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Abstract

One of the objectives of designing feature selection legraigorithms is to obtain classifiers that depend on a snuafiber
of attributesand have verifiable future performance guarantees. There atgffany, approaches that successfully address the two
goalssimultaneouslyPerformance guarantees become crucial for tasks suchcagamiay data analysis due to very small sample
sizes resulting in limited empirical evaluation. To the tbafsour knowledge, such algorithms that give theoreticaliras on the
future performance have not been proposed so far in thexdootehe classification of gene expression data. In this war&
investigate the premise of learning a conjunction (or disfion) of decision stump@ Occam’s Razor, Sample Compression, and
PAC-Bayes learning settings for identifying a small sulifettributes that can be used to perform reliable classificaasks.
We apply the proposed approaches for gene identificatian fBdNA microarray data and compare our results to those of well
known successful approaches proposed for the task. We dieiwotrr algorithm not only finds hypotheses with much smaller
number of genes while giving competitive classificationumacy but also have tight risk guarantees on future perfoceainlike
other approaches. The proposed approaches are generaltansilde in terms of both designing novel algorithms anpliaption
to other domains.

Index Terms

Microarray data classification, Risk bounds, Feature selecGene identification.

|. INTRODUCTION

An important challenge in the problem of classification ajiidimensional data is to design a learning algorithm tlaat c
construct an accurate classifier that depends on the sinpissible number of attributes. Further, it is often dekitleat
there be realizable guarantees associated with the fuknfermance of such feature selection approaches. Withebent
explosion in various technologies generating huge amoohtaeasurements, the problem of obtaining learning algorit
with performance guarantees has acquired a renewed interes

Consider the case of biological domain where the advent ofaairay technologies [Eisen and Brown, 1999, Lipshutz.et a
@] have revolutionized the outlook on the investigatiord analysis of genetic diseases. In parallel, on the Gilzetson
front, many interesting results have appeared aiming tondisish between two or more types of cells, (e.g. diseased v
normal, or cells with different types of cancers) based onegexpression data in the case of DNA microarrays (see, for
instance,l9] for results on Colon Cancepl[® et al., 1999] for Leukaemia). Focusing on very few getoes
give insight into the class association for a microarrayans quite important owing to a variety of reasons. Foransg, a
small subset of genes is easier to analyze as opposed tottbé genes output by the DNA microarray chips. It also makes
it relatively easier to deduce biological relationshipsoagn them as well as study their interactions. An approack &bl
identify a very few number of genes can facilitate custotidraof chips and validation experiments— making the uitiian
of microarray technology cheaper, affordable, and effecti

In the view of a diseased versus a normal sample, these gamebec considered as indicators of the disease’s cause.
Subsequent validation study focused on these genes, thleavior, and their interactions, can lead to better undeding of
the disease. Some attempts in this direction have yieldeuesting results. See, for instance, a recent algorithopgsed
bylWang et al.l[2007] involving the identification of a genéset based on importance ranking and subsequently coridriaat
of genes for classification. Another example is the apprazchibshirani et al.|[2003] based on nearest shrunken cigstro
Some kernel based approaches such as the BAHSIC algo.7] and their extensions (elg., [Shah and @prbe
] for short time-series domains) have also appeared.

The traditional methods used for classifying high-dimenai data are often characterized as either “filters” (Eardy et al.,
12000,/ Wang et all, 2007] or “wrappers” (e.g. [Guyon et|alQZ}p depending on whether the attribute selection is peréat

independent of, or in conjunction with, the base learnirgpathm.
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Despite the acceptable empirical results achieved by spioaches, there is no theoretical justification of theifgrenance
nor do they come with a guarantee on how well will they perfannthe future. What is really needed is a learning algorithm
that hasprovably good performance guaranteisthe presence of many irrelevant attributes. This is treugoof the work
presented here.

A. Contributions

The main contributions of this work come in the form of for@tibn of feature selection strategies within well estdidth
learning settings resulting in learning algorithms thambine the tasks of feature selection and discriminativenieg.
Consequently, we obtain feature selection algorithms fassification with tight realizable guarantees on theiregahization
error. The proposed approaches are a step towards moreafjézaening strategies that combine feature selection wih
classification algorithmand have tight realizable guarantees. We apply the approach#settask of classifying microarray
data where the attributes of the data sample correspondetexpression level measurements of various genes. In fact th
choice of decision stumps as learning bias has in part nietiviay this application. The framework is general and extéams
in a variety of ways. For instance, the learning strategirep@sed in this work can readily be extended to other sintdaks
that can benefit from this learning bias. An immediate exampduld be classifying data from other microarray technigeg
such as in the case of Chromatin Immunoprecipitation erpeits. Similarly, learning biases other than the conjonstiof
decision stumps, can also be explored in the same frameweakling to novel learning algorithms.

B. Motivation

For learning the class of conjunctions of features, we drastivation from the guarantee that exists for this class i th
following form: if there exists a conjunction, that dependsowut of then input attributes and that correctly classifies a
training set ofm examples, then the greedy covering algorithm_of Haus will find a conjunction of at mostlnm
attributes that makes no training errardlote the absence of dependence on the numbafrinput attributes. The method is
guaranteed to find at mosin m attributes and, hence, depends on the number of availaivplasm but not on the number
of attributesn to be analyzed.

We propose learning algorithms for building small conjumts of decision stumpsie examine three approaches to obtain
an optimal classifier based on this premise that mainly vathé coding strategies for the threshold of each decisiomst
The first two approaches attempt to do this by encoding thestwid either with message strings (Occam’s Razor) or by
using training examples (Sample Compression). The thiategly (PAC-Bayes) attempts to examine if an optimal digssi
can be obtained by trading off the spatEityf the classifier with the magnitude of the separating madajieach decision
stump. In each case, we derive an upper bound on the germgi@iizrror of the classifier and subsequently use it to gtride
respective algorithm. Finally, we present empirical ressoh the microarray data classification tasks and compareesults
to the state-of-the-art approaches proposed for the tagdldimg the Support Vector Machine (SVM) coupled with faatu
selectors, and Adaboost. The preliminary results of thiskvappeared in_ [Marchand and Shah, 2005].

C. Organization

SectiorT) gives the basic definitions and notions of therlay setting that we utilize and also characterizes the thgsis
class of conjunctions of decision stumps. All subsequeainieg algorithms are proposed to learn this hypothesisscla
SectionI] proposes an Occam’s Razor approach to learrunetipns of decision stumps leading to an upper bound on the
generalization error in this framework. Section IV thengwses an alternate encoding strategy for the messagesstragg
the Sample Compression framework and gives a correspomidindpound. In Sectioh V, we propose a PAC-Bayes approach
to learn conjunction of decision stumps that enables thmileg algorithm to perform an explicit non-trivial margsparsity
trade-off to obtain more general classifiers. Sedfioh Vhtheoposes algorithms to learn in the three learning settpmgposed
in SectiondTll[T¥ and"V along with a time complexity analysiNote that the learning (optimization) strategies pregos
Sectior V] do not affect the respective theoretical guaasof the learning settings. The algorithms are evaluategrigally
on real world microarray datasets in SecfionlVIl. Secfiofllgtesents a discussion on the results and also providesalpsis
of the biological relevance of the selected genes in the @bsach dataset, and their agreement with published findiigally,
we conclude in SectioIX.

II. DEFINITIONS

The input spacet’ consists of alln-dimensional vectors = (x4, ..., z,) where each real-valued componente [A;, B;]
for i = 1,...n. Each attributer; for instance can refer to the expression level of gendence,A; and B; are, respectively,
thea priori lower and upper bounds on values figr The output spac®’ is the set of classification labels that can be assigned
to any input vectox € X'. We focus here on binary classification problems. Thus {0, 1}. Each example = (x,y) is an

1This refers to the number of decision stumps used.



input vectorx € X with its classification label; € ) choseni.i.d. from an unknown distributiorD on X x ). The true risk
R(f) of any classifierf is defined as the probability that it misclassifies an exardpdevn according tdD:

R(f) = Prixyyon (f(0) # 9) = Bixy)mn I (F(x) # 9)
wherel(a) = 1 if predicatea is true and0 otherwise. Given a training s& = {zy,...,z,} of m examples, thempirical
risk Rs(f) on S, of any classifierf, is defined according to:

R(f) ™ L5 1(705) # ) 2 B s 1(700) £ 9)
=1

The goal of any learning algorithm is to find the classifierhwitinimal true risk based on measuring empirical risk (arfgtot
properties) on the training sampte

We focus on learning algorithms that construatanjunction of decision stumgsom a training set. Eacldecision stump
is just a threshold classifier defined on a single attribuben@onent)z;.. More formally, a decision stump is identified by an
attribute indexk € {1,...,n}, athreshold value € R, and adirectiond € {—1,+1} (that specifies whether class 1 is on
the largest or smallest values of). Given any input example, the output-*,(x) of a decision stump is defined as:

k()d_cf 1 if (xp—t)d>0
"X = 0 i (v —)d <0

We use a vectok &' (k1,..., k) of attribute indicest; € {1,...,n} such thatk; < ky < ... < ky where|k| is the
number of indices present ik (and thus the number of decision stumps in the conjuncﬁoﬁ)thhermore, We use a vector
t = (tkysthys-- -, thy,,) Of threshold values and a vectdr= (dy,,dk,,- ., dk,,) Of directions wherek; € {1,...,n} for
j €{1,...,|k|}. On any input example, the outputC¥,(x) of a conjunction of decision stumps is given by:

o [ 1 0f o =1 Vjek
SR S

0 if Jjek: thdj(x) =0
Finally, any algorithm that builds a conjunction can be useuild a disjunction just by exchanging the role of the posi

and negative labeled examples. In order to keep our desgrigimple, we describe here only the case of a conjunction.
However, the case of disjunction follows symmetrically.

Ill. AN OCCAM’S RAZOR APPROACH

Our first approach towards learning the conjunction (orudisfion) of decision stumpss the Occam’s Razor approach.
Basically, we wish to obtain a hypothesis that can be codadjuke least number of bits. We first propose an Occam’s Razor
risk bound which will ultimately guide the learning algduit.

In the case of zero-one loss, we can model the risk of theifitlasas a binomial. LeBin(x, m,r) be the the binomial tail
associated with a classifier of (true) risk ThenBin(x,m, r) is the probability that this classifier makes at mesgrrors on

a set ofm examples:
. def my\ i
B — 2 1 _ m—1
in(k,m,r) ;(Z>r( r)

Thebinomial tail inversionBin (x,m, §) then gives the largest risk value that a classifier can have sfill having a probability

of at leasts of observing at mosk errors out ofm examples|[Langfofd, 2005, Blum and Langford, 2003]:

Bin (k,m, d) Lef sup {r : Bin (k,m,r) > 0}

From this definition, it follows thaBin (mRs(f), m,§) is the smallestupper bound, which holds with probability at least
1 — 4, on the true risk of any classifigf with an observed empirical risRs(f) on a test set ofn. examples:

Vf: Prgpm (R(f) <Bin(mRs(f),m,0)) >1—46

Our starting point is the Occam’s razor boundfOWhich is a tighter version of the bound proposed
by Blumer et al.|[1987]. It is also more general in the sense ithapplies to any prior distributio® over any countable class
of classifiers.

2Although it is possible to use up to two decision stumps on atijoute, we limit ourselves here to the case where eacibuitt can be used for only
one decision stump.



Theorem 1 (Langford [2005]) For any prior distributionP over any countable clasg of classifiers, for any data-generating
distribution D, and for anys € (0, 1], we have:

PrSNDm{Vf eF:R(f) < %(mRs(f),m,P(f)(S)} >1-94

The proof (available inM@bS]) directly followisom a straightforward union bound argument and from the fac
that Zfef P(f) = 1. To apply this bound for conjunctions of decision stumps lugstneed to choose a suitable pridifor
this class. Moreover, Theordnh 1 is valid Wh@fef P(f) < 1. Consequently, we will use subprior P whose sum is< 1.

In our case, decision-stumps’ conjunctions are specifigdrims of the discrete-valued vectdtsandd and the continuous-
valued vectort. We will see below that we will use a finite-precision bit stric to specify the set of threshold valuesLet
us denote byP(k,d, o) the prior probability assigned to the conjunctioff, described by(k,d, ). We choose a prior of
the following form: . .

P(k,d,o) = @pOkDWQk,d(U)
where gk qa(o) is the prior probability assigned to string given that we have chosek and d. Let M(k,d) be the
set of all message strings that we can use given that we hassewclk and d. If Z denotes the set of alt™ possi-
ble attribute index vectors anf?, denotes the set of alk’¥! binary direction vectorsl of dimension|k|, we have that
Yok 2odedy 2ove ) Pk, d,0) < 1 whenevery")_p(d) < 1and}, . vaq) 9xalo) <1k, d.

The reasons motivating this choice for the prior are theofaithg. The first two factors come from the belief that the final
classifier, constructed from the group of attributes spettiby k, should depend only on the numb&t of attributes in this
group. If we have complete ignorance about the number ofsaetistumps the final classifier is likely to have, we should
choosep(d) = 1/(n+ 1) for d € {0,1,...,n}. However, we should choosepathat decreases as we increas# we have
reasons to believe that the number of decision stumps of itlaé dlassifier will be much smaller than Since this is usually
our case, we propose to use:

pllk)) = S5 (1K + 1)~

The third factor ofP(k, d, o) gives equal prior probabilities for each of the two possidées of directiond;.

To specify the distribution of stringgk.a(c), consider the problem of coding a threshold vatue [a,b] C [A4, B] where
[A, B] is some predefined interval in which we are permitted to chdosnd wherea, b] is an interval of “equally good”
threshold values.We propose the following diadic coding scheme for the idimatiion of a threshold value that belongs to
that interval. Letl be the number of bits that we use for the code. Then, a codédits specifies one value among the Aet

of threshold values: ol
def 2j -1 2j—1
A= {[1 T il ] A+ 9l+1 B

j=1
We denote byA; and B;, the respectiva priori minimum and maximum values that the attributean take. These values are
obtained from the definition of data. Hence, for an attributek, given an intervala;, b;] C [A;, B;] of threshold values, we
take the smallest numbéy of bits such that there exists a threshold valug\jn that falls in the intervala;, b;]. In that way,
we will need at mostlog,((B; — A;)/(b; — a;))] bits to obtain a threshold value that falls [in;, b;].

Hence, to specify the threshold for each decision starapgk, we need to specify the numbégrof bits and al;-bit string
s; that identifies one of the threshold valuesAp. The risk bound does not depend on how we actually ecodfor some
receiver). It only depends on the a priori probabilities vesign to each possible realization ®f We choose the following
distribution:

gk,a(0) o gi,d(l1, 81,5 LK), S)k|) 1)
= [Icw -2 )
ick
where:
def 6 9

((a) = ﬁ(a‘f‘ -

The sum over all the possible realizationsoofjives 1 sincey ;- i~% = 72/6. Note that by giving equal a priori probability
to each of the2!: stringss; of lengthl;, we give no preference to any threshold value\in.

The distribution¢ that we have chosen for each string lengthhas the advantage of decreasing slowly so that the risk
bound does not deteriorate too rapidly lasncreases. Other choices are clearly possible. Howevee, that the dominant
contribution comes from the—% term yielding a risk bound that depends linearly/in

Va € N 3

3By a “good” threshold value, we mean a threshold value for asitsn stump that would cover many negative examples anyl feer positive examples
(see the learning algorithm).



With this choice of prior, we have the following theorem:

Theorem 2. Given all our previous definitions and for ardye (0, 1], we have:

Pr (Vk d,o: R(CK,) < Bln(mRS(C ),m M)) >1-96
S~Dm (\k\)2‘k‘

Finally, we emphasize that the risk bound of Theoidm 2, usecbihjunction with the distribution of messages given by
gx.a(o), provides a guide for choosing the optimal classifier. Nbt the above risk bound suggests a non-trivial trade-off
between the number of attributes and the length of the messisimg used to encode the classifier. Indeed the risk bound
may be smaller for a conjunction having a large number ofbattes with small message strings (i.e., snig) than for a
conjunction having a small number of attributes but witlg&amessage strings.

IV. A SAMPLE COMPRESSIONAPPROACH

The basic idea of the Sample compression framework [Kuzmih\&armuth, 2007] is to obtain learning algorithms with
the property that the generated classifier (with respecbinestraining data) can often be reconstructed with a veryllsma
subset of training examples. More formally, a learning datbm A is said to be asample-compression algorithiff there

exists acompression functiod and areconstruction functioriR such that for any training sampl¢ = {z4, ..., z,} (where

z; < (x4,9:)), the classifierA(S) returned byA is given by:

A(S) = R(C(S)) VS € (X xY)™

For a training sef, the compression functiah of learning algorithmA outputs a subset; of .S, called thecompression set
and aninformation message, i.e., (zi,0) = C(z1,...,Zy»). The information message contains the additional information
needed to reconstruct the classifier from the compressiog; s&iven a training samplé, we define the compression sgt
by a vector of indices such thati def (i1,72,...,4p3), with iy € {1,...,m}Vj andi; <ip <...<ip and wherdi| denotes
the number of indices present in

When given an arbitrary compression ggtand an arbitrary information message the reconstruction functiornkR of a
learning algorithmA must output a classifier. The information messagis chosen from a set(z;) that consists of all the
distinct messages that can be attached to the compressian 3ée existence of this reconstruction functi@hassures that
the classifier returned byl(S) is alwaysidentified by a compression sgf and an information message

In sample compression settings for learning decision simgnjunctions, the message string consists of the atgsand
directions defined above. However, the thresholds are n@eifsgd by training examples. Hence, if we hake attributes
wherek is the set of thresholds, the compression set consisfk|dfaining examples (one per threshold).

Our starting point is the following generic Sample Compi@s®ound [Marchand and Sokolova, 2005]:

Theorem 3. For any sample compression learning algorithm with a re¢arction functionR that maps arbitrary subsets of
a training set and information messages to classifiers:

Pgs.pm {Vl € I,U € M(Zl) R(R(Ua Zl)) < E(Ua Zi7 |j|)} >1-9

il = l_exp(ml—%—m[ (i |)“ "a")
“n(W)“n( )

where

(4)
and ¢ is defined by Equation] 3.

Now, we need to specify the distribution of messagBﬁ,t(Z) o)) for the conjunction of decision stumps. Note that in
order to specify a conjunction of decision stumps, the c@®sgion set consists of one example per decision stump. Ebr ea
decision stump we have one attribute and a correspondiegttbid value determined by the numerical value that thigate
takes on the training example.

The learner chooses an attribute whose threshold is idehtify the associated training example. The set of thesangain
examples form the compression set. Finally, the learneost®m a direction for each attribute.

The subset of attributes that specifies the decision stumpsiii compression set is given by the vectok defined in the
previous section. Moreover, since there is one decisiomgtcorresponding to each example in the compression setawe h
li| = |k|. Now, we assign equal probability to each possible|kRebf attributes (and hence thresholds) that can be selected
from n attributes. Moreover, we assign equal probability overdinection that each decision stump can h&yé, —1). Hence,
we get the following distribution of messages:



-1
Pr(an (0) = (|12|> 27 o (5)

Equation’d along with th&ample Compression Theor@mmpletes the bound for the conjunction of decision stumps.

V. A PAC-BAYES APPROACH

The Occam’s Razor and Sample Compression, in a sense, abita@ting sparse classifiers with minimum number of stumps.
This sparsity is enforced by selecting the classifiers withimnal encoding of the message strings and the compressian s
respective cases.

We now examine if by sacrificing this sparsity in terms of @&arseparating margin around the decision boundary (yigldi
more confidence) can lead us to classifiers with smaller gdimation error. The learning algorithm is based on the Beyes
approachM@Q} that aims at providiRgpbably ApproximatelyCorrect (PAC) guarantees to “Bayesian” learning
algorithms specified in terms of @rior distribution P (before the observation of the data) and a data-depengesigrior
distribution (Q over a space of classifiers.

We formulate a learning algorithm that outputs a stochadssifier, called the&sibbs ClassifierG defined by a data-
dependent posterid@p. Our classifier will be partly stochastic in the sense thatwilkeformulate a posterior over the threshold
values utilized by the decision stumps while still retagnthe deterministic nature for the selected attributes aretiibns for
the decision stumps.

Given an input example, the Gibbs classifier first selects a classifieaccording to the posterior distributigp and then
useh to assign the labeb(x) to x. The risk of G is defined as the expected risk of classifiers drawn accorairggs

R(Gq) ¥ EprugR(h) = EnuoEy~pl(h(x) # y)

Our starting point is the PAC-Bayes theorem [McAllester020Langford, 2005, Seeger, 2002] that provides a bound en th

risk of the Gibbs classifier:

Theorem 4. Given any spacé{ of classifiers. For any data-independent prior distributi® over H, we have:

Pr (VQ M(Rs(Go)IR(Gq)) < =P HDWTH) >1-4

~

m

whereKL(Q||P) is the Kullback-Leibler divergence between distributbfsand P:
KL(Q|P) o)

Ere B )
and wherekl(q||p) is the Kullback-Leibler divergence between the Bernoutitributions with probabilities of succegsand
p:

def

def q 1-—
kl(qllp) = qln]; +(1—g)ln—

This bound for the risk of Gibbs classifiers can easily beddrimto a bound for the risk of Bayes classifid?g over the
posteriorQ). Bg basically performs a majority vote (under meas@eof binary classifiers irft{. When B misclassifies an
examplex, at least half of the binary classifiers (under meagyenisclassifiesk. It follows that the error rate o/, is at
least half of the error rate dBy. HenceR(Bg) < 2R(Gg).

In our case, we have seen that decision stump conjunctienspecified in terms of a mixture of discrete paramekeasd
d and continuous parametets|f we denote byPx 4(t) the probability density function associated with a pridrover the
class of decision stump conjunctions, we consider hererspn'bthe form:

Pralt) = ( (k) 2|k| H I(tj € AJ,B])

As before, we have that:

> ST

keZ deDy jek

whenevery""_ p(e) = 1.

The factors relating to the discrete componektand d have the same rationale as in the case of the Occam’s Razor
approach. However, in the case of the threshold for eactsidacstumps, we now consider an explicitly continuous umnifo

“Here Q(h) denotes the probability density function associated \@thevaluated at.



prior. As in the Occam’s Razor case, we assume each attnvaliie 2, to be constrained, a priori, iy, Bx] such thatAy
and By, are obtained from the definition of the data. Hence, we haese a uniform prior probability density da, By]
for eacht; such thatt € k. This explains the last factors d¥ 4(t).

Given a training sef5, the learner will choose an attribute grokpand a direction vectod deterministically. We pose the
problem of choosing the threshold in a similar manner as énctlse of Occam’s Razor approach of Sedfidn Il with the only
difference that the learner identifies the interval andcisle threshold stochastically. For each attribuytes [Ay, By : k € k,

a margin intervalax, bx] C [Ag, Bg] is chosen by the learner. A deterministic decision stumgurtion classifier is then
specified by choosing the thresholds valtes [ax, bx] uniformly. It is tempting at this point to choosg = (ar+bi)/2 Vk € k
(i.e., in the middle of each interval). However, the PAC-Baye®tke offers a better guarantee for another type of detestitni
classifier as we see below.

Hence, the Gibbs classifier is defined with a posterior dhisgtion Q having all its weight on the sanle andd as chosen
by the learner but where each is uniformly chosen inay, bx]. The KL divergence between this posteri@rand the prior

P is then given by: "
- n 2 k Bk — Ak
wralr) =i () 5im) + 2t C=

In this limit when[ay, bi] = [Ak, Bi] Vk € k, it can be seen that the KL divergence between the “contiswomponents”
of @ and P vanishes. Furthermore, the KL divergence between thereliscomponents” of) and P is small for small values
of |k| (wheneverp(|k|) is not too small).Hence, this KL divergence between our choices@oand P exhibits a tradeoff
between marginsb(, — a)) and sparsity (small value dk|) for Gibbs classifiersTheoren{# suggests that tii&, with the
smallest guarantee of risR(G¢) should minimize a non trivial combination &f L(Q||P) and Rs(Gg).

The posterior) is identified by an attribute group vectRr a direction vectod, and intervalday, bx| Vk € k. We refine the
notation for our Gibbs classifig, to reflect this. Hence, we usgkg wherea andb are the vectors formed by the unions
of axs andb;s respectively. We can obtain a closed-form expressiorRt@(rG d) by first considering the risk ) (G kd)
on a single exampléx, y) since Rs(GX{) = E(x,y)~sR(x,y) (GXf). From our def|n|t|0n for), we find that:

R(xyy)(G (1-2y) lH Tar bk - 1 (6)
kek
where:
0 if (+ <aandd=+1)or(b<azandd=—1)

if a <z <bandd=+1
7 if a <z <bandd= -1
1 if (b<xandd=+1)or(z<aandd=—1)
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Note that the expression fdkx ,)(CE,) is identical to the expression faky ,)(GX{) except that the piece-wise linear
fUﬂCtiOﬂSO' », (z1) are replaced by the indicator function§(xy, — ty)dx > 0).

The PAC Bayes theorem provides a risk bound for the Gibbssiflar G‘;g Since the Bayes classifig?kd just performs
a majority vote under the same posterior distribution asothe used byGkd, it follows that:

BﬁS(X)—{ Ui TThexohr o, (@r) > 1/2

0 if TTicx aff;:_’bk (z1) < 1/2 (7)

Note thatBXd has anhyperbolicdecision surface. ConsequentlyXd is not representable as a conjunction of decision
stumps. There is, however, no computational difficulty atasting the output ofBXd(x) for any x € X'. We now state our
main theorem:

Theorem 5. Given all our previous definitions, for any € (0, 1], and for anyp satisfyingd_._,p(e) = 1, we have, with
probability atleastl — 6 over random draws of ~ D":

(Vk,d,a,b: R(GXD) < sup {e: KI(Rs(GED)|le) < ¢})

w‘ﬂ“((@ ?;; )+ 2t C=

Furthermore: R(BX3d) < 2R(GX) Vk,d,a,b.

where




VI. THE LEARNING ALGORITHMS

Having proposed the theoretical frameworks attemptindotaio the optimal classifiers based on various optimizatideria,
we now detail the learning algorithms for these approaclieslly, we would like to find a conjunction of decision stusnp
that minimizes the respective risk bounds for each apprddofortunately, this cannot be done efficiently in all casege
this problem is at least as hard as the (NP-hard) minimum megrgoroblem as mentioned by Marchand and Shawe-Taylor
[@]. Hence, we use a set covering greedy heuristic. Isistg10f choosing the decision sturhith the largesttility U¢
where:

UPC =Qi| — p|Ri] (8)

where@); is the set of negative examples covered (classified as O)diyres, R; is the set of positive examples misclassified
by this feature, angh is a learning parameter that gives a penaltipr each misclassified positive example. Once the feature
with the largest; is found, we remové&); and R; from the training sefS and then repeat (on the remaining examples) until
either no more negative examples are present or that a maxinmumbers of features has been reached. This heuristic was
also used by Marchand and Shawe-Taylor [2002] in the coribxt sample compression classifier called the set covering
machine. For our sample compression approach (SC), we asabttve utility function/;>“.

However, for the Occam’s Razor and the PAC-Bayes approagesieed utility functions that can incorporate the opti-
mization aspects suggested by these approaches.

A. The Occam’s Razor learning algorithm

We propose the following learning strategy for Occam’s Rdearning of conjunctions of decision stumps. For a fixed
andrn, let N be the set of negative examples aRdoe the set of positive examples. We start wkh = N and P’ = P. Let
Q; be the subset o’ covered by decision stumj let R; be the subset of’ covered by decision stumf and letl; be
the number of bits used to code the threshold of decisionstutwe choose the decision stumphat maximizes theitility
UPecam defined as:

ccam  def i R;
e de '53,' _p|P| _—
wherep is the penaltysuffered by covering (and hence, misclassifying) a pasiéxample and is the cost of usind; bits
for decision stump. Once we have found a decision stump maximizihngwe updateN’ = N’ — Q,; and P’ = P’ — R; and
repeat to find the next decision stump until eittét = () or the maximum number of decision stumps has been reached

(early stopping the greedy). The best values for the legrparameterg, n, andv are determined by cross-validation.

B. The PAC-Bayes Learning Algorithm

Theoren{b suggests that the learner should try to find the BelgssifierBXd that uses a small number of attributée (

a small|k|), each with a large separating margin. — a;,), while keeping the empirical Gibbs risks(GXd) at a low value.
As discussed earlier, we utilize the greedy set coveringistaifor learning.

In our case, however, we need to keep the Gibbs riskdow instead of the risk of a deterministic classifier. Sinbe t
Gibbs risk is a “soft measure” that uses the piece-wise tifieactionso? , instead of the “hard” indicator functions, we
cannot make use of the hard utility function of Equafidn &téad, we need a “softer” version of this utility functiontéke
into account covering (and erring on) an example partly.tThaa negative example that falls in the linear region @fgg, is
in fact partly covered and vice versa for the positive exanpl

Following this observation, lek’ be the vector of indices of the attributes that we have usefdrsfor the construction of
the classifier. Let us first define tlv®vering vaIueC(G‘;{)d) of G{a‘;)d by the “amount” of negative examples assigned to class
0 by G4

'dy  def d;
e = > -y 1= o, @)
(x,y)€Ss jek’
We also define theositive-side error€ (GX,4) of GXd as the “amount” of positive examples assigned to class

/ def d;
GRS = Yy t=Tl o, =)

(x,y)€8 jek’



We now want to add another decision stump on another atitmatl it 7, to obtain a new vectok” containing this new
attribute in addition to those presentlh. Hence, we now introduce theovering contributiorof decision stump as:

! . def 1 37 ’
C:bd(l) = C(G{a(/b(; ) — C(G{a(bd)

= Z (1—-vy) [1 - sz,bi (xz)} H U:jj_’b]‘ (x5)

(x,y)es jek’

and thepositive-side error contributiof decision stump as:
k'dg; def k”’d’ k’'d
5ab (2) = 5(Ga’b’ ) - S(Gab )

= Y y[i-el @] [l ow, @)

(x,y)€S jek!

Typically, the covering contribution of decision stunmipshould increase its “utility” and its positive-side errdnosild
decrease it. Moreover, we want to decrease the “utility” etidion stumpi by an amount which would become large
whenever it has a small separating margin. Our expressiof(Q || P) suggests that this amount should be proportional
to In((B; — A4;)/(b; — a;)). Furthermore we should compare this margin term with filaetion of the remaining negative
examples that decision stumnas covered (instead of the absolute amount of negativepgaroovered). Hence the covering
contribution CX4(7) of decision stumpi should be divided by the amout} 9 of negative examples thaemainsto be
covered before considering decision stuinp

NESES™ (10— [ o2, ()

(x,y)€8 jek

which is simply the amount of negative examples that have lassigned to class 1 t(g{;;,d. If P denotes the set of positive
examples, we define thetility UX4(i) of adding decision stumpto GX9 as:

k'd/(; K'd(;

wd . def Cap () Eab (4) B; — A;
= — —nl

Uz (i) Nd p |P| e bi —a;

a

where parametep represents th@enalty of misclassifying a positive example amdis another parameter that controls the
importance of having a large margin. These learning parammean be chosen by cross-validation. For fixed values skthe
parameters, the “soft greedy” algorithm simply consistsadtling, to the current Gibbs classifier, a decision stumg wit
maximum added utility until either the maximum numheof decision stumps has been reached or all the negative dgamp
have been (totally) covered. It is understood that, durinig $oft greedy algorithm, we can remove an exanfgrlg) from S
whenever it is totally covered. This occurs whenelgy, ., Ujj,bj (xzj)=0.

Hence, we use the above utility function for the PAC-Bayesriing strategy. Note that, in the caselgf? and UP*™,
we normalize the number of covered and erred examples soiasrgase their sensitivity to the respectiy¢erms.

1) Time Complexity Analysistet us analyze the time complexity of this algorithm for fixedand 7. For each attribute,
we first sort them examples with respect to their values for the attribute urmd@sideration. This take®(mlogm) time.
Then, we examine each potentiglvalue (defined by the values of that attribute on the examp&sresponding to eaal,
we examine all the potential values (all the values greater thay). This gives us a time complexity @(m?). Now if & is
the largest number of examples falling iftg, b;], calculating the covering and error contributions and tfieding the best
interval [a;, b;] takesO(km?) time. Moreover, we allowk € O(m) giving us a time complexity 0O (m?) for each attribute.
Finally, we do this over all the attributes. Hence, the olidime complexity of the algorithm isO(nm?). Note, however,
that for microarray data, we have >> m (hence, we can considen® to be a constant). Moreover once the best stump is
found, we remove the examples covered by this stump fromrtiring set and repeat the algorithm. Now, we know that
greedy algorithms of this kind have the following guaranié¢here existr decision stumps that covers all the examples,
the greedy algorithm will find at mostin(m) decision stumps. Since we almost always hawe O(1), the running time of
the whole algorithm will almost always be O(nm? log(m)). The good news is, since >> m, the time complexity of our
algorithm is roughly linear im.

2) Fixed-Margin Heuristic: In order to show why we prefer a uniformly distributed threlshas opposed to the one fixed
at the middle of the intervdl;, b;] for each stump, we use an alternate algorithm that we call the fixed marguristc.
The algorithm is similar to the one described above but withadditional parametey. This parameter decides a fixed
margin boundary around the threshold, fyedecides the length of the interval;, b;]. The algorithm still chooses the attribute
vectork, the direction vectod and the vectora andb. However, thea;'s and b;’s for each stump are chosen such that,
|b; — a;| = 2v. The threshold; is then fixed in the middle of this interval, thatis= @ Hence, for each stumj the
interval [a;, b;] = [t; — v, t; + 7]. For fixedp and~, a similar analysis as in the previous subsection yieldsna tomplexity
of O(nm?log(m)) for this algorithm.
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Data Set SVM SVM+gs SVM+rfe Adaboost

Name ex | Genes Errs Errs S Errs S Itrs Errs
Colon 62 2000 12.8t1.4 || 14.4£35 | 256 15.4:4.8 | 128 20 15.2+2.1
B_MD 34 7129 13.2+1 7.2+2.6 32 10.4+-2.4 64 20 9.8+1.1
C_MD 60 7129 28.2+2.2 || 23.1£2.8 | 1024 || 28.2+2.2 | 7129 50 | 21.2+2.4
Leuk 72 7129 21.3t1.4 14+2.8 64 21+3.2 256 20 17.8+1.8
Lung 52 918 8.8£1.3 6.8+1.9 64 7.2£1.8 32 1 2.4+14
BreastER| 49 7129 15.3+2.4 || 10.3£2.7 | 256 11.2+2.8 | 256 50 9.8£1.7

TABLE |
RESULTS OFSVM, SVM COUPLED WITHGOLUB’S FEATURE SELECTION ALGORITHM(FILTER), SVM WITH RECURSIVEFEATURE ELIMINATION
(WRAPPER AND ADABOOST ALGORITHMS ONGENE EXPRESSION DATASETS

Data Set Occam SC

Name ex | Genes Errs S bits Errs S

Colon 62 2000 23.6+1.2 1.8+.6 6 18.2£1.8 | 1.2+.6

B_MD 34 7129 17.2+:1.8 1.2+.8 3 17.2+1.3 | 1.4+.8

C_MD 60 7129 28.6+1.8 | 2.6+1.1 4 29.2+1.1 | 1.2+.6

Leuk 72 7129 27.8+:1.7 2.2+.8 6 27.3£1.7 | 1.4+.7

Lung 52 918 21. 7411 | 1.8+1.2 5 18+1.3 1.2+.5
BreastER| 49 7129 25.4+1.2 3.2+.6 2 21.2+15 | 1.4£.5

TABLE Il
RESULTS OF THE PROPOSEB®CCAM’SRAZOR AND SAMPLE COMPRESSION LEARNING ALGORITHMS ONGENE EXPRESSION DATASETS

VIl. EMPIRICAL RESULTS
The proposed approaches for learning conjunctiondeaision stumpsvere tested on the six real-world binary microarray

datasets viz. theolon tumorAlon et all,[1999], the_eukaemigiGolub et al.| 1999], th&_MD andC_MD Medulloblastomas
data [Pomeroy et al., 2002], tHaing [Garber et al., 2001], and thHereastERdata I1].

Thecolon tumordata set [Alon et & I9] provides the expression levefdumor and 22 normal colon tissues measured
for 6500 human genes. We use the set of 2000 genes identifte/éothe highest minimal intensity across the 62 tissues. Th
Leukdata set/[Golub et al., 1999] provides the expression leve’129 human genes for 47 samples of patients with Acute
Lymphoblastic Leukemia (ALL) and 25 samples of patientshwitcute Myeloid Leukemia (AML). TheB_MD and C_MD
data sets [Pomeroy etlal., 2002] are microarray samplesioimg the expression levels of 7129 human genes. DatB_$¢D
contains 25 classic and 9 desmoplastic medulloblastomaseahk data s€&_MD contains 39 medulloblastomas survivors and
21 treatment failures (non-survivors). Thang dataset consists of gene expression levels of 918 genes mditihts with 39
Adenocarcinoma and 13 Squamous Cell Canicer [Garber et08l1] 2This data has some missing values which were replaced
by zeros. Finally, theBreastERdataset is the Breast Tumor data MtLaL__UZOOl] useld KBstrogen Receptor status
to label the various samples. The data consists of expressiels of 7129 genes of 49 patients with 25 positive Estmoge
Receptor samples and 24 negative Estrogen Receptor samples

The number of examples and the number of genes in each dagévarein the “ex” and “Genes” columns respectively under
the “Data Set” tab in each table. The algorithms are refeiweas “Occam” (Occam’s Razor), “SC” (Sample Compressiom)) an
“PAC-Bayes” (PAC-Bayes) in Tablds] Il {o]V. They utilize thespective theoretical frameworks discussed in SecfidhV)
and[M along with the respective learning strategies of 8af{l

We have compared our learning algorithm with a linear-kesodét-margin SVM trained both on all the attributes (gene
expressions) and on a subset of attributes chosen by therfiéhod of Golub et al. [1999]. The filter method consists of
ranking the attributes as function of the difference betwtbe positive-example mean and the negative-example mehthan
use only the first attributes. The resulting learning algorithm, nan8&¢M+gsis the one used by Furey etl al. [2000] for the
same task. Guyon etlal, [2002] claimed obtaining betterli®sith the recursive feature elimination method but, asel
out by|Ambroise and McLachlan [2002], their work containednathodological flaw. We use the SVM recursive feature
elimination algorithm with this bias removed and presemisthresults as well for comparison (referred to as “SVM+itfe”
Tablell). Finally, we also compare our results with the stdtéhe-art Adaboost algorithm. For this, we use the impmatation
in the Weka data mining software [Witten and Fiank, 2005].

Each algorithm was tested over 20 random permutations oddkesets, with the 5-fold cross validation (CV) method.Hac
of the five training sets and testing sets was the same forlgdrithms. The learning parameters of all algorithms arel th
gene subsets (for “SVM+gs” and “SVM+rfe”) were chosen frdm training set®nly. This was done by performing a second
(nested) 5-fold CV on each training set.

For the gene subset selection procedure of SVM+gs, we hav@dmred the first = 2¢ genes (fori = 0,1, ..., 12) ranked
according to the criterion of Golub etlal. [1999] and havesghothe: value that gave the smallest 5-fold CV error on the
training set. The “Errs” column under each algorithm in i)l to[Ill refer to the average (nested) 5-fold cross-viikaa
error of the respective algorithm with one standard demmtivo-sided confidence interval. The “bits” column in Talflle
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Data Set PAC-Bayes

Name ex [ Genes S G-errs B-errs
Colon 62 | 2000 1.53+.28 | 14.68:1.8 | 14.65+1.8

B_MD 34 | 7129 1.2+.25 | 8.8%4+1.65| 8.6+1.4
C_MD 60 | 7129 3.44+1.8 | 23.8+1.7 | 22.9+1.65
Leuk 72 | 7129 3.241.4 | 24.4+15 | 23.6£1.6

Lung 52 918 1.2+.3 4.44+.6 4.24+.8
BreastER| 49 | 7129 2.6+1.1 12.8+.8 12.4+.78

TABLE llI

RESULTS OF THEPAC-BAYES LEARNING ALGORITHM ON GENE EXPRESSION DATASETS

refer to the number of bits used for the Occam’ Razor approgleh “G-errs” and the “B-errs” columns in Talle]lll refer to
the average nested 5-fold CV error of the optimal Gibbs dfilassand the corresponding Bayes classifier with one stahdar
deviation two-sided interval respectively.

For Adaboost,10, 20, 50, 100, 200, 500, 1000 and 2000 iterations for each datasets were tried and the reportadtses
correspond to the best obtained 5-fold CV error. The sizeesateported here (the “S” columns for “SVM+gs”and “SVM+rfe
and “Itr” column for “AdaBoost” in Tabld]l) correspond to thmimber of attributes (genes) selected most frequently by th
respective algorithms over all the permutation rﬁﬁmoosing, by cross-validation, the number of boostingtten is somewhat
inconsistent with Adaboost’s goal of minimizing the emgadi exponential risk. Indeed, to comply with Adaboost’s Igos
should choose a large-enough number of boosting roundsfisatres the convergence of the empirical exponential oisls t
minimum value. However, as shown by Zhang and Yu [2005], Bogsis known to overfit when the number of attributes
exceeds the number of examples. This happens in the casecafamay experiments frequently where the number of genes
far exceeds the number of samples, and is also the case irathgets mentioned above. Early stopping is the recommended
approach in such cases and hence we have followed the me#satiltbd above to obtained the best number of boosting
iterations.

Further, TabléTV gives the result for a single run of the detaistic algorithm using the fixed-margin heuristic delsed
above. Tablé'V gives the results for the PAC-Bayes boundegafar the results obtained for a single run of the PAC-Bayes
algorithm on the respective microarray data sets. Recatl tthe PAC-Bayes bound provides a uniform upper bound on the
risk of the Gibbs classifier. The column labels refer to theeauantities as above although the errors reported areaover
single nested 5-fold CV run. The “Ratio” column of Taljlé Veef to the average value ¢, — ay)/(Br — Ax) obtained
over the decision stumps used by the classifiers 6uesting folds and the “Bound” columns of Tables IV dnl V refethe
average risk bound of Theordh 5 multiplied by the total nundfeexamples in respective data sets. Note, again, that thes
results are on a single permutation of the datasets and asenied just to illustrate the practicality of the risk bdamd the
rationale of not choosing the fixed-margin heuristic over thirrent learning strategy.

A. A Note on the Risk Bound

Note that the risk bounds are quite effective and their egiee should not be misconstrued by observing the resultssin |
the current scenario. One of the most limiting factor in therent analysis is the unavailability of microarray datahwarger
number of examples. As the number of examples increasejskéound of Theorem 5 gives tighter guarantees. Consider,
for instance, if the datasets for the Lung and Colon Cancdr5@ examples. A classifier with the same performance over
500 examples (i.e. with the same classification accuracynanuber of features as currently) would have a bound of abdut 1
and 30 percent error instead of current 34.6 and 54.6 perespectively. This only illustrates how the bound can beemor
effective as a guarantee when used on datasets with morepe@rimilarly, a dataset of 1000 examples for Breast Gance

5There were no close ties with classifiers with fewer genes.

Data Set Stumps:PAC-Bayes(fixed margin)

Name ex | Genes|| Size | Errors Bound
Colon 62 | 2000 1 14 34
B_MD 34 7129 1 7 20
C_MD 60 7129 3 28 48
Leuk 72 7129 2 21 46
Lung 52 918 2 9 29
BreastER| 49 7129 3 11 31

TABLE IV

RESULTS OF THEPAC-BAYES APPROACH WITHFIXED-MARGIN HEURISTIC ONGENE EXPRESSIONDATASETS.
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Data Set Stumps:PAC-Bayes

Name ex | Genes|| Ratio || Size [ G-errs || B-errs | Bound
Colon 62 2000 0.42 1 12 11 33
B_MD 34 7129 0.10 1 7 7 20
C_MD 60 7129 0.08 5 21 20 45
Leuk 72 7129 0.002 3 22 21 48
Lung 52 918 0.12 1 3 3 18
BreastER| 49 7129 0.09 2 11 11 29

TABLE V
AN ILLUSTRATION OF THE PAC-BAYES RISK BOUND ON A SAMPLE RUN OF THEPAC-BAYES ALGORITHM.

with a similar performance can have a bound of about 30 péinstead of current 63 percent. Hence, the current linoitati
in the practical application of the bound comes from limitkda availability. As the number of examples increase, thentds
provides tighter guarantees and become more significant.

VIII. A NALYSIS

The results clearly show that even though “Occam” and “S@"able to find sparse classifiers (with very few genes), they
are not able to obtain acceptable classification accura€as possible explanation is that these two approaches foou
the most succinct classifier with their respective criteribhe Sample compression approach tries to minimize thebeuf
genes used but does not take into account the magnitude sefiaating margin and hence compromises accuracy. On the
other hand, the Occam’s Razor approach tries to find a ckastift depends on margamly indirectly. Approaches based on
sample compression as well as minimum description lengtle BRown encouraging results in various domains. An alterna
explanation for their suboptimal performance here can lem $e terms of extremely limited sample sizes. As a resué, th
gain in accuracy does not offset the cost of adding addititeedures in the conjunction. The PAC-Bayes approach séems
alleviate these problems by performing a significant masgiarsity tradeoff. That is, the advantage of adding a natufe is
seen in terms of a combination of the gain in both margin ardetimpirical risk. This can be compared to the strategy used
by the regularization approaches. The classification acyuof PAC-Bayes algorithm is competitive with the best perfing
classifier but has an added advantage, quite importantlysioig very few genes

For the PAC-Bayes approach, we expect the Bayes classifigerierally perform better than the Gibbs classifier. This is
reflected to some extent in the empirical results for ColonMD and Leukaemia datasets. However, there is no means to
prove that this will always be the case. It should be noted tthere exist several different utility functions that wencase
for each of the proposed learning approaches. We have toied ©f these and reported results only for the ones that were
found to be the best (and discussed in the description of dhegponding learning algorithms).

A noteworthy observation with regard to Adaboost is thatgeae subset identified by this algorithm almost always ihelu
the ones found by the proposed PAC-Bayes approach for deci&umps. Most notably, thenly geneCyclin D1, a well
known marker for Cancer, found for the lung cancer datastesmnost discriminating factor and is commonly found by both
approaches. In both cases, the size of the classifier is alheays restricted td. These observations not only give insights
into the absolute peaks worth investigating but also erpemially validates the proposed approaches.

Finally, many of the genes identified by thieald PAC-Bayes classifier include some prominent markers foctineesponding
diseases as detailed below.

A. Biological Relevance of the Selected Features

Table[V] details the genes identified by tfieal PAC-Bayes classifier learned over each dataset after tlaengder selection
phase. There are some prominent markers identified by tlssifida. Some of the main genes identified by the PAC-Bayes
approach are the ones identified by previous studies for dagase— giving confidence in the proposed approach. Some
of the discovered genes in this case inclidi@man monocyte-derived neutrophil-activating proteinQINAP) mRNAIn the
case of Colon Cancer dataset amestrogen receptoin the case of Breast Cancer da?]9205 at-Ribosomal protein L39
D83542 at-Cadherin-15and U29195 at-NPTX2 Neuronal pentraxin lin the case of Medulloblastomas datasetdvi® and
C_MD. Other genes identified have biological relevance, fatance, the identification okdipsin LAF-4 and HOX1C with
regard to ALL/AML by our algorithm is in agreement with that the findings of Chow et all [2001], Hiwatari etlal. [2003]
andlLawrence and Largman [1992] respectively and the siutiig followed.

Further, in the case of breast cancer, Estrogen receptdt} liBve shown to interact with BRCAL to regulate VEGF
transcription and secretion in breast cancer cells [Kawailel2002]. These interactions are further investigalye.
]. Further studies for ER have also been done. ForrinstaMoggs et al! [2005] discovered 3 putative estrogeperese
elements in Keratin6 (the second gene identified by the PA¢eB classifier in the case of BreastER data) in the context of

5This is the classifier learned after choosing the best pammesing nested 5-fold CV and trained on the full dataset.
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Dataset Gene(s) identified by PAC-Bayes Classifier

Colon 1. Hs&27 M26383-Human monocyte-derived neutrophil-actigmotein (MONAP) mRNA
B_MD 1. D79205 at-Ribosomal protein L39

C_MD 1. S71824at-Neural Cell Adhesion Molecule, Phosphatidylinositatked Isoform Precursor
2. D83542at-Cadherin-15

3. U29195at-NPTX2 Neuronal pentraxin Il

4, X73358 s at-HAES-1 mRNA

5.L.36069 at-High conductance inward rectifier potassium channeiakubunit mRNA

Leuk 1. M84526 at-DF D component of complement (adipsin)

2. U34360at-Lymphoid nuclear protein (LAF-4) mRNA

3. M16937 at-Homeo box c1 protein, mMRNA .

Lung 1. GENE221X-IMAGE 841641-cyclin D1 (PRAD1-parathyroid adenomatosis 132832 AA487486
BreastER| 1. X03635 at,X03635- class C, 20 probes, 20 in 203635 5885 - 6402

Human mRNA for oestrogen receptor

2. L42611f_at, L42611- class A, 20 probes, 20 in L42611 1374-1954,

Homo sapiens keratin 6 isoform K&& RT6E mRNA, complete cds

TABLE VI
GENESIDENTIFIED BY THE Final PAC-BAYES CLASSIFIER

E2-responsive genes identified by microarray analysis ofAMID-231 cells that re-express ERAn important role played
by cytokeratins in cancer development is also widely knosee(for instance Gusterson et al. [2005]).

Furthermore, the importance MONAP in the case of colon cancer addlipsinin the case of leukaemia data has further
been confirmed by various rank based algorithms as detaﬂém. 3] in the implementation of “RankGene”, a
program that analyzes and ranks genes for the gene expratatia using eight ranking criteria including Informatiomi®
(IG), Gini Index (Gl), Max Minority (MM), Sum Minority (SM),Twoing Rule (TR), t-statistic (TT), Sum of variances (SV)
and one-dimensional Support Vector Machine (1S). In the cdsColon Cancer datdONAP s identified as the top ranked
gene by four of the eight criteria (IG, SV, TR, Gl), second medSM), eighth by one (MM) and in top 50 by 1S. Similarly,
in the case of Leukaemia datAdipsinis top ranked by 1S, fifth by SM, seventh by IG, SV, TR, Gl and MMl as in top
50 by TT. These observations provides a strong validatiorotw approaches.

Cyclin as identified in the case of Lung Cancer dataset is a well knmarker for cell division whose perturbations are
considered to be one of the major factors causing cancesddltiet al.) 1999, Masaki et lal., 2003].

Finally, the discovered genes in the case of Medulloblaatare important with regard to the neuronal functioning.(es
S71824, U29195 and L36039) and can have relevance for nresyaiem related tumors.

IX. CONCLUSION

Learning from high-dimensional data such as that from DNAroarrays can be quite challenging especially when the aim
is to identify only a few attributes that characterizes tifeetences between two classes of data. We investigateprdmaise of
learning conjunctions oflecision stumpand proposed three formulations based on different legrpiimciples. We observed
that the approaches that aim solely to optimize sparsith@mtessage code with regard to the classifier's empiridalirnsts
the algorithm in terms of its generalization performanddeast in the present case of small dataset sizes. By traufirthe
sparsity of the classifier with the separating margin in tidito the empirical risk, the PAC-Bayes approach seemléviate
this problem to a significant extent. This allows the PAC-8aglgorithm to yield competitive classification perforro@amvhile
at the same time utilizing significantly fewer attributes.

As opposed to the traditional feature selection metho@gptbposed approaches are accompaniedthga@etical justification
of the performanceMoreover, the proposed algorithmambed the feature selection as a part of the learning prodeeﬁﬁ
Furthermore, the generalization error bounds are prddiicd can potentially guide the model (parameter) selectghen
applied to classify DNA microarray data, the genes idertifig the proposed approaches are found to be biologicaltyfiignt
as experimentally validated by various studies, an englijusstification that the approaches can successfully parfoeaningful
feature selection. Consequently, this represents a signifimprovement in the direction of successful integrattb machine
learning approaches for use in high-throughput data toigeawneaningful, theoretically justifiablendreliable results. Such
approaches that yield a compressed view in terms of a smaibau of biological markers can lead to a targeted and well
focussed study of the issue of interest. For instance, theoaph can be utilized in identifying gene subsets from ti@earray
experiments that should be further validated using focSE&CR techniques which are otherwise both costly and iotize
to perform on the full set of genes.

Finally, as mentioned previously, the approaches predeintehis wor have a wider relevance, and can have significant
implications in the direction of designing theoreticalliified feature selection algorithms. These are one ofalweapproaches
that combines the feature selection with the learning m®&ed provide generalization guarantees over the resultingifias
simultaneouslyThis property assumes even more significance in the wakiendétl size of microarray datasets since it limits
the amount of empirical evaluation that can be reliably genied otherwise. Most natural extensions of the approaahds
the learning bias proposed here would be in other similaralosiincluding other forms of microarray experiments sush a

"Note tha_ Huang_and _Chanlg [2007] proposed one such apprbastever, they need multiple SVM learning runs. Hence, theithod basically works
as a wrapper.
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Chromatin Immunoprecipitation promoter arrays (chlPgltand from Protein arrays. Within the same learning settiother
learning biases can also be explored such as classifierssexpied by features or sets of features built on subsetsribiuées.
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