
TRACKING
LEARNING
DETECTION

Zdenek Kalal

Submitted for the degree of
Doctor of Philosophy

Centre for Vision, Speech and Signal Processing
Faculty of Engineering and Physical Sciences

University of Surrey

April 2011

© Zdenek Kalal 2011

ProQuest Number: 27598817

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27598817

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Summary

Visual tracking is the process of locating an object in a video sequence. This thesis
investigates visual tracking of an unknown object, which significantly changes its ap­
pearance and moves in and out of the camera view. The object is defined by its location
and extent in a single frame. In every frame that follows, the task is to determine the
object’s location and extent or indicate that the object is not present.

We propose a novel tracking paradigm (TLD) that decomposes the visual tracking task
into three sub-tasks: Tracking, Learning and Detection. The tracker follows the object
from frame to frame. The detector localizes appearances that have been observed
during tracking and corrects the tracker if necessary. Exploiting the spatio-temporal
structure in the video sequence, the learning component estimates errors performed
by the detector and updates it to avoid these errors in the future. The components are
analyzed in detail.

In tracking, we develop a method for detection of tracking failures that we call Forward-
Backward (FB) error. The FB error allows us to measure the reliability of point trajec­
tories in video. Next, we design a novel object tracker, which represents the object of
interest by a grid of points the reliability of which is measured using the FB error. The
performance of the tracker is compared with state-of-the-art approaches.

In detection, we focus on supervised learning of object detectors from large data sets.
We develop a learning algorithm that optimally combines two popular learning ap­
proaches: boosting and bootstrapping. The improvements in terms of classifier speed
and accuracy are achieved.

In learning, we focus on incremental, real-time learning of object detectors from a
video stream. We develop a novel learning theory, P-N learning, which drives the
learning process by a pair of ’’experts” on estimation of detector errors: (i) P-expert
estimates missed detections; (ii) N-expert estimates false alarms. Convergence prop­
erties of the learning method are analyzed and conditions that guarantee improvement
of the detector are found. The theory is validated on both synthetic and real data and
specific examples of the experts are given.

Finally, a real-time implementation of the TLD is described and comparatively evalu­
ated on benchmark sequences. A significant improvement over state-of-the-art meth­
ods is achieved.

Key words: tracking, learning, detection, unsupervised bootstrapping

Acknowledgements
I would like to thank my suppervisors Dr. Krystian Mikolajczyk and Prof. Jiri Matas.
This thesis would not have been possible without their valuable feedback.

I am grateful to my colleagues: Asish Gupta, Martin Klaudiny and Stuart James for
proofreading parts of this thesis and the whole CVSSP for a nice working atmosphere.

Most importantly, I want to thank to my family for endless support throughout my
whole studies. My final and very special thanks goes to Say aka, for her support, com­
prehension and encouragement.

Contents

Introduction 5

1.1 Objectives.. 5

1.2 Motivation... 6

1.3 Challenges... 9

1.4 C ontributions.. 12

1.5 Thesis o u tlin e .. 14

1.6 Publications.. 16

Related work 17

2.1 Tracking.. 18

2.1.1 P rerequ isites.. 18

2.1.2 Classification.. 20

2.1.3 Generative trackers.. 21

2.1.4 Discriminative trackers.. 25

2.2 D e tec tio n ... 29

2.2.1 Detection of image features ... 30

2.2.2 Detection of object instances... 30

2.2.3 Detection of faces ... 33

2.3 Machine le a rn in g .. 36

2.3.1 Bootstrapping.. 37

2.3.2 B o o s tin g .. 39

2.3.3 Semi-supervised learning... 42

2.4 Observations ... 45

V

vi Contents

3 Tracking: failure detection 47

3.1 Detection of tracking fa ilu res ... 47

3.1.1 Forward-Backward e r r o r ... 49

3.1.2 Quantitative evaluation.. 50

3.1.3 V isualization.. 52

3.2 Median-Flow tra c k e r ... 54

3.2.1 Quantitative evaluation.. 56

3.3 Conclusions... 58

4 Detection: supervised bootstrap 61

4.1 Introduction... 62

4.2 Related w o r k .. 63

4.3 Integration of bootstrapping and b o o s tin g ... 63

4.3.1 Known sampling strategies.. 66

4.3.2 Proposed sampling strategies... 67

4.3.3 Properties of sampling strategies... 70

4.4 Application to face de tec tion ... 73

4.4.1 Frontal face d e te c to r .. 74

4.4.2 Profile face d e te c to r 75

4.4.3 Specific face detector.. 76

4.5 Conclusions.. 76

5 Learning: unsupervised bootstrap 79

5.1 Introduction... 79

5.2 P-N learning... 81

5.2.1 Formalization.. 81

5.2.2 Stability.. 84

5.2.3 Experiments .. 87

5.3 Learning an object detector from a video sequence 89

Contents vii

5.3.1 Problem specification . , ... 90

5.3.2 P-N experts 91

5.3.3 Experiments .. 95

5.4 Conclusions... 99

6 Tracking-Learning-Detection (TLD) 101

6.1 Introduction... 101

6.2 Fram ew ork.. 103

6.2.1 Components .. 103

6.2.2 In itia liza tion .. 104

6.2.3 R u n -tim e .. 105

6.3 Im plem entation... 105

6.3.1 Object representation... 106

6.3.2 The object m o d e l.. 106

6.3.3 The object de tec to r.. 108

6.3.4 The object tracker .. 112

6.3.5 The integrator.. 112

6.3.6 The learning com ponent... 113

6.4 Quantitative evaluation ... 116

6.4.1 Comparison 1: CoGD .. 117

6.4.2 Comparison 2: PR O ST.. 117

6.4.3 Comparison 3: TLD data s e t ... 118

6.5 Long-term tracking of faces.. 122

6.5.1 Sitcom ep iso d e ... 122

6.5.2 Surveillance fo o ta g e ... 123

6.6 Qualitative analysis ... 125

6.6.1 S tren g th s.. 125

6.6.2 W eaknesses... 128

viii Contents

1 Discussion 131

7.1 C ontributions.. 131

7.2 Recent development.. 133

7.3 Future w o rk ... 134

A Compared algorithms 137

B Sequences used for evaluation 139

Bibliography 141

Contents

2 Contents

Notation and Symbols

I image

p image point

b bounding box

P image patch extracted around p or within b

X sample, a representation of P in a feature space X

d sample weight

d approximated sample weight

y sample label from space of labels 3̂ = {-1,1}

X set of samples x

Y set of labels y

L labeled set, a set of pairs (a;, y)

D set of weights d

M object model, a set of patches P

D approximated set of weights d

ÿ k trajectory of an image point tracked for k frames forward in time

^ k trajectory of an image point tracked for k frames backward in time

/(a ;|0) classifier that realizes mapping X ^ y

h(x) weak hypothesis that realizes mapping T —)■ R

H (x) strong hypothesis that realizes mapping A’ —)• R

S similarity function

relative similarity function

conservative similarity function

^nn threshold for detecting the object, > ^nn

threshold for definition of the core, > 9\,

Z (h) error upper bound of hypothesis h

'nXik) number of positive examples output by P-expert in iteration k

n~ {k) number of negative examples output by N-expert in iteration k

, R~ quality measures of P-N experts

M transformation matrix that encodes the stability of P-N learning

Ai, A2 eigenvalues of matrix M

Contents

Indexes and Formulas

R the set of reals

[11]'^ 2x2 matrix of ones

t index of a time series, e.g. It means image at time t

i index of a set, e.g. Xi denotes i-th sample from X

k index of training iteration

n, m size of sets, e.g. Xn denotes a set of samples of size n

E[.] expectation of a random variable

Var[.] variance of a random variable

P [.] probability of logical formula

|.| absolute value

11.11 2-norm

Contents

Performance Evaluation

TP True Positives, correctly accepted examples

FP False Positives, incorrectly accepted examples

TN True Negatives, correctly rejected examples

FN False Negatives, incorrectly rejected examples

P Predcision

R Recall

F F-measure

MF Median-Flow tracker

FB Forward-Backward error

NCC Normalized-Cross Correlation

SSD Sum of Square Differences

Tr Trimming

UUS Unique Uniform Sampling

WS Weighted Sampling

QWS Quasi-random Weighted Sampling

QWS+ Quasi-random Weighted Sampling + Trimming

Chapter 1

Introduction

One of the basic tasks of computer vision is to interpret the motion of an object in a

video sequence. This task has been studied for several decades and it still remains chal­

lenging. To make the problem tractable, a common approach is to make assumptions

about the object, its motion or motion of the camera. In contrast, this thesis studies the

task with a minimal set of assumptions with the goal to enable real-time, accurate as

well as robust tracking of a priori unknown objects.

This chapter provides an overview of the entire thesis. Section 1.1 formalizes our

objectives. Section 1.2 introduces possible applications of our research. Section 1.3

discusses the main challenges that have to be tackled. Section 1.4 introduces the con­

tributions made in the thesis. Section 1.5 outlines the rest of the thesis and section 1.6

lists the publications.

1.1 Objectives

Consider a video stream depicting various objects moving in and out of the camera

field of view. Given a bounding box defining the object of interest in a single frame,

our goal is to automatically determine the object’s bounding box or indicate that the

Chapter 1. Introduction

object is not visible in every frame that follows. The video stream is to be processed

at full frame-rate and the process should run indefinitely. We refer to this task as long­

term tracking.

A number of algorithms related to long-term tracking have been proposed in the past.

However, these typically make strong assumptions about the task. In particular, tracking-

based algorithms assume that the object moves on a smooth trajectory and typically fail

if the object moves out of the image. Detection-based algorithms assume that an object

is known in advance and require a training stage. In contrast, our goal is to track an ar­

bitrary object that moves in and out of the camera view immediately after initialization.

The difficulty of the considered data and the achieved results are shown in figure 1.1.

1.2 Motivation

The research in this thesis is mainly motivated by real-time, interactive applications.

• Human-computer interaction. There are already approaches that enable inter­

action with the computer using natural gestures . These systems are typically

based on hard-coded rules. Using a long-term tracker, one can imagine a per­

sonalized controller, where the user interacts with the system using gestures or

objects that are selected in runtime.

• Surveillance. Consider a surveillance camera and an operator. At a certain

moment, the operator marks the object of interest. A long-term tracker should

be able to monitor the motion of the object while being visible, indicate that the

object has moved out of the field of view and re-initialize the monitoring once

the objects reappears (possibly in a another camera). This task is essential for

security purposes, analysis of customer behavior or even for navigation of robots.

Existing systems do not scale well for unexpected objects. An algorithm capable

1.2. Motivation

Figure 1.1: The long-term tracking task and the achieved results. The top row depicts

the objects of interest selected for tracking. The remaining images show the results of

our long-term tracker. The red dots indicate that the object is not visible.

Chapter 1. Introduction

of monitoring the motion of an arbitrary object for long periods of time would

find a number of practical applications in surveillance and robot navigation.

• Augmented reality. Existing augmented reality applications are often restricted

to objects that can be modeled in advance. At the core of these applications

is robust tracking which often relies on an offline training stage. The ability

to robustly track an arbitrary object without prior training is therefore of great

interest with possible applications in games, advertisement, medical, education,

tourism or military.

• Object-centric stabilization. Consider a hand-held camera and a user that se­

lect an arbitrary object. Using object tracking, one can imagine an object-centric

video stabilization or adjustment of the camera settings. Existing tracking algo­

rithms would be able to stabilize the video as long as the object is in the field

of view, in contrast, a long-term tracker would be able to restart the stabilization

whenever the object reappears in the field of view. A typical usage would be

when observing a distant object using digital zoom.

• Object recognition. Contemporary smart phones feature visual recognition of

objects captured by the camera. An emerging approach is to perform client-side

tracking of the object of interest to acquire a sufficient number of query images

and send them to a server which performs object recognition. Development of

robust long-term tracking methods is therefore of high interest.

• Video analysis. A number of applications in video analysis (e.g. action recogni­

tion, automatic video annotation) require tracking of object or their parts in long

video sequences. The long-term tracking methods can be potentially applied in

these problems

1.3. Challenges

1.3 Challenges

The range of possible applications of long-term tracking is vast, however, there are a

number of issues which need to be addressed.

• Occlusion and disappearance of the object. The object may be occluded or

disappear from the camera view for an arbitrarily length of time. The object may

reappear at any time and at any location. Therefore, the long-term tracker should

have mechanism (e.g. detection) to resolve these cases. Figure 1.2 illustrates the

scenario.

• Appearance and viewpoint changes. The object of interest may change its ap­

pearance and viewpoint throughout the sequence. This complicates the tracking

process as the only information given to the long-term tracker is a single patch

from the initial frame, which may not be relevant throughout the entire sequence.

The long-term tracker should have a mechanism (e.g. learning) for dealing with

the appearance changes. See figure 1.3 for an illustration.

• Background clutter and identification. The object may appear in cluttered

environments or may be surrounded by other objects of the same visual class.

The long-term tracker should not get distracted by background clutter and should

correctly distinguish the object of interest from other objects of the same class in

the scene. Figure 1.4 illustrates the scenario where the task is to track a human

face.

• Scale changes. The object may change scale. While estimation of the scale

can be considered as an implementation detail, it brings an additional degree of

freedom to the tracking process and as such increases vulnerability of the tracker

to failure. The long-term tracker should be able to estimate the scale of an object

as illustrated in figure 1.5.

10 Chapter 1. Introduction

Figure 1.2: Challenges in long-term tracking: occlusion and disappearance.

Figure 1.3: Challenges in long-term tracking: appearance and viewpoint changes.

• Illumination changes. The object changes its appearance under different illumi­

nation. The long-term tracker should be able to deal with illumination changes

as illustrated in figure 1.6.

• Image noise. Video sequences may be corrupted by motion blur, interlacing or

video compression. This influences the accuracy of features that are extracted

from every frame, which may corrupt the output of the tracking algorithm. The

long-term tracker should deal with image noise. Figure 1.7 illustrates the object

coiTupted by motion blur.

Real-time performance. To be useful for interactive applications, the long­

term tracker should work at full frame rate. Therefore, the algorithm must be

extremely efficient.

1.3. Challenges 11

Figure 1.4: Challenges in long-term tracking: background clutter and identification.

f.,

P-;

Figure 1.5: Challenges in long-term tracking: scale changes.

12 Chapter 1. Introduction

Figure 1.6: Challenges in long-term tracking: illumination changes. All images have

been equalized.

Figure 1.7: Challenges in long-term tracking: motion blur.

1.4 Contributions

This thesis contributes to the research in long-term tracking with the algorithms sum­

marized below.

TLD framework. We introduce a novel tracking paradigm that decomposes the

long-term tracking task into three sub-tasks: Tracking, Learning and Detection,

each of which is tackled by a dedicated component. The tracker follows the

object from frame to frame. The detector localizes all objects that appear with

appearance that have been observed during tracking and corrects the tracker if

necessary. Exploiting the spatio-temporal structure in the data, the learning com­

ponent estimates errors performed by the detector and updates it to avoid these

errors in the future. The uniqueness of the approach is in the close integration

of all these components which enables mutual compensation of their individual

1.4. Contributions 13

Learning

DetectionTracking

corrects

Figure 1.8: The block diagram of the proposed TLD framework.

flaws. The block diagram of the TLD framework is shown in figure 1.9. The

components of the framework are studied in detail.

• Forward-Backward error. Building on the assumption that correct tracking

is forward-backward consistent, we develop a novel measure that estimates the

reliability of tracking of an arbitrary object in a video stream.

• Median-Flow tracker. We develop an adaptive tracker that is robust to partial

occlusions and deals with appearance and illumination changes. The object of

interest is represented by a bounding box, within which a sparse motion field is

estimated. The reliability of each motion vector is assessed, and the most reliable

vectors determine the motion of the object.

• P-N learning. We develop an unsupervised learning method for online learning

of object detectors from video streams. The learning method is able to learn

an object detector from a single example (defined by a bounding box) and a

video stream where the object may appear. The learning method is formulated

as unsupervised bootstrapping, where the detector errors are estimated by a pair

of “experts”: (i) P-expert estimates missed detections, and (ii) N-expert estimates

14 Chapter 1. Introduction

false alarms. Both of these experts are allowed to make errors themselves. The

learning process is modeled as a discrete dynamical system and the conditions

under which the learning guarantees improvement of the detector are found using

stability criteria developed in control theory [Zhou 96, Ogata 09].

• Boosting+Bootstrap. Motivated by long-term tracking of human faces, we de­

velop a novel learning method for training efficient object detectors. The learn­

ing method is based on a fusion of two popular learning approaches: boost­

ing [Freund 97] and bootstrapping [Sung 98]. We formulate bootstrapping as

weighted sampling where the weights are driven by boosting. The optimal sam­

pling strategy is analytically deduced. Extensive experimental evaluation shows

superior performance with respect to commonly used methods. The learning

method is tested on the task of face detection and state-of-the-art performance is

achieved.

• Implementation. We show how to implement the TLD framework . An exten­

sive quantitative evaluation shows a significant improvement over state-of-the-

art systems. Furthermore, we show how to adapt TLD for face tracking, which

combines an offline trained face detector with online face identification.

1.5 Thesis outline

The structure of the thesis is outlined in figure 1.9. In chapter 2, we review the work

related to long-term tracking from three points of view: object tracking, object detec­

tion and machine learning. In object tracking and object detection, we give special

attention to methods that represent the object by a bounding box. In object learning,

we focus on methods for training of sliding window-based detectors.

Chapters 3, 4 and 5 consider the tracking, learning and detection problems indepen­

dently and propose the basic components of TLD that will be tightly integrated later.

1.5. Thesis outline 15

3. Tracking

7. Conclusions1. Introduction 2. Literature Review 4. Detection 6. TLD

5. Learning

TLD F ram ew ork

IC C V '09 (W), IC IP 'IO

B oosting + B o o ts tra p

B M V C '0 8

F orw ard-B ackw ard e r ro r
M edian-F low tra c k e r

IC P R 'IO

P-N L earning

C V P R 'IO

Figure 1.9: Outline and main contributions of the thesis.

Chapter 3 considers tracking algorithms when applied to unconstrained videos. Ac­

cepting the fact that every tracker eventually fails is the starting point. First, we study

how to detect tracking failures. We define the Forward-Backward error, study its prop­

erties and compare to relevant error measures. Second, we study how the detected

failures can help tracking itself. We develop the Median-Flow tracker and compare it

to state-of-the-art methods on a number of sequences.

Chapter 4 considers offline training of an object detector from large data sets. We

review the algorithms often used for this setting, in particular, boosting [Freund 97]

and bootstrapping [Sung 98]. The optimal combination of boosting and bootstrapping

is developed and evaluated on both synthetic and real data.

Chapter 5 focuses on online learning of an object detector from a single example

and a video stream. The P-N learning theory is developed and formalized as a semi­

supervised [Chapelle 06] learning method. We show how to design a pair of experts

that estimate errors of the detector during learning. We show that tracking can estimate

false negatives and non-maxima-suppression can estimate false positives made by the

detector. The resulting algorithm is quantitatively evaluated on a number of sequences

leading to surprising gains in the detector performance.

16 Chapter 1. Introduction

Chapter 6 develops the TLD framework and describes its implementation. The per­

formance of TLD is evaluated on two types of experiments: (i) tracking of unknown

objects, and (ii) tracking of human faces. A quantitative evaluation is performed on

21 video sequences and compared to 13 relevant tracking algorithms. A significant

improvement over state-of-the-art methods is demonstrated. Furthermore, we perform

a qualitative evaluation and comment on the pros and cons of the proposed approach.

Chapter 7 summarizes the contributions of the thesis, comments on the recent devel­

opments and discusses possible avenues for future research.

1.6 Publications

1. [SUBM ITTED] Z. Kalal, K. Mikolajczyk, and J. Matas, ’’Tracking-Leaming-

Detection,” Transactions on Pattern Analysis and Machine Intelligence, 2010.

2. Z. Kalal, K. Mikolajczyk, and J. Matas, ”Face-TLD: Tracking-Leaming-Detection

Applied to Faces,” International Conference on Image Processing, 2010.

3. Z. Kalal, K. Mikolajczyk, and J. Matas, ’’Forward-Backward Error: Automatic

Detection of Tracking Failures,” International Conference on Pattern Recogni­

tion, 2010.

4. Z. Kalal, J. Matas, and K. Mikolajczyk, ”P-N Learning: Bootstrapping Binary

Classifiers by Structural Constraints,” Conference on Computer Vision and Pat­

tern Recognition, 2010.

5. Z. Kalal, J. Matas, and K. Mikolajczyk, ’’Online Learning of Robust Object De­

tectors During Unstable Tracking,” On-line Learning for Computer Vision Work­

shop, 2009.

6. Z. Kalal, J. Matas, and K. Mikolajczyk, ’’Weighted Sampling for Large-Scale

Boosting,” British Machine Vision Conference, 2008.

Chapter 2

Related work

Long-term tracking is a complex problem that is closely related to tracking, detection

and machine learning and in many cases it is studied from one point of view only.

These terms are understood as follows. Tracking estimates the object motion between

consecutive frames relying on temporal coherence in the video. Detection considers

the video frames as independent and localizes all objects that correspond to an object

model. Machine learning is often employed in both of these approaches. Trackers use

machine learning to adapt to changes of the object appearance. Detectors use machine

learning to build better models that cover various appearances of the object.

To give an overview of the most relevant approaches, the chapter is split into four parts.

Section 2.1 gives an overview of tracking approaches ranging from simple template

tracking up to trackers that learn online a discriminative classifier. Section 2.2 reviews

detection approaches focusing on detection of object instances as well as detection

of human faces. Section 2.3 reviews the learning strategies commonly used for the

training of object detectors. In particular we review bootstrapping, boosting as well as

methods based on semi-supervised learning. Section 2.4 comments on observed trends

and outlines challenges that motivated our research.

17

18 Chapter 2. Related work

M otion estim ation

current object state iprevious object sta te . , ; . \ -

Figure 2.1 : Illustration of a typical tracking system.

2.1 Tracking

Tracking is a task of estimating object motion [Yilmaz 06]. Various definitions are

considered in the literature. In this thesis we consider tracking as the task of esti­

mating the object motion between consecutive frames. The implicit assumption of

such algorithms is that the location of the object in the previous frame is known. This

is in contrast to long-term tracking where this location might not be defined. In the

following, the term tracking will be sometimes substituted with more accurate frame-

to-frame tracking to emphasize the meaning. This review is organized as follows.

Sub-section 2.1.1 introduces the terms used in tracking. Sub-section 2.1.2 classifies

the tracking approaches based on the object representation. Sub-section 2.1.3 reviews

generative trackers, one of which, the Lucas-Kanade [Lucas 81] tracker, is used in our

system. Finahy, sub-section 2.1.4 reviews in detail discriminative trackers as these

represent the closest competitors to our approach.

2.1.1 Prerequisites

At every time instance, trackers characterize the object of interest by several variables

(e.g. location, scale, pose), which together represent the so-called state of the object.

2.1. Tracking 19

Figure 2.2: Classification of trackers based the representation of the object: a) points,

b) geometric shapes, c) contours, d) articulated models, and e) motion field.

A temporal sequence of states defines the object trajectory. Difference of two consec­

utive states defines the object motion. Figure 2.1 illustrates the scenario.

Model. Tracking algorithms represent the object by a model. We distinguish two

classes of models based on the type of information they represent: (i) generative, and

(ii) discriminative. Generative models represent the appearance of the object ignoring

the environment where the object moves. Discriminative models focus on differences

between the object and the environment. Both of these models are either static - remain

fixed during tracking, or adaptive - accept new information during tracking.

Motion estimation. Given the object state in the previous frame and the object model,

tracking estimates the object motion by fitting the object model to the current frame

using some estimation algorithm (e.g. gradient descent). Alternatively, it is possible to

maintain a distribution of the object state and propagate it in time, i.e. particle filtering.

Drift & failure. State-of-the-art trackers are often adaptive, i.e. update the object

model during tracking, which allows them to handle changes in object appearance,

illumination or environment. The drawback of the adaptation is drift: the errors of

the update accumulate over time and the tracker slowly slips away from the object.

Drift is different from iracMmg failure, which is a sudden incorrect estimation of the

object state. Tracking failures typically happen when the object dramatically changes

appearance, gets fully occluded or moves out of the cameras field of view.

20 Chapter 2. Related work

2.1.2 Classification

One of the most distinctive properties of a tracking algorithm is the object state, which

determines the variables that are estimated during tracking. Here we use the object

state to classify tracking algorithms into five categories shown in figure 2.2.

1. Points are often used to represent the smallest objects that do not change their

scale dramatically. Algorithms that represent the object by a point will be called

point trackers. Point trackers estimate only translation of the object. The es­

timation can be performed using frame-to-frame tracking [Lucas 81, Shi 94],

key-point matching [Veenman 01], key-point classification [Lepetit 05], or lin­

ear prediction [Zimmermann 09]. Recent work is directed towards optimizing

performance of these methods [Takaes 10].

2. Geometric shapes such as bounding boxes or ellipses, are often used to repre­

sent motion of objects which undergo significant changes in scale. These meth­

ods typically estimate object location, scale and in-plane rotation, all other vari­

ations are typically modeled as the changes of the object appearance.

3. 3D models are used to represent rigid objects, for which the 3D geometry is

known. These models estimate location, scale and pose of the object. These

methods have been applied to various objects including human faces [Vacchetti 04].

A significant effort in traeking is directed towards systems that build the 3D mod­

els online such as SLAM [Davison 03] or PTAM [Klein 07].

4. Contours are used to represent non-rigid objects. Parametric representation of

contours has been used for traeking of human heads [Birchfield 98] or arbitrarily

complex shapes [Isard 98]. Non-parametric representations have been applied

for the traeking of people in sport footage [Yilmaz 04], or various non-rigid ob­

jects including animals and human hands [Bibby 08, Bibby 10].

2.1. Tracking 21

5. Articulated models are used to represent the motion of non-rigid objects con­

sisting of several rigid parts. These models typically consist of several geometric

shapes, for which relative motion is restricted by a model of their geometric re­

lations. Articulated models have been used for tracking of humans [Wang 03,

Ramanan 07] or human arms [Buehler 08].

6. Motion field [Horn 81, Brox 04] is a non-parametric representation of the object

motion which gives the displacement of every pixel of the object between two

frames. An extensive comparison of these methods can be found in [Barron 94].

Recent developments aim at producing long, continuous trajectories of image

points [Sand 08, Goldman 07].

In this thesis we represent the object state by a bounding box. This representation bal­

ances the tradeoff between the expressive power of the representation and the difficulty

to reliably estimate the object motion. The related methods will be now analyzed in

detail.

2.1.3 Generative trackers

Generative trackers model the appearance of the object. In this section we focus on

trackers that represent the object by a geometric shape (i.e. rectangle or ellipse) within

which the appearance is modeled. Motion estimation will be typically formulated as a

search for the best match between an image patch and the model. Even though these

methods were not designed for long-term tracking, we review them as our approach is

relying on number of ideas from this category.

Template tracking

Template trackers represent the object appearance by a single exemplar - a template

(e.g. an image patch). They define a similarity measure between two templates and

22 Chapter 2. Related work

search for such a displacement (or warp) that maximizes the similarity match.

Exhaustive search for the best similarity match is straightforward, but not efficient.

To make it faster, the search can be performed using integral images [Schweitzer 02],

or in frequency domain [Reddy 02]. Another strategy is to restrict the search to the

vicinity of the previous location. Exploration of the neighborhood not only increases

the efficiency of the template tracker, but also reduces the number of false matches.

On the other hand, the tracker may lose the target if the frame-to-frame motion is

larger than expected. In other words, tracker face the tradeoff between speed and

robustness. The most popular strategies for searching within the surrounding of the

previous location are: (i) gradient-based methods, and (ii) mean-shift.

Gradient-based methods optimize the similarity measure using gradient descent. One

of the most popular methods is the Lucas-Kanade [Lucas 81] tracker and its pyramidal

implementation [Bouguet 99], which estimates translation of an image patch. Affine

warping was later proposed in the Kanade-Lucas-Tomasi tracker [Shi 94]. Both of

these approaches have been unified in Inverse Compositional Algorithm [Baker 04].

These methods base the similarity function on SSD. Recently, the similarity func­

tion based on mutual information has been proposed [Dowson 08] which demonstrated

larger convergence basins.

The mean-shift algorithm [Comanieiu 03, Bradski 98] is another approach to avoid the

brute-force search for the best template match. The object is described by a distribution

of colors. Given a new image, every pixel is assigned a probability score from the dis­

tribution resulting in the so-called back-projection image. Mean-shift then iteratively

searches for a mode in the back-projection image. Similarly to the gradient-based

methods, mean-shift cannot handle large displacements as the search is local. On the

other hand, the histogram-based representation handles large appearance changes as

long as the color distribution remains similar.

2.1. Tracking 23

Figure 2.3: The WSL tracker [Jepson 03] estimates components on a template that are

reliable for tracking. This increases the tracker’s robustness to partial occlusion and

appearance changes.

Improvements on template tracking

Template tracking has three main drawbacks. First, template tracking faces a tradeoff

between static and adaptive tracking. A single static template is often not sufficient

to represent all the appearances of the object and adaptation of the template (using

the template from the previous frame) suffers from drift. Second, template tracking is

often sensitive to partial occlusions. Third, a single template does not allow encoding

of multiple appearances.

To tackle the tradeoff between static and adaptive tracking, the basic idea is to adapt

the template only if necessary and re-use the previously observed templates other­

wise. For this purpose a function that evaluates the usefulness of the previously ob­

served templates has to be designed. This idea has been used for tracking of image

patches [Matthews 04, Dowson 05] as well as 3D pose estimation [Rahimi 08].

To tackle the problem of partial occlusions, the WSL tracker [Jepson 03] decomposes

the template into three layers: ’’Wandering”, ’’Stable” and ’’Lost”. It was shown that

by focusing on stable parts of the template, the tracker deals better with partial oc­

clusions and appearance changes. For illustration see figure 2.3. The Fragment-based

tracker [Adam 06] decomposes the template into a set of randomly chosen fragments.

Motion of each fragment is estimated independently and the global motion is estimated

24 Chapter 2. Related work

Figure 2.4: Incremental Visual Tracking [Ross 07] builds online a PCA-based model

of the object. The method demonstrated a strong resistance to appearance and illumi­

nation variations.

using robust statistics.

To encode multiple appearances of the object, the single image patch can be replaced

by multiple projections given by Principal Component Analysis (PCA). EigenTrack-

ing [Black 98] considers a scenario when all the object appearances are known in ad­

vance and trains an object model offline. This approach has been applied to tracking of

non-rigid objects on non-cluttered background. Incremental Visual Tracking [Ross 07]

builds the PCA-based model during tracking. It has been demonstrated to handle illu­

mination and appearance variations. See figure 2.4 for illustration.

Research in generative trackers demonstrated that drift can be reduced by reusing al­

ready seen examples of the object, and that the resistance to partial occlusions can be

achieved by decomposing the template into independent parts. Both of these ideas are

used in our system. However, the principle drawback of generative trackers is that they

mode] only the object appearance. As a consequence, generative trackers get confused

easily in cluttered background, where the clutter may look similar to the object. To

increase the tracker’s robustness, methods that consider the background class in the

modeling were proposed.

2.1. Tracking 25

2.1.4 Discriminative trackers

Discriminative trackers encode the differences between the object appearance and the

environment where the object moves. A common approach is to build a binary clas­

sifier that distinguishes the object from its background. These methods represent the

closest competitors to our system as they often demonstrate re-detection capabilities.

Static discriminative trackers

One of the earliest discriminative trackers was proposed by Avidan [Avidan 04], who

integrated an offline trained SVM classifier into the tracking process. The motion was

estimated by maximizing the classifier confidence using gradient-ascent. The perfor­

mance was demonstrated on the task of vehicle tracking. The main limitation of static

discriminative trackers is in the training data, since all appearances of the object and

background have to be captured in advance.

Adaptive discriminative trackers

Adaptive discriminative trackers leam the discriminative classifier during tracking.

This allows them to track a wide range of objects immediately after initialization.

These trackers typically operate as follows. In the first frame, the tracker builds a

simple classifier separating the selected object from its background. The tracking then

proeeeds in a frame-by-frame fashion. In every frame, the classifier is evaluated on the

surrounding of the previous objeet location and the new location is established, e.g. by

taking the maximally confident location. The tracker then performs an update. The

current location of the object is used to sample positive examples, and the surrounding

is used to sample negative examples of the object appearance. These labeled examples

update the classifier, which is then used in the next frame.

One of the earliest works from this category was by Collins et al. [Collins 05] who

26 Chapter 2. Related work

Figure 2.5: Ensemble tracking [Avidan 07] represents the object of interest by a dis-

eriminative model classifying every pixel as the object or background. The classifier

is adapted in every frame. The tracker demonstrated the ability to handle appearance

changes in presence of cluttered environment.

J É
Figure 2.6: The SemiBoost tracker [Grabner 08] reduces drift of discriminative track­

ers by guiding the update by an offline trained classifier. Performance was demon­

strated (among others) on: (TOP) 24h tracking of a still object by static camera, (BOT­

TOM) re-detection of a stationary object after a brief occlusion.

2.1. Tracking 27

built a generative model by discriminative training. The object model, based on color

projections, was adapted during tracking which made it robust to significant illumi­

nation variations. Ensemble Tracking [Avidan 07] updates a boosting-based classifier

to discriminate between pixels on the object and pixels on the background. Online

Boosting [Grabner 06] applies the same principle to a grid of overlapping bounding

boxes instead of individual pixels. Their classifier was based on a set of Haar-like

features [Viola 01] and was trained in an online boosting [Oza 05] framework.

The research in adaptive discriminative tracking has enabled tracking of objects that

significantly change appearance and move in cluttered background. The speed of adap­

tation of the classifier plays an important role in these systems. It controls the impact

of new appearances on the classifier, but also the speed by which the old information is

forgotten. If the speed of adaptation is set correctly for a given problem, these trackers

demonstrate robustness to short-term occlusion. On the other hand, if the object is not

visible for longer time than expected, the tracker will eventually forget the relevant

information and never recover.

Constrained adaptation for discriminative trackers

This section reviews the discriminative tracking approaches that perform constrained

adaptation of the classifier, which is in contrast to every-frame-update reviewed in

the previous sub-section. The constrained adaptation aims at drift reduction as well

as long-term tracking resistant to long-lasting full occlusions. Three classes of ap­

proaches can be identified: (i) semi-supervised learning, (ii) multiple-instance learn­

ing, and (iii) eo-training.

Semi-Supervised Learning (SSL) [Chapelle 06] is a learning approach that learns from

both labeled and unlabeled training data. SSL has been applied to a number of prob­

lems in machine learning [Blum 98] and recently also to adaptive discriminative track­

ing. Semi-supervised Online Boosting [Grabner 08] is one of the earliest approaches.

28 Chapter 2. Related work

The initializing frame is considered as a collection of labeled examples, all the re­

maining frames from the sequence are considered as unlabeled. The method employs

two elassifiers: (i) a classifier used for tracking, and (ii) an auxiliary classifier used

for update. In the first frame, both classifiers are trained using the labeled data. Dur­

ing the tracking, the auxiliary classifier remained fixed and provides soft-labels to the

unlabeled patches, which are then used to update the tracking classifier. The method

demonstrated reduction of drift and certain re-detection capabilities. See figure 2.6 for

an illustration. Beyond Semi-supervised Online Boosting [Stalder 09] extended the

approach with one more auxiliary classifier to increase the adaptability of the system.

Multiple Instance Learning (MIL) [Dietterich 97] is a variant of supervised learning,

where examples are delivered in groups. Within each group, the examples share the

same label. MILTrack [Babenko 09] combines Online Boosting [Grabner 06] and

MIL. In contrast to the every-frame update, the classifier is updated by spatially re­

lated groups of patches. The introduction of this spatial-information reduced drift

and improved accuracy. Later on, a combination of MILTrack and SSL was pro­

posed [Zeisl 10].

Co-training [Blum 98] is a specific instance of SSL methods, which trains in paral­

lel two independent classifiers. Confident predietions of one classifier train the second

classifier and vice versa. The idea behind the co-trained trackers is the following. If the

object disappears from the view, neither of the classifiers is confident and the update

does not take place. The co-trained Support Vector Machine tracker [Tang 07] repre­

sents the object in two feature spaces (color, gradient orientations [Dalai 05]), which

were used to train two online-SVM [Cauwenberghs 01] classifiers. The co-trained

Generative and Discriminative traeker [Yu 08] exploited the same idea while training

a pair of a generative and a discriminative classifiers. A significant improvement in

re-detection capability with respect to adaptive discriminative trackers was aehieved.

In addition, the task of robust object tracking is often studied in offline setting. It

has been shown [Buchanan 06] that points can be tracked very robustly and accurately

2.2. Detection 29

Offline training

Object Model (classifier)

A Detection

Figure 2.7: Illustration of a typical detection system.

if tracking is tightly integrated with detection using dynamical programming. While

the system demonstrated impressive performance it has been designed for interactive

post-processing and requires an offline training stage.

2.2 Detection

Object detection is the task of localizing objects in an input image. In long-term track­

ing, detection capability is essential as the object freely moves in and out of the camera

field of view. Object detectors do not make any assumptions about the number of ob­

jects nor their location in the image. The objects are described by a model that is

built in a training phase. At run-time, the model remains typically fixed. Figure 2.7

illustrates a typical detection system.

This section reviews the detection approaches starting from the simplest up to the most

complex. Sub-section 2.2.1 reviews detectors of image features, which represent the

basic building blocks of more complex approaches. Sub-section 2.2.2 reviews detec­

tors of object instances (e.g. a specific book cover) and briefly comments on recent

methods for online learning of these methods. Finally, as we are also interested in the

long-term tracking of human faces, sub-section 2.2.3 reviews the methods for detection

of human faces and comments on commonly used features.

30 Chapter 2. Related work

2.2.1 Detection of image features

Feature detectors [Tuytelaars 07] are algorithms that are used to localize salient points

(or regions) in an input image. We distinguish two approaches for feature detection.

Designed detectors. These detectors design a saliency measure and localize features

that maximize it. The widely known approaches are Harris [Harris 88] or Shi-Tomasi

detector [Shi 94], which localize image points. These detectors have been extended to

scale and affine covariant region detectors with the Hessian-Laplace [Mikolajczyk 05]

detector. Other examples from this category are Difference of Gaussians (DoG) [Lowe 04]

or Maximally Stable Extremal Regions (MSER) [Matas 04].

Learned detectors. Feature detection has reached a level of maturity and the re­

search was directed toward proposing more efficient solutions that stem from machine

learning community. A popular algorithm is FAST [Rosten 06] keypoint detector,

which approximates the Harris comer detector [Harris 88]. Efficient approximations

of Hessian-Laplace [Mikolajczyk 05] were also proposed [Sochman 09].

2.2.2 Detection of object instances

This section focuses on methods that detect object instances, sueh as a specific book

cover. We distinguish approaches which model the object appearance (i) globally and

(ii) locally. We also mention methods for the learning of these detector.

Global appearance models typically represent the object appearance by a collection

of examples and define the detection (and the pose estimation) as the search for the

most similar example in the database. In one of the earliest works, Murase and Na-

yar [Murase 95] use a controlled capturing process to collect a large number of exam­

ples of various 3D objects. Similar idea underpins more recent methods for detection

and rectification of patches [Hinterstoisser 09] or detection of texture-less objects us­

ing dominant orientation templates [Hinterstoisser 10]. Global appearance models are

2.2. Detection 31

Figure 2.8: Lowe [Lowe 04] proposed a detection system that represented objects lo­

cally using keypoints and SIFT descriptors. The detector is based on an approximate

nearest neighbor and global geometric constraints. The system demonstrated a signifi­

cant illumination and pose invariance and robustness to partial ocelusions.

appealing due to their simplicity, however they suffer from partial ocelusions and back­

ground clutter.

Local appearance methods represent the object by a collection of local patches that

are related by geometric constraints. Their advantage, with respect to the global ap­

pearance representation, is their resistance to partial occlusions. The seminal work in

this area was done by Lowe [Lowe 04], where the object is modeled by a collection

of SIFT descriptors [Lowe 04] extracted around DoG features. The detection has two

stages: (i) the detected DoG features are assigned a nearest neighbor descriptor stored

in a database, and (ii) the assignments are validated using geometric constraints (a sim­

ilarity transformation is considered). Lowe demonstrated near real-time detection of

multiple objects, resistant to significant occlusions as shown in figure 2.8. A number of

approaches followed this research line [Obdrzalek 05, Lepetit 05, Taylor 09, Filet 10].

Learning approaches. The methods discussed above typicahy separate the training

and testing stage, which restricts their application to scenarios when the object appear­

ance is known in advance. The training state is therefore essential and often requires

32 Chapter 2. Related work

Figure 2.9: Feature harvesting [Ozuysal 06], a method for automatic training of an

object detector in a controlled environment (TOP). After the training phase the detector

operates in cluttered environments (BOTTOM).

a large number of human-annotated training examples. In order to simplify the train­

ing stage. Feature Harvesting [Ozuysal 06] learns the geometry and the appearance of

an object automatically from a video. The method assumes a rigid 3D object moving

slowly in a video sequence. After the training phase, the algorithm is able to detect

the object and estimate its 3D pose in a cluttered background. See figure 2.9 for il­

lustration. Another direction is to make the training instantaneous and thus remove

the difference between training and run-time. A common strategy is to simply add

new templates [Hinterstoisser 10] or to integrate new views into the classifier exploit­

ing the computation performed in the offline training [Calender 08, Hinterstoisser 09,

Pilet 10].

For certain classes of objects, the detection of object instances has reached a level of

maturity. In particular, planar and textured objects can be reliably detected in real-time

and are often used in augmented reality applications. Objects that are non-rigid and

non-textured still remain challenging for detection. With respect to online learning,

several methods are designed to enable instantaneous online learning, but the decision

when to leam new appearances is not directly addressed.

2.2. Detection 33

a) training set

g

b) f e a tu r e s

b a ck g ro u n d

c) c a s c a d e d -c la s s if ie r d) s lid in g w in d o w e) n o n -m a x im u m s u p p re s io n

Figure 2.10: Illustration of a typical face detection components.

2.2.3 Detection of faces

Face detection is a task of localizing of human faces in an input image, regardless

of their pose, illumination, expression or identity. This section briefly mentions the

history of face detection, describes the most popular approaches and comments on the

commonly used features.

History. Research in face detection started in early 70’ with approaches that modeled

the face appearance by a set of rules provided by the researcher [Fischler 73, Sinha 94].

This view was mainiy motivated by the ease with which rules could be designed

(e.g. a face has two eyes) and the lack of computational resources that would enable

learning of these rules explicitly. With increasing computational capacity, learning-

based methods started to dominate in 90’, which leam the mles from training ex­

amples [Turk 91, Belhumeur 97, Osuna 97, Sung 98, Rowley 98, Papageorgiou 98].

While a number of these approaches achieved high detection rates [Schneiderman 04],

their practical applicability was limited due to their speed. This was changed by Vi­

ola and Jones [Viola 01] approach, who introduced the first real-time face detector.

Since then, research in face detection iterates over the Viola and Jones approach [Li 04,

Fleuret 01, Jones 03, Sochman 05, Huang 07] and is often considered as solved.

Viola and Jones face detector combined a number of techniques previously developed

in face detection. Many of these techniques reach beyond face detection and are used

in our long-term tracking system as well. Refer to the figure 2.10.

34 Chapter 2. Related work

• Training set. The face is represented by a model, which is learned from a large

collection of labeled training examples. The positive examples depict tightly

cropped faces, negative examples depict non-faces.

• Local features. The training examples are described by local features. Popular

features are Haar wavelets [Papageorgiou 98] which encode intensity patterns.

The features are efficiently measured using integral images [Viola 01].

• Cascaded classifiers. The face model has a form of a binary classifier which is

split into a number of stages. Every stage enabled early rejection of background

examples. This cascaded architecture, which leads to a significant increase of

the classification speed, was first used in [Yang 94].

• Sliding window. The cascaded classifier is evaluated on a grid of locations at

multiple scales. At every location, the classifier decides about presence or ab­

sence of the face.

• Non-maximum suppression. Due to the sliding window approach, the classifier

typically produces multiple overlapping responses around the face. A common

approach is to take the locally maximal confidence response and suppress all the

remaining responses.

• Boosting+Bootstrap. The classifier is typically learned using a combination of

boosting [Freund 97] and bootstrapping [Sung 98]. As one of the contribution

of this thesis is the optimal combination of these methods. A detailed review of

these methods is given in section 2.3.

Features used in object detection. Features play an important role in object detection

as they eneode our knowledge about the object. Here we give a brief overview of

features that are commonly used for description of object appearance. See figure 2.11

for an illustration.

2.2. Detection 35

■4' ï̂ïSïïElï*
> i K i a a i f | E k

99.

a) ra w p ixels

I
%

b) h i s to g r a m s c) f i l te rs d) g r a d ie n ts e) c o d e s

Figure 2.11: Features used to represent appearance in objects detection.

• Raw pixels. An image patch can be considered a simple feature. Its advantage

is its simplicity and efficiency. The drawback is its high dimensionality as well

as low robustness to appearance variations. The similarity is usually measured

using Normalized Cross-Correlation (NCC) or by Sum of Square Differences

(SSD).

• Histograms. A histogram represents the object appearance by a distribution of

colors, gray-scale values, edge orientations, etc. Spatial relations between pixels

are discarded in histograms.

• Filter responses. Filters are used to detect predefined intensity patterns in an im­

age patch. One of the most popular types are Haar-like filters [Papageorgiou 98],

which encode difference of average intensities between neighboring rectangular

regions. These features can be measured in constant time using integral im­

ages [Viola 01]. A number of extensions have been proposed such as the compar­

ison of non-neighboring regions [Li 04], features rotated by 45 degrees [Lienhart 02],

or pixel differences measured at different scale-space levels [Huang 07].

• Gradients. Gradients represent a significant cue in many object recognition sys­

tems. The Scale-invariant Feature Transform [Lowe 04] is probably the most

successful. A patch surrounding a keypoint is split into 4x4 cells, within each

cell an eight-bin histogram of gradient orientation is measured which produces

a feature vector of 128 elements. A number of modifications have been later

proposed. Histograms of Oriented Gradients [Dalai 05] uses an arbitrary num-

36 Chapter 2. Related work

ber of cells and various normalization schemes. Edge Orientation Histograms

[Levi 04] compares just two orientations.

Codes. Codes convert a real-valued intensity patterns to discrete codes. Lo­

cal Binary Patterns [Ojala 02] are probably the most commonly used. These

features were originally designed for texture classification but later were ap­

plied to face detection [Hadid 04]. Codes were also used for encoding combina­

tions of wavelet coefficients [Schneiderman 04] or patterns of edge orientations

[Mikolajczyk 04].

• • • - - t e r ' o O , o

• • •
• • • • • •

o o o O

G O O
o O o o o o

• * • • • • o ° o o ° o

|S b? 0 Î„ 5 |-* * , * . •
• • •

o o • o

O - ° ° °
featue space ® O Ofeatue space

a) supervised b) semi-supervised

Figure 2.12: Classification of learning methods. Colored dots correspond to labeled

training examples; white dots correspond to unlabeled examples.

2.3 Machine learning

This section reviews strategies for learning of sliding window-based object detectors.

At the core of these detectors is a binary classifier, which classifies patches in an in­

put image. During training, the image patches are interpreted as points in the feature

space (training examples), and the goal is to find a decision boundary that separates

the positive examples from the negative examples. Figure 2.12 illustrates two settings

discussed in this section: (i) supervised learning, (ii) semi-supervised learning.

2.3. Machine learning 37

Classifier

Active
set

Pool

a) bootstrapping b) initial active set c) augmented active set

Figure 2.13: Bootstrapping: a) the block diagram, b) an initial training set, c) a training

set after several iterations of bootstrapping.

Detectors are traditionally trained using supervised learning. While this setting is not

directly relevant for long-term tracking of unknown objects, it becomes valuable when

the class of the objeet is known in advance. For instance, if it is known that the object

of interest will be a face, it is possible to train a face detector in advance. Two popular

learning methods, namely bootstrapping and boosting will be reviewed in section 2.3.1

and 2.3.2, respectively. Recently, the research in the detector training has focused on

semi-supervised learning methods, which, in addition to labeled data, enable process­

ing of unlabeled data. Section 2.3.3 reviews the corresponding methods.

2.3.1 Bootstrapping

Bootstrapping [Sung 98] is a general strategy that iteratively improves a classifier by

training it on an increasingly larger and more informative subset of the entire training

set. This subset is called an active set and the entire training set is reffered to as

the pool. Bootstrapping first randomly samples the active set from the pool and then

iterates over: (i) training a classifier on the active set, (ii) testing of the classifier on the

pool, and (iii) enlarging the active set with misclassified examples from the pool. This

procedure stops when no more misclassified examples exist or when the performance

stabilizes. The result is an augmented active set which is not sampled randomly but

38 Chapter 2. Related work

strong
classifier

o

Training
set

a) boosting

1 # • /
•

\ * / • •
• * ‘ A *A \ • /• •

y / %# # • X *»• ## A \ •
• • z\ A • \
^AA • \
• A « \ . • \

• • •A • \
1 •• /

b) weak classifier and weights c) strong classifier

Figure 2.14: Boosting: a) the block diagram, b) a weak classifier and a weighted

training set, c) a strong classifier.

with emphasis on the decision boundary. See figure 2.13 for illustration.

Relation to active learning. Bootstrapping is closely related to other methods such as

Active Learning [Lewis 94]. Active Learning addresses a problem when a relatively

small number of examples are labeled and a large number of examples are unlabeled.

Learning starts by training a classifier from labeled examples. The classifier then evalu­

ates the unlabeled set and those examples that are not confidently classified are labeled

by a human annotator. In contrast, bootstrapping assumes that all training example

are already annotated. One of the contributions of this thesis is the extension of boot­

strapping for unlabeled data, which we call unsupervised bootstrap. The unsupervised

bootstrap is discussed in chapter 5.

Bootstrapping in statistics. The definition of bootstrapping as described above is in

line with the one considered in object detection [Sung 98, Papageorgiou 98, Rowley 98,

Schneiderman 04, Viola 01], where it is typically used to handle large negative training

sets. Notice that in statistics, bootstrapping refers to a set of re-sampling techniques

used to measure statistical properties of estimators [Efron 93].

2.3. Machine learning 39

2.3.2 Boosting

Boosting [Freund 97] is a supervised learning strategy which aims to improve the per­

formance of a weak classifier. The intuition behind boosting is: focus on the most

difficult training examples. This is achieved by maintaining a distribution of example

weights that represent the example’s difficulty. This section briefly comments on the

history of boosting, its relation to ensemble methods and links to bootstrapping.

Consider a labeled training set and a set of arbitrary weak classiflers. Boosting com­

bines these weak classiflers into a strong classifler which performs better than any of

the weak classiflers. Boosting is an iterative process which iterates over: (i) selection

of the weak classifier that performs best on current distribution of weights, and (ii)

the update of the distribution to emphasize misclassified examples. The set of weak

classiflers selected in each round form the strong classifier. Boosting methods differ in

the way the example weights are updated, which depends on a particular loss function.

A common property of all of boosting methods is that a weak classifier selected in

iteration k has 50% error in iteration k + 1 which prevents it being selected again. The

block diagram of boosting, a weak classifier and a strong classifier are illustrated in

figure 2.14.

History. Boosting has been studied for two decades now. Schapire [Schapire 90] de­

veloped the first boosting procedure that could always improve the performance of

a classifier by training two additional classifiers on modified versions of the training

data. One year later, Freund [Freund 95] generalized the algorithm to combine an ar­

bitrary number of weak classifiers. Both of these versions assume weak classifiers

which have identical error rates. This assumption was dropped by the discrete Ad-

aBoost [Freund 97] algorithm, which enabled to boost classifiers with arbitrary error

rates. The strong classifier was defined as weighted majority vote. In a comparative

study, Quinlan [Quinlan 96] observed that trees can be boosted into more accurate

classifier if each node outputs a confidence value rather than a discrete class. Sub-

40 Chapter 2. Related work

sequently, real AdaBoost [Schapire 98b] was proposed, which allowed the classifier

to output confidences and achieved a significant improvement in classification over

discrete AdaBoost.

Improvements of boosting. Early versions of Boosting [Schapire 90, Freund 95] used

a stopping criterion for the number of combined weak classifiers to avoid over-fitting.

However, practitioners observed [Schneiderman 04] that testing error keeps decreas­

ing and then stabilizes when the boosting is not terminated. This phenomenon was

explained by the ’’margin theory” [Schapire 98a]. Moreover, the performance of boost­

ing was explained from statistical point of view [Friedman 00] as an additive logistic

regression. Boosting algorithms are still evolving. Robustness to noisy data was ad­

dressed by BrownBoost [Freund 01] or LogitBoost [Friedman 00]. An online variant

of boosting have been also proposed [Oza 05]. A comprehensive review of the methods

can be found in [Schapire 02].

Relation to ensemble methods. Boosting has close links to other algorithms which

internally maintain a set of weak classifiers and integrate their responses by majority

voting, i.e. ensemble classifiers. The underlying assumption of these methods is that

the classifiers make independent errors and therefore the majority voting improves

their performance [Polikar 06]. The methods differ in the way the independence of

the classifiers is aehieved. Bagging [Breiman 96] uses sampling with repetition to

form different training distributions. If the weak classifiers are trees, bagging becomes

a Randomized Forrest [Breiman 01], which has been applied in computer vision to

a number of problems [Amit 97, Lepetit 05, Shotton 08]. Apart from sampling with

repetition, the classifier independence can be achieved by designing features which

are likely to be independent such as in Randomized Ferns [Ozuysal 07]. A similar

approach is used in our implementation.

Boosting and sliding-windows. Boosting has been developed for general machine

learning problems. However, such algorithm may struggle in some practical scenarios

such as face detection using a sliding window. In a typical image, the sliding-window

2.3. Machine learning 41

Standard Adaboost

Strong classifier

Cascaded Adaboost

stage 1 Stage 2

n

object

reject

object

reject reject

Stage 1

Stage 2

Figure 2.15: Standard AdaBoost versus cascaded AdaBoost: (TOP) standard AdaBoost

has to evaluate all weak classifiers (here Fiaar-like filters), (BOTTOM) cascaded Ad­

aBoost enables to reject negative examples after each stage of the elassifier thus reduc­

ing the computation demands.

classifier is evaluated on thousands (% 10^) of patches and only a small fraction of them

(% 10) may depict the object of interest. It follows that the positive and negative classes

are extremely asymmetric, i.e. majority of windows are negative. The classifier has

to be therefore tuned toward precision (probability of false positive should be around

1/10^). Another eonsequence is that the negative class is virtually unlimited and it is

not straightforward to maintain a distribution of weights on it.

Boosting and bootstrapping. Boosting has been first applied to object detection by

Viola and Jones [Viola 01] with two important modifications: (i) a cascaded classifier,

and (ii) bootstrapping. The standard AdaBoost classifier measures all weak classifiers

in its ensemble and outputs a decision after that. Sueh a strategy is too slow and not

even necessary for a sliding-window classifier. As noted earlier, the majority of patches

42 Chapter 2. Related work

o
o
o
oo o oo

og ,• •

c) semi-supervisedb) unlabeled data d) com parison o f classifiersa) supervised

Figure 2.16: Can unlabeled data improve a classifier? Refer to the text for explanation.

in a typical image depict background. Therefore the classifier is split into stages, each

of which rejects (classifies as negative) a subset of candidates before progressing to

the next stage. This cascaded structure has a great impact on the classifier speed but

also influences the quality of training. Standard training maintains only a distribution

of weights and considers the training set as fixed. In contrast, training with a cascaded

classifier involves resampling of the training set to better represent the examples close

to the current decision boundary, which has direct links to bootstrapping [Sung 98].

2.3.3 Semi-supervised learning

This section reviews the semi-supervised learning methods, which, in addition to la­

beled examples, exploit unlabeled training examples.

A natural question is whether unlabeled data can help in training of a classifier. Con­

sider the mind experiment illustrated in figure 2.16. The goal is to train a classifier

in two settings: (i) from two labeled examples, and (ii) from the identical labeled ex­

amples and a collection of unlabeled examples. Given the labeled examples only, a

number of supervised methods can be used to train a classifier. Figure 2.16 (a) illus­

trates the decision boundary of a classifier that maximizes the classification margin. If

the labeled examples are augmented by unlabeled (b) several semi-supervised learning

strategies can be used. One of the simplest is to perform clustering of the unlabeled

examples and label each cluster by the corresponding labeled example within it. This

2.3. Machine learning 43

produces a decision boundary that is illustrated in (c). This classifier will make correct

predictions as long as the clustering is aligned with the classification that is demanded

(d). This example demonstrates that if the underlying distribution of unlabeled exam­

ples forms clusters that are aligned with the classification function to be learned, the

unlabeled data can help when training a classifier. This property of unlabeled data, also

referred to as the ’’cluster assumption”, is often assumed by the semi-supervised learn­

ing algorithms [Chapelle 06]. A number of algorithms relying on similar assumptions

have been proposed in the past including Expectation-Maximization, self-learning and

co-training.

Expectation-Maximization (EM) is a generic method for finding estimates of model

parameters given unlabeled data. EM is an iterative process, which in case of bi­

nary classification alternates over: (i) estimation of soft-labels of unlabeled data, and

(ii) training a classifier exploiting the soft-labels. EM was successfully applied to

document classification [Nigam GO] and learning of object categories [Fergus 03]. In

the semi-supervised learning terminology, EM algorithm relies on the ’’low density

separation” assumption [Chapelle 06], which means that the classes are well sepa­

rated in the feature space. EM is sometimes interpreted as a “soft” version of Self-

learning [Zhu 09].

Self-learning starts by training an initial classifier from a labeled training set, the clas­

sifier is then evaluated on the unlabeled data. The examples with the most confident

classifier responses are added to the training set and the classifier is retrained. This

is an iterative process. Self-learning has been applied to training of a human eye de­

tector [Rosenberg 05]. However, it was observed that the detector improved more if

the unlabeled data was selected by an independent measure rather than the classifier

confidence. Rosenberg et al. suggested that the low density separation assumption is

not satisfied for object detection and other approaches may work better.

Co-training [Blum 98] is a learning method built on the idea that independent classi­

fiers can mutually train one another. To create such independent classifiers, co-training

44 Chapter 2. Related work

View 1 Unlabeled data View 2

con fident
exam plesclassify

con fid en t
exam p les classify

Classifier

ClassifierTraining set

Training set

train train

Figure 2.17: Illustration of co-training [Blum 98] of two classifiers.

assumes that two independent feature-spaces are available. See figure 2.17 for illustra­

tion of the process. The training is initialized by the training of two separate classifiers

using the labeled examples. Both classifiers are then evaluated on unlabeled data. The

confidently labeled samples from the first classifier are used to augment the training

set of the second classifier and vice versa in an iterative process. Co-training works

best for problems with independent modalities, e.g. text classification [Blum 98] (text

and hyper-links) or biometric recognition systems [Fob 09] (appearance and voice).

In visual object detection, co-training has been applied to car detection in surveil­

lance [Levin 03] or moving object recognition [laved 05]. We argue that co-training

is not a good choice for object detections, since the examples (image patches) are

sampled from a single modality. Features extracted from a single modality may be

dependent and therefore violate the assumptions of eo-training.

2.4. Observations 45

2.4 Observations

Tracking. We reviewed methods starting from the most basic approaches such as

template tracking, up to complex trackers which define tracking as classification and

update the classifier during tracking. Trackers are becoming increasingly complex to

handle increasingly challenging environments and appearance changes. The assump­

tion is that the object state in the previous frame is known. In unconstrained video, this

assumption is violated and therefore any tracker eventually fails. The tracking failure

will be investigated in chapter 3.

Detection. Object instance detection reached a level of maturity for scenarios where

a sufficient number of training examples can be either generated or annotated. A cas­

caded architecture, or fast keypoint detectors enable tracking-by-detection, which over­

comes the drift and initialization problems of contemporary trackers. The underlying

assumption of objeet detectors is a separation of training and run-time phase. This lim­

its their applicability to objects that can be modeled in advance. Methods that enable

efficient online update of detectors have been proposed, but the problem how to update

these detectors was not addressed.

Learning. We reviewed two classes of learning approaches for training of object

detectors: supervised and semi-supervised. In the supervised setting the learning is

often realized by boosting. However, the standard variants of boosting, do not per­

form well and have to be combined with bootstrapping to handle large training sets.

Chapter 4 closely analyses this relationship between boosting and bootstrapping and

proposes a unifying algorithm. In the semi-supervised setting we discussed several ap­

proaches popular in text classification, however in object detection the improvements

are marginal. One of the reasons is that in object detection it is hard to find independent

features that would effieiently drive the learning process. Chapter 5 discusses other in­

formation sources (spatio-temporal structure in data) that could be used for training an

object detector.

46 Chapter 2. Related work

Chapter 3

Tracking: failure detection

This chapter investigates long-term tracking from the perspeetive of frame-to-frame

tracking. The starting point is the observation that any frame-to-frame tracker eventu­

ally fails, for instance, when the objeet moves out of the camera view. Therefore, the

primary goal of this chapter is to estimate the reliability of a tracker and use it to detect

the tracking failures. The seeondary goal is to use the reliability measure to improve

the frame-to-frame tracking itself.

The chapter is struetured as follows. Seetion 3.1 focuses on point trackers and proposes

a novel error measure that evaluates the reliability of arbitrarily long point trajectories.

Section 3.2 develops a novel traeker ealled Median-Flow. The object is represented by

a grid of points, which influence the estimated object motion based on their reliabil­

ity. The Median-Flow tracker is comparatively evaluated with relevant approaches and

superior performance is achieved. The chapter is concluded in section 3.3.

3.1 Detection of tracking failnres

This section is concerned with the detection of tracking failures of point trackers, e.g.

Lucas-Kanade tracker [Lucas 81]. These traekers build up a point trajectory from a

47

48 Chapter 3. Tracking: failure detection

sequence of frame-to-frame displacements. Such trackers are: (i) prone to drift due to

accumulation of localization errors, and (ii) likely to fail if the point suddenly changes

appearance, becomes occluded or disappears from the eamera view.

Our approaeh to failure detection is based on so called forward-backward consistency

assumption that correct tracking should be independent of the direction of time-flow.

Algorithmically, this assumption is exploited as follows. First, a tracker produces a

trajectory by tracking a point forward in time. The trajectory has arbitrary length, and

can be obtained by an arbitrary tracker. Second, the point location in the last frame

of the forward trajectory initializes a validation trajectory. The validation trajectory is

obtained by backward tracking. Third, the two trajectories are compared and if they

differ significantly, the forward trajectory is considered as incorrect.

Figure 3.1 (TOP) illustrates the method when tracking a point between two images

(trajectory of length one). Point no. 1 is visible in both images and the tracker is able

to localize it correctly. Tracking this point forward or backward results in consistent

trajectories. On the other hand, point no. 2 is not visible in the right image and the

tracker localizes a different point. Baekward-traeking of this point results in a different

location than the original one. The corresponding forward and backward trajectories

are significantly different in this case.

Related work. A commonly used approach to detect tracking failures is to compare

consecutive point-centered patches using Sum of Square Differences (SSD) [Bouguet 99,

Nickels 02]. High SSD means that the patches are dissimilar, whieh indicates tracking

failure. This differential error indicates failures caused by occlusion or rapid move­

ments, but does not detect slowly drifting trajectories. The detection of drift can be ap­

proached by defining an absolute error. A popular approach is to consider affine warps

of the initial patch [Shi 94] and compare them to the current patch. Recently, a general

method for assessing the traeking performance was proposed [Wu 07, Dowson 06],

which is based on the “forward-backward” idea. The forward-backward consistency

3.1. Detection o f tracking failures 49

backward trajectory

Pt+k
forward-backward

errorb)

forward trajectory

t̂+kt+1t

Figure 3.1: Illustration of the Forward-Backward error measure: (TOP) consistent (1)

and inconsistent (2) trajectories, (BOTTOM) terms used for the definition of the

Forward-Backward error measure.

was used to automatically evaluate the tracking performance without the need to de­

fine the ground truth manually. Improvement of the tracking performance based on

the forward-backward consistency was not considered. Moreover, the idea of forward-

backward consistency is often used wide-baseline matching [Strecha 03] or in optical

flow estimation [Alvarez 07]. These methods typically consider a pair of images. In

contrast, our approach defines the error for arbitrarily long point trajectories.

3.1.1 Forward-Backward error

This section defines the Forward-Backward (FB) error, see figure 3.1 (BOTTOM) for

illustration. Let (It, It+i..., It+k) be an image sequence and pt be a point location in

time t. Using an arbitrary tracker, the point pt is tracked forward for k steps. The

resulting trajectory is 7̂ /. = (pt,pt+i, ...,P(+&). Our goal is to estimate the reliability

of trajectory 7^ ̂ given the image sequence. For this purpose, the validation trajectory

50 Chapter 3. Tracking: failure detection

is constructed. Point pt+k is tracked backward up to the first frame and produces the

backward trajectory ^ k = [p u P t + u ■■■^Pt+k), wherepf+t = Pt+k-

The FB error of the forward trajectory given the image sequence is defined as the

distance between the forward and the backward trajectory:

F B (fk \I t , k + i- , It+k) = d istance('?k, ^ k) -

In our implementation, we use the Euclidean distance between the initial point of the

forward trajectory and the end point of the backward trajectory:

distance(ÿ k ,^ k) = \\pt ~ Pt\\-

It was observed that distance functions that measure average or maximal distance be­

tween trajectories lead to similar performance but are more expensive. On the other

hand, distance funetions that measure minimal or median distance between the trajec­

tories did not perform well.

The Forward-Backward error provides a real value. Higher values indicate the forward-

backward inconsistency and possibility of tracking failures. The hard decision whether

the tracker failed is done by a thresholding.

3.1.2 Quantitative evaluation

This experiment quantitatively evaluates the ability of FB and SSD to identify correctly

tracked points (inliers) between two frames. One hundred images depicting scenes of

nature were warped by random affine transformations and Gaussian noise was added.

This process resulted in a set of one hundred image pairs. In the original images, a

set of points was initialized on a regular grid. Two types of displacements of these

points were then established: (i) ground truth displacements were obtained by project­

ing the points to the warped images, and (ii) estimated displacements were obtained

by tracking the points using Lucas-Kanade tracker [Lucas 81] to the warped images.

3.1. Detection o f tracking failures 51

Precision0.8

0.6

0.4

0.2 Recall
Forward-Backward Error (pixels)

■3 ■2 1 1 2 ,310 10 10 Ipx 10 10' 10'

0.9
- Q_

0.8
 Forward-Backward Error
— Sum of Square Differences0.7

Recall

0.40 0.2 0.6 0.8 1

Figure 3.2: Quantitative evaluation of the Forward-Backward error for A: = 1. (TOP)

Precision and recall as a function of threshold 6. (BOTTOM) Precision and recall char­

acteristics in comparison to Sum of Square Differences.

52 Chapter 3. Tracking: failure detection

The estimated displacements that ended up closer than 2 pixels from the ground truth

were labeled as inliers. We selected the threshold of 2 pixels since Lucas-Kanade does

not estimate affine deformation and with too tight threshold, the majority of points

would be classified as outliers. By setting the threshold to 2 pixels we are interested

in recognition of catastrophic tracking failures. Affine deformation and the Gaussian

noise are used as approximations of real variations of the point appearance.

Using the 2 pixel threshold, the inliers represented approximately 65% of all displace­

ments. The estimated displacements were then evaluated by a failure detection mea­

sure (FB, SSD), displacements with error below 6 were classified as inliers. A correct

classification of an inlier is denoted as a true positive (TP), an incorrect classification

is denoted as false positive (FP). The quality of the error measures is accessed using

precision and recall statistics, which are both function of threshold 9:

TP „ TP
precision = ——— —-, recall =

T P -h F P ’ #inliers'

Figure 3.2 (TOP) shows the resulting performance of the FB error as a function of

the threshold 9. The figure illustrates that the proposed FB error is able to reliably

recognize majority of inliers at high precision level. Notice for instance the working

point indicated by the red dot. For 9 = 1 pixel, the recall is of 95% and precision of

96%. Figure 3.2 (BOTTOM) shows the corresponding precision and recall curves for

FB in comparison to SSD. FB outperforms SSD for majority of working points. SSD

was unable to detect inliers for small thresholds, its precision starts below 70% (notice

that random guessing would start around 65%).

3.1.3 Visualization

This sub-section visualizes the proposed Forward-Backward error for long point tra­

jectories. Given a video sequence, every pixel in the first frame initializes a point

trajectory. Every point is tracked forward up to the last frame and then backward up

3.1. Detection o f tracking failures 53

Error M ap First fram e Last fram e

Figure 3.3: Error map: visualization of the Forward-Backward error for k = 50. Dark

colors in the error map indicate low Forward-Backward error that considers 50 frames.

Yellow points in the original frames indicate 5% of the most reliable points. Points on

the pedestrians are enlarged for better visibility.

to the first one. Each pixel is then assigned the corresponding Forward-Backward er­

ror. The resulting image is called the error map and indicates the reliability of the

corresponding point-trajectories.

The error map has been constructed for a sequence of 50 frames, with a moving camera

following two pedestrians (sequence PEDESTRIAN 1). The figure 3.3 shows the error

map as well as the first and the last frame of the sequenee. The error map encodes

the pixel reliability by colors. Dark colors indicate low FB error: shadow cast by tree

branches (a), upper bodies of two pedestrians (b). Any point selected from these ’’reli­

able” areas is tracked accurately in the whole sequence. Brighter colors indicate areas

which were evaluated as not reliable. These areas may become occluded (c), disap­

pear from the camera view (d) or lack enough texture (e). The first and the last frame

also depict the 5% of the most reliable pixels. Notice that these points correspond to

identical physical points, which is best visible in the zoomed-in versions.

54 Chapter 3. Tracking: failure detection

Application. The error map can be used to detect key-points that can be tracked re­

liably throughout the entire video. This is in contrast to traditional key-point detec­

tors [Shi 94, Rosten 06], which localize the key-points based on a single frame only

and therefore cannot guarantee that the point will be reliably tracked. Moreover, it has

been observed [Jepson 03] that traeker performance increases if the tracker focuses on

reliably tracked parts of a template. The Forward-Backward error allows identification

of such parts. This aspect will be studied in the following seetion.

3.2 Median-Flow tracker

The aim of this section is to use the proposed Forward-Backward error to build a better

bounding box-based tracker. The basic approach is to estimate the bounding box mo­

tion using a large number of independent points, measure their reliability and integrate

the predictions using a robust statistic. Using this approach, we aim at a tracker that is

robust to partial occlusions, is fast and efficient.

In itia lize points

to a grid

Estim ate

bound ing box

m otio n

Track points

b e tw e e n fram es

'

Estim ate

po in t re liab ility
F ilter o u t

50% ou tliers

Figure 3.4: The block diagram of the Median-Flow tracker.

The block diagram of the proposed tracker is shown in figure 3.4. The tracker accepts

3.2. Median-Flow tracker 55

Sparse m otion field

T3

m edia

O bject displacem ent

Figure 3.5: Estimation of the object motion using median. Only translation is illus­

trated, Median-Flow estimates scale as well.

a pair of images It, It+i and a bounding box bt and outputs the bounding box bt+i.

A set of points is initialized on a rectangular grid within the bounding box bt. These

points are tracked by Lucas-Kanade tracker from It to It+i. The quality of the point

displacements is then estimated and each point is assigned an error (e.g. FB, SSD or

NCC). 50% of the worst predictions is filtered out. The remaining predictions estimate

the bounding box motion using median. We refer to this tracker as Median-Flow.

Estimation of the motion by median. The bounding box motion is parameterized by

horizontal displacement, vertical displacement and scale change. All three parameters

are estimated independently using the median. Figure 3.5 illustrates the estimation of

the displacements. The scale change is estimated as follows: for each pair of points,

a ratio between current point distance and previous point distance is computed. The

bounding box scale change is defined as the median over these ratios.

Median-Flow tracker is related to Flock of Features [Kolsch 04] but differs in several

aspects. Flock of Features re-initializes the points only if they are too close to each

other or if the point is too far from median. In contrast, Median-Flow re-initializes all

points in every frame and therefore the points are always kept on a rectangular grid.

56 Chapters. Tracking: failure detection

This allows Median-Flow to estimate scale of the object, which is by the Flock of

Features not done. Moreover, Flock of Features requires color and has been applied to

tracking of hands only.

Median-Flow re-initializes the point locations in every frame. This restricts the er­

ror measures that estimate the reliability of the points. In particular, the Forward-

Backward error can consider only a pair of frames, which corresponds to k = 1.

Larger k can not be applied as there are no point trajectories with length k > 1.

3.2.1 Quantitative evaluation

A number of variants of the Median-Flow (MF) tracker were tested. The baseline

tracker MFq estimates the bounding box displacement based on all points on the

grid. Trackers MFfb, MFncc, MFssd estimate the point reliability using FB, NCC

and SSD, respectively. FB performs one backward prediction, NCC and SSD com­

pare consecutive point-centered patches. 50% of the worst points are filtered out.

Tracker MFfb+ncc combines FB and NCC, each error measure independently fil­

ters out 50% of the worst points. These trackers were compared with the following

approaches: Incremental Visual Tracking (IVT) [Ross 07], Online Discriminative Fea­

tures (ODF) [Collins 05], Ensemble Tracking (LT) [Avidan 07] and Multiple Instance

Learning (MIL) [Babenko 09]. The evaluation was performed on 6 video sequences

from [Yu 08]. The sequences contain appearance changes, fast motion, and partial

occlusion and in some cases the object disappears from the camera view and later

reappears. The sequences are described in detail in Appendix B.

Evaluation protocol. The objects were manually initialized in the first frame and

tracked up to the end of the sequence. The trajectory was considered correct if the

bounding box overlap with ground truth was larger than 50%. The overlap was defined

as a ratio between intersection and union of two bounding boxes. Performance was

assessed as the maximal frame number up to which the tracker was correct.

3.2. Median-Flow tracker 57

Sequence Frames IVT

[Ross 07]

ODF

[Collins 05]

ET

[Avidan 07]

MIL

[Babenko 09]

MFo M F fb M F ncc M F ssd M F fb+ncc

David 761 17 n/a 94 135 93 761 144 28 761

Jumping 313 75 313 44 313 36 76 87 79 170

Pedestrian 1 140 11 6 22 101 15 37 40 12 140

Pedestrian 2 338 33 8 118 37 97 97 97 97 97

Pedestrian 3 184 50 5 53 49 52 52 52 52 52

Car 945 163 n/a 10 45 248 510 394 353 510

Best n/a 0 1 2 1 0 2 0 0 3

Table 3.1: Comparison of the Median-Flow tracker with state-of-the-art approaches in

terms of the number of correctly tracked frames.

1

I

5

§
F B

— ' — N C C

 S S D

F B + N C C

fram e number, length 1400

Figure 3.6: Comparison of various variants of the Median-Flow tracker.

Table 3.1 shows the quantitative results for all sequences. The last row shows the num­

ber of times the particular algorithm performed best. The best results were obtained

by the Median-Flow based on a combination of FB and NCC error. This tracker was

able to score best three times.

Figure 3.6 shows the bounding box overlap with the ground truth as a function of time

for several variants of the Median-Flow tracker. The baseline T q tracker as well as

T ssd loose the object quickly after initialization (overlap goes to zero). T fb and T ncc

perform better and are able to follow the object for twice as long than the baseline

method. T f b + n c c dominates and is able to track the target throughout entire sequence.

This result shows partial complementarity of FB and NCC.

58 Chapter 3. Tracking: failure detection

§

à

Figure 3.7: Several frames from the sequence Car overlaid with the output of the

Median-Flow tracker (yellow) and 50% of the most reliable points (blue). Notice

that the points are covering the visible parts of the tracked object. The points that

cover occluded or low-textured parts of the object are automatically filtered out by the

Forward-Backward error.

Figure 3.7 shows several frames from the sequence CAR overlaid with the output of the

Median-Flow tracker (yellow bounding box) and the 50% of the most reliable points

estimated by the combined FB 4- NCC error measures (blue dots). The car is tracked

across a partial occlusion caused by a traffic light. Notice, that the selected points are

typicallyBut covering visible, well textured parts of the car, while the occluded parts

are filtered out.

3.3 Conclusions

This chapter was concerned with frame-to-frame tracking in unconstrained video se­

quences and focused on detection of tracking failures. We confirmed two ideas that

appeared in tracking literature already: (i) forward-backward consistency assumption

can be used to measure tracker’s reliability [Wu 07], (ii) frame-by-frame tracking can

be improved by focusing on reliable parts [Jepson 03].

3.3. Conclusions 59

First, we proposed a novel measure, Forward-Backward error, which evaluates relia­

bility of arbitrarily long trajectories. The benefits of the measure and complementar­

ity to appearance-based SSD were shown. Second, we developed a novel frame-to-

frame tracker, Median-Flow, which internally estimate reliability of its components.

We showed that the Median-Flow works best when the reliability is estimated using

combined FB and NCC errors. Superior performance in comparison to state-of-the-

art trackers was demonstrated on several sequences.

Like any other frame-to-frame tracker, Median-Flow eventually fails. This is appar­

ent in table 3.1 (sequences JUMPING, PEDESTRIAN 2 and PEDESTRIAN 3) where all

tested trackers failed due to full occlusion or disappearance of the tracked object. This

shows that the frame-to-frame tracking has its limitations and a different model has

to be developed in order to handle such sequences. In particular, detection based ap­

proaches consider every frame as independent and therefore can handle full occlusions.

This approach will be investigated in the following chapter.

60 Chapter 3. Tracking: failure detection

Chapter 4

Detection: supervised bootstrap

This chapter investigates long-term tracking from the perspective of object detection.

For a large number of tracking scenarios, the visual class of the object of interest is

known. It is therefore possible to train an object class detector in advance and integrate

it into the tracking process. This approach has been successfully applied to a variety

of scenarios including tracking of human faces [Li 07], pedestrians [Leibe 07] or ice-

hockey players [Okuma 04]. If the information about the object class is available, a

long-term tracker should be able to use it. Therefore, our goal is to develop a method

for offline learning of object class detectors.

The chapter is organized as follows. In section 4.1 we introduce the problem of large-

scale learning of object detectors. Section 4.2 reviews the related work with the fo­

cus on two most popular training approaches: boosting [Freund 97] and bootstrap­

ping [Sung 98]. Section 4.3 develops a novel learning method that integrates boosting

and bootstrapping optimally. A number of experiments show the properties of the

learning method. Section 4.4 applies the learning method to the training of a face

detector and state-of-the-art performance is achieved. The chapter is concluded in sec­

tion 4.5.

61

62 Chapter 4. Detection: supervised bootstrap

4.1 Introduction

Consider a class of detectors that are based on a scanning window and binary classifi­

cation of image patches [Viola 01]. The crucial problem of these detectors is to train

the binary classifier that covers all appearances of the object and discriminates from

arbitrary background clutter. Efficient processing of large data sets that cover all the

variations is an important problem.

With the information available on the Internet, it is possible to acquire pools of training

data of virtually unlimited sizes. Large pools sideline the problems related to classifier

generalization [Vapnik 98]. Hoverer, due to computational limitations and training

complexity, it is rarely the case that the entire pool can be processed at once. As we

have reviewed in sub-section 2.3.1, one possible solution is to use bootstrapping and

train the classifier iteratively using an active set that focuses on the decision boundary

only. In object detection, bootstrapping is often combined with boosting [Viola 01,

Fleuret 08]. The combination is, however, often ad hoc [Sochman 05], which presents

scope for improvements.

Contributions. The main contribution this chapter is the optimal integration of boot­

strapping with boosting, where the bootstrapping is formalized as a weighted sampling

strategy. We build on the weighted sampling approach [Fleuret 08] and propose a gen­

eralized strategy based on Quasi-random Weighted Sampling + Trimming (QWS+)

that optimally combines its components in order to minimize the variance of hypoth­

esis error in each round of boosting. The QWS+ sampling method is applied to face

detection and leads to a significant increase in the classification performance as well

as the training efficiency on large pools of data.

4.2. Related work 63

4.2 Related work

In object detection, bootstrapping has been used to train a Gaussian mixture model

[Sung 98]. In every round of training, the active set was extended by examples misclas-

sified in previous round and the entire classifier was retrained. The same approach was

applied to refine the decision surface of an SVM classifier [Papageorgiou 98, Dalai 05],

to train the neural network [Rowley 98], or to estimate the histograms of Wavelet co­

efficients [Schneiderman 04].

Viola and Jones [Viola 01] proposed a cascaded classifier composed of a sequence of

stages. A bootstrapping strategy based on resampling of the undecided parts of the

pool was used. Many authors followed this approach [Levi 04, Jones 03, Laptev 06].

A number of improvements have been proposed for the classical Viola-Jones cascade.

For example, the standard cascade ignores the confidence which is output from each

stage thus making the classifier unnecessarily long. This drawback was addressed

in [Sochman 05, Wu 04, Xiao 03] where bootstrapping based on (random) resampling

and re-weighting of the selected samples according to the confidence was used. Later

on. Fleuret and Geman [Fleuret 08] proposed weighted sampling. Instead of weighting

examples in the active set, examples were sampled with replacement from the pool

with respect to their weights. The approach let to improved classifier performance.

In machine learning literature, Friedman et al. [Friedman 00] proposed trimming, a

technique that selects only a fraction of examples with the highest weights resulting in

an improvement in training speed.

4.3 Integration of bootstrapping and boosting

This section formalizes the combination of boosting and bootstrapping. The analysis

will be performed on AdaBoost formulated as a logistic regression [Friedman 00], but

the proposed method is applicable to other boosting methods as well. The bootstrap-

64 Chapter 4. Detection: supervised bootstrap

Active setPool
Sampling

Update
weights

Update
weights

Estimate Estimate

SelectSelect

Pool \as?

Weak
hypothesis

Strong
hypothesis

Weak
hypothesis

Strong
hypothesis

Figure 4.1: Illustration of standard boosting (LEFT) and boosting combined with boot­

strapping (RIGHT).

ping will be formulated as a sampling strategy. Next, we present the commonly used

approaches within our framework and develop two novel strategies, one of which is

optimal. All strategies will be evaluated on several different experiments.

Let L = {(xi, yi) , . . . , (xm^Vm)} be a labeled training set where each example x%

belongs to an example space X , and each label yi belongs to a finite label space y =

{—1,1}. This labeled set represent all training data available and will be called the

pool. Given this input, AdaBoost builds a strong hypothesis i f : A —)■ R which has

the form of H{x) = where each hj(x) is a weak hypothesis. The sign of

H{x) gives the classification, and \H{x) \ measure of prediction confidence.

The strong hypothesis is built iteratively. During training, AdaBoost maintains a distri­

bution of weights D = {di} satisfying = I giving higher weights to examples

that are “difficult”. In each iteration, AdaBoost selects a hypothesis that performs best

on current distribution of weights, adds this hypothesis to the strong hypothesis and

updates the distribution so that the currently selected hypothesis performs worst in the

next round. See figure 4.1 (LEFT) for illustration of the boosting process.

Boosting assumes access to a set of weak classifiers, each of which splits the example

space into a number of partitions. For each classifier, AdaBoost estimates a hypothesis

4.3. Integration o f bootstrapping and boosting 65

of the form

where P£)(^ = l|x) is a probability estimated using current distribution of weights di.

Boosting then selects the optimal hypothesis h* that minimizes

m

h* = argm in Z ^ih) = argm in (4.2)
h h ^

where Zj:,{h) is the exponential loss function. Once such a hypothesis is selected,

AdaBoost updates the weights using di 4— and normalizes them to a distri­

bution.

Bootstrapping as a sampling strategy

Standard AdaBoost is not designed for large pools, and therefore, if m is large, the

steps 4.1 and 4.2 may be too time consuming or even not feasible. Therefore, some

form of approximation is needed. Bootstrapping is a process that approximates the

pool of size m by an active set of size n, where n m. The hypothesis estimation

as well as the selection of the best hypothesis is then performed considering the active

set only. The crucial question is how to approximate the pool correctly. We address

this question by introducing the so-called sampling strategy, which is a process that

takes the distribution of weights D of size m and approximates it by a distribution D

where at most n elements have non-zero value. The approximated distribution must

satisfy 22=i — 1* Notice that in general, di ^ di since both of these weights have

to sum-up to one.

Every realization of the sampling strategy results in a different distribution D and thus

different weights di. It follows that di is a random variable with expectation E[rfJ and

variance Var[dJ. If E[dJ = di we consider the estimated weights unbiased. Suppose

we have a hypothesis h with a corresponding exponential loss of Z d {Ji) on distribution

D. When bootstrap is employed, this value is estimated on the active set D according

to the following equation:

66 Chapter 4. Detection: supervised bootstrap

Error measured Average error
on the active set.

Active sets on the pool.Pool
• • bias

o -D

sampling
variance

error

Figure 4.2: Illustration of bias and variance of a bootstrapping strategy.

-ViKxi (4.3)
i= l

where the estimated weights are linearly combined by the constant coefficients

Therefore, if the estimated weights di are unbiased then the estimated exponential

loss is unbiased as well. If E[Z^(/i)] = Zoih) then the entire strategy is unbiased.

Yai[Zf){h)] will be referred to as a variance o f error estimate. The terms bias and

variance are illustrated in figure 4.2.

Conditions for the optimal sampling strategy. Our objective is to find the sampling

strategy that selects n unique samples out of the pool of size m, is unbiased and with

minimal variance of error estimate. Such strategy would guarantee that the approxi­

mate hypothesis h is as close as possible to the optimal one h*, which would be trained

on the entire pool.

4.3.1 Known sampling strategies

Several bootstrapping strategies have been used in the context of object detection. Here

we formalize the most popular approaches within our notation.

4.3. Integration o f bootstrapping and boosting 67

Trimming (Tr). This technique selects n samples from the pool with the highest

weights. The weights of the selected samples are then normalized so that — 1-

This strategy was introduced in [Friedman 00], where n was set so that a predefined

fraction (90 — 99%) of the total weight mass was used for training. If n < m then the

weights are biased E[dJ ^ di with zero variance.

Unique Uniform Sampling (UUS). This strategy selects n unique samples from the

pool with a probability of selecting sample i equal to P(z) = The weights of the

selected samples are then normalized so that Y^idi = 1. The estimated weights are

in general biased (due to normalization) and have high variance since it is likely to

disregard examples that carry significant mass of the distribution. Despite this it is

often used in practice [Sochman 05, Wu 04, Xiao 03].

Weighted Sampling (WS). Selects n samples with replacement from the pool. Sam­

ple i is selected with probability P(z) = di and assigned weight di = WS is un­

biased, since E[Ji] = ^ = di. Possible implementation: the example weights are

represented as intervals arranged on a unit line segment. Next we generate n random

points on this line segments the positions of which determine the index of the selected

sample. Since the example weight are approximated by repeated selection of the sam­

ple, this strategy does not guarantee n unique samples in the active set. This strategy

was first used in the context of boosting in [Fleuret 08].

4.3.2 Proposed sampling strategies

In this section, we propose new sampling strategies based on WS. These strategies

are designed to reduce the variance of error estimate by quasi-random sampling and

guarantee selection of n unique samples in the active set.

68 Chapter 4. Detection: supervised bootstrap

Quasi-random Weighted Sampling (QWS). QWS reduces variance of the error

estimate by pseudo-random sampling [Press 92]. The weights are represented as in­

tervals and arranged to a unit line segment. The line segment is split into n equal

intervals. Within each interval, one random number is generated, the position of which

determines the index of the selected sample. This process maintains the weights unbi­

ased but significantly reduces their variance. Intuitively, each sample can be selected at

most p-times, where p is number of intervals the sample is covering. For standard WS,

each sample can be selected at most n-times. Since p <^n, QWS significantly reduces

the variance of the estimated weights. However, QWS selects an unknown number of

unique samples, which may lead to ineficient usage of available memory.

Quasi-random Weighted Sampling + Trimming (QWS+). The QWS+ is a gen­

eralization of Trimming and QWS, parameterized by k, the number of samples with

largest weights in the pool that are always selected (trimmed). For k = n, QWS+

coincides with trimming. For k = 0, QWS+ becomes a QWS. For any 0 < k < n,

the QWS+ strategy is unbiased, since weighted sampling is unbiased and calculations

of exponential loss on the trimmed set is exact. Parameter k is set to minimize the

variance of the error estimate.

Intuitively, QWS+ selects k most dominant samples that would be selected by QWS

with probability at least 50% and assigns them their own weights. The remaining

weight mass is distributed amongst the remaining I = n — k samples selected by

QWS. Trimming of the most dominant samples reduces the variance of their estimated

weight and hence the variance of the entire distribution.

In the following theorem, we show the optimal setting of the parameter k. We use

the following notation. Index in parenthesis denotes sample with (%)-th largest weight.

S = {X , D} represents the pool augmented with the distribution of weights that shall

be called the weighted pool. Sk is the weighted pool without k samples with largest

weights, Dk = I — 4%) is the weight mass of Sk, and Zqws+(5', h) is the ex­

4.3. Integration o f bootstrapping and boosting 69

ponential loss of hypothesis h on weighted pool S when approximated by sampling

strategy QWS+.

Theorem: The optimal size of trimming is the largest k that satisfies the condition

y < ^ (2 + ^) , if variance of exponential loss of h changes ’’slowly” (defined

below).

Proof: First, we express the exponential loss of QWS+ strategy as two components

(trimming and weighted sampling) parameterized by k:

k
Zqws+ (5 ,/i) = + (4.4)

i=l
k

« + (4.5)
i=l

We assume that ZqwsiSk, h) % Zws(5'fc, h) which results in simplified analysis. The

difference between sampling with and without replacement is in this case small since

all k dominant samples were already removed by trimming.

Weighted sampling selects I = n — k samples with replacement from Sk^ Sample i

is selected with probability P{i) = and assigned weight di = ^ . The random

variable Zws is thus a re-scaled sum of I random variables corresponding to each

sample:

D - ^
Zws = —r ^ -̂ wS) (4-6)

S = 1

where random variables attain the value with probability %(g) is

the index chosen in step s.

Next, we express the variance of the exponential loss. From equation 4.5 we can see

that variance of Zqws+ can be approximated by the variance of Zws since a trimming

70 Chapter 4. Detection: supervised bootstrap

has variance equal to zero. Variance of Zws is further substituted from equation 4.6

yielding the form:

T~\ ̂ ^
Var[Zqws+] ~ Var[Zws] == V ar[-^ ^ Zwsl = ^ Var[Zwg]. (4.7)

S = 1 S = 1

After substituting Xls=i Var[Z^g] with Ck, we obtain a simplified equation

2)2
Var[Zqws+] ~ (4-8)

Our goal is now to find conditions for k that minimize the variance. We assume that

Ck changes slowly as a function of k, i.e. % 1. For interesting cases, where the

number of training examples is large and the dominant weights are already removed

by trimming, is this condition satisfied. In the following, we express the optimality

condition that variance of exponential loss for k must be smaller than for A; — 1:

I Z + 1 / +1

(4.9)

1 < ^ (2 + ^) . (4.10)
I Vk Dk Dk

which concludes the proof. In practice, the optimal k is found iteratively. Samples are

trimmed until the equation 4.10 is satisfied.

4.3.3 Properties of sampling strategies

This sub-section comparatively evaluates the existing and proposed sampling strategies

on synthetic data. In particular, the impact of the sampling strategy on the bias and

variance is investigated.

Estimation of weights. This experiment visualizes the estimation of weights for the

discussed strategies. A pool of size m = 15 with randomly assigned weights was

4.3. Integration o f bootstrapping and boosting 71

Trimming UUS

index

WS

index

QWS QWS+

index index index

Figure 4.3: Pool with weights di (blue bars) is repeatedly sampled to obtain a distri­

bution of the estimated weights. The range of the distribution (1 and 99% quantités) is

depicted by red vertical lines and expected values by circles.

randomly generated. The active set of size n = b was sampled 1000 times, each

realization outputs a set of estimated weights di. For each estimated weight and strat­

egy, the expected value and the variance was computed as shown in figure 4.3. The

circles in the figure denote the expectation of the estimated weight. The variance of

the estimated weights is depicted by the red error bars. Notice that the expectation

of Trimming and UUS is biased, the remaining strategies are not. Note the reduction

of variance by Quasi-random Weighted Sampling strategies (QWS, QWS+). Further­

more, QWS+ completely eliminates variance on large examples which leads to the

minimal variance of all tested strategies.

Estimation of exponential loss of a given hypothesis. In this experiment, we created

a pool containing m = 95,000 examples with distribution of weights after the 100th

iteration of training a face detector (details later). Using this entire training set, the

optimal hypothesis h* was found and its exponential loss Z]j{h*) was measured. The

pool was than sampled by each strategy to obtain 1000 active sets of size n = 500.

Next, the optimal hypothesis was tested on each active set to obtain its approximated

exponential loss Z^{h*). The expectation and variance of Zjj{h*) is shown in fig­

ure 4.4 (a). Weighted sampling reduces significantly the variance of Zfy{]f) and keeps

mean unbiased. Intuitively, the exponential loss is dominated by examples with high

weights, weighted sampling forces these examples to be included in every realization

72 Chapter 4. Detection: supervised bootstrap

a) b) c)

N

1.021.02 1.02

0.980.980.98
0.960.960.96

0.940.940.94

0.920.920.92

_G L- @---

Tr UUS W S Q W S Q W S + Tr UUS W S Q W S Q W S + Tr UUS W S Q W S Q W S +

Figure 4.4: The variance and bias of the sampling strategies. The dashed line shows

the exponential loss of the optimal hypothesis, (a) Exponential loss measured of a

given hypotheis, (b) exponential loss measured on training data, (c) exponential loss

measured on testing data. See text for more details.

of the active set, and hence the exponential loss in different trials is similar. Notice that

the variance for QWS and QWS+ is further reduced with respect to WS.

Exponential loss estimated on training and testing data. In this experiment we use

the same sets as defined in the previous paragraph. The optimal hypothesis h* was first

trained on full pool and the corresponding exponential loss Z^ih*) was measured. The

hypothesis was trained by the domain partitioning approach [Schapire 99]. Next, for

each strategy and realization of an active set, we trained an approximate hypothesis h.

We estimated the training exponential loss Z^{h) and testing exponential loss

Figure 4.4 (b, c) shows the mean and variance of the training and testing exponential

loss. Note, that UUS sampling overfits the training data more than any of the other

strategies, i.e. training loss is lower and testing loss is higher than the optimal loss

value. Furthermore, the variance of UUS is the highest of all the strategies. The

variance is significantly reduced for WS. QWS and QWS+ further reduce the variance,

but the difference with respect to WS is subtle. This apparently insignificant difference

in the variance reduction proves to be of importance, when full detector training is

evaluated.

4.4. Application to face detection 73

Face database Details

Frontal (Lpront) 3 085 frontal faces collected from www.betaface.com,

annotated by a 3rd party face detector + manual check.

Profile (L^rof) 3 384 manually annotated profile faces from 8 movies,

/? indicates in-plane rotation.

Background (Lnone) 3 310 images that were manually checked to contain no faces.

Table 4.1: Data sets used for training of a face detector.

4.4 Application to face detection

This section applies the proposed learning method to training of several face detectors

(frontal, profile, specific). We build on WaldBoost [Sochman 05] algorithm, which

uses a UUS strategy and extended it with the proposed sampling strategies.

Training details. We have collected three training sets shown in table 4.4 which

contain frontal, profile and multi-view faces as well as images depicting background.

The training sets consist of tightly cropped face-patches of size 28 x 28 pixels. The

patches are described using three types of features: (i) Haar-like wavelets [Jones 03],

(ii) Local Binary Patterns (LBP) [Ojala 02], and (iii) Histogram of Orientated Gradi­

ents (HOG) [Dalai 05] projected into one dimension using weighted Linear Discrim­

inant Analysis [Laptev 06]. We generate a feature set of approximately 12 000 Haar,

12 000 LBP and 400 HOG features differing in their localization within the patch, scale

and aspect ratio. The resulting detectors are tested on standard CMU-MIT^ data sets

and compared with other approaches using Receiving Operating Characteristic (ROC)

and Precision and Recall Curves (PRC).

ĥttp://vasc.ri.cmu.edu/idb/html/face/

http://www.betaface.com
http://vasc.ri.cmu.edu/idb/html/face/

74 Chapter 4. Detection: supervised bootstrap

N = 10 0 0 0 N = 1000 N = 100

S 0.6 S 0.6-

0.4-
 U U S
— — W S

 Q W S
0.2 0.2 0.2

0.5
recall

10.5
recall

1 0.5
recall

Figure 4.5: The detector performance as a function of the active set size and the sam­

pling strategy. The pool consists of 10000 positive and 56 million negative examples.

4.4.1 Frontal face detector

This experiment trains a frontal face detector and investigates the influence of rela­

tive active set size on the detector performance. We used the pool of 10 000 positive

examples and 56 million background patches. The positive examples were generated

from Z/front using shift and in-plane rotation of the original face-patches. The negative

patches were sampled from Lnone using a sliding window. This pool was approxi­

mated by active sets of three different sizes n G {100,1000,10 000}. For each size

and sampling strategy (UUS, WS, QWS, QWS-h), a strong classifier was trained up to

the length of 200 features. Trimming was also tested but its performance was much

worse than any other strategy.

Figure 4.5 shows the resulting PRC curves on the CMU-MIT data set. The perfor­

mance of all sampling strategies decreases with smaller active set size. For large active

sets (n = 10 000) there is almost no difference in performance between the strategies.

For smaller active sets (n = 1000) the UUS sampling performs significantly worse

than the others. WS is in this case slightly worse than QWS and QWS-i-. For extremely

small active sets (n = 100) the difference increases. This clearly demonstrates the

benefit of QWS and QWS-k. The difference between QWS and QWS-t- is in this case

4.4. Application to face detection 75

100

0 .9

c 0 .7

0 . 0.6

3 0 0 .5

20
0 .4

0.2 0 .44 0 0 5 0 0 0.6100 200 3 0 0

—« - L ev i a n d W e i s s [6]

—° - J o n e s a n d V io ia [4]

— - S c h n e id e r m a n a n d K a n a d e [11]
— W S +
— U U S

positives

— False
U U S n e g a tiv e s

n e g a tiv e s

positives < <

f a i s e p o s i t iv e s re c a ii

Figure 4.6: Performance evaluation: (LEFT) ROC curves on CMU-MIT profile

database (368 profile faces in 208 images), (r i g h t) PRC for specific face detector

applied on the results of Google face search.

on a noise level only. The active set size has impact on training efficiency. While train­

ing with n = 10.000 takes 3 hours, training with n = 100 requires 1 hour on the same

machine.

This experiment demonstrates that the sampling strategy does not play a crucial role in

the case of relatively large active sets, but a significant difference in performance can

be achieved when the active set is relatively small with respect to the pool. QWS and

QWS+ significantly outperformed UUS and WS in that case.

4.4.2 Profile face detector

This experiment trains a profile face detector and compares it with state-of-the-art ap­

proaches. The pool of 41000 positive and 424 million negative patches was generated

from Tp^op, Tjpop, L^J^p and Lnone- Two left-prohle detectors of length 2 000 were

trained with QWS+ and UUS strategy. The right profile detectors were obtained by

left-to-right flipping of the model.

The resulting ROC curves are displayed in the left panel of figure 4.6. QWS+ has a

76 Chapter 4. Detection: supervised bootstrap

detection rate 5% higher than UUS for 100 false positives. On the same level of false

positives, our detector performs better than the results in [Levi 04] and [Jones 03] and

slightly worse than [Schneiderman 04]. The average number of evaluated weak clas­

sifiers is 5.6 for QWS+ and 7.2 for UUS which shows positive influence of weighted

sampling on the classifier speed. Figure 4.7 illustrate the performance of the profile

face on several images from CMU/MIT data set.

4.4.3 Specific face detector

Google face search was used to collect 650 images returned for query “Borat” .̂ This

set contained 350 true positives (images depicting Borat), and 300 false positives (im­

ages containing other faees or background). This set was randomly split into training

set and testing set. Using the training set, a specific face detector was trained. The

resulting PRC is presented in the right panel of figure 4.6. Notice that also in this task

the performance of QWS+ is superior to UUS. The specific face detector successfully

finds approximately 80% of faces of Borat with 90% precision.

4.5 Conclusions

We developed an algorithm for training of object detectors from large labeled data sets

and integrated boosting and boosting in a unified algorithm.

Two improvements of standard weighted sampling (WS) are introduced. We designed

quasi-random weighted sampling (QWS) which reduces the variance of error estimate

but does not guarantee unique samples. Next, we introduced a new strategy based on

quasi-random weighted sampling + trimming (QWS+) which removes this drawback.

We provided the theoretieal proof of the variance minimization of QWS+.

fictional character portrayed by a British comedian Sasha Barron Cohen.

4.5. Conclusions 11

Figure 4.7: Results achieved by our face detector. Bottom row shows the most chal­

lenging faces. The binary executable is available at the website of the author.

The performance of the learning method was demonstrated on the task of generic face

detection. Various characteristics of the learning process were improved: reduction

of the active set; better precision/recall curves and speed. The developed face detec­

tor operates in real-time on QVGA images ̂ and therefore is applicable to tracking

scenarios. This detector will be used in chapter 6 for long-term tracking of faces.

We trained a specific face detector from manually checked images returned by Google

face search. This shows that training a specific face detector is feasible, however, the

need of manual preparation of the training set is not practical for long-term tracking

scenarios. In long-term tracking, the training of the specific detector has to be done

online and from unlabeled data.

hntel Core 2 Duo, 2.40GHz, 2GB RAM

78 Chapter 4. Detection: supervised bootstrap

Chapter 5

Learning: unsupervised bootstrap

This chapter investigates long-term tracking from the perspective of machine learning,

the third component of our system. In particular, we study how to improve an offline

trained object detector during tracking. Our goal is to design a learning approach that

would be suitable for such a scenario as well as general enough to be applicable to

other learning problems.

The chapter is structured as follows. Section 5.1 introduces the problem as online

learning from labeled and unlabeled data. Section 5.2 develops a novel learning paradigm

that we call P-N learning. Section 5.3 applies the P-N learning to training an object de­

tector from a single example and a video stream. The proposed algorithm is evaluated

on a number of challenging sequences. The chapter is concluded in section 5.4.

5.1 Introduction

Consider an object detector and a video stream. The object detector is trained offline

from a limited number of labeled examples and the video stream is unconstrained. The

goal of this chapter is to improve the offline detector by online processing of the video

stream. At every time instance, we run the detector on the current frame, estimate its

79

80 Chapter 5. Learning: unsupervised bootstrap

errors and update the detector so that it does not make such errors in the future. We

refer to this process as unsupervised bootstrap.

The ability to improve an object detector by online processing of an unlabeled video

stream has a large number of applications. Our motivation is long-term tracking where

the online learned detector can be used to re-initialize a frame-to-frame traeker after

its failure. This aspect is studied in chapter 6.

There are several challenges that have to be tackled in order to enable the unsupervised

bootstrap: (i) large variability - the learning must deal with arbitrarily complex video

streams where the object significantly changes appearance, moves in and out of the

camera view, the stream contains background clutter, fast camera motions or motion

blur; (ii) real-time performance - every learning step has to be done immediately after

accepting a new frame; (iii) robustness - the learning should never degrade the classi­

fier, if the video stream does not contain relevant information, the detector performance

should not degrade.

To tackle all these challenges, we rely on the various information sources contained

in the video. Consider, for instance, a single patch denoting the object location in a

single frame. This patch defines not only the appearance of the object, but also deter­

mines the surrounding patches, which define the appearance of the background. When

tracking the patch, one can discover different appearances of the same object as well as

more appearances of the background. This is in contrast to standard machine learning

approaches, where the training examples are considered to be independent [Blum 98].

This opens interesting questions how to effectively exploit the information in the video

during learning.

To exploit the information in the video, we propose a new learning paradigm called P-N

learning. The detector is evaluated on every frame of the video stream with the aim to

find misclassified examples. These misclassified examples are estimated by two types

of complementary ’’experts”: (i) P-expert - an expert on positive examples, estimates

when the object detector missed the objeet, and (ii) N-expert - an expert on negative

5.2. P-N learning 81

unlabeled data

classifier
param eterslabeled data

abels

[-] examples

[+] examples

Training
Set

Classifier

P-N
experts

Training

Figure 5.1: The bloek diagram of the P-N learning.

examples, estimates when a detector made a false detection. The estimated errors

augment a training set of the detector, and the detector is retrained in a supervised

manner to avoid these errors in the future. As any other process, the P-N experts can

make errors themself. However, if the probability of expert error is within certain

limits (which will be analytically quantified), the errors are mutually compensated

which leads to stable learning.

5.2 P-N learning

This section formalizes the P-N learning without considering any specific application.

We assume a set of labeled and unlabeled examples and our goal is to train a binary

classifier. The section is split into three parts. Subsection 5.2.1 formalizes the P-

N learning and shows its relationship to supervised bootstrapping. Subsection 5.2.2

analyzes the stability of the P-N learning. The conditions that guarantee improvement

of the classifier are inferred. Finally, subsection 5.2.3 performs several experiments

that validate the proposed theory.

5.2.1 Formalization

82 Chapter 5. Learning: unsupervised bootstrap

Algorithm 1 P-N learning
Require: unlabeled data, labeled data

Require: classifier trained using labeled data

for t = 1 : 00 do

Evaluate current classifier on unlabeled data.

Estimate false negatives using N-expert.

Estimate false positives using P-expert.

Add estimated errors to training set.

Retrain or update the classifier.

end for

Let X be an example from a feature-space X and y he a label from a space of labels

y = {—1,1}. A set of examples X is called an unlabeled set, Y is called a set of

labels and L = {(x^y)} is called a labeled set. The input to the P-N learning is a

labeled set Li and an unlabeled set Xu, where I u. The task of P-N learning is to

learn a classifier f : X ^ y from labeled set Li and bootstrap its performance by the

unlabeled set Xu. Classifier / is a function from a family X parameterized by 0 . The

family T is subject to implementation and is considered fixed in training, the training

therefore corresponds to estimation of the parameters 0 .

The P-N learning consists of four blocks: (i) classifier to be learned, (ii) training set

- a collection of labeled training examples, (iii) supervised training - a method that

trains a classifier from the training set, and (iv) P-N experts - functions that estimate

errors of the classifier and augment the training set with labeled examples. Figure 5.1

shows a block diagram and algorithm 1 defines a pseudo-code.

The training process is initialized by inserting the labeled examples Li into the training

set. The training set is then passed to supervised learning which trains a classifier,

i.e. estimates the initial parameters 0°. The learning process then proceeds iteratively.

In iteration k, the classifier trained in iteration k — 1 classifies the entire unlabeled

set, y^ = f{xu\0^~^) for all Xu G Xu. The classification is analyzed by the P-N

5.2. P-N learning 83

experts that estimate, which examples have been classified incorrectly. These examples

are added with changed labels to the training set. The iteration finishes by retraining

the classifier, i.e. estimation of 0^. The process iterates until convergence or other

stopping criterion.

The crucial element of P-N learning is the estimation of the classifier errors. The

key idea is to treat the estimation of false positives independent from estimation of

false negatives. For this reason, the unlabeled set is split into two parts based on the

current classification and each part is analyzed by an independent expert. The P-expert

analyzes examples classified as negative, estimates false negatives and adds them to

the training set with a positive label. In iteration k, P-expert outputs n'^{k) positive

examples. N-expert analyzes examples classified as positive, estimates false positives

and adds them with negative label to the training set. In iteration k, the N-expert

outputs n~{k) negative examples. The P-expert influences the classifier in positive

(growing) sense and increases the classifier generality. The N-expert influences the

classifier in a negative (pruning) sense and increases the classifier discriminability.

These two forces are working in parallel and independently from each other.

Relation to supervised bootstrap. To put P-N learning into context, let us consider

that the labels of set Xu are known. Under this assumption it is straightforward to

design P-N experts that identify misclassified examples and add them to the training set

with correct labels. Such a strategy corresponds to a supervised bootstrap as discussed

in chapter 4. A classifier trained using supervised bootstrap focuses on the decision

boundary and often outperforms a classifier trained on a randomly sampled training

set [Sung 98]. The same idea of focusing on the deeision boundary underpins the P-N

learning approach with the difference that the labels of the set Xu are unknown. P-

N learning can be therefore viewed as a generalization of standard bootstrapping to

unlabeled cases where labels are not given but rather estimated using the P-N experts.

As any other process, the P-N experts make errors, and estimate the labels incorrectly.

Such errors propagate through the training, which will be now theoretically analyzed.

84 Chapter 5. Learning: unsupervised bootstrap

5.2.2 Stability

This section analyses the impact of the P-N learning on the classifier performance and

the impact of the errors caused by P-N experts on the stability of the learning. For the

purpose of the analysis, let us consider that the ground truth labels of Xu are known

and therefore it is possible to measure the errors made by the classifier. Next, consider

a classifier that initially classifies the unlabeled set at random and then corrects its

classification according to the output of the P-N experts. The performanee of such

a classifier is characterized by a number of false positives FF{k) and a number of

false negatives FN(A;), where k indicates the iteration of training. The goal of the P-N

learning is to reduce these errors to zero.

In iteration k, the P-expert outputs (k) positive examples which are correct (positive

based on ground truth), and (k) positive examples which are false (negative based on

ground truth), which forces the classifier to change n'^{k) = {k) + n'f (k) negatively

classified examples to positive. Similarly, the N-experts outputs n~ (k) correct negative

examples and nj{k) false negative examples, which forces the classifier to change

n~{k) — n~{k) 4- nj{k) examples classified as positive to negative. The number

of false positive and false negative errors of the classifier in the next iteration thus

becomes:

FP(/;:-j-1) = FP(/:) — nj(A ;)-1-n^(A;) (5.1a)

F'N{k + 1) = FlSi{k) — n'^{k) -f- n'j{k). (5.1b)

Equation 5.1a shows that false positives FP{k) decrease if n~ (k) > {k), i.e. number

of examples that were correctly relabeled to negative is higher than the number of

examples that were incorrectly relabeled to positive. Similarly, the false negatives

FN(A:) decrease if n j (/c) > nj (k) .

Quality measures. In order to analyze the convergence of the P-N learning, a model

needs to be defined that relates the quality of the P-N experts to the absolute number of

5.2. P-N learning 85

positive and negative examples output in each iteration. The quality of the P-N experts

is characterized by four quality measures:

• P-precision - reliability of the positive labels, i.e. the number of correct positive

examples divided by the number of all positive examples output by the P-expert,

= I + ^ /) '

• P-recall - percentage of identified false negative errors, i.e. the number of cor­

rect positive examples divided by the number of false negatives made by the

classifier, = ri^/ FN.

• N-precision - reliability of negative labels, i.e. the number of correct nega­

tive examples divided by the number positive examples output by the N-expert,

F " = n 7 /(n - + n j) .

• N-recall - percentage of recognized false positive errors, i.e. the number of

correct negative examples divided by the number of all false positives made by

the classifier, R~ = n “ / FP.

Given these quality measures, the number of correct and false examples output by P-N

experts at iteration k have the form:

n t (k) = R+ FN(fc), n+{k) = FN(fc) (5.2a)

n:{k) = R - FP(Æ), n-]{k) = FP(fc). (5.2b)

By combining the equation 5.1a, 5.1b, 5.2a and 5.2b we obtain:

FP(fc + 1) = (1 - R -) FP(fc) + FN(fc) (5.3a)

FN(A; + 1) = F P W + (1 - FN(/t). (5.3b)

After defining the state vector x{k) = FP(/c) FN{k) and a 2 X 2 matrix M as

M =
1 - R -

(5.4)

86 Chapter 5. Learning: unsupervised bootstrap

P

a

- p

A.2 “ 1
\ \ \ W \ ̂ "
\ \ \ \ \ \ ^ '
\ \ \ \ \ ^ ' '
\ \ \ \ \ '
\ \ \ ^ ' ' ■ '

\ \ \ '
. . . \ \ \

, . \ \ \ \
. X \ \ \ \
X \ \ \ \ \
\ \ \ w \
\ \ \ \ w
\ \ w \ \
a

p

a

Figure 5.2: The evolution of errors of the classifier depends on the quality of the P-N

experts, which is defined in terms of eigenvalues of matrix M. The errors converge to

zero (l e f t), are at the edge of stability (M IDDLE) or are growing (r i g h t).

it is possible to rewrite the equations as

x{k + 1) = Mx{k).

This is a recursive equation that corresponds to a discrete dynamical system. The

system models the error propagation during training, i.e. from one iteration of P-N

learning to another. Our goal is to show, under which conditions the error in the system

drops.

Based on the stability criteria from control theory [Zhou 96, Ogata 09], the state vector

X converges to zero if both eigenvalues Ai, A2 of the transition matrix M are smaller

than one. Note that the matrix M is a function of the expert quality measures. There­

fore, if the quality measures are known, it is possible to check whether the error during

training converges to zero or not. Experts for which the corresponding matrix M has

both eigenvalues smaller than one will be called error-canceling. Figure 5.2 illustrates

the evolution of error of the classifier when the first eigenvalue is zero and the second

eigenvalue attains values (i) A2 < 1, (ii) A2 = 1, and (iii) A2 > 1.

The pragmatic reason for developing the P-N learning theory was the observation, that

it is relatively simple to design a large number of experts that correct specific errors

5.2. P-N learning 87

made by the classifier. The combined influence of the experts was, however not under­

stood. P-N learning represents guidelines how to combine a number of weak experts so

that the overall learning is stable. Interestingly, P-N learning does not put constraints

on the quality of individual experts. Even experts with low precision might be used as

long as the matrix M has eigenvalues smaller than one, it is therefore possible to use

various (even weak) information sources.

5.2.3 Experiments

This section analyzes the performance of P-N learning as a function of the expert

quality measures. Our goal is to experimentally validate the claims about learning

stability that have been made in section 5.2.2. The experiment is based on synthetically

generated P-N experts.

Experiment setup. The analysis is performed on sequence CAR (see Appendix B). In

the first frame of the sequence, a classifier is trained using affine warps of the initial

patch and background patches from the surrounding of the object. Details about this

step are given in chapter 7. Next, a single run over the sequence is performed. In

every frame, the classifier is evaluated. The error of the classifier are recognized using

simulated experts that are characterized by chosen quality measures and the classifier

is updated. After every update, the classifier is tested on the entire sequence using

f-measure. The performance is then drawn as a function of the number of processed

frames and the quality of the P-N experts.

The P-N experts are characterized by four quality measures, i?“ . To

reduce this 4D space of parameters, we analyze the learning at equal error rate. The

parameters are set to P+ = = P~ = R~ = 1 —6, where e represents error of the

expert. The transition matrix then becomes M = e[ll]'^, where [11]'^ is a 2x2 matrix

of ones. The eigenvalues of this matrix are Ai = 0, A2 = 2e. Therefore, based on the

theory, the P-N learning should be improving the performance if e < 0.5.

Chapter 5. Learning: unsupervised bootstrap

1

0.0

0.5

u_ 0.6

0
0 Number o f Frames Processed 1000

Figure 5.3: Performance of a detector as a function of the number of processed frames.

The detectors were trained by synthetic P-N experts with guaranteed level of error. The

classifier is improved up to error 50% (BLACK), higher error degrades it (RED).

The experts were realized using the ground truth data as follows. In frame k the clas­

sifier generates FN(k) false negatives. P-experts relabel n^(k) = (1 — e)FN(k) of

them to positive which guarantees = 1 — e. In order to satisfy the requirement of

precision = 1 — e, the P-expert relabels additional n^(fc) = eFN(/c) background

samples to positive. Therefore the total number of examples relabeled to positive in

iteration kisn' ^ = (k) + (k) = FN{k). The N-experts were generated similarly.

The performance of the classifier as a function of number of processed frames is de­

picted in figure 5.3. Notice that if e < 0.5 the performance of the detector increases

with more processed frames. In theory, e = 0.5 should not alter the classifier perfor­

mance, although in this sequence it leads to improvements. Increasing the noise-level

further leads to sudden degradation of the classifier.

The P-N learning with error-less experts (e = 0) is analyzed in more detail. In this

case all classifier eiTors are identified and no miss-labeled examples are added to the

5.3. Learning an object detector from a video sequence 89

1

c
owu
2

Q_

P-N

0
Frames 10000

1

u

0
Frames 10000

1

3
0 3O)

0
Frames 10000

Figure 5.4: Performance of detectors trained by error-less P-expert, N-expert and P-N

expert measured by precision (LEFT), recall (M IDDLE) and f-measure (RIGHT).

training set. Three different classifiers were trained using: (i) P-experts, (ii) N-experts,

and (iii) P-N experts. The classifier performance was measured using precision, recall

and f-measure and the results are shown in figure 5.4. Precision (LEFT) is decreased

by P-experts since only positive examples are added to the training set, these cause

the classifier to be too generative which results in increase of false positives. Recall

(m i d d l e) is decreased by N-experts since these add only negative examples and cause

the classifier to be too discriminative. F-measure (RIGHT) shows that P-N experts

together work the best. Notice that even error-less experts cause classification errors

if used individually, which leads to low precision or low recall of the classifier. Both

precision and recall are high if the P-N experts are used together since the errors are

mutually compensating.

5.3 Learning an object detector from a video sequence

This section applies the P-N learning to bootstrapping a scanning window-based object

detector from a video sequence. The section is split into three parts. Subsection 5.3.1

specifies the learning problem using the P-N learning terminology. Subsection 5.3.2

develops appropriate P-N experts. Finally, subsection 5.3.3 performs quantitative eval­

uation on a number of challenging sequences. The learning approach will be described

90 Chapter 5. Learning: unsupervised bootstrap

)
EXAMPLE V ID EO STREA M DETECTORP-N L e a rn in g

Figure 5.5: Given a single example and a video stream, the goal of P-N learning is to

train an accurate object detector.

without considering implementation details, these are given in chapter 6.

5.3.1 Problem specification

The input to the classifier training is a single bounding box and a video sequence. The

learning is performed by sequential processing of the video sequence in a frame-by-

frame fashion. One iteration of P-N learning corresponds to the processing of one

frame of the sequence. The output of the learning is a binary classifier that separates

appearances of the object from appearances of the background that appeared in the

video sequence. Figure 5.5 illustrates the scenario.

The training examples (both labeled and unlabeled) correspond to image patches.

These image patches are sampled at locations and scales determined by a scanning

grid on which the detector operates. The labeled data Li are extracted from the first

frame. Patches that are overlapping with the initial bounding box are positive, patches

that are non-overlapping are negative. The unlabeled data Xu are contained in the

remaining video sequence.

The learning is initialized in the first frame by supervised training of the so called

Initial detector. The learning then proceeds by sequential processing of the video

sequence. In every frame, the P-N learning performs the following steps: (i) evaluation

of the detector on the current frame, (ii) estimation of the detector errors using the P-N

5.3. Learning an object detector from a video sequence 91

a) detector output

false
negative

false
positives

N-expert: iii
b) identified errors

Figure 5.6: Illustration of P-N experts: (a) output of an motorbike detector, (b) errors

identified by P-N experts.

experts, (iii) update of the detector by labeled examples output by the experts. The

detector obtained at the end of the sequence is called the Final detector. We perform

the learning in one pass through the video sequence which is analogous to processing

live video stream.

5.3.2 P-N experts

This section presents our P-N experts developed for bootstrapping a scanning window-

based detector from a video sequence. Consider that our goal is to train a detector of

a motorbike. At every iteration of the P-N learning, the detector is evaluated on the

current frame. One possible output of the detector is depicted in figure 5.6 (a). Note

that the detector performed two false positives and one false negative errors. The goal

of the P-N experts is to identify these errors. In particular, P-experts should identify

false negatives and N-experts should identify false positives as shown in figure 5.6 (b).

To introduce the P-N experts, consider figure 5.7 (a) that shows three frames of a video

sequence overlaid with a scanning grid. Every bounding box in the grid defines an

image patch, whose label is represented as a colored dot (b,c). The detector considers

every patch to be independent. Therefore, there are 2^ possible label combinations

in a single frame, where N is the number of bounding boxes in the grid. Figure 5.7

92 Chapter 5. Learning: unsupervised bootstrap

(b) shows one such labeling. The labeling indicates, that the object appears at several

locations in a single frame and there is no temporal continuity in the motion. In natural

videos is such labeling not credible and therefore it can be inferred that the detector

made a mistake at several locations. On the other hand, if the detector outputs classifi­

cation as depicted in (c) the labeling is credible since the object appears at one location

in a single frame and these locations constitute a smooth trajectory in time.

As we have just shown, it is fairly easy to estimate unlikely behavior of the detector

when observing the detector responses in the context of a video volume. We exploited

our prior knowledge about the motion of an object which casts constraints on the la­

beling of the video volume. In other words, every single patch influences labels of

other patches. Such a property will be called structure and the data that has this prop­

erty is structured. This is in contrast to the majority of existing learning algorithms

in semi-supervised learning, which assume that the unlabeled examples are indepen­

dent [Blum 98].

The key idea of the P-N experts is to exploit the structure in the data to estimate the

detector errors. Our approach to modeling the structure is based on simple rules such

as: (i) overlapping patches have the same label, (ii) patches within a single image can

have at most one positive label, (iii) patches that are connected by a trajectory have the

same label, etc. Based on these rules, the P-N experts are built.

The P-expert exploits the temporal structure in the video volume and assumes that

the object moves on a smooth trajectory. The P-expert remembers the location of the

object in the previous frame and estimates the object location in current frame using

a frame-to-frame tracker. If the detector labeled the current location as negative (i.e.

made a false negative error), the P-expert generates a positive example from the current

location and performs an update of the detector.

The N-expert exploits the spatial structure in the video volume and assumes that the

object can appear at a single location in a single frame only. The N-expert analyzes all

responses of the detector in the current frame and the response produced by the tracker

5.3. Learning an object detector from a video sequence 93

I 1 1 -n—
T---- T----T

o----n

ci---- A— c I Ïit----6

o----o

o----o

h— <

d
-----0

o— d — o

a) scanning grid b) no t credible labeling c) acceptable labeling

Figure 5.7: Illustration of a scanning grid applied to three consecutive frames (a) and

corresponding spatio-temporal volume of labels with unacceptable (b) and acceptable

(c) labeling. Red dots correspond to positive labels.

and selects the one that is the most confident. Patches that are not overlapping with

the maximally confident patch are labeled as negative and update the detector. The

maximally confident patch re-initializes the location of the tracker.

Error compensation. The figure 5.8 depicts a sequence of cam images, the object to

be learned is a car within the yellow bounding box. The car is tracked from frame to

frame by a tracker. The tracker represents the P-expert that outputs positive training

examples. Notice that due to occlusion of the car, the 3rd example is incorrect. The

N-expert identifies a maximally confident patch (denoted by a red star) and labels all

other patches as negative. Notice that the N-expert is discriminating against another

car, and in addition corrected the error made by the P-expert in the 3rd frame. This

shows that if the experts use an independent source of information (i.e. temporal and

spatial structure in data) they have potential to correct their own errors.

94 Chapter 5. Learning: unsupervised bootstrap

N -expertP-expert

Figure 5.8: Illustration of the P-expert and the N-expert and their error compensation.

5.3. Learning an object detector from a video sequence 95

5.3.3 Experiments

Components of P-N learning. This experiment investigates the performance of the

P-N learning on 10 sequences shown in figure 5.9. The performance is evaluated using

precision P , recall R and an f-measure F. P is the number of true positives divided

by number of all detections, R is the number of true positives divided by the number

of object occurrences that should have been detected. F combines these two mea­

sures as P = 2 P R / {P + R). Next, the quality of the P-N experts is measured using

P + ,P '^ ,P ~ and R~ averaged over all iterations. A detection is considered as true

positive if its overlap with ground truth bounding box is larger than 50%. The overlap

is defined as the ratio between intersection and union of two bounding boxes.

Table 5.1 (3rd column) shows the resulting scores of the Initial detector. This detector

has high precision for most of the sequences with exception of sequence 9 and 10.

Sequence 9 is long (9 928 frames) and there is a significant background clutter and

objects similar to the target (cars). Recall of the Initial detector is low for the majority

of sequences except for sequence 5 where the recall is 73%. This indicates that in this

sequence the appearance of the object does not vary significantly. The scores of the

Final detector are displayed in the 4th column of the table 5.1. The final detector was

evaluated by a single pass through the entire sequence. The recall of the detector was

significantly increased with little drop in precision. In sequence 9, even the precision

was increased from 36% to 90%, which shows that the false positives of the Initial

detector were estimated by N-expert and corrected. The most significant increase of

the performance is for sequences 7-10 which are the most challenging of the whole

set. The Initial detector fails here but for the Final detector the f-measure is in the

range of 25-83%. This demonstrates the benefit of P-N learning. The 5th column of

table 5.1 shows the performance of the Online detector that has been jointly trained and

evaluated while processing the sequence. For all of the sequences the Online detector

achieved higher recall in contrast to Initial detector and slightly worse recall than the

Final detector. On the other hand, the precision typically slightly drops with respect to

96 Chapter 5. Learning: unsupervised bootstrap

m

mm mmmm

Motocross

Figure 5.9: Sample images from evaluation sequences with objects marked. See Ap­

pendix B for more details.

the Initial detector. The overall performance of the Online detector is between Initial

detector and Online detector. The 6th column of table 5.1 shows the performance of

Online detector combined with the Tracker. In majority of the sequences, this combi­

nation leads to increased recall and slight drop of precision. An exception is sequence

3, where tracking caused a significant drop in precision since the tracker drifted at

the beginning of the sequence and remained drifted up to the end. For all remaining

sequences tracking improved performance of the online detector.

The last three columns of Table 5.1 report the quality of P-N experts. Both experts

have precision higher than 60% except for sequence 10 which has a P-precision of

just 31%. Recall of the experts is in the range of 2-78%. The last column shows

the corresponding eigenvalues of matrix M. Notice that all eigenvalues are smaller

than one. This demonstrates that the proposed experts work across different scenarios

and lead to an improvement of the Initial detector. The larger these eigenvalues are,

the less the P-N learning improves the performance. For example in sequence 10 one

eigenvalue is 0.99 which reflects poor performance of the P-N constraints. The target

of this sequence is an animal, which changes its pose throughout the sequence. The

Median-Flow tracker is not very reliable in this scenario, but still P-N learning exploits

the information provided by the tracker and improves the detector.

5.3. Learning an object detector from a video sequence 97

Sequence Frames
Initial Detector

Precision / Recall / F-measure

Final Detector

Precision / Recall / F-measure

Online Detector

Precision / Recall / F-measure

Online Detector + Tracker

Precision / Recall / F-mcasure

P-constraints N-constraints Eigenvalues

1. David 761 1.00/0.01/0.02 1.00/0.32/0.49 0.95 /0 .30 /0 .45 0.94 /0 .94 /0 .94 1.00/0.08 0.99/0.17 0.92/0.83

2. Jumping 313 1.00/0.01/0.02 0 .99/0 .88/0 .93 0 .89 /0 .60 /0 .72 0.86/0 .77/0 .81 0.86 / 0.24 0.98/0.30 0.70/0.77

3. Pedestrian 1 140 1.00/0.01 /0.02 1.00/0.12/0.22 1.00/0 .10/0 .18 0 .22/0 .16/0 .18 0.81/0.04 1.00/0.04 0.96/0.96

4. Pedestrian 2 338 1.00 / 0.02 / 0.03 1.00/0.34 / 0.51 1.00 / 0.27 / 0.42 1.00 / 0.95 / 0.97 1.00/0.25 1.00/0.24 0.76/0.75

5. Pedestrian 3 184 1.00/0 .73/0 .84 0 .97/0 .93/0 .95 1 .00/0 .85/0 .92 1.00 / 0.94 / 0.97 0.98 / 0.78 0.98/0.68 0.32/0.22

6. Car 945 1.00/0.04/0.08 0.99/0 .82/0 .90 1.00 / 0.55 / 0.71 0.93/0 .83/0 .88 1.00/0.52 1.00/0.46 0.48/0.54

7. Motocross 2665 1.00/0.00/0.00 0 .92/0 .32/0 .47 0.93 /0 .28 /0 .43 0 .86/0 .50/0 .63 0.96/0.19 0.84/0.08 0.92/0.81

8. Volkswagen 8576 1.00/0.00/0.00 0.92/0 .75/0 .83 0 .95 /0 .58 /0 .72 0.67 / 0.79 / 0.72 0.70/0.23 0.99/0.09 0.91 /0.77

9. Car Chase 9928 0 .36/0 .00/0 .00 0.90/0.42 / 0.57 0.60 / 0.33 / 0.42 0.81 / 0.43/0.56 0.64/0.19 0.95/0.22 0.76/0.83

10. Panda 3000 0.79/0.01 /O.Ol 0.51 / 0.16/0.25 0.71 / 0.09/0.16 0.25 / 0.24 / 0.25 0.31/0.02 0.96/0.19 0.81 /0.99

Table 5.1: Performance analysis of P-N learning. The Initial detector is trained on the

first frame only. The Final detector is obtained by P-N learning after one pass through

the sequence. The P-N Tracker is the adaptive Lucas-Kanade tracker re-initialized by

the on-line trained detector. The last three columns display internal statistics of the

training process. The statistics were computed for every frame and the table reports

the average values.

Figure 5.10: Several snapshot from face sequence that has been used to evaluate re­

peated runs of P-N learning.

Repeated run over one sequence. This experiment investigates the stability of P-N

learning when run multiple times over a single sequence. We use a benchmark face

sequence that has been first introduced in [Maggio 07]. The sequence contains 1006

frames and shows four face targets in an indoor environment that undergo a variety

of changes including: fast motion, out of plane rotation, partial and full occlusions.

The subject that undergoes the most significant changes was selected for tracking.

Figure 5.10 shows several frames from the sequence.

P-N learning has been run repeatedly on this sequence. After every run, the trained

98 Chapter 5. Learning: unsupervised bootstrap

9 l = 0 .95 1 2 3 4 5 6 7

Online detector + Tracker
Free

Rec

1.00

0.01

1.00

0.00

1.00

0.01

1.00

0.01

1.00

0.02

1.00

0.01

1.00

0.02

1.00

0.01

1.00

0.03

1.00

0.02

1.00

0.03

1.00

0.02

1.00

0.03

1.00

0.02
Final Detector

Free

Rec

6 l = 0 .90

O i, = 0 .80

6 l = 0 .70

Free 1.00 1.00 0.99 0.99 0.99 0.95 0.95
Online detector + Tracker

Rec 0.04 0.35 0.59 0.68 0.70 0.69 0.71

Free 1.00 0.99 1.00 0.99 0.99 0.98 0.98
Final Detector

Rec 0.01 0.25 0.49 0.58 0.58 0.61 0.63

Free 1.00 0.97 0.94 0.91 0.91 0.90 0.87
Online detector +Tracker

Rec 0.22 0.59 0.70 0.72 0.72 0.71 0.72

Free 1.00 1.00 0.97 0.93 0.95 0.94 0.89
Final Detector

Rec 0.08 0.46 0.59 0.61 0.65 0.65 0.64

Free 0.98 0.99 0.94 0.94 0.90 0.87 0.87
Online detector +Tracker

Rec 0.09 0.57 0.73 0.79 0.78 0.77 0.65

Fre 1.00 1.00 0.99 0.97 0.94 0.90 0.93
Final Detector

Rec 0.01 0.35 0.57 0.66 0.68 0.67 0.59

Table 5.2: Performance of P-N learning as a number of runs through the video.

classifier was kept in memory and used as the initial classifier in the next run. The

performance was then accessed using precision and recall as a function of number of

runs over the sequence. We investigated both the performance of the Final detector

as well as the Online detector + Tracker. This experiment was repeated four-times

for different parameter 9l which corresponds to rate of learning. The parameter 0^is

discussed in chapter 6 section 6.3.6.

The results are presented in table 5.2. Notice the third sub-table with 9l = 0.80. In

the first iteration, Online detector + Tracker discovers 22% of the trajectory, while the

Final detector only 8% at the same precision of 100%. With every iteration, the recall

of both of them increases. For 9l = 0.95 the learning process does not start at all. The

learning is too conservative in that case. For 9l = 0.70 the overall performance first

increases but around 5th iteration it slightly drops and oscillates.

5.4. Conclusions 99

5.4 Conclusions

In P-N learning, a novel approach for the processing of labeled and unlabeled exam­

ples, has been proposed. The underlying assumption of the learning process is that the

unlabeled data are structured. The structure of the data is exploited by positive and

negative experts that restrict the labeling of the unlabeled data. These experts provide

a feedback about the performance of the classifier which is iteratively improved in a

bootstrapping fashion. We have formulated conditions under which the P-N learning

guarantees improvement of the classifier. The conditions have been validated on syn­

thetic and real data. The P-N learning has been applied to the problem of learning of

an object detector from a single example and an unlabeled video sequence. We have

proposed experts that exploit the spatio-temporal properties of a video. These results

open questions such as: (i) under what conditions these experts fail, and (ii) how to

design other experts. These questions are covered chapters 6 and 7.

100 Chapters. Learning: unsupervised bootstrap

Chapter 6

Tracking-Learning-Detection (TLD)

This chapter defines, implements and evaluates a new tracking paradigm that we ref-

fer to as Tracking-Learning-Detection (TLD). The chapter is structured as follows.

Section 6.1 introduces the main idea behind TLD. Section 6.2 formalizes the TLD

framework. Section 6.3 describes our implementation. Section 6.4 performs a set of

comparative experiments with state-of-the-art approaches. Section 6.5 applies the TLD

framework to long-term tracking of human faces. Finally, section 6.6 performs a set of

qualitative experiments and discusses the pros and cons.

6.1 Introduction

Consider a video stream and a single bounding box defining the object of interest in

one frame. The goal of long-term tracking is to track the object “forever”: every time,

the object appears in the camera view, a long-term tracker should draw a bounding box

around it. As we have discussed in chapter 2, the long-term tracking problem is closely

related to frame-to-frame tracking and tracking-by-detection.

Frame-to-frame tracking assumes that the object moves on a smooth trajectory. Track­

ers are able to adapt to changes of the object appearance, however, they typically fail if

101

102 Chapter 6. Tracking-Learning-Detection (TLD)

o c c lu s io nX

d r if t fa ilu re

t
a) Tracker

o c c lu s io n

f a ls e p o s itiv e s

0

0 0

f a ls e n e g a t iv e s
J I I I I ^

o c c lu s io nX

r e - d e te c t io n

t
c) Tracking-Learning-Detectionb) Detector

Figure 6.1 : Illustration of a tracker (a), detector (b), and a tractor (c). Dotted line shows

ground truth trajectory, gray bar represents full occlusion, thick line is the trajectory of

a tracker, red dots are responses of a detector.

the object gets fully occluded or disappears. In contrast, tracking-hy-detection assumes

that the object model is known in advance. The detectors never fail due to occlusion

or disappearance, however, the object model is fixed which means that unexpected

appearances cannot he detected (false positives) and cluttered background may gen­

erate false detections (false positives). Obviously, both of these assumptions are too

restrictive for the long-term tracking problem.

In a number of tracking problems, the objects occasionally reappear with previously

observed appearance. This has been already used to reduce drift of frame-to-frame

tracking [Dowson 05, Rahimi 08], closing loops in SLAM [Newman 06] or tracking of

people [Ramanan 05]. The idea of this chapter is to build online an object detector that

represents all appearances observed so far. This detector shall run in parallel with an

object tracker and correct or re-initalize it when necessary. Tracking is then understood

not only as a way to determine the location of the object, but also as a way to provide

training examples for the online trained object detector. Any algorithm, that combines

an object tracker with an online learned detector will be refered to as tractor. See

figure 6.1 for comparison of a tracker, a detector and a tractor.

6.2. Framework 103

Object
state

Object
state

Video
frame

update
detector

Object model Learning

Detection

Tracking

Figure 6.2: Detailed block diagram of the TLD framework.

6 . 2 Framework

TLD is designed for long-term tracking of unknown objects in unconstrained environ­

ments. In addition, TLD enables tracking of objects the class of which is known in

advance. This section describes the TLD on the highest level. The block diagram is

shown in figure 6.2.

6.2.1 Components

The framework consists of four components: tracker, learning, detector and integrator.

These components have the following characteristics:

1. Tracker is an exploratory and error-prone component of TLD. The tracker es­

timates frame-to-frame object motion and is adaptive in order to handle appear­

ance and illumination changes. It is not assumed that the tracker is correct all the

time. Automatic detection of tracking failures is an important, but not required

feature.

104 Chapter 6. Tracking-Learning-Detection (TLD)

2. Learning is an analyzing component that maintains an object model. The object

model. Learning constantly analyzes the output of the tracker and the detector,

estimates errors performed by the detector and updates the object model to avoid

these errors in the future.

3. Detector is a stabilizing component of the system that detect the appearances

represented in the constantly updated object model. The detector is either build

entirely online, or the online information is integrated with prior information

about the object class. The detector must enable efficient incremental update.

4. Integrator is a component that merges the hypotheses from the detector and the

tracker and outputs the final hypothesis about the object state.

TLD distinguishes two modes: (i) initialization, and (ii) run-time.

6.2.2 Initialization

The initialization requires the first frame and the corresponding object state indicated

by a bounding box. In addition, the framework may accept images depicting the ob­

ject from multiple views or background images where the object is not present. The

following operations are then performed:

• Initialization o f the tracker: involves setting the initial state (e.g. extraction of a

template or training of a classifier).

• Initialization o f the object model: involves inserting the given example(s) of the

object and examples of the background into the object model.

• Initialization o f the detector: involves training an object detector to detect the

appearances represented in the object model. We shall refer to the resulting

detector as the Initial detector.

6.3. Implementation 105

After initialization, the TLD framework is prepared to process the video stream frame-

by-frame.

6.2.3 Run-time

At each time instance, the framework accepts a video frame and passes it in parallel

to the tracker, the detector and the learning component. The tracker estimates the

object motion based on its previous state and outputs a single hypothesis. The detector

returns a number of hypotheses about the location of the target object. The tracker’s

and detector’s hypotheses are passed to the integrator, which merges them into the final

state that is then output from the system. Outputs of the tracker, the detector and the

integrator are analyzed by the learning block, which estimates errors and updates the

detector to avoid these errors in the future.

6.3 Implementation

This section describes our implementation of the TLD framework, which we refer to as

TLDI.O. We start by defining the object representation in section 6.3.1 and the object

model in section 6.3.2. The following sections discuss the individual components. Sec­

tion 6.3.3 introduces our detector, which is based on a cascaded classifier and enables

integration of an offline learned detector developed in chapter 4. Section 6.3.4 men­

tions the adaptation of the Median-Flow tracker developed in chapter 3. Section 6.3.5

discusses the integration of the detector and the tracker. Finally, section 6.3.6 discusses

the realization of the learning component that is based on the P-N learning developed

in chapter 5.

106 Chapter 6. Tracking-Learning-Detection (TLD)

6.3.1 Object representation

Object state. At any time instance, the object state is defined by a bounding box

or indicates that the object is not visible. The bounding box has a fixed aspect ratio

(given by the initial bounding box) and is parameterized by its location and scale.

Other parameters such as in-plane rotation are not considered. Spatial similarity of

two bounding boxes is measured using overlap, which is defined as a ratio between

intersection and union of the two bounding boxes.

Object appearance. A single instance of the object’s appearance is represented by

an image patch P. The patch is sampled within the object bounding box and then is

re-sampled to a normalized resolution (typically 15x15 pixels) regardless of the aspect

ratio. The similarity between two patches Pi, Pj is defined as

S(Pi, Pj) = 0.5(NCC(Pi, Pj) -b 1), (6.1)

where NCC is a Normalized Correlation Coefficient. The similarity ranges from 0 to 1.

Object trajectory. A sequence of object states defines a trajectory of an object in the

video volume as well as the corresponding trajectory in the appearance space. Note

that the trajectory is fragmented as the object may not be always visible. See figure 6.3

for illustration.

6.3.2 The object model

The object model M is a dynamic data structure that represents the object appearances

and its surroundings observed so far. It is a collection of positive and negative patches,

M = {P+, P f , . . . , P+, P [, P ^ , . . . , P “ }, where P+ and P “ represent the object and

background patches, respectively. Positive patches are ordered according to the time

when the patch was added to the collection. Pi'is the first positive patch added to the

collection, P+ is the last positive patch added to the collection.

6.3. Implementation 107

Current frame

Object model:
collection of patches

First frame 1- NN confidence:
S ^ / (S ^ +ST)

object trajectory
in appearance-space

background patch

object patch

Figure 6.3: Illustration of a trajectory in video volume and corresponding trajectory in

the appearance space.

We define several similarity measures which are used througout the system to indicate

how much an arbitrary patch P resembles the object appearances represented in the

model M:

1. Similarity with the positive nearest neighbor, 5'+(P, M) = maxp+g^ S'(P, P^).

2. Similarity with the negative nearest neighbor, S~ (P, M) = m a x p - S '(P , P ^).

3. Relative similarity, ^^lative similarity ranges from 0 to 1, higher

values mean more confident that the pateh depicts the object.

s~̂4. Conservative similarity, 5"̂ = , similar to the relative similarity, however

it considers only the first 50% of positive example in the object model. In order

to realize the conservative similarity it is important to keep the positive patches

ordered since then it is trivial to select the first half from them.

The Relative similarity is used to define the Nearest Neighbor (NN) classifier: a patch

P is classified as positive if S^{P,M) > 6*nn- Parameter 6*nn enables tuning the

nearest neighbor classifier either towards precision or recall. The classification margin

is defined as S^{F, M)-0^iq. The margin indicates the confidence of the classification.

108 Chapter 6. Tracking-Learning-Detection (TLD)

Model update. To integrate a new labeled patch to the object model, the following

strategy is used. The patch is first classified by the NN classifier and added to the

collection only if the classification is incorrect. This strategy leads to a significant

reduction of accepted patches [Aha 91] at the cost of coarser representation of the

decision boundary. Therefore we alter this strategy by adding also patches where the

classification margin is smaller than A. With larger A, the model accepts more patches

which leads to better representation of the decision boundary. In our experiments, we

use A = 0.1 which compromises the accuracy of the representation and the speed by

which is the collection grows. Exact setting of this parameter is not critical.

6.3.3 The object detector

The object detector is an algorithm that localizes the appearances represented in the

object model. The detector scans the input image by a scanning-window and for each

patch decides about presence or absence of the object.

Scanning-wlndow grid. We generate all possible scales and shifts of an initial bound­

ing box with the following parameters: scales step 1.2, horizontal step 10% of width,

vertical step 10% of height, minimal bounding box size 20 pixels. This setting pro­

duces around 50 000 bounding boxes for a QVGA image (240x320), the exaet number

depends on the aspect ratio of the initial bounding box. In-plane rotations of the objects

are not addressed explicitly.

Cascaded classifier. As the number of bounding boxes to be evaluated is large, the

classification of individual patches has to be efficient. A straightforward approaeh

of directly evaluating the NN classifier is problematic as it involves the search for

two nearest neighbors (positive and negative) in a high dimensional feature space. To

speed up the process, the classifier is structured into three stages: (i) patch variance,

(ii) ensemble classifier, and (iii) nearest neighbor. Each stage either rejects the patch

in question or passes it to the next stage. This cascaded architecture is common in

6.3. Implementation 109

Patch
variance

Ensemble classifier 1-NN classifier

1 2

Rejected patches

A ccepted
patches

Figure 6.4: The block diagram of the object detector.

face detection [Viola 01] where it enabled real-time performance. Figure 6.4 shows

the block diagram of our detector.

Patch variance. Patch variance is the first stage of our detector. This stage rejects

all patches, for which the gray-value variance is smaller than a threshold. We set the

threshold to 50% of the variance of the initial patch. Our implementation exploits the

fact that variance of a patch p can be expressed as E(P^) —E^(P), and that the expected

value E(P) can be measured in constant time using integral images [Viola 01]. This

stage typically rejects more than 50% of non-object patches (sky, street, etc).

Ensemble classifier. The ensemble classifier is the second stage of our detector. The

input to the ensemble is an image pateh that was not rejected by the first stage. The

ensemble consists of n base classifiers. Each base elassiher i performs a number of

pixel comparisons on the patch resulting in a binary code x, which indexes to an array

of posteriors Pi{y\x), where y G {—1,1}. The posteriors of individual base classifiers

are averaged. The patch is classified as positive if the average posterior is larger than

50%. Figure 6.5 shows the block diagram of the ensemble classifier.

Pixel comparisons. Every base classifier is based on a set of pixel comparisons. Sim­

ilarly as in [Lepetit 06, Ozuysal 07, Calonder 10], the pixel comparisons are generated

offline and stay fixed in run-time. The pixel comparisons are used to convert an image

patch to a binary code. First, the image is convolved with a Gaussian kernel with stan­

dard deviation of 3 pixels to increase the robustness to shift and image noise. Next,

the predefined set of pixel comparison is stretched to the patch. Each comparison re-

110 Chapter 6. Tracking-Learning-Detection (TLD)

E n s e m b le c la s s i f ie r

> 50%Mean

M

Image patch Classification

P ixe l c o m p a r i s o n s

b a s e c la s s i f ie r 1

b a s e c la s s i f ie r n

P o s te r io r s A v e ra g in g T h r e s h o ld in g

Figure 6.5: The block diagram of our ensemble classifier.

outputmeasure

input image + bounding box blurred image pixel comparisons binary code

Figure 6.6: Conversion of a patch to a binary code using a set of pixel comparisons.

' I

" 1.

1 1

I

Figure 6.7: Pixel comparisons measured within individual base classifiers. The rect­

angles correspond to a normalized patch. Squares correspond to pixel locations, lines

show which pixels are compared.

6.3. Implementation 111

turns 0 or 1 and these measurements are concatenated into a binary code x. Figure 6.6

illustrates the process.

Generating pixel comparisons. The vital element of ensemble classifiers is the in­

dependence of the base classifiers [Breiman 01]. The independence of the classifiers

is in our case enforced by measuring different pixel comparison by each base classi­

fier. First, we discretize the space of pixel locations within a normalized patch and

generate all possible horizontal and vertical pixel comparisons. Comparisons of zero

length are not considered. Next, we permute the comparisons and split them into the

base classifiers. As a result, every classifier is guaranteed to be based on a different

set of features and all the features together uniformly cover the entire patch. This is in

contrast to other approaches [Lepetit 06, Ozuysal 07, Calonder 10], where every pixel

comparison is generated independently of other pixel comparisons. Figure 6.7 shows

the pixel comparisons used in our implementation.

Posterior probabilities. Every base classifier i maintains a distribution of posterior

probabilities Pi{y\x). The distribution has 2 ̂entries, where d is the number of pixel

comparisons. We use 13 comparison, which gives 8192 possible codes that index to

the posterior probability. The probability is estimated as Pi{y\x) = where

and correspond to number of positive and negative patches, respectively, that

were assigned the same binary code. 10 base classifiers are used in our implementatin.

This is mainly motivated by the requirement for real-time performance. If the speed is

not an issue the number of base classifiers can be increased [Breiman 01] in order to

increase the performance of the ensemble.

Initialization and update. In the initialization stage, all base posterior probabilities

are set to zero, i.e. they vote for a negative class. During run-time, the ensemble

classifier is updated as follows. The labeled example is classified by the ensemble

and if the classification is incorrect, the corresponding and are updated which

consequently updates Pi{y\x).

Nearest neighbor classifier. After filtering the patches by the first two stages, the last

112 Chapter 6. Tracking-Learning-Detection (TLD)

stage is left with several bounding boxes that are not decided yet (% 50). The last stage

employs the NN classifier based on the online model. A patch is classified as the object

if > ^nn- In our experiments we set ^nn = 0.6.

6.3.4 The object tracker

The traeking component of TLDI.O is based on the Median-Flow tracker developed

in chapter 3, which was augmented with failure detection. The Median-Flow tracker

represents the object by a bounding box and estimates its motion between consecutive

frames. Internally, the tracker estimates displacements of a number of points within

the object’s bounding box, estimates their reliability, and votes with 50% of the most

reliable displacements for the motion of the bounding box using the median. A grid

of 10 X 10 points is used. The motion of each individual point is estimated using

the pyramidal implementation of Lucas-Kanade tracker [Bouguet 99]. The pyramidal

Lucas-Kanade tracker uses 2 levels of the pyramid and represents the points by 11 x 11

patches.

Failure detection. Let Si denote the displacement of a single point of the Median-

Flow traeker and 6m be the median displacement of all points. A failure of the tracker is

declared if Median Absolute Deviation (MAD) is larger than a threshold, m e d i a n —

Jm|)>10 pixels. This heuristic is able to reliably identify most failures caused by

fast motion or fast occlusion of the object of interest. In that case, the individual

displacement become scattered around the image and the MAD rapidly increases. If

the failure is detected, the tracker does not return any bounding box.

6.3.5 The integrator

The integrator is a function that combines the responses of the tracker and the detector

into a single response. If neither the tracker nor the detector output a bounding box.

6.3. Implementation 113

MAX i* .

^tracker e le c to r

msn-’

a) tracking and d e te c t in g b) tracking failure (occ lu sio n) c) re -d e te c tio n (jum p)

Figure 6.8: Illustration of integrator: (a) the objeet is tracked and detected, (b) the

tracker is challenged by occlusion, detector has no response, (c) the tracker failed, the

detector re-detects the object; these two patches are assigned conservative similarity

S^. Appearance that is in the online model earlier (car) receives higher score, new

appearance (failed) receives lower score and the tracker is re-initialized (arrow).

the object is declared as not visible. Otherwise the integrator outputs the maximally

confident bounding box, measured using the Conservative similarity S^. The integrator

is illustrated in figure 6.8.

Smoothing the trajectory. The object trajectory obtained by taking the maximally

confident bounding box has one disadvantage: the trajectory tends to jitter. This is

caused by the detector, which often has multiple responses close to the traeker, these

might overrule the non-jittering tracker. Therefore, we further modified the integrator

as follows. If the tracker’s bounding box is defined and the maximally confident de­

tection is in its vicinity (overlap > 0.8), the tracker bounding box is averaged with all

detections that are in the tracker’s vicinity. If the maximally confident detection is far

from the tracker (overlap < 0.8), the tracker is re-initialized.

6.3.6 The learning component

The task of the learning component is to train the Initial detector in the first frame and

bootstrap its performance at run-time using the P-expert and the N-expert.

114 Chapter 6. Tracking-Learning-Detection (TLD)

Initialization

The Initial detector is trained using labeled examples that are generated as follows.

The positive training examples are synthesized from the initial bounding box. First,

we select 10 bounding boxes from the scanning grid that are closest to the initial patch.

For each of the bounding boxes, 20 warped versions are generated. The parameters

of the warping are drawn randomly from a uniform distribution of shift ±1%, scale

change ±1% and in-plane rotation ±10°. The warped patches are added with Gaussian

noise (a = 5). The result is 200 synthetic positive patches. Negative patches are

collected from the surrounding of the initial patch, no synthetic negative examples are

generated. If the applieation requires fast initialization, the training examples are sub­

sampled. The labeled training patches are then update the object model as discussed

in subsection 6.3.2 and the ensemble elassiher as discussed in subsection 6.3.3. After

the initialization, the Initial detector is ready for run-time.

The P-expert

The goal of the P-expert is to discover new appearances of the object and thus increase

the generality the object detector. Section 5.3 suggested a P-expert that exploits the

faet that the object moves on a trajectory. The object trajectory is generated by a

combination of the tracker, the deteetor and the integrator. This combined process

traces a discontinuous trajectory, which is by no means correet all the time as any of

the components can fail. The challenge of the P-expert is to estimate reliable parts of

the trajectory and use it to generate positive training examples.

Consider an object model represented as colored points in a feature space. Positive

examples are represented by red dots connected by a directed curve suggesting their

order, negative examples are black. Using the conservative similarity 5'°, one can

define a subspace in the feature spaee, where > 6l - We refer to this subspace as the

core of the object model.

6.3. Implementation 115

The P-expert estimates the reliable parts of the trajectory as follows. The trajectory

becomes reliable as soon as it enters the core and remains reliable until is re-initialized

or the traeker declares its own failure. Any other trajectory is not considered by the

P-expert. The reliable trajectory generates positive examples that are then added to the

object model. See figure 6.9 for illustration.

Parameter 9l defines the extend of the ’’core”, influences the rate by which the trajecto­

ries are validated and hence the rate of learning. As we have seen in experiment 5.3.3,

high values may result in situation when no learning takes place. On the other hand

low value may lead to degradation of the classifier. The exact setting of the parameter

is data dependent however it turned out that 6l = 0.70 works for majority of cases.

This parameter is used in all of our experiments.

In every frame, the P-expert outputs a decision about the reliability of the current loca­

tion output by the integrator. If the current location is reliable, the P-expert generates a

set of positive examples that update the object model and the ensemble classifier. First,

we seleet 10 bounding boxes from the scanning grid that are closest to the initial patch.

For each of the bounding boxes, 10 warped versions are generated. The parameters

of the warping are drawn randomly from a uniform distribution of shift ±1%, scale

change ±1% and in-plane rotation ±5°. The warped patches are added with Gaussian

noise (<j = 5). This results in 100 synthetic positive examples for the ensemble clas­

sifier. For efficiency reasons, we consider only 10 patches for the update of the object

model.

The N-expert

The N-expert generates negative training examples with the aim to discriminate the

detector against background clutter. The key assumption of the N-expert is that the

object can occupy at most one loeation in the image. The N-expert is applied at the

same time as P-expert. In that case, patches that are far from current bounding box

116 Chapter 6. Tracking-Learning-Detection (TLD)

core
b)

Figure 6.9: Illustration of the P-expert: (a) an object model in a feature space and

the core (gray blob); (b) a non-reliable trajectory (dotted line) and a reliable trajectory

(thick line); (c) the object model and the core after the update.

(overlap < 0.2) are all labeled as negative.

6.4 Quantitative evaluation

This section reports on a set of quantitative experiments comparing the TLDI.O with

relevant algorithms. The first two experiments evaluate the TLDI.O on benchmark

data sets that are commonly used in the literature. In particular, the experiment in sec­

tion 6.4.1 extends the results reported in [Santner 10]. The experiment in section 6.4.2

extends the results from [Yu 08]. In both cases, a saturated performance is achieved.

Section 6.4.3 therefore introduces a more challenging data set and performs further

evaluation.

Every experiment in this section adopts the following evaluation protocol. A tracker is

initialized in the first frame of a sequence and tracks the selected object up to the end of

the sequence. The produced trajectory is then compared to ground truth. The particular

evaluation measure is specified in every experiment. TLDI.O has been compared with

11 comparable algorithms on 19 benchmark sequences. See Appendix A for more

details about the algorithms and Appendix B for the sequences.

6.4. Quantitative evaluation 117

6.4.1 Comparison 1: CoGD

TLDI.O was compared with results reported in [Yu 08], which reports on performance

of 5 trackers: (i) Incremental Visual Tracking (IVT) [Ross 07], (ii) Online Discrim­

inative Features (DDF) [Collins 05], (iii) Ensemble Tracking (ET) [Avidan 07], (iv)

Multiple Instance Learning (MILTrack) [Babenko 09], and (v) Co-trained Generative

and Discriminative tracker (CoGD) [Yu 08]). The evaluation was performed on 6 se­

quences that include full occlusions and disappearance of the object. CoGD [Yu 08]

clearly dominated on these sequences as it is capable of re-detection of the object. The

performance was assessed using the Number o f successfully tracked frames, i.e. the

number of frames where overlap with a ground truth bounding box is larger than 50%.

Frames where the object were occluded were not counted. For instance, for a sequence

of 100 frames where the object is occluded in 20 frames, the best possible score is 80

frames.

Table 6.1 shows the results. TLDI.O achieved the maximal possible score in all se­

quences and matched the performance of CoGD [Yu 08]. It was reported in [Yu 08]

that CoGD runs at 2 frames per second, and requires several frames (typically 6) for

initialization. In contrast, TLDI.O requires just a single frame and runs at 20 frames

per second.

This experiment demonstrates that neither the generative trackers (IVT [Ross 07]), nor

the discriminative trackers (ODF [Collins 05], ET [Avidan 07], MILTrack [Babenko 09])

are able to handle long-lasting full occlusions or disappearance of the object. CoGD is

evaluated in detail on more challenging data in section 6.4.3.

6.4.2 Comparison 2: PROST

TLDI.O was compared with the results reported in [Santner 10], which reports on per­

formance of 5 algorithms: (i) Online Boosting (OB) [Grabner 06], (ii) Online Random

118 Chapter 6. Tracking-Leaming-Detection (TLD)

Sequence Frames Occlusion rvT

[Ross 07]

CDF

[Collins 05]

ET

[Avidan 07]

MILTrack

[Babenko 09]

CoGD

[Yu 08]

TLDl.O

David 761 0 17 - 94 135 759 761

Jumping 313 0 75 313 44 313 313 313

Pedestrian 1 140 0 11 6 22 101 140 140

Pedestrian 2 338 93 33 8 118 37 240 240

Pedestrian 3 184 30 50 5 53 49 154 154

Car 945 143 163 - 10 45 802 802

Table 6.1: The number of successfully tracked frames - TLDl.O in comparison to

results reported in [Yu 08]. Bold numbers indicate the best score; a dash indicates that

the result was not reported. TLDl.O achieved the best possible performance.

Forrest (ORF) [Saffari 09], (iii) Fragment-based Tracking (FT) [Adam 06], (iv) Mul­

tiple Instance Learning (MILTrack) [Babenko 09] and (v) FROST [Santner 10]). The

evaluation was performed on 10 sequences, which includes partial occlusions and pose

changes. The performance was reported using two measures: (i) Recall - number of

true positives (50% overlap) divided by the sequence length, and (ii) Localization error

- average distance between the predicted and the ground truth bounding box centers.

TLDl.O estimates the scale of an object. However, the algorithms compared in this

experiment perform tracking in single scale only. In order to make a fair comparison,

the scale estimation was not used in this experiment.

Table 6.2 shows the performance measured by Recall. TLDl.O scored best in 9/10

outperforming by more than 12% the second best. Table 6.3 shows the performance

measured by Localization error. TLDl.O scored best in 7/10 being 1.6 times more

accurate than the second best.

6.4.3 Comparison 3: TLD data set

The previous experiments show that TLDl.O performs well on benchmark sequences

where the recall is in the range 90 - 100. We consider these sequences as saturated and

6.4. Quantitative evaluation 119

Sequence Frames OnlineBoost

[Grabner 06]

OnlineRF

[Saffari 09]

FragTrack

[Adam 06]

MILTrack

[Babenko 09]

Frost

[Santner 10]

TLD1.0

Girl 452 24.0 - 70.0 70.0 89.0 93.1

David 502 23.0 - 47.0 70.0 80.0 100.0

Sylvester 1344 51.0 - 74.0 74.0 73.0 97.4

Face occlusion 1 858 35.0 - 100.0 93.0 100.0 98.9

Face occlusion 2 812 75.0 - 48.0 96.0 82.0 96.9

Tiger 354 38.0 - 20.0 77.0 79.0 88.7

Board 698 - 10.0 67.9 67.9 75.0 87.1

Box 1161 - 2&3 61.4 24.5 91.4 91.8

Lemming 1336 - 17.2 54.9 816 70.5 85.8

Liquor 1741 - 53.6 79.9 20.6 83.7 91.7

Mean - 42.2 27.3 58.1 64.8 80.4 92.5

Table 6.2: Recall - TLDl.O in comparison to results reported in [Santner 10]. Bold

numbers indicate the best score; a dash indicates that the result was not reported.

TLDl.O scored best in 9/10 sequences.

Sequence Frames OnlineBoost

[Grabner 06]

OnlineRF

[Saffari 09]

FragTrack

[Adam 06]

MILTrack

[Babenko 09]

FROST

[Santner 10]

TLDl.O

Girl 452 43.3 - 26.5 31.6 19.0 18.1

David 502 51.0 - 46.0 15.6 15.3 4.0

Sylvester 1344 32.9 - 11.2 9.4 10.6 5.9

Face occlusion 1 858 49.0 - 6.5 18.4 7.0 15.4

Face occlusion 2 812 19.6 - 45.1 14.3 17.2 12.6

Tiger 354 17.9 - 39.6 8.4 7.2 6.4

Board 698 - 154.5 154.5 51.2 37.0 10.9

Box 1161 - 145.4 145.4 104.5 12.1 17.4

Lemming 1336 - 166.3 166.3 14.9 25.4 16.4

Liquor 1741 - 67.3 67.3 165.1 21.6 6.5

Mean - 32.9 133.4 78.0 46.1 18.4 10.9

Table 6.3: Localization error (pixels) - TLDl.O in comparison to results reported

in [Santner 10]. Bold numbers indicate the best score; a dash indicates that the re­

sult was not reported. TLDl.O scored best in 7/10 sequences.

120 Chapter 6. Tracking-Leaming-Detection (TLD)

intorduce new, more challenging ones.

The TLD data set consists of 10 sequences. The sequences 1-6 have been used in ex-

peiimentt 6.4.1 and include: David, Jumping, Pedestrian 1, Pedestrian 2, Pedestrian 3

and Car. The sequences 7-10 are new and include: Motorbike, Volkswagen, Car Chase

and Panda. These sequences are long and contain all the challenges outlined in the

chapter 1. All sequences were manually annotated with ground truth. In every frame,

the object is defined by a bounding box or it is indicated that the object is not visi­

ble. More than 50% of occlusion or more than 90 degrees of out-of-plane rotation was

annotated as ’’not visible”. See Appendix B for more details. The TLD data set is

available online at the website of the TLD project.^

Five tracking algorithms are compared on the TLD data set: (1) Online Boosting

(OB) [Grabner 06], (2) Semi-Supervised Online Boosting (SOB) [Grabner 08], (3)

Beyond Semi-Supervised Online Boosting (BSOB) [Stalder 09], (4) Multiple Instance

Learning (MILTrack) [Babenko 09], and (5) Co-trained Generative and Discrimina­

tive tracker (CoGD) [Yu 08]. Binaries for trackers (1-3) are available in the Internet^.

Tracker (4,5) were kindly evaluated directly by their authors.

The performance is evaluated using precision P, recall R and f-measure F. P is the

number of true positives divided by number of all responses, R is the number true

positivs divided by the number of object occurrences that should have been detected. F

combines these two measures as F = 2 P R / (P-\- R). Since this experiment compares

various trackers for which the default initialization (defined by the ground truth) might

not be optimal, it was allowed to initialize the object arbitrarily. For instance, when

tracking a motorbike racer, some algorithms might perform better when tracking only

a part of the racer. Every trajectory was therefore normalized. A transformation that

mapped the initializing bounding box to the ground truth bounding box was found

(shift, aspect and scale) and this transformation was applied to every bounding box

 ̂cmp.felk.cvut.cz/tld
ĥttp://www.vision.ee.ethz.ch/boostingTrackers/

http://www.vision.ee.ethz.ch/boostingTrackers/

6.4. Quantitative evaluation 121

Sequence Frames OB

[Grabner 06]

SOB

[Grabner 08]

BSOB

[Stalder 09]

MILTrack

[Babenko 09]

CoGD

[Yu 08]

TLDl.O

David 761 0.34 0.35 0.28 0.15 1.00 1.00

Jumping 313 0.09 0.17 0.15 1.00 1.00 1.00

Pedestrian 1 140 0.23 0.39 0.15 0.69 1.00 1.00

Pedestrian 2 338 0.21 0.77 0.04 0.11 0.81 0.91

Pedestrian 3 184 0.49 0.36 0.62 0.75 0.92 0.99

Car 945 0.73 0.80 0.72 0.24 0.96 0.94

Motocross 2665 0.01 0.05 0.00 0.03 0.45 0.83

Volkswagen 8576 0.04 0.04 0.01 0.07 0.11 0.87

Carchase 9928 0.06 0.09 0.19 0.07 0.08 0.77

Panda 3000 0.51 0.29 0.30 0.38 0.12 0.60

mean 26850 0.13 0.14 0.15 0.13 0.22 0.81

Table 6.4: F-measure - performance on the TLD data set. Bold numbers indicate the

best score. TLDl.O scored best in 9/10 sequences.

on the trajectory. The normalized trajectory was directly compared to ground truth

using overlap and a true positive was considered if the overlap was larger than 25%.

The earlier used threshold 50% was found to be too restrictive in this case. Sequences

Motocross and Volkswagen were evaluated by the MILTrack [Babenko 09] only up

to the frame 500 as the implementation required loading all images into memory in

advance. Since the algorithm failed during this period the remaining frames were

considered as failed.

Table 6.4 show the performance as measured by f-measure. The last row shows

a weighted average performance (weighted by number of frames in the sequence).

TLDl.O achieved the best performance of 81% significantly outperforming the sec­

ond best approach that achieved 22%, other approaches range between 13-15%. The

performance is broken down to precision in table 6.5 and recall in table 6.6. This exper­

iment demonstrates that TLDl.O significantly outperforms state-of-the-art approaches

on challenging data.

122 Chapter 6. Tracking-Leaming-Detection (TLD)

Sequence Frames OB

[Grabner 06]

OSB

[Grabner 08]

BOSB

[Stalder 09]

MILTrack

[Babenko 09]

CoGD

[Yu 08]

TLDl.O

David 761 0.41 0.35 0.32 0.15 1.00 1.00

Jumping 313 0.47 0.25 0.17 1.00 1.00 1.00

Pedestrian 1 140 0.61 0.48 0.29 0.69 1.00 1.00

Pedestrian 2 338 0.77 0.85 1.00 0.10 0.72 0.89

Pedestrian 3 184 1.00 0.41 0.92 0.69 0.85 0.99

Car 945 0.94 1.00 0.99 0.23 0.95 0.92

Motocross 2665 0.33 0.13 0.14 0.05 0.93 0.89

Volkswagen 8576 0.39 0.04 0.02 0.42 0.79 0.80

Carchase 9928 0.79 0.80 0.52 0.62 0.95 0.86

Panda 3000 0.95 1.00 0.99 0.36 0.12 0.58

mean 26850 0.62 0.50 0.39 0.44 0.80 0.82

Table 6.5: Precision - performance on the TLD data set. Bold numbers indicate the

best score. TLDl.O achieved the precision of 82%, the second best achieved 80%.

6.5 Long-term tracking of faces

This section adopts the TLDl.O system to tracking of human faces that we call the

Face-TLD. We consider the same block structure of the system as outlined in figure 6.2

with the only modification in the object detector, where the ensemble classifier is re­

placed by a generic object detector developed in chapter 4. Our goal is to investigate

whether the information about the object class helps in the long-term tracking or not.

6.5.1 Sitcom episode

This experiment compares the TLDl.O with Face-TLD on a sitcom episode It Crowd

(see appendix B). The episode is 22 minutes long (35471 frames) and contains a num­

ber of characters. For speed purposes the original frames were downsampled to reso­

lution 320 X 176 pixels. Both systems were initialized on a face of one character (Roy)

at his first appearance and automatically tracked the face up to the end of the sequence.

The TLDl.O tracked correctly at the beginning of the episode, but failed to detect the

6.5. Long-term tracking o f faces 123

Sequence Frames OB

[Grabner 06]

SOB

[Grabner 08]

BSOB

[Stalder 09]

MILTrack

[Babenko 09]

CoGD

[Yu 08]

TLDl.O

David 761 0.29 0.35 0.24 0.15 1.00 1.00

Jumping 313 0.05 0.13 0.14 1.00 0.99 1.00

Pedestrian 1 140 0.14 0.33 0.10 0.69 1.00 1.00

Pedestrian 2 338 0.12 0.71 0.02 0.12 0.92 0.92

Pedestrian 3 184 0.33 0.33 0.46 0.81 1.00 1.00

Car 945 0.59 0.67 0.56 0.25 0.96 0.97

Motocross 2665 0.00 0.03 0.00 0.02 0.30 0.77

Volkswagen 8576 0.02 0.04 0.01 0.04 0.06 0.96

Carchase 9928 0.03 0.04 0.12 0.04 0.04 0.70

Panda 3000 0.35 0.17 0.17 0.40 0.12 0.63

mean 26850 0.09 0.10 0.10 0.11 0.18 0.81

Table 6.6: Recall - performance on the TLD data set. Bold numbers indicate the best

score. TLDl.O achieved recall of 81%, the second best achieved 18%.

character in the second half. The overall recall was of 37% and precision of 70%.

The Face-TLD was able to track the target throughout the entire episode leading to a

recall of 54% and precision of 75%. The introduction of the face detector increased

the recall by 17%. Both approaches processed the episode at 20 frames per second on

laptop with Intel Core 2 Duo 2.4 GHz processor and 2GB RAM. Figure 6.10 shows

several frames from the episode and the online model.

6.5.2 Surveillance footage

This section performs a quantitative comparison on sequence Surveillance (see ap­

pendix B). The sequence consists of 500 frames depicting interior of a shop with mul­

tiple people captured at 1 frame per second. The sequence cannot be tracked by pure

face detector as there are multiple faces which occlude one another. Moreover, frame-

to-frame tracking is difficult to apply because the frame-to-frame motion is large and

the subjects move in and out of the camera view.

The TLDl.O was again compared to Face-TLD. The TLDl.O achieved a recall of 12%

124 Chapter 6. Tracking-Leaming-Detection (TLD)

s
Learning'

CD
#4008. fps 7 78. 0 3/48937

Figure 6.10: Evaluation of Face-TLD on a sitcom episode “IT crowd”, (t o p - l e f t)

The initial frame. The entire sequence (22 minutes) was then processed automatically.

■ • t \ : • •• ■ ■

• " 7 ̂\ ..

: ■ 4- ' ' ■ ■ '

f r a m e 500

Figure 6.11: Evaluation of Face-TLD on sequence Surveillance. (LEFT) Responses

of generic face detector (red), detections approved by online learned model (black),

ground truth trajectory of the subject (blue). (RIGHT) The surveillance scenario.

6.6. Qualitative analysis 125

and a precision of 57%, the Face-TLD achieved a recall of 35% and a precision of

79%. The introduction of face detector increased the recall by 23%. Figure 6.11

illustrates the scenario. This experiment demonstrates, that both TLDl.O and Face-

TLD are applicable to surveillance scenarios for tracking of faces. Furthermore, it

shows that using a face detector increases the performance of the TLD system.

6.6 Qualitative analysis

This section discusses the strengths and weaknesses of TLDl.O with respect to the

challenges outlined in the chapter 1. The performance is illustrated on several snap­

shots from run-time of the system, where the following marking is used:

• Yellow rectangle - the bounding box output of the TLDl.O,

• Gray dots - detections output by the second stage of our detector,

• Red dots - detections output by the whole detector,

• Blue dots - the reliable points used by the Median-Flow tracker,

• Patches to the left - negative examples in the online model,

• Patches to the right - positive examples in the online model.

• Top left comer depict close-up of the object.

6.6.1 Strengths

Scale changes. TLDl.O is robust to scale changes. Median-Flow estimates scale

changes even when the target is partially out of the frame. Detector localizes the ob­

ject in multiple scales. In sequence Volkswagen, the object of interest changes scale

126 Chapter 6. Tracking-Leaming-Detection (TLD)

Figure 6.12: TLDl.O and scale changes.

Figure 6.13: TLDl.O and illumination changes.

in the range from 20x20 to 100x100 pixels. The output of TLDl.O is illustrated in

figure 6.12.

Illumination changes. TLDl.O is invariant to smooth changes in illumination. Median-

Flow adapts the tracked templates and the detector is based on illumination invariant

pixel comparisons and NCC. In sequence David, a face is tracked from a dark room to

full illumination. Figure 6.13 shows the results.

Appearance changes. Median-Flow handles changes of appearance caused by pose

change or articulations. The detector localizes all appearances observed in the past.

In sequence Motocross, TLDl.O learned all appearances of a motorbike from the rear

view. However, it did not learn the side view. The detector was therefore not able to

re-initialize a trajectory in that case. See figure 6.14 for illustration.

6.6. Qualitative analysis 127

 ; ̂ - 1

i

Figure 6.14: TLDl.O and appearance changes.

L earning
^#495. fps:7.27, 1/14907

Figure 6.15: TLDl.O and partial occlusions.

Partial occlusions. TLDl.O deals with partial occlusions. Median-Flow tracker esti­

mates reliable points within the bounding box and filters out parts of the object that

are occluded. In sequence Face occlusion 2, the object of interest becomes partially

occluded, but TLDl.O is able to track these changes successfully as illustrated in fig­

ure 6.15.

Full occlusions and disappearances. The main power of TLDl.O is the ability to

re-detect the target after full occlusion or disappearance of the object from the scene.

Figure 6.16 shows the re-detection in sequence Car. Note that the appearance of the

car after occlusion is different from the initial appearance.

Similar targets. TLDl.O is discriminative. If the object of interest is surrounded

128 Chapter 6. Tracking-Leaming-Detection (TLD)

, '

Figure 6.16: TLDl.O and re-detection.

Figure 6.17: TLDl.O and similar targets. The sequence appeared in [Kwon 10].

by objects of similar appearance or background clutter, the N-expert labels them as

negative and inserts them to the online model. These negative examples then prevent

the detector from confusing the object of interest with other objects. For instance in

figure 6.17 the object of interest is a helmet of a football player. Notice that various

appearances of the same helmet appear in positive examples, whereas different helmets

occur in negative examples. This is best visible when zooming in on a display.

6.6.2 Weaknesses

Out-of-plane rotations. In case of out-of-plane rotation, Median-flow drifts away

from the target. The tracker typically stays away until a detector re-initializes its posi­

tion to previously seen appearance. For instance, figure 6.18 shows a sequence of an

object performing out-of-plane rotation. From frame 1 to 168, the object performs out

of plane rotation and the Median-Flow drifts. As the drift is slow, the failure of the

tracker is not identified and the system is learning new incorrect appearances. In frame

176 the object re-appears in previously seen appearance and the trajectory is correctly

6.6. Qualitative analysis 129

Figure 6.18: Out-of-plane rotations are challenging for TLDl.O. The sequence ap­

peared in [Leichter 09].

Figure 6.19: TLDl.O and sequences where the object never re-appear in a similar view.

The sequence appeared in [Kwon 10].

re-initialized. Notice that the incorrect data produced by the drift did not prevent the

tracker from correct re-initialization of the trajectory.

No previously seen appearances. Particularly challenging scenarios for TLDl.O are

scenes when the object never re-appears in previously observed appearance. For in­

stance, figure 6.19 shows an example when tracking a face in a Soccer sequence

from [Kwon 10]. The target object is tracked for a couple of frames but then fails

due to occlusion combined with pose and expression changes. The target is never

re-detected as the object never re-appears with previously observed appearance.

130 Chapter 6. Tracking-Leaming-Detection (TLD)

Chapter 7

Discussion

This chapter discusses the contributions of the thesis, reviews recent developments,

and proposes possible avenues for future research.

7.1 Contributions

In this thesis, we have proposed a new paradigm for long-term tracking of unknown

objects. Our approach was demonstrated on a number of challenging videos, and sig­

nificantly outperformed state-of-the-art. The particular contributions are summarized

below.

In chapter 3, we studied the long-term tracking problem from the perspective of frame-

to-frame tracking. We accepted that frame-to-frame tracking is not a good model for

this scenario as it leads to inevitable failures. Rather than trying to avoid these failures

by directly designing a better frame-to-frame tracker, we proposed a novel measure that

indicates the reliability of a tracker. The measure is based on the well known forward-

backward consistency assumption. We demonstrated that the proposed measure pro­

vides complementary information to appearance-based NNC and SSD. Furthermore,

we used the error measure to improve frame-to-frame tracking itself. We showed that

131

132 Chapter 1. Discussion

template tracking can be improved if the template is decomposed into independently

tracked parts which are weighted based on their reliability and integrated using median

estimator. The result is a novel template-based tracker (Median-Flow) which is robust

to partial occlusions and appearance changes and outperforms comparable approaches.

In chapter 4, we studied the long-term tracking problem from the perspective of tracking-

by-detection. We developed a novel learning method for supervised training of an

object detector from a large data set. In particular, we focused on learning methods

that combine bootstrapping and boosting. The theoretical contribution is the formal­

ization of bootstrapping and boosting in a unified framework. Within this framework,

we designed the optimal combination of the two approaches. The approach formulates

bootstrapping as a weighted sampling where the weights are driven by boosting. The

resulting combination demonstrated a significant improvement in terms of efficiency

(both in training and testing) as well as the classifier accuracy in contrast to ad hoc

combinations. The learning method has been applied to training face detectors (frontal

and profile), which operate at video frame-rate on QVGA images. Such detectors are

relevant to all long-term tracking scenarios, where the target object is a face. The

learning method does not make any face-specific assumptions and can be applied to

any other visual classes.

In chapter 5, we investigated the task of learning during long-term tracking. We have

demonstrated that an accurate object detector can be trained from a single example

and an unlabeled video stream using the following strategy: (i) evaluate the detector,

(ii) estimate its errors, and (iii) update the detector. The main novelty of the method

is the estimation of the detector errors, which is guided by two rules, which we call

the P-expert and N-expert, respectively. P-expert estimates only false negatives and

improves the detector generality. N-expert estimates only false positives and increases

the detector discriminability. Estimation of the detector’s errors independently based

on their type enabled not only simpler design of the experts, but also mutual compen­

sation of their errors. The theoretical contribution is the formalization of this learning

7.2. Recent development 133

process as a discrete dynamical system, which allowed us to specify conditions, under

which the learning guarantees improvement of the detector. We demonstrated, that the

experts can be designed when considering spatio-temporal relationships in the video.

In chapter 6, we proposed a novel tracking framework (TLD) that decomposes the

long-term tracking task into three sub-tasks: tracking, learning and detection. Build­

ing on the components developed in chapters 3, 4 and 5, we showed how to implement

the TLD framework and how to achieve real-time performance. An extensive quantita­

tive evaluation on benchmark sequences demonstrated saturated performance. There­

fore, we introduced a new data set, ground truth and evaluation protocol and showed

a significant improvement over state-of-the-art approaches. Finally, we applied TLD

to the tracking of human faces and demonstrated how to incorporate an offline trained

detector to further improve long-term tracking.

7.2 Recent development

The source code of TLDl.O has been released under GPL v3.0 license and is available

online ^ A corresponding discussion group has currently over 1000 registered users.

A presentation video^ that explains TLD crossed 0.5 million hits within one month on

YouTube. Moreover the author has been invited to give a Google Tech Talk

The implementation of TLD has been demonstrated at Computer Vision and Pattern

Recognition, 2010. The system has been running for more than 8 hours, tracking vari­

ous objects in real-time. Figure 7.1 shows the setup of the demo and several snapshots

taken automatically from the demo camera.

*https://github.com/zk00006/OpenTLD
ĥttp://youtu.be/lGhNXHCQGsM
ĥttp://youtu.be/lmG_FjG4Dy8

https://github.com/zk00006/OpenTLD
http://youtu.be/lGhNXHCQGsM
http://youtu.be/lmG_FjG4Dy8

134 Chapter 7. Discussion

D.rçcTiOV

A .

Figure 7.1: TLD demo at Computer Vision and Pattern Recognition conference, 2010.

7.3 Future work

Feedback. This thesis has shown that by introducing the P-N experts, one can improve

an offline trained detector. In broader context, we have used feedback that is commonly

used in control engineering or in artificial intelligence. On the other hand, in computer

vision, is feedback not common. Traditionally, vision is more considered as a “sensor”

that provides measurements. Majority of current approaches follow this philosophy

and design systems that stay fixed in run-time and have constant performance charac­

teristics. This approach leads to increasingly complex systems that essentially attempt

to ’’avoid” errors in runtime. By introducing feedback to vision, one can reconsider the

error as the opportunity to learn. A long term goal would be therefore to investigate

computer vision systems, that extensively rely on feedback in run-time and therefore

have the ability to improve them self.

Tracking multiple objects. A particularly promising direction is to adapt the TLD for

tracking of a large number of small patches. One could imagine a scenario when hun-

7.3. Future work 135

dreds of points are tracked simultaneously, each of which has the property to learn its

appearance on the fly, detect its disappearance and re-initialize its own trajectory when

it becomes visible. Such an approach would be applicable in a number of applications.

Extension of the ideas of TLD to optical flow is also an very promising direction that

is becoming realistic with the increasing speed of processors and availability of GPU.

Tracking. In chapter 7, we have demonstrated that a relatively simple tracker coupled

with a learning method and detector, significantly outperforms competing approaches.

On the other hand, we observed that if the tracker fails too quickly (e.g. due to out-

of-plain rotation), the detector is not able to re-initialize the tracker. Therefore one

promising way to proceed is to strengthen the tracking itself, e.g. by running multiple

trackers in parallel [Kwon 10] each of which would be based on different features and

motion models. Such an approach would lead to a set of P-experts that would train the

detector more quickly.

Detection. The detector used in our system is based on a scanning window and

global representation of the object and as such is prone to occlusions. However, as

we have reviewed in chapter 2, a number of detectors are based on local representa­

tions [Lowe 04] where partial occlusions are not an issue.

Learning. In chapter 5, we proposed a learning method (P-N Learning) which pro­

cesses a video stream in one pass, considering only one frame at a time. Frames

observed in the past were not used. While our motivation was mainly speed, this is

no longer an issue for a multi-threaded architecture. One can imagine a second thread

analysing the already processed frames, thus providing more training data for the de­

tector. In an ideal case, the detector should reflect all the information received up to

current time.

Faster implementation. While the current implementation of TLDl.O is running in

real-time on QVGA images, for larger images the frame-rate drops since the detector

has to evaluate a larger number of windows. A GPU implementation is a potential way

136 Chapter?. Discussion

to increase the speed as the scanning window approach can be parallelized. Implemen­

tation of pieces of code using SSE instruction set is also a promising direction.

Apply P-N Learning to other problems. In chapter 5, P-N Learning was applied

to data from a video stream with a specific spatio-temporal structure. The structure

is, however, present in many other problems as well. One possible way is to exploit

search engines such as Google Image Search. Search for a particular object (e.g. a

dog) returns a set of images where the object is likely to appear (P-expert). A search

for other object categories returns a set of images where the object is typically not

present (N-expert).

Sophisticated experts. The P-N experts used in this thesis are relatively simple, as

they were describing motion of a single object in a video stream. Apart from the

assumption that the object is unique in the image and the object moves on a trajectory,

the experts did not take any other assumption. In more complex scenarios, e.g. when

tracking multiple object in parallel, one can formalise more complex rules to describe

the problem.

Appendix A

Compared algorithms

1. FT: Fragment-based Tracker [Adam 06], a static template tracker which repre­

sents the object by a set of parts. In presence of partial occlusions, the method

have demonstrated better performance than Mean-Shift [Comaniciu 03].

2. IVT: Incremental Visual Tracking [Ross 07], a particle filter that incrementally

builds a PCA-based model of the object.

3. ET: Ensemble Tracking [Avidan 07], a mean shift-based tracker that adapts an

discriminative model classifying pixels.

4. ODF: Online Discriminative Features [Collins 03], a mean shift-based tracker

that adapts color projections to separate the object from background.

5. OB: Online Boosting Tracker [Grabner 06], an approach similar to ODF, but the

classification is performed on bounding box level.

6. ORF: Online Random Forests [Saffari 09], an approach similar to OB but more

robust with respect to noise.

7. SOB: Semi-supervised Online Boosting [Grabner 08], an extension of OB that

internally trains 2 classifiers.

137

138 Appendix A . Compared algorithms

8. BSOB: Beyond Semi-supervised Online Boosting [Stalder 09], an extension of

SOB that trains 3 classifiers to simultaneously increase adaptability and stability.

9. MILTrack: Multiple Instance Learning tracker [Babenko 09], an approach sim­

ilar to OB but with a modified, drift-resistant updating strategy.

10. CoGD: Co-trained Generative and Discriminative [Yu 08], a particle filter that

co-trains a pair of classifiers.

11. PROST: Parallel Robust Online Simple Tracking [Santner 10], a method based

on three complementary trackers: template, optical flow and random forest.

Appendix B

Sequences used for evaluation

The TLDl.O system has been quantitatively evaluated on 21 sequences specified in

table B.l and shown in figure B.l.

Id Sequence nam e Frames First appeared in Moving
cam era

Partial
occlusion

Full
occlusions

Out-of-plane
rotation

Illumination
change

Scale
change

Similar
objects

1 David 761 D. Ross e t al., IJCV'08 yes yes

2 Jumping 313 Q. Yu, ECCV'08 yes

3 Pedestrian 1 140 S. Avidan, PAMT07

4 Pedestrian 2 338 Q. Yu et al„ ECCV'08

5 Pedestrlna 3 184 Q. Yu et al., ECCV'08

6 Car 945 Q. Yu et al., ECCV'08 yes yes

7 Girl 502 S. Birchfield, CVPR'89

8 S ilvester 1,344 D. Ross et al., IJCV'08

9 Face occlusion 1 885 A. Adam et al., CVPR'06

10 Face occlusion 2 812 B. Babenko et al., CVPR'09

11 Tiger 354 B. Babenko et al., CVPR'09 yes

12 698 J. Santner e t al., CVPR'IO

13 1,161 J. Santner e t al., CVPR'IO yes

14 Lemming 1 ,336 J. Santner e t al., CVPR'IO yes

15 Liquor 1,741 J. Santner e t al., CVPR'IO

16 Motocross 2 ,665 Z. Kala et al.l, CVPR'IO yes y es yes

17 Volkswagen 8 ,576 Z. Kalal e t al., CVPR'IO yes yes

48 Car Chase 9928 , Z. Kalal et al., CVPR'IO yes yes

19 Panda 3 ,000 Z. Kalal e t al., CVPR'IO

20 IT Crowd 35,471 Z. Kalal e t al., CVPR'IO y es

21 Surveillance 500 Z. Kalal e t al., CVPR'IO yes yes

Table B.l: Description of sequences used for evaluation. A horizontal line separates

the standard and the introduced sequences. The red color indicates the TLD data set.

139

140 Appendix B. Sequences used for evaluation

2) David

3) Syklvestr

4) Face occlusion 1

6) Tiger

7) Board

8) Box

9) Lemming

11) Jum ping

12) Pedestrian 1

13) Pedestrian 2

14) Pedestrian 3

5) Face occlusion 2 10) Liquor 15) Car

19) Panda16) Motocross

20) U Crowd

17) Volkswagen

18) Car Chase

• ■ Ejm-
21) Surveillance

Figure B.l: Snapshots from the sequences used for evaluation. A horizontal line sepa­

rates the standard and the introduced sequences.

Bibliography

[Adam 06]

[Aha 91]

[Alvarez 07]

[Amit 97]

[Avidan 04]

[Avidan 07]

[Babenko 09]

A. Adam, E. Rivlin & I. Shimshoni. Robust Fragments-based

Tracking using the Integral Histogram. Conference on Computer

Vision and Pattern Recognition, pages 798-805, 2006.

D W Aha, D Kibler & M K Albert. Instance-based learning al­

gorithms. Machine Learning, vol. 6, no. 1, pages 37-66, 1991.

L Alvarez, R Deriche, T Papadopoulo & J Sanchez. Symmetrical

dense optical flow estimation with occlusions detection. Interna­

tional Journal of Computer Vision, vol. 75, no. 3, pages 371-385,

2007.

Y Amit & D Geman. Shape quantization and recognition with

randomized trees. Neural computation, vol. 9, no. 7, pages 1545-

1588, 1997.

S Avidan. Support Vector Tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1064-1072, 2004.

S Avidan. Ensemble Tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 29, no. 2, pages 261-271,

2007.

B Babenko, Ming-Hsuan Yang & S Belongie. Visual Tracking

141

142 Bibliography

[Baker 04]

[Barron 94]

[Belhumeur 97]

[Bibby 08]

[Bibby 10]

[Birchfield 98]

[Black 98]

[Blum 98]

with Online Multiple Instance Learning. Conference on Com­

puter Vision and Pattern Recognition, 2009.

S Baker & I Matthews. Lucas-Kanade 20 Years On: A Unifying

Framework. International Journal of Computer Vision, vol. 56,

no. 3, pages 221-255, February 2004.

J L Barron, D J Fleet & S S Beauchemin. Performance o f Opti­

cal Flow Techniques. International Journal of Computer Vision,

vol. 12, no. 1, pages 43-77, 1994.

P Belhumeur, J Hespanha & D Kriegman. Eigenfaces vs. Fish-

erfaces: recognition using class specific linearprojection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1997.

C Bibby & I Reid. Robust real-time visual tracking using pixel-

wise posteriors. European Conference on Computer Vision, 2008.

C Bibby & I Reid. Real-time Tracking o f Multiple Occluding Ob­

jects using Level Sets. Computer Vision and Pattern Recognition,

2010 .

S Birchfield. Elliptical head tracking using intensity gradients

and color histograms. Conference on Computer Vision and Pat­

tern Recognition, 1998.

M J Black & A D Jepson. Eigentracking: Robust matching and

tracking o f articulated objects using a view-based representation.

International Journal of Computer Vision, vol. 26, no. 1, pages

63-84, 1998.

A Blum & T Mitchell. Combining labeled and unlabeled data

with co-training. Conference on Computational Learning Theory,

page 100, 1998.

Bibliography 143

[Bouguet 99] J Y Bouguet. Pyramidal Implementation o f the Lucas Kanade

Feature Tracker Description o f the algorithm. Technical Report,

Intel Microprocessor Research Labs, 1999.

[Bradski 98] G R Bradski. Computer vision face tracking fo r use in a percep­

tual user interface. Intel Technology Journal, vol. 2, no. 2, pages

12-21, 1998.

[Breiman 96] L Breiman. Bagging predictors. Machine Learning, vol. 24, no. 2,

pages 123-140,1996.

[Breiman 01] L Breiman. Random forests. Machine Learning, vol. 45, no. 1,

pages 5-32, 2001.

[Brox 04] T Brox, A Bruhn, N Papenberg & J Weickert. High accuracy

optical flow estimation based on a theory for warping. European

Conference on Computer Vision, pages 25-36, 2004.

[Buchanan 06] A. M. Buchanan & A. W. Fitzgibbon. Interactive Feature Track­

ing using K-D Trees and Dynamic Programming. In IEEE Con­

ference on Computer Vision and Pattern Recognition, volume 1,

pages 626-633, 2006.

[Buehler 08] P Buehler, M Everingham, D P Huttenlocher & A Zisserman.

Long term arm and hand tracking fo r continuous sign language

TV broadcasts. British Machine Vision Conference, 2008.

[Calender 08] M Calender, V Lepetit & P Fua. Keypoint signatures fo r fast

learning and recognition. European Conference on Computer Vi­

sion, pages 58-71, 2008.

[Calender 10] M Calender, V Lepetit & P Fua. BRIEF : Binary Robust Indepen­

dent Elementary Features. European Conference on Computer

Vision, 2010.

144 Bibliography

[Cauwenberghs 01] G Cauwenberghs & T Poggio. Incremental and décrémentai sup­

port vector machine learning. Advances in neural information

processing systems, page 409, 2001.

[Chapelle 06] O Chapelle, B Scholkopf & A Zien. Semi-Supervised Learning.

MIT Press, Cambridge, MA, 2006.

[Collins 03] R Collins & Y Liu. On-line selection o f discriminative tracking

features. Proceedings Ninth IEEE International Conference on

Computer Vision, pages 346-352 vol.l, 2003.

[Collins 05] R Collins, Y Liu & M Leordeanu. Online Selection o f Discrim­

inative Tracking Features. IEEE Transactions on Pattern Analy­

sis and Machine Intelligence, vol. 27, no. 10, pages 1631-1643,

2005.

[Comaniciu 03]

[Dalai 05]

D Comaniciu, V Ramesh & P Meer. Kernel-Based Object Track­

ing. IEEE Transactions on Pattern Analysis and Machine Intelli­

gence, vol. 25, no. 5, pages 564-577, 2003.

N Dalai & B Triggs. Histograms o f oriented gradients fo r human

detection. Conference on Computer Vision and Pattern Recogni­

tion, 2005.

[Davison 03] A J Davison. Real-time simultaneous localisation and mapping

with a single camera. International Conference on Computer Vi­

sion, 2003.

[Dietterich 97] T G Dietterich, R H Lathrop & T Lozano-Perez. Solving the mul­

tiple instance problem with axis-parallel rectangles. Artificial In­

telligence, vol. 89, no. 1-2, pages 31-71, 1997.

Bibliography 145

[Dowson 05]

[Dowson 06]

[Dowson 08]

[Efron 93]

[Fergus 03]

[Fischler 73]

[Fleuret 01]

[Fleuret 08]

[Freund 95]

N Dowson & R Bowden. Simultaneous Modeling and Tracking

(SMAT) o f Feature Sets. Conference on Computer Vision and

Pattern Recognition, 2005.

N Dowson & R. Bowden. N-tier simultaneous modelling and

tracking for arbitrary warps. In British Machine Vision Confer­

ence., 2006.

N Dowson & R Bowden. Mutual information fo r Lucas-Kanade

Tracking (MILK): an inverse compositional formulation. IEEE

transactions on pattern analysis and machine intelligence, vol. 30,

no. 1, pages 180-5, January 2008.

B Efron & R Tibshirani. An Introduction to the Bootstrap. Chap­

man & Hall/CRC, 1993.

R Fergus, P Perona & A Zisserman. Object class recognition by

unsupervised scale-invariant learning. Conference on Computer

Vision and Pattern Recognition, vol. 2, 2003.

M A Fischler & R A Elschlager. The representation and match­

ing o f pictorial structures. IEEE Transactions on Computers,

vol. 100, no. 22, pages 67-92, 1973.

F Fleuret & D Geman. Coarse-to-Fine Face Detection. Interna­

tional Journal of Computer Vision, 2001.

F Fleuret & D Geman. Stationary features and cat detection.

Journal of Machine Learning Research, vol. 9, pages 2549-2578,

2008.

Y Freund. Boosting a weak learning algorithm by majority. In­

formation and Computation, 1995.

146 Bibliography

[Freund 97]

[Freund 01]

[Friedman 00]

[Goldman 07]

[Grabner 06]

[Grabner 08]

[Hadid 04]

[Harris 88]

Y Freund & R E Schapire. A Decision-Theoretic Generalization

o f On-Line Learning and an Application to Boosting,. Journal of

Computer and System Sciences, vol. 55, no. 1, pages 119-139,

August 1997.

Y Freund. An Adaptive Version o f the Boost by Majority Algo­

rithm. Machine Learning, 2001.

J Friedman, T Hastie & R Tibshirani. Additive logistic regression:

a statistical view o f boosting (With discussion and a rejoinder by

the authors). The Annals of Statistics, vol. 28, no. 2, pages 337-

407, 2000.

D B Goldman, B Curless, D Salesin & S M Seitz. Interactive

Video Object Annotation. ACM Computing Surveys, pages 1-7,

2007.

H Grabner & H Bischof. On-line boosting and vision. Conference

on Computer Vision and Pattern Recognition, 2006.

H Grabner, C Leistner & H Bischof. Semi-Supervised On-line

Boosting for Robust Tracking. European Conference on Com­

puter Vision, 2008.

A Hadid, M Pietikainen & T Ahonen. A Discriminative Feature

Space for Detecting and Recognizing Faces. IEEE Computer So­

ciety, no. ii, 2004.

Ch Harris & M Stephens. A Combined Corner and Edge Detector.

Alvey vision conference, vol. 15, page 50, 1988.

[Hinterstoisser 09] S Hinterstoisser, O Kutter, N Navab, P Fua & V Lepetit. Real-time

learning o f accurate patch rectification. Conference on Computer

Vision and Pattern Recognition, 2009.

Bibliography 147

[Hinterstoisser 10] S Hinterstoisser, V Lepetit, S Ilic, P Fua & N Navab. Dominant

Orientation Templates fo r Real-Time Detection o f Texture-Less

Objects. Conference on Computer Vision and Pattern Recogni­

tion, 2010.

[Horn 81]

[Huang 07]

[Isard 98]

[Javed 05]

[Jepson 03]

[Jones 03]

[Klein 07]

[Kolsch 04]

B K P Horn & B G Schunck. Determining optical flow. Artificial

intelligence, vol. 17, no. 1-3, pages 185-203, 1981.

C Huang, H Ai, Y Li & S Lao. High-Performance Rotation In­

variant Multiview Face Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2007.

M Isard & A Blake. CONDENSATION - Conditional Density

Propagation for Visual Tracking. International Journal of Com­

puter Vision, vol. 29, no. 1, pages 5-28, 1998.

O Javed, S Ali & M Shah. Online detection and classification o f

moving objects using progressively improving detectors. Confer­

ence on Computer Vision and Pattern Recognition, 2005.

A D Jepson, D J Fleet & T F El-Maraghi. Robust Online Appear­

ance Models fo r Visual Tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1296-1311, 2003.

M Jones & P Viola. Fast multi-view face detection. Conference

on Computer Vision and Pattern Recognition, 2003.

G Klein & D Murray. Parallel Tracking and Mapping for Small

AR Workspaces. International Symposium on Mixed and Aug­

mented Reality, November 2007.

M. Kolsch & M. Turk. Fast 2D Hand Tracking with Flocks o f

Features and Multi-Cue Integration. Conference on Computer

Vision and Pattern Recognition Workshop, 2004.

148 Bibliography

[Kwon 10]

[Laptev 06]

[Leibe 07]

J Kwon & K M Lee. Visual Tracking Decomposition. Conference

on Computer Vision and Pattern Recognition, 2010.

I Laptev. Improvements o f object detection using boosted his­

tograms. British Machine Vision Conference, 2006.

B Leibe, K Schindler & L Van Gool. Coupled Detection and Tra­

jectory Estimation for Multi-Object Tracking. 2007 IEEE 11th

International Conference on Computer Vision, pages 1-8, Octo­

ber 2007.

[Leichter 09]

[Lepetit 05]

[Lepetit 06]

[Levi 04]

[Levin 03]

I Leichter, M Lindenbaum & E Rivlin. Tracking by affine kernel

transformations using color and boundary cues. IEEE transac­

tions on pattern analysis and machine intelligence, vol. 31, no. 1,

pages 164-71, January 2009.

V Lepetit, P Lagger & P Fua. Randomized trees for real-time

keypoint recognition. Conference on Computer Vision and Pattern

Recognition, 2005.

V Lepetit & P Fua. Keypoint recognition using randomized trees.

IEEE transactions on pattern analysis and machine intelligence,

vol. 28, no. 9, pages 1465-79, September 2006.

K Levi & Y Weiss. Learning object detection from a small num­

ber o f examples: the importance o f good features. Conference on

Computer Vision and Pattern Recognition, 2004.

A Levin, P Viola & Y Freund. Unsupervised improvement o f

visual detectors using co-training. International Conference on

Computer Vision, 2003.

Bibliography 149

[Lewis 94]

[Li 04]

[Li 07]

[Lienhart 02]

[Lowe 04]

[Lucas 81]

[Maggio 07]

[Matas 04]

D Lewis & W Gale. Training text classifiers by uncertainty sam­

pling. International Conference on Research and Development in

Iformation Retrieval, 1994.

S Z Li & Z Q Zhang. FloatBoost Learning and Statistical Face

Detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2004.

Y Li, H Ai, T Yamashita, S Lao & M Kawade. Tracking in Low

Frame Rate Video: A Cascade Particle Filter with Discrimina­

tive Observers o f Different Lifespans. Conference on Computer

Vision and Pattern Recognition, 2007.

R Lienhart & J Maydt. An extended set o f Haar-like features

for rapid object detection. International Conference on Image

Processing, 2002.

D G Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, vol. 60, no. 2,

pages 91-110, 2004.

B D Lucas & T Kanade. An iterative image registration technique

with an application to stereo vision. International Joint Confer­

ence on Artificial Intelligence, vol. 81, pages 674-679, 1981.

E Maggio, E Piccardo, C Regazzoni & A Cavallaro. Particle

{PHD} filtering for multi-target visual tracking. IEEE Interna­

tional Conference on Acoustics, Speech and Signal Processing,

vol. 1, 2007.

J Matas, O Chum, M Urban & T Pajdla. Robust wide-baseline

stereo from maximally stable extremal regions. Image and Vision

Computing, vol. 22, no. 10, pages 761-767, 2004.

150 Bibliography

[Matthews 04] I Matthews, T Ishikawa & S Baker. The Template Update Prob­

lem. IEEE Transactions on Pattern Analysis and Machine Intelli­

gence, vol. 26, no. 6, pages 810-815, 2004.

[Mikolajczyk 04] K Mikolajczyk, C Schmid & A Zisserman. Human detection

based on a probabilistic assembly o f robust part detectors. Euro­

pean Conference on Computer Vision, 2004.

[Mikolajczyk 05] K Mikolajczyk, T Tuytelaars, C Schmid, A Zisserman, J Matas,

F Schaffalitzky, T Kadir & L V Gool. A comparison o f affine

region detectors. International journal of computer vision, vol. 65,

no. 1, pages 43-72, 2005.

[Murase 95]

[Newman 06]

[Nickels 02]

[Nigam 00]

[Obdrzalek 05]

[Ogata 09]

H Murase & S K Nayar. Visual learning and recognition o f 3-

D objects from appearance. International Journal of Computer

Vision, vol. 14, no. 1, pages 5-24, 1995.

P Newman. SLAM-Loop Closing with Visually Salient Features.

International Conference on Robotics and Automation, 2006.

K Nickels & S Hutchinson. Estimating uncertainty in SSD-based

feature tracking. Image and vision computing, vol. 20, no. 1,

pages 47-58, 2002.

K Nigam, A K McCallum, S Thrun & T Mitchell. Text classifica­

tion from labeled and unlabeled documents using EM. Machine

Learning, vol. 39, no. 2, pages 103-134, 2000.

S Obdrzalek & J Matas. Sub-linear indexing for large scale object

recognition. British Machine Vision Conference, vol. 1, pages 1-

10, 2005.

K Ogata. Modem control engineering. Prentice Hall, 2009.

Bibliography 151

[Oj ala 02] T Oj ala, M Pietikainen & T Maenpaa. Multiresolution Gray-Scale

and Rotation Invariant Texture Classification with Local Binary

Patterns. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 7, pages 971-987, 2002.

[Okuma 04] K Okuma, A Taleghani, N de Freitas, J J Little & D G Lowe. A

boosted particle filter: Multitarget detection and tracking. Euro­

pean Conference on Computer Vision, 2004.

[Osuna 97] E Osuna, R Freund & F Girosi. Training support vector machines:

an application to face detection. Conference on Computer Vision

and Pattern Recognition, 1997.

[Oza 05] N C Oza. Online bagging and boosting. International Conference

on Systems, Man and Cybernetics, 2005.

[Ozuysal 06] M Ozuysal, V Lepetit, F Fleuret & P Fua. Feature Harvesting

for Tracking-by-Detection. European Conference on Computer

Vision, 2006.

[Ozuysal 07] M Ozuysal, P Fua & V Lepetit. Fast Keypoint Recognition in

Ten Lines o f Code. Conference on Computer Vision and Pattern

Recognition, 2007.

[Papageorgiou 98] C P Papageorgiou, M Oren & T Poggio. A general framework fo r

object detection. International Conference on Computer Vision,

1998.

[Pilet 10] J Pilet & H Saito. Virtually augmenting hundreds o f real pic­

tures: An approach based on learning, retrieval, and tracking.

2010 IEEE Virtual Reality Conference (VR), pages 71-78, March

2010.

152 Bibliography

[Poh09]

[Polikar 06]

[Press 92]

[Quinlan 96]

[Rahimi 08]

[Ramanan 05]

[Ramanan 07]

[Reddy 02]

[Rosenberg 05]

N Poh, R Wong, J Kittler & F Roli. Challenges and Research Di­

rections for Adaptive Biometric Recognition Systems. Advances

in Biometrics, 2009.

R Polikar. Ensemble based systems in decision making. IEEE

Circuits and Systems Magazine, vol. 6, no. 3, pages 2 1 ^ 5 , 2006.

W Press, S Teukolsky, W Vetterling & B Flannery. Numerical

Recipes in C. Cambridge University Press, 1992.

J R Quinlan. Bagging, boosting, and C4. 5. National Conference

on Artificial Intelligence, 1996.

A Rahimi, L P Morency & T Darrell. Reducing drift in differential

tracking. Computer Vision and Image Understanding, vol. 109,

no. 2, pages 97-111, 2008.

D Ramanan, D A Forsyth & A Zisserman. Strike a pose: Tracking

people by finding stylized poses. Conference on Computer Vision

and Pattern Recognition, 2005.

D Ramanan, D A Forsyth & A Zisserman. Tracking people by

learning their appearance. IEEE Transactions on Pattern Analy­

sis and Machine Intelligence, pages 65-81, 2007.

B S Reddy & B N Chatteqi. An FFT-based technique fo r transla­

tion, rotation, and scale-invariant image registration. Image Pro­

cessing, IEEE Transactions on, vol. 5, no. 8, pages 1266-1271,

2002.

C Rosenberg, M Hebert & H Schneiderman. Semi-supervised

self-training o f object detection models. Workshop on Applica­

tion of Computer Vision, 2005.

Bibliography 153

[Ross 07]

[Rosten 06]

[Rowley 98]

[Saffari 09]

[Sand 08]

[Santner 10]

[Schapire 90]

[Schapire 98a]

[Schapire 98b]

D Ross, J Lim, R Lin & M Yang. Incremental Learning for Ro­

bust Visual Tracking. International Journal of Computer Vision,

vol. 77, no. 1-3, pages 125-141, August 2007.

E Rosten & T Drummond. Machine learning fo r high-speed cor­

ner detection. European Conference on Computer Vision, May

2006.

H A Rowley, S Baluja & T Kanade. Neural network-based face

detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 1, pages 23-38, 1998.

A Saffari, Ch Leistner, J Santner, M Codec & H Bischof. On-line

Random Forests. Online Learning for Computer Vision Work­

shop, 2009.

P Sand & S Teller. Particle video: Long-range motion estima­

tion using point trajectories. International Journal of Computer

Vision, vol. 80, no. 1, pages 72-91, 2008.

J Santner, C Leistner, A Saffari, T Pock & H Bischof. PROST:

Parallel Robust Online Simple Tracking. Conference on Com­

puter Vision and Pattern Recognition, 2010.

R E Schapire. The strength o f weak leamability. Machine Learn­

ing, 1990.

R E Schapire, Y Freund, P Bartlett & W S Lee. Boosting the

margin: A new explanation fo r the effectiveness o f voting meth­

ods. The Annals of Statistics, 1998.

R E Schapire & Y Singer. Improved boosting algorithms using

confidence-rated predictions. Proceedings of the eleventh an-

154 Bibliography

nual conference on Computational learning theory - COLT’ 98,

vol. 37, no. 3, pages 80-91,1998.

[Schapire 99] R Schapire & Y Singer. Improved Boosting Using Confidence­

rated Predictions. Machine Learning, 1999.

[Schapire 02] R E Schapire. The boosting approach to machine learning: An

overview. Lecture Notes in Statistics, 2002.

[Schneiderman 04] H Schneiderman & T Kanade. Object Detection Using the Statis­

tics o f Parts. International Journal of Computer Vision, 2004.

[Schweitzer 02] H Schweitzer, J Bell & F Wu. Very fast template matching. Euro­

pean Conference on Computer Vision, pages 145-148, 2002.

[Shi 94] J Shi & C Tomasi. Good features to track. Conference on Com­

puter Vision and Pattern Recognition, 1994.

[Shotton 08] J Shotton, M Johnson & R Cipolla. Semantic texton forests for

image categorization and segmentation. In Computer Vision and

Pattern Recognition,. IEEE, June 2008.

[Sinha 94] P Sinha. Object Recognition via Image Invariants: A Case Study.

Investigative Ophthalmology and Visual Science, 1994.

[Sochman 05] J Sochman & J Matas. WaldBoost: learning for Time Constrained

Sequential Detection. Conference on Computer Vision and Pat­

tern Recognition, 2005.

[Sochman 09] J Sochman & J Matas. Learning Fast Emulators o f Binary Deci­

sion Processes. International Journal of Computer Vision, vol. 83,

no. 2, pages 149-163, March 2009.

Bibliography 155

[Stalder 09]

[Strecha 03]

[Sung 98]

[Takacs 10]

[Tang 07]

[Taylor 09]

[Turk 91]

[Tuytelaars 07]

5 Stalder, H Grabner & L V Gool. Beyond semi-supervised track­

ing: Tracking should be as simple as detection, but not simpler

than recognition. 2009 IEEE 12th International Conference on

Computer Vision Workshops, ICCV Workshops, pages 1409-

1416, September 2009.

C Strecha, T Tuytelaars & L Van Gool. Dense matching o f mul­

tiple wide-baseline views. International Conference on Computer

Vision, 2003.

K K Sung & T Poggio. Example-based learning for view-based

human face detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 20, no. 1, pages 39-51, 1998.

G Takacs, V Chandrasekhar, D Chen, S Tsai, R Grzeszczuk

6 B Girod. Unified Real-Time Tracking and Recognition with

Rotation-Invariant Fast Features. Conference on Computer Vi­

sion and Pattern Recognition, 2010.

F Tang, S Brennan, Q Zhao, H Tao & U C Santa Cruz. Co­

tracking using semi-supervised support vector machines. Inter­

national Conference on Computer Vision, pages 1-8, 2007.

S Taylor & T Drummond. Multiple target localisation at over 100

fps. British Machine Vision Conference, 2009.

M Turk & A Pentland. Eigenfaces for recognition. Journal of

cognitive neuroscience, vol. 3, no. 1, pages 71-86, 1991.

T Tuytelaars & K Mikolajczyk. Local Invariant Feature Detec­

tors: A Survey. Foundations and Trends in Computer Graphics

and Vision, vol. 3, no. 3, pages 177-280, 2007.

156 Bibliography

[Vacchetti 04]

[Vapnik 98]

[Veenman 01]

[Viola 01]

[Wang 03]

[Wu 04]

[Wu 07]

[Xiao 03]

[Yang 94]

L Vacchetti, V Lepetit & P Fua. Stable real-time 3d tracking us­

ing online and offline information. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 10, page 1385,

2004.

V N Vapnik. Statistical learning theory. Wiley New York, 1998.

C J Veenman, M J T Reinders & E Backer. Resolving motion

correspondence for densely moving points. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 23, no. 1, pages

54-72, 2001.

P Viola & M Jones. Rapid object detection using a boosted cas­

cade o f simple features. Conference on Computer Vision and Pat­

tern Recognition, 2001.

L Wang, W Hu & T Tan. Recent developments in human mo­

tion analysis. Pattern Recognition, vol. 36, no. 3, pages 585-601,

2003.

B Wu, H Ai, C Huang & S Lao. Fast rotation invariant multi-view

face detection based on real Adaboost. International Conference

on Automatic Face and Gesture Recognition, 2004.

H Wu, A C S ankaranarayanan & R Chellappa. In Situ Evaluation

o f Tracking Algorithms Using Time Reversed Chains. Conference

on Computer Vision and Pattern Recognition, 2007.

R Xiao, L Zhu & H J Zhang. Boosting chain learning for object

detection. International Conference on Computer Vision, 2003.

G Yang & T S Huang. Human face detection in a complex back­

ground. Pattern Recognition, 1994.

Bibliography 157

[Yilmaz 04]

[Yilmaz 06]

[Yu 08]

[ZeisI 10]

[Zhou 96]

[Zhu 09]

A Yilmaz, X Li & M Shah. Contour-based object tracking

with occlusion handling in video acquired using mobile cameras.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 1531-1536, 2004.

A Yilmaz, O Javed & M Shah. Object tracking: A survey. ACM

Computing Surveys, vol. 38, no. 4, page 13, 2006.

Q Yu, T B Dinh & G Medioni. Online tracking and reacquisition

using co-trained generative and discriminative trackers. Euro­

pean Conference on Computer Vision, 2008.

B Zeisl, C Leistner, A Saffari & H Bischof. On-line Semi­

supervised Multiple-Instance Boosting. Conference on Computer

Vision and Pattern Recognition, 2010.

K Zhou, J C Doyle & K Glover. Robust and optimal control.

Prentice Hall Englewood Cliffs, NJ, 1996.

X Zhu & A B Goldberg. Introduction to semi-supervised learning.

Morgan & Claypool Publishers, 2009.

[Zimmermann 09] K Zimmermann, J Matas & T Svoboda. Tracking by an optimal

sequence o f linear predictors. IEEE transactions on pattern anal­

ysis and machine intelligence, vol. 31, no. 4, pages 677-92, April

2009.

