set

Our second data set consists of videos recorded in a dining room of a nursing home by a 

low-resolution fish eye camera. Typical actions include walking, standing, sitting, bending, 

and falling. During training, each person is assigned into one of these five action categories. 

Based on the action categories, we assign each frame into one of the two activity categories: 

fall and nonfall. If a frame contains fallen people, then it is labeled as fall, otherwise nonfall. 
Our data set contains one 30-minute video clip without falls and another 13 short clips with 

falls. The frame rate of the video clips is 3 fps. We divide the data set into 22 short video 

clips; we select eight clips to form the test set, and the rest of the clips are used for training. 

In total, there are 2,990 annotated frames in the data set; approximately one-third of them 

have an activity label of fall. We demonstrate the recognition of people falling on this data 

set, since this is the most interesting and relevant activity for clinicians.

Our work on activity classification on the nursing home data set is directly inspired by the 

application of fall analysis in nursing home surveillance videos. Our clinician partners are 

studying the causes of falls by elderly residents in order to develop strategies for prevention. 

This endeavor requires the analysis of a large number of video recordings of falls. 

Alternatives to vision-based analysis for extracting fall instances from a large amount of 

footage, such as wearable sensors and self-reporting, are inconvenient and unreliable.

We summarize the comparison of our approaches and the baselines in Table 2. Again, we 

report both overall and mean per-class accuracies since the classes are imbalanced. For both 

overall and mean per-class accuracies, the proposed models significantly outperform global 
bag of words. Also, our second approach, using a contextual feature descriptor, outperforms 

the original feature descriptor in the same model (no connection). Note that since we don’t 

consider any pairwise connections in the feature-level approach, it is not directly comparable 

to other numbers achieved with different structures of the hidden layer. And we can see the 

clear performance increase by including adaptive structures. The learned pairwise weights 

for the two activity classes are visualized in Fig. 10. Several important observations can be 

obtained such as: Under the activity label nonfall, the model favors seeing action of sitting 

together with standing or walking, while under the activity label fall, the model favors seeing 

actions of walking, standing, and bending together, which happens when staff bend to help a 

fallen resident stand up; the action fall typically does not happen together with fall since 

there is at most one fall in each frame in this data set.

This paper mainly deals with multiclass and binary classification problems, where the 

performance of an algorithm is typically measured by its overall accuracy, and the learning 

approach used is to directly optimize the overall accuracy by 0-1 loss Δ0/1 defined in (12). 

However, if the data set is highly imbalanced, the overall accuracy is not an appropriate 

metric to measure the performance of an algorithm. A better performance measure is the 

mean per-class accuracy. In this work, we adopt the loss function introduced in [40] which 

properly adjust the loss according to the distribution of the classes on the training data:
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(16)

where mp is the number of examples with class label p. Suppose that we have N training 

examples; it is easy to verify that  directly corresponds to the mean per-

class accuracy on the training data. When we use the new loss function Δbal(y, yn), the 

learning algorithm defined in (11) will try to directly maximize the mean per-class accuracy, 

instead of the overall accuracy. Our task is to classify the two activity categories, fall and 

nonfall, and the data set is biased toward nonfall. If we optimize the overall accuracy, more 

examples will tend to be classified as the dominant class, i.e., nonfall. This is not compatible 

with our goal since the clinicians want to extract a large amount of falling examples from 

surveillance videos even if some nonfall examples are included. The bias toward nonfall 

examples would lead to missing many falls. Consequently, we also report the classification 

results with Δbal, which are summarized in Table 3. We can reach similar conclusions as 

from Table 2. In particular, the mean per-class accuracies of our models are significantly 

better. It is also interesting to notice that in most cases, models trained with Δbal achieve 

lower overall accuracies than trained with Δ0/1 but higher mean per-class accuracies, which 

is exactly what we expect.

For the classification task, given a test image x, our models (also the baselines) return | | 

scores Fw(x, y), where y ∈ | |. We can use these scores to produce Precision-Recall and 

ROC curves for the positive class, i.e., fall. The score assigned to x being the class fall can 

be defined as f(x) = Fw(x, fall) − Fw(x, nonfall). Fig. 11 shows the Precision-Recall and 

ROC curves of our approaches and the baselines for the fall activity class. The comparison 

of the corresponding Average Precision (AP) and area under ROC (AUC) measures are 

summarized in Table 4. We can see that for both the AP and AUC measures, the proposed 

combined approach and structure-level approach achieve the top two performances, and our 

feature-level approach performs significantly better than the baseline under the same model 

with the original feature descriptor (no connection). The loss function we used here is Δbal, 

which is more suitable to our task than Δ0/1, as argued in the previous paragraph. Note that 

we could incorporate any loss function (e.g., F-measure, area under ROC curve in the Pascal 

VOC challenge [48]) into our learning algorithm defined in (11) depending on different 

tasks.

We visualize the classification results and the learned structure of person-person interaction 

by the structure-level approach in Fig. 12. From the correct classification examples (Figs. 

12a, 12b, 12c, and 12d), we can see that, in many cases, the fallen person can’t be detected 

because of camera placement, occlusion, and so on (see Fig. 12a). However, we can still 

correctly classify the high-level activity by using contextual information. That is to say, 

given some people standing or bending together, we could predict that there is a fall even 

without seeing the fallen person. In the incorrect classification examples (Figs. 12e, 12f, 

12g, and 12h), many mistakes come from incorrect predictions of actions, e.g., standing 

people close to the camera are easily predicted as sitting because of the change of aspect 
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ratio (Fig. 12f), people far from the camera could not be reliably recognized due to low 

resolution (Figs. 12e and 12h). These observations demonstrate a limitation of our approach: 

Our approach does not show reliable predictions for single person’s actions; thus, when 

someone falls by himself with nobody around him, we do not necessarily expect accurate 

predictions.

5.3 Discussion

There are several important conclusions we can draw from these experimental results:

Importance of context in group activity recognition—In the experiments on both of 

the data sets, our models and all of the baselines with structures clearly outperform global 
bag of words. It demonstrates the effectiveness of modeling group-person interaction and 

person-person interaction.

Comparison of adaptive structures and fixed structures—In Table 1, the 

predefined structures such as the minimum spanning tree and the ε-neighborhood graph do 

not perform as well as the one without person-person interaction. We believe this is because 

those predefined structures are all based on heuristics and are not properly integrated with 

the learning algorithm. As a result, they can create interactions that do not help (and 

sometimes even hurt) the performance. The poor performance of the approximate algorithm 

in the dense graph is another concern.

In the experiment on the nursing home data set, the predefined ε-neighborhood graph 
achieves better performance than other baselines, as indicated by Table 2. We believe this is 

for three reasons: First, when a resident falls in a nursing home, most people in the same 

scene are related to him/her, either walking to the resident or helping him/her stand up. 

Thus, a ε-neighborhood graph is potentially suitable to this task. Second, the nursing home 

data set is collected from real-world surveillance videos, so the video quality is extremely 

low. Consequently, we could only label five action classes (there are 40 detailed action labels 

in the collective activity data set). This would produce fewer outliers that are mistakenly 

connected by ε-neighborhood graph as in the collective activity data set. Third, the ε-

neighborhood graph is not densely connected in the nursing home data set as there are 

usually a few moving people in an image.

We can see that if we consider the graph structure as part of our model and directly infer it 

using our learning algorithm, we can make sure that the obtained structures are those useful 

for differentiating various activities. Evidence for this is provided by the big jump in terms 

of the performance by our approaches with adaptive structures.

Comparison of the three proposed models—The structure-level approach and 

feature-level approach encode context in two different ways: from high-level interlabel 

dependencies and from low-level feature descriptors. For the structure-level approach, our 

proposed learning algorithm is capable of selecting the useful context (person-person 

interaction) and ignoring the redundant. Experimental results demonstrate that the context 

selection strategy is very useful. The feature-level approach provides a flexible way to 

include context both spatially and temporally. It tends to include all the context in the 
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neighborhood. Since the model does not have structures in the intermediate layer, this will 

not complicate inference. For some activities that do not have discriminative pairwise 

interactions (e.g., walking), a person’s action usually benefits from knowing the dominant 

action of people nearby rather than a single person’s interaction. In this case, the feature-

level approach shows promising performance. On the other hand, for some activities such as 

talking and queuing, a pair of persons’ interaction (e.g., facing the same direction) is 

discriminative for the high-level group activity. Thus, selecting the context makes more 

sense than including everything. The combined approach makes a balance between the 

previous two approaches, and is thus more general for different group activities. Examples 

are in Fig. 7, where the structure-level approach shows the best performance for “queue,” 

but the worst performance for “walk” compared to the other two approaches. The combined 

approach gives the best performance in terms of average accuracy.

6 Conclusion

In this paper, we have presented a novel framework for group activity recognition which 

jointly captures the group activity, the individual person actions, and the interactions among 

them. The goal of this paper is to demonstrate the effectiveness of contextual information in 

recognizing group activities. We have exploited two types of contextual information: group-
person interaction and person-person interaction. In particular, we have proposed three 

different ways to model person-person interaction; one way is, in the structure level, we have 

introduced an adaptive structures algorithm that automatically infers the optimal structure of 

person-person interaction in a latent variable framework. The second way is, in the feature 

level, we have introduced an action context descriptor that encodes information about the 

action of an individual person in a video, as well as the behavior of other people nearby. The 

third way combines the adaptive structure and the action context descriptor.

As future work, we would like to extend our model to consider multiple group activities in a 

scene at once. We also plan to investigate more complex structures, such as temporal 

dependencies among actions.
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Fig. 1. 
Role of context in group activities. It is often hard to distinguish actions of each individual 

person alone (a). However, if we look at the whole scene (b), we can easily recognize the 

activity of the group and the action of each individual. In this paper, we operationalize this 

intuition and introduce a model for recognizing group activities jointly considering the group 

activity, the action of each individual, and the interaction among certain pairs of actions (c).
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Fig. 2. 
Sample frames from a nursing home surveillance video. Our goal is to find instances of 

residents falling down.
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Fig. 3. 
(a) Illustration of our model (b) on an image of people talking. The edges represented by 

dashed lines indicate the connections are latent. Different types of potentials are denoted by 

lines with different colors. (b), (c), and (d) are graphical illustrations of our models for the 

structure-level approach, feature-level approach, and combined approach, respectively.
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Fig. 4. 
Illustration of construction of our action context descriptor. (a) Spatiotemporal context 

region around focal person, as indicated by the green cylinder. In this example, we regard 

the fallen person as the focal person and the people standing and walking as context. (b) The 

spatiotemporal context region around the focal person is divided in space and time. The blue 

region represents the location of the focal person, while the pink regions represent locations 

of the nearby people. The first 3-bin histogram captures the action of the focal person, which 

we call the action descriptor. The latter three 3-bin histograms are the context descriptor and 

capture the behavior of other people nearby. (c) The action context descriptor is formed by 

concatenating the action descriptor and the context descriptor.
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Fig. 5. 
Examples of action context descriptors. (a) and (b) Sample frames containing people falling 

and other people (shown in red bounding boxes) trying to help the fallen person. (c) A 

sample frame contain no falling action. The person in the red bounding box is simply 

walking. (d)-(f) The action context descriptors for the three persons in bounding boxes. 

Action context descriptors contain information about the actions of other people nearby.
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Fig. 6. 
Different structures of person-person interaction. Each node here represents a person in a 

frame. Solid lines represent connections that can be obtained from heuristics. Dashed lines 

represent latent connections that will be inferred by our algorithm. (a) No connection 

between any pair of nodes. (b) Nodes are connected by a minimum spanning tree. (c) Any 

two nodes within a euclidean distance ε are connected (which we call the ε-neighborhood 
graph). (d) Connections are obtained by using adaptive structures. Note that (d) is the 

structure of person-person interaction of the proposed structure-level approach and our 

feature-level approach employs the structure of (a).
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Fig. 7. 
Confusion matrices for activity classification on the collective activity data set: (a) Global 

bag of words. (b) Structure-level approach. (c) Feature-level approach. (d) Combined 

approach. Rows are ground truths, and columns are predictions. Each row is normalized to 

sum to 1.

Lan et al. Page 29

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2012 October 15.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 8. 
Visualization of the weights across pairs of action classes for each of the five activity classes 

on the collective activity data set. Light cells indicate large values of weights. Consider the 

example (a); under the activity label crossing, the model favors seeing actions of crossing 

with different poses together (indicated by the area bounded by the red box). We can also 

take a closer look at the weights within actions of crossing, as shown in (f). We can see that 

within the crossing category, the model favors seeing the same pose together, indicated by 

the light regions along the diagonal. It also favors some opposite poses, e.g., back-right with 

front-left. These make sense since people always cross the street in either the same or the 

opposite directions.
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Fig. 9. 
(Best viewed in color) Visualization of the classification results and the learned structure of 

person-person interaction on the collective activity data set. The top row shows correct 

classification examples and the bottom row shows incorrect examples. The labels C, S, Q, 

W, and T indicate crossing, waiting, queuing, walking, and talking, respectively. The labels 

R, FR, F, FL, L, BL, B, and BR indicate right, front-right, front, front-left, left, back-left, 

back, and back-right, respectively. The yellow lines represent the learned structure of 

person-person interaction, from which some important interactions for each activity can be 

obtained, e.g., a chain structure which connects persons facing the same direction is 

“important” for the queuing activity.
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Fig. 10. 
Visualization of the weights across pairs of action classes for each of the two activity classes 

on the nursing home data set. Light cells indicate large values of weights. Consider the 

example (a), under the activity label nonfall, the model favors seeing action of sitting 

together with standing or walking. These make sense since what usually happen in a nonfall 

activity are clinicians walking to the sitting residence and standing beside them to offer 

some help. Typical examples can be referred to in Figs. 12c and 12d. Under the activity label 

fall, as shown in (b), the model favors seeing actions of walking, standing, and bending 

together. These usually happen after a resident falls and staff come to help the resident stand 

up. Typical examples are shown in Figs. 12a and 12b. Note that there is at most one fall in 

each clip of our data set, so the action fall never happens with fall; this is captured by the 

dark cell in the bottom right corner.
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Fig. 11. 
(Best viewed in color) Comparison of performance for the fall activity of different methods 

in terms of Precision-Recall curves (left) and ROC curves (right). The comparisons of 

Average Precision and area under ROC measures are shown in Table 4.
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Fig. 12. 
(Best viewed in color) Visualization of the classification results and the learned structure of 

person-person interaction on the nursing home data set. The first row shows correct 

classification examples and the last row shows incorrect examples. We also show the 

predicted activity and action labels in each image. The yellow lines represent the learned 

structure of person-person interaction, from which some important interactions for each 

activity can be obtained.
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TABLE 1

Comparison of Activity Classification Accuracies of Different Methods on the Collective Activity Data Set

Method Overall Mean per-class

global bag-of-words 70.9 68.6

no connection 75.9 73.7

minimum spanning tree 73.6 70.0

ε-neighborhood graph, ε = 100 74.3 72.9

ε-neighborhood graph, ε = 200 70.4 66.2

ε-neighborhood graph, ε = 300 62.2 62.5

complete graph 62.6 58.7

structure-level approach 79.1 77.5

feature-level approach 78.5 77.5

combined approach 79.7 78.4

We report both the overall and mean per-class accuracies due to the class imbalance. The first result (global bag of words) is tested in the multiclass 
SVM framework, while the other results are in the framework of our proposed model but with different structures of person-person interaction. The 
structures are visualized in Fig. 6.
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TABLE 2

Comparison of Activity Classification Accuracies of Different Methods with Δ0/1 on the Nursing Home Data 

Set

Method Overall Mean per-class

global bag-of-words 52.6 53.9

no connection 58.6 56.0

minimum spanning tree 64.1 60.6

ε-neighborhood graph, ε = 100 69.6 56.2

ε-neighborhood graph, ε = 200 69.9 61.4

ε-neighborhood graph, ε = 300 69.4 62.9

complete graph 70.0 63.1

structure-level approach 71.2 65.0

feature-level approach 63.4 57.7

combined approach 74.3 62.3

We report both the overall and mean per-class accuracies due to the class imbalance. The first result (global bag of words) is tested in the multiclass 
SVM framework, while the other results are in the framework of our proposed model but with different structures of person-person interaction. The 
structures are visualized in Fig. 6.
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TABLE 3

Comparison of Activity Classification Accuracies of Different Methods with Δbal on the Nursing Home Data 

Set

Method Overall Mean per-class

global bag-of-words 48.0 52.4

no connection 54.4 56.1

minimum spanning tree 66.9 62.3

ε-neighborhood graph, ε = 100 72.7 61.3

ε-neighborhood graph, ε = 200 67.6 61.1

ε-neighborhood graph, ε = 300 68.6 64.2

complete graph 70.6 62.2

structure-level approach 71.5 67.4

feature-level approach 57.3 60.3

combined approach 69.2 63.9

We report both the overall and mean per-class accuracies due to the class imbalance. The first result (global bag of words) is tested in the multiclass 
SVM framework, while the other results are in the framework of our proposed model but with different structures of person-person interaction.
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TABLE 4

Comparison of Average Precision and Area under ROC Measures of Different Methods on the Nursing Home 

Data Set

Method AP AUC

global bag-of-words 43.3 0.57

no connection 35.8 0.58

minimum spanning tree 45.8 0.65

ε-neighborhood graph, ε = 100 42.8 0.56

ε-neighborhood graph, ε = 200 40.2 0.63

ε-neighborhood graph, ε = 300 45.7 0.67

complete graph 40.1 0.62

structure-level approach 46.6 0.68

feature-level approach 43.0 0.64

combined approach 48.8 0.67

The first result (global bag of words) is tested in the multiclass SVM framework, while the other results are in the framework of our proposed 
model but with different structures of person-person interaction.
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