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Feature Selection with Conjunctions of Decision
Stumps and Learning from Microarray Data

Mohak Shah, Mario Marchand, and Jacques Corbeil

Abstract

One of the objectives of designing feature selection learning algorithms is to obtain classifiers that depend on a small number
of attributesand have verifiable future performance guarantees. There are few, if any, approaches that successfully address the two
goalssimultaneously. Performance guarantees become crucial for tasks such as microarray data analysis due to very small sample
sizes resulting in limited empirical evaluation. To the best of our knowledge, such algorithms that give theoretical bounds on the
future performance have not been proposed so far in the context of the classification of gene expression data. In this work, we
investigate the premise of learning a conjunction (or disjunction) of decision stumpsin Occam’s Razor, Sample Compression, and
PAC-Bayes learning settings for identifying a small subsetof attributes that can be used to perform reliable classification tasks.
We apply the proposed approaches for gene identification from DNA microarray data and compare our results to those of well
known successful approaches proposed for the task. We show that our algorithm not only finds hypotheses with much smaller
number of genes while giving competitive classification accuracy but also have tight risk guarantees on future performance unlike
other approaches. The proposed approaches are general and extensible in terms of both designing novel algorithms and application
to other domains.

Index Terms

Microarray data classification, Risk bounds, Feature selection, Gene identification.

I. I NTRODUCTION

An important challenge in the problem of classification of high-dimensional data is to design a learning algorithm that can
construct an accurate classifier that depends on the smallest possible number of attributes. Further, it is often desired that
there be realizable guarantees associated with the future performance of such feature selection approaches. With the recent
explosion in various technologies generating huge amountsof measurements, the problem of obtaining learning algorithms
with performance guarantees has acquired a renewed interest.

Consider the case of biological domain where the advent of microarray technologies [Eisen and Brown, 1999, Lipshutz et al.,
1999] have revolutionized the outlook on the investigationand analysis of genetic diseases. In parallel, on the classification
front, many interesting results have appeared aiming to distinguish between two or more types of cells, (e.g. diseased vs.
normal, or cells with different types of cancers) based on gene expression data in the case of DNA microarrays (see, for
instance, [Alon et al., 1999] for results on Colon Cancer, [Golub et al., 1999] for Leukaemia). Focusing on very few genesto
give insight into the class association for a microarray sample is quite important owing to a variety of reasons. For instance, a
small subset of genes is easier to analyze as opposed to the set of genes output by the DNA microarray chips. It also makes
it relatively easier to deduce biological relationships among them as well as study their interactions. An approach able to
identify a very few number of genes can facilitate customization of chips and validation experiments– making the utilization
of microarray technology cheaper, affordable, and effective.

In the view of a diseased versus a normal sample, these genes can be considered as indicators of the disease’s cause.
Subsequent validation study focused on these genes, their behavior, and their interactions, can lead to better understanding of
the disease. Some attempts in this direction have yielded interesting results. See, for instance, a recent algorithm proposed
by Wang et al. [2007] involving the identification of a gene subset based on importance ranking and subsequently combinations
of genes for classification. Another example is the approachof Tibshirani et al. [2003] based on nearest shrunken centroids.
Some kernel based approaches such as the BAHSIC algorithm [Song et al., 2007] and their extensions (e.g., [Shah and Corbeil,
2010] for short time-series domains) have also appeared.

The traditional methods used for classifying high-dimensional data are often characterized as either “filters” (e.g. [Furey et al.,
2000, Wang et al., 2007] or “wrappers” (e.g. [Guyon et al., 2002]) depending on whether the attribute selection is performed
independent of, or in conjunction with, the base learning algorithm.
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Despite the acceptable empirical results achieved by such approaches, there is no theoretical justification of their performance
nor do they come with a guarantee on how well will they performin the future. What is really needed is a learning algorithm
that hasprovably good performance guaranteesin the presence of many irrelevant attributes. This is the focus of the work
presented here.

A. Contributions

The main contributions of this work come in the form of formulation of feature selection strategies within well established
learning settings resulting in learning algorithms that combine the tasks of feature selection and discriminative learning.
Consequently, we obtain feature selection algorithms for classification with tight realizable guarantees on their generalization
error. The proposed approaches are a step towards more general learning strategies that combine feature selection withthe
classification algorithmand have tight realizable guarantees. We apply the approaches to the task of classifying microarray
data where the attributes of the data sample correspond to the expression level measurements of various genes. In fact the
choice of decision stumps as learning bias has in part motivated by this application. The framework is general and extensible
in a variety of ways. For instance, the learning strategies proposed in this work can readily be extended to other similartasks
that can benefit from this learning bias. An immediate example would be classifying data from other microarray technologies
such as in the case of Chromatin Immunoprecipitation experiments. Similarly, learning biases other than the conjunctions of
decision stumps, can also be explored in the same frameworksleading to novel learning algorithms.

B. Motivation

For learning the class of conjunctions of features, we draw motivation from the guarantee that exists for this class in the
following form: if there exists a conjunction, that depends onr out of then input attributes and that correctly classifies a
training set ofm examples, then the greedy covering algorithm of Haussler [1988] will find a conjunction of at mostr lnm
attributes that makes no training errors. Note the absence of dependence on the numbern of input attributes. The method is
guaranteed to find at mostr lnm attributes and, hence, depends on the number of available samplesm but not on the number
of attributesn to be analyzed.

We propose learning algorithms for building small conjunctions of decision stumps. We examine three approaches to obtain
an optimal classifier based on this premise that mainly vary in the coding strategies for the threshold of each decision stump.
The first two approaches attempt to do this by encoding the threshold either with message strings (Occam’s Razor) or by
using training examples (Sample Compression). The third strategy (PAC-Bayes) attempts to examine if an optimal classifier
can be obtained by trading off the sparsity1 of the classifier with the magnitude of the separating marginof each decision
stump. In each case, we derive an upper bound on the generalization error of the classifier and subsequently use it to guidethe
respective algorithm. Finally, we present empirical results on the microarray data classification tasks and compare our results
to the state-of-the-art approaches proposed for the task including the Support Vector Machine (SVM) coupled with feature
selectors, and Adaboost. The preliminary results of this work appeared in [Marchand and Shah, 2005].

C. Organization

Section II gives the basic definitions and notions of the learning setting that we utilize and also characterizes the hypothesis
class of conjunctions of decision stumps. All subsequent learning algorithms are proposed to learn this hypothesis class.
Section III proposes an Occam’s Razor approach to learn conjunctions of decision stumps leading to an upper bound on the
generalization error in this framework. Section IV then proposes an alternate encoding strategy for the message strings using
the Sample Compression framework and gives a correspondingrisk bound. In Section V, we propose a PAC-Bayes approach
to learn conjunction of decision stumps that enables the learning algorithm to perform an explicit non-trivial margin-sparsity
trade-off to obtain more general classifiers. Section VI then proposes algorithms to learn in the three learning settings proposed
in Sections III, IV and V along with a time complexity analysis. Note that the learning (optimization) strategies proposed in
Section VI do not affect the respective theoretical guarantees of the learning settings. The algorithms are evaluated empirically
on real world microarray datasets in Section VII. Section VIII presents a discussion on the results and also provides an analysis
of the biological relevance of the selected genes in the caseof each dataset, and their agreement with published findings. Finally,
we conclude in Section IX.

II. D EFINITIONS

The input spaceX consists of alln-dimensional vectorsx = (x1, . . . , xn) where each real-valued componentxi ∈ [Ai, Bi]
for i = 1, . . . n. Each attributexi for instance can refer to the expression level of genei. Hence,Ai andBi are, respectively,
thea priori lower and upper bounds on values forxi. The output spaceY is the set of classification labels that can be assigned
to any input vectorx ∈ X . We focus here on binary classification problems. ThusY = {0, 1}. Each examplez = (x, y) is an

1This refers to the number of decision stumps used.
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input vectorx ∈ X with its classification labely ∈ Y choseni.i.d. from an unknown distributionD on X × Y. The true risk
R(f) of any classifierf is defined as the probability that it misclassifies an exampledrawn according toD:

R(f)
def
= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

whereI(a) = 1 if predicatea is true and0 otherwise. Given a training setS = {z1, . . . , zm} of m examples, theempirical
risk RS(f) on S, of any classifierf , is defined according to:

RS(f)
def
=

1

m

m
∑

i=1

I(f(xi) 6= yi)
def
= E(x,y)∼SI(f(x) 6= y)

The goal of any learning algorithm is to find the classifier with minimal true risk based on measuring empirical risk (and other
properties) on the training sampleS.

We focus on learning algorithms that construct aconjunction of decision stumpsfrom a training set. Eachdecision stump
is just a threshold classifier defined on a single attribute (component)xk. More formally, a decision stump is identified by an
attribute indexk ∈ {1, . . . , n}, a threshold valuet ∈ R, and adirection d ∈ {−1,+1} (that specifies whether class 1 is on
the largest or smallest values ofxk). Given any input examplex, the outputrktd(x) of a decision stump is defined as:

rktd(x)
def
=

{

1 if (xk − t)d > 0
0 if (xk − t)d ≤ 0

We use a vectork
def
= (k1, . . . , k|k|) of attribute indiceskj ∈ {1, . . . , n} such thatk1 < k2 < . . . < k|k| where |k| is the

number of indices present ink (and thus the number of decision stumps in the conjunction)2. Furthermore, We use a vector
t = (tk1

, tk2
, . . . , tk|k|

) of threshold values and a vectord = (dk1
, dk2

, . . . , dk|k|
) of directions wherekj ∈ {1, . . . , n} for

j ∈ {1, . . . , |k|}. On any input examplex, the outputCk

td
(x) of a conjunction of decision stumps is given by:

Ck

td(x)
def
=

{

1 if rjtjdj
(x) = 1 ∀j ∈ k

0 if ∃j ∈ k : rjtjdj
(x) = 0

Finally, any algorithm that builds a conjunction can be usedto build a disjunction just by exchanging the role of the positive
and negative labeled examples. In order to keep our description simple, we describe here only the case of a conjunction.
However, the case of disjunction follows symmetrically.

III. A N OCCAM’ S RAZOR APPROACH

Our first approach towards learning the conjunction (or disjunction) of decision stumpsis the Occam’s Razor approach.
Basically, we wish to obtain a hypothesis that can be coded using the least number of bits. We first propose an Occam’s Razor
risk bound which will ultimately guide the learning algorithm.

In the case of zero-one loss, we can model the risk of the classifier as a binomial. LetBin(κ,m, r) be the the binomial tail
associated with a classifier of (true) riskr. ThenBin(κ,m, r) is the probability that this classifier makes at mostκ errors on
a set ofm examples:

Bin (κ,m, r)
def
=

κ
∑

i=0

(

m

i

)

ri(1 − r)m−i

Thebinomial tail inversionBin (κ,m, δ) then gives the largest risk value that a classifier can have while still having a probability
of at leastδ of observing at mostκ errors out ofm examples [Langford, 2005, Blum and Langford, 2003]:

Bin (κ,m, δ)
def
= sup {r : Bin (κ,m, r) ≥ δ}

From this definition, it follows thatBin (mRS(f),m, δ) is the smallestupper bound, which holds with probability at least
1− δ, on the true risk of any classifierf with an observed empirical riskRS(f) on a test set ofm examples:

∀f : PrS∼Dm

(

R(f) ≤ Bin
(

mRS(f),m, δ
))

≥ 1− δ

Our starting point is the Occam’s razor bound of Langford [2005] which is a tighter version of the bound proposed
by Blumer et al. [1987]. It is also more general in the sense that it applies to any prior distributionP over any countable class
of classifiers.

2Although it is possible to use up to two decision stumps on anyattribute, we limit ourselves here to the case where each attribute can be used for only
one decision stump.
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Theorem 1 (Langford [2005]). For any prior distributionP over any countable classF of classifiers, for any data-generating
distributionD, and for anyδ ∈ (0, 1], we have:

PrS∼Dm

{

∀f ∈ F : R(f) ≤ Bin
(

mRS(f),m, P (f)δ
)

}

≥ 1− δ

The proof (available in [Langford, 2005]) directly followsfrom a straightforward union bound argument and from the fact
that

∑

f∈F P (f) = 1. To apply this bound for conjunctions of decision stumps we thus need to choose a suitable priorP for
this class. Moreover, Theorem 1 is valid when

∑

f∈F P (f) ≤ 1. Consequently, we will use asubpriorP whose sum is≤ 1.
In our case, decision-stumps’ conjunctions are specified interms of the discrete-valued vectorsk andd and the continuous-

valued vectort. We will see below that we will use a finite-precision bit string σ to specify the set of threshold valuest. Let
us denote byP (k,d, σ) the prior probability assigned to the conjunctionCk

σd described by(k,d, σ). We choose a prior of
the following form:

P (k,d, σ) =
1

(

n
|k|

)p(|k|)
1

2|k|
gk,d(σ)

where gk,d(σ) is the prior probability assigned to stringσ given that we have chosenk and d. Let M(k,d) be the
set of all message strings that we can use given that we have chosenk and d. If I denotes the set of all2n possi-
ble attribute index vectors andDk denotes the set of all2|k| binary direction vectorsd of dimension|k|, we have that
∑

k∈I

∑

d∈Dk

∑

σ∈M(k,d) P (k,d, σ) ≤ 1 whenever
∑n

d=0 p(d) ≤ 1 and
∑

σ∈M(k,d) gk,d(σ) ≤ 1 ∀k,d.
The reasons motivating this choice for the prior are the following. The first two factors come from the belief that the final

classifier, constructed from the group of attributes specified byk, should depend only on the number|k| of attributes in this
group. If we have complete ignorance about the number of decision stumps the final classifier is likely to have, we should
choosep(d) = 1/(n+ 1) for d ∈ {0, 1, . . . , n}. However, we should choose ap that decreases as we increased if we have
reasons to believe that the number of decision stumps of the final classifier will be much smaller thann. Since this is usually
our case, we propose to use:

p(|k|) =
6

π2
(|k|+ 1)−2

The third factor ofP (k,d, σ) gives equal prior probabilities for each of the two possiblevalues of directiondj .
To specify the distribution of stringsgk,d(σ), consider the problem of coding a threshold valuet ∈ [a, b] ⊂ [A,B] where

[A,B] is some predefined interval in which we are permitted to choose t and where[a, b] is an interval of “equally good”
threshold values.3 We propose the following diadic coding scheme for the identification of a threshold value that belongs to
that interval. Letl be the number of bits that we use for the code. Then, a code ofl bits specifies one value among the setΛl

of threshold values:

Λl
def
=

{[

1−
2j − 1

2l+1

]

A+
2j − 1

2l+1
B

}2l

j=1

We denote byAi andBi, the respectivea priori minimum and maximum values that the attributei can take. These values are
obtained from the definition of data. Hence, for an attributei ∈ k, given an interval[ai, bi] ⊂ [Ai, Bi] of threshold values, we
take the smallest numberli of bits such that there exists a threshold value inΛli that falls in the interval[ai, bi]. In that way,
we will need at most⌊log2((Bi −Ai)/(bi − ai))⌋ bits to obtain a threshold value that falls in[ai, bi].

Hence, to specify the threshold for each decision stumpi ∈ k, we need to specify the numberli of bits and ali-bit string
si that identifies one of the threshold values inΛli . The risk bound does not depend on how we actually codeσ (for some
receiver). It only depends on the a priori probabilities we assign to each possible realization ofσ. We choose the following
distribution:

gk,d(σ)
def
= gk,d(l1, s1, . . . , l|k|, s|k|) (1)

=
∏

i∈k

ζ(li) · 2
−li (2)

where:
ζ(a)

def
=

6

π2
(a+ 1)−2 ∀a ∈ N (3)

The sum over all the possible realizations ofσ gives 1 since
∑∞

i=1 i
−2 = π2/6. Note that by giving equal a priori probability

to each of the2li stringssi of length li, we give no preference to any threshold value inΛli .
The distributionζ that we have chosen for each string lengthli has the advantage of decreasing slowly so that the risk

bound does not deteriorate too rapidly asli increases. Other choices are clearly possible. However, note that the dominant
contribution comes from the2−li term yielding a risk bound that depends linearly inli.

3By a “good” threshold value, we mean a threshold value for a decision stump that would cover many negative examples and very few positive examples
(see the learning algorithm).
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With this choice of prior, we have the following theorem:

Theorem 2. Given all our previous definitions and for anyδ ∈ (0, 1], we have:

Pr
S∼Dm

(

∀k,d, σ : R(Ck

σd) ≤ Bin

(

mRS(C
k

σd),m,
p(|k|)gk,d(σ)δ

(

n
|k|

)

2|k|

))

≥ 1− δ

Finally, we emphasize that the risk bound of Theorem 2, used in conjunction with the distribution of messages given by
gk,d(σ), provides a guide for choosing the optimal classifier. Note that the above risk bound suggests a non-trivial trade-off
between the number of attributes and the length of the message string used to encode the classifier. Indeed the risk bound
may be smaller for a conjunction having a large number of attributes with small message strings (i.e., smalllis) than for a
conjunction having a small number of attributes but with large message strings.

IV. A SAMPLE COMPRESSIONAPPROACH

The basic idea of the Sample compression framework [Kuzmin and Warmuth, 2007] is to obtain learning algorithms with
the property that the generated classifier (with respect to some training data) can often be reconstructed with a very small
subset of training examples. More formally, a learning algorithm A is said to be asample-compression algorithmiff there
exists acompression functionC and areconstruction functionR such that for any training sampleS = {z1, . . . , zm} (where

zi
def
= (xi, yi)), the classifierA(S) returned byA is given by:

A(S) = R(C(S)) ∀S ∈ (X × Y)m

For a training setS, the compression functionC of learning algorithmA outputs a subsetzi of S, called thecompression set,
and aninformation messageσ, i.e., (zi, σ) = C(z1, . . . , zm). The information messageσ contains the additional information
needed to reconstruct the classifier from the compression set zi. Given a training sampleS, we define the compression setzi

by a vector of indicesi such thati
def
= (i1, i2, . . . , i|i|), with ij ∈ {1, . . . ,m}∀j and i1 < i2 < . . . < i|i| and where|i| denotes

the number of indices present ini.
When given an arbitrary compression setzi and an arbitrary information messageσ, the reconstruction functionR of a

learning algorithmA must output a classifier. The information messageσ is chosen from a setM(zi) that consists of all the
distinct messages that can be attached to the compression set zi. The existence of this reconstruction functionR assures that
the classifier returned byA(S) is always identified by a compression setzi and an information messageσ.

In sample compression settings for learning decision stumps’ conjunctions, the message string consists of the attributes and
directions defined above. However, the thresholds are now specified by training examples. Hence, if we have|k| attributes
wherek is the set of thresholds, the compression set consists of|k| training examples (one per threshold).

Our starting point is the following generic Sample Compression bound [Marchand and Sokolova, 2005]:

Theorem 3. For any sample compression learning algorithm with a reconstruction functionR that maps arbitrary subsets of
a training set and information messages to classifiers:

PS∼Dm {∀i ∈ I, σ ∈ M(Zi) : R(R(σ,Zi)) ≤ ǫ(σ,Zi, |j|)} ≥ 1− δ

where

ǫ(σ, zi, |j|) = 1− exp

(

−1

m− |i| − |j|

[

ln

(

m

|i|

)

+ ln

(

m− |i|

|j|

)

+ ln

(

1

PM(Zi)(σ)

)

+ ln

(

1

ζ(|i|)ζ(|j|)δ

)])

(4)

and ζ is defined by Equation 3.

Now, we need to specify the distribution of messages (PM(Zi)(σ)) for the conjunction of decision stumps. Note that in
order to specify a conjunction of decision stumps, the compression set consists of one example per decision stump. For each
decision stump we have one attribute and a corresponding threshold value determined by the numerical value that this attribute
takes on the training example.

The learner chooses an attribute whose threshold is identified by the associated training example. The set of these training
examples form the compression set. Finally, the learner chooses a direction for each attribute.

The subset of attributes that specifies the decision stumps in our compression setzi is given by the vectork defined in the
previous section. Moreover, since there is one decision stump corresponding to each example in the compression set, we have
|i| = |k|. Now, we assign equal probability to each possible set|k| of attributes (and hence thresholds) that can be selected
from n attributes. Moreover, we assign equal probability over thedirection that each decision stump can have(+1,−1). Hence,
we get the following distribution of messages:
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PM(zi)(σ) =

(

n

|k|

)−1

· 2−|k| ∀σ (5)

Equation 5 along with theSample Compression Theoremcompletes the bound for the conjunction of decision stumps.

V. A PAC-BAYES APPROACH

The Occam’s Razor and Sample Compression, in a sense, aim at obtaining sparse classifiers with minimum number of stumps.
This sparsity is enforced by selecting the classifiers with minimal encoding of the message strings and the compression set in
respective cases.

We now examine if by sacrificing this sparsity in terms of a larger separating margin around the decision boundary (yielding
more confidence) can lead us to classifiers with smaller generalization error. The learning algorithm is based on the PAC-Bayes
approach [McAllester, 1999] that aims at providingProbablyApproximatelyCorrect (PAC) guarantees to “Bayesian” learning
algorithms specified in terms of aprior distribution P (before the observation of the data) and a data-dependent,posterior
distributionQ over a space of classifiers.

We formulate a learning algorithm that outputs a stochasticclassifier, called theGibbs ClassifierGQ defined by a data-
dependent posteriorQ. Our classifier will be partly stochastic in the sense that wewill formulate a posterior over the threshold
values utilized by the decision stumps while still retaining the deterministic nature for the selected attributes and directions for
the decision stumps.

Given an input examplex, the Gibbs classifier first selects a classifierh according to the posterior distributionQ and then
useh to assign the labelh(x) to x. The risk ofGQ is defined as the expected risk of classifiers drawn accordingto Q:

R(GQ)
def
= Eh∼QR(h) = Eh∼QE(x,y)∼DI(h(x) 6= y)

Our starting point is the PAC-Bayes theorem [McAllester, 2003, Langford, 2005, Seeger, 2002] that provides a bound on the
risk of the Gibbs classifier:

Theorem 4. Given any spaceH of classifiers. For any data-independent prior distribution P overH, we have:

Pr
S∼Dm

(

∀Q : kl(RS(GQ)‖R(GQ)) ≤
KL(Q‖P ) + ln m+1

δ

m

)

≥ 1− δ

whereKL(Q‖P ) is the Kullback-Leibler divergence between distributions4 Q andP :

KL(Q‖P )
def
= Eh∼Q ln

Q(h)

P (h)

and wherekl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distributions with probabilities of successq and
p:

kl(q‖p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p

This bound for the risk of Gibbs classifiers can easily be turned into a bound for the risk of Bayes classifiersBQ over the
posteriorQ. BQ basically performs a majority vote (under measureQ) of binary classifiers inH. WhenBQ misclassifies an
examplex, at least half of the binary classifiers (under measureQ) misclassifiesx. It follows that the error rate ofGQ is at
least half of the error rate ofBQ. HenceR(BQ) ≤ 2R(GQ).

In our case, we have seen that decision stump conjunctions are specified in terms of a mixture of discrete parametersk and
d and continuous parameterst. If we denote byPk,d(t) the probability density function associated with a priorP over the
class of decision stump conjunctions, we consider here priors of the form:

Pk,d(t) =
1

(

n
|k|

)p(|k|)
1

2|k|

∏

j∈k

I(tj ∈ [Aj , Bj ])

Bj −Aj

As before, we have that:
∑

k∈I

∑

d∈Dk

∏

j∈k

∫ Bj

Aj

dtjPk,d(t) = 1

whenever
∑n

e=0 p(e) = 1.

The factors relating to the discrete componentsk and d have the same rationale as in the case of the Occam’s Razor
approach. However, in the case of the threshold for each decision stumps, we now consider an explicitly continuous uniform

4HereQ(h) denotes the probability density function associated withQ, evaluated ath.
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prior. As in the Occam’s Razor case, we assume each attributevaluexk to be constrained, a priori, in[Ak, Bk] such thatAk

andBk are obtained from the definition of the data. Hence, we have chosen a uniform prior probability density on[Ak, Bk]
for eachtk such thatk ∈ k. This explains the last factors ofPk,d(t).

Given a training setS, the learner will choose an attribute groupk and a direction vectord deterministically. We pose the
problem of choosing the threshold in a similar manner as in the case of Occam’s Razor approach of Section III with the only
difference that the learner identifies the interval and selects a threshold stochastically. For each attributexk ∈ [Ak, Bk] : k ∈ k,
a margin interval[ak, bk] ⊆ [Ak, Bk] is chosen by the learner. A deterministic decision stump conjunction classifier is then
specified by choosing the thresholds valuestk ∈ [ak, bk] uniformly. It is tempting at this point to choosetk = (ak+bk)/2 ∀k ∈ k

(i.e., in the middle of each interval). However, the PAC-Bayes theorem offers a better guarantee for another type of deterministic
classifier as we see below.

Hence, the Gibbs classifier is defined with a posterior distributionQ having all its weight on the samek andd as chosen
by the learner but where eachtk is uniformly chosen in[ak, bk]. The KL divergence between this posteriorQ and the prior
P is then given by:

KL(Q‖P ) = ln

((

n

|k|

)

·
2|k|

p(|k|)

)

+
∑

k∈k

ln

(

Bk −Ak

bk − ak

)

In this limit when [ak, bk] = [Ak, Bk] ∀k ∈ k, it can be seen that the KL divergence between the “continuous components”
of Q andP vanishes. Furthermore, the KL divergence between the “discrete components” ofQ andP is small for small values
of |k| (wheneverp(|k|) is not too small).Hence, this KL divergence between our choices forQ and P exhibits a tradeoff
between margins (bk − ak) and sparsity (small value of|k|) for Gibbs classifiers. Theorem 4 suggests that theGQ with the
smallest guarantee of riskR(GQ) should minimize a non trivial combination ofKL(Q‖P ) andRS(GQ).

The posteriorQ is identified by an attribute group vectork, a direction vectord, and intervals[ak, bk] ∀k ∈ k. We refine the
notation for our Gibbs classifierGQ to reflect this. Hence, we useGkd

ab
wherea andb are the vectors formed by the unions

of aks andbks respectively. We can obtain a closed-form expression forRS(G
kd

ab
) by first considering the riskR(x,y)(G

kd

ab
)

on a single example(x, y) sinceRS(G
kd

ab
) = E(x,y)∼SR(x,y)(G

kd

ab
). From our definition forQ, we find that:

R(x,y)(G
kd

ab
) = (1 − 2y)

[

∏

k∈k

σdk

ak,bk
(xk)− y

]

(6)

where:

σd
a,b(x)

def
=















0 if (x < a andd = +1) or (b < x andd = −1)
x−a
b−a

if a ≤ x ≤ b andd = +1
b−x
b−a

if a ≤ x ≤ b andd = −1

1 if (b < x andd = +1) or (x < a andd = −1)

Note that the expression forR(x,y)(C
k

td
) is identical to the expression forR(x,y)(G

kd

ab
) except that the piece-wise linear

functionsσdk

ak,bk
(xk) are replaced by the indicator functionsI((xk − tk)dk > 0).

The PAC-Bayes theorem provides a risk bound for the Gibbs classifierGkd

ab
. Since the Bayes classifierBkd

ab
just performs

a majority vote under the same posterior distribution as theone used byGkd

ab
, it follows that:

Bkd

ab (x) =

{

1 if
∏

k∈k
σdk

ak,bk
(xk) > 1/2

0 if
∏

k∈k
σdk

ak,bk
(xk) ≤ 1/2

(7)

Note thatBkd

ab
has anhyperbolicdecision surface. Consequently,Bkd

ab
is not representable as a conjunction of decision

stumps. There is, however, no computational difficulty at obtaining the output ofBkd

ab
(x) for any x ∈ X . We now state our

main theorem:

Theorem 5. Given all our previous definitions, for anyδ ∈ (0, 1], and for anyp satisfying
∑n

e=0 p(e) = 1, we have, with
probability atleast1− δ over random draws ofS ∼ Dm:

(

∀k,d, a,b : R(Gkd

ab
) ≤ sup

{

ǫ : kl(RS(G
kd

ab
)‖ǫ) ≤ ψ

}

)

where

ψ =
1

m

[

ln

((

n

|k|

)

·
2|k|

p(|k|)
·
m+ 1

δ

)

+
∑

k∈k

ln

(

Bk −Ak

bk − ak

)

]

Furthermore:R(Bkd

ab
) ≤ 2R(Gkd

ab
) ∀k,d, a,b.
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VI. T HE LEARNING ALGORITHMS

Having proposed the theoretical frameworks attempting to obtain the optimal classifiers based on various optimizationcriteria,
we now detail the learning algorithms for these approaches.Ideally, we would like to find a conjunction of decision stumps
that minimizes the respective risk bounds for each approach. Unfortunately, this cannot be done efficiently in all casessince
this problem is at least as hard as the (NP-hard) minimum set cover problem as mentioned by Marchand and Shawe-Taylor
[2002]. Hence, we use a set covering greedy heuristic. It consists of choosing the decision stumpi with the largestutility USC

i

where:
USC
i = |Qi| − p|Ri| (8)

whereQi is the set of negative examples covered (classified as 0) by featurei, Ri is the set of positive examples misclassified
by this feature, andp is a learning parameter that gives a penaltyp for each misclassified positive example. Once the feature
with the largestUi is found, we removeQi andRi from the training setS and then repeat (on the remaining examples) until
either no more negative examples are present or that a maximum numbers of features has been reached. This heuristic was
also used by Marchand and Shawe-Taylor [2002] in the contextof a sample compression classifier called the set covering
machine. For our sample compression approach (SC), we use the above utility functionUSC

i .
However, for the Occam’s Razor and the PAC-Bayes approaches, we need utility functions that can incorporate the opti-

mization aspects suggested by these approaches.

A. The Occam’s Razor learning algorithm

We propose the following learning strategy for Occam’s Razor learning of conjunctions of decision stumps. For a fixedli
andη, let N be the set of negative examples andP be the set of positive examples. We start withN ′ = N andP ′ = P . Let
Qi be the subset ofN ′ covered by decision stumpi, let Ri be the subset ofP ′ covered by decision stumpi, and letli be
the number of bits used to code the threshold of decision stump i. We choose the decision stumpi that maximizes theutility
UOccam
i defined as:

UOccam
i

def
=

|Qi|

N ′
− p

|Ri|

P
− η · li

wherep is the penaltysuffered by covering (and hence, misclassifying) a positive example andη is the cost of usingli bits
for decision stumpi. Once we have found a decision stump maximizingUi, we updateN ′ = N ′ −Qi andP ′ = P ′ −Ri and
repeat to find the next decision stump until eitherN ′ = ∅ or the maximum numberv of decision stumps has been reached
(early stopping the greedy). The best values for the learning parametersp, η, andv are determined by cross-validation.

B. The PAC-Bayes Learning Algorithm

Theorem 5 suggests that the learner should try to find the Bayes classifierBkd

ab
that uses a small number of attributes (i.e.,

a small|k|), each with a large separating margin(bk − ak), while keeping the empirical Gibbs riskRS(G
kd

ab
) at a low value.

As discussed earlier, we utilize the greedy set covering heuristic for learning.
In our case, however, we need to keep the Gibbs risk onS low instead of the risk of a deterministic classifier. Since the

Gibbs risk is a “soft measure” that uses the piece-wise linear functionsσd
a,b instead of the “hard” indicator functions, we

cannot make use of the hard utility function of Equation 8. Instead, we need a “softer” version of this utility function totake
into account covering (and erring on) an example partly. That is, a negative example that falls in the linear region of aσd

a,b is
in fact partly covered and vice versa for the positive example.

Following this observation, letk′ be the vector of indices of the attributes that we have used sofar for the construction of
the classifier. Let us first define thecovering valueC(Gk

′
d

ab
) of Gk

′
d

ab
by the “amount” of negative examples assigned to class

0 by Gk
′
d

ab
:

C(Gk
′
d

ab )
def
=

∑

(x,y)∈S

(1− y)



1−
∏

j∈k′

σ
dj

aj ,bj
(xj)





We also define thepositive-side errorE(Gk
′
d

ab
) of Gk

′
d

ab
as the “amount” of positive examples assigned to class0 :

E(Gk
′
d

ab )
def
=

∑

(x,y)∈S

y



1−
∏

j∈k′

σ
dj

aj ,bj
(xj)




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We now want to add another decision stump on another attribute, call it i, to obtain a new vectork′′ containing this new
attribute in addition to those present ink′. Hence, we now introduce thecovering contributionof decision stumpi as:

Ck
′
d

ab (i)
def
= C(Gk

′′
d

′

a′b′ )− C(Gk
′
d

ab )

=
∑

(x,y)∈S

(1 − y)
[

1− σdi

ai,bi
(xi)

]

∏

j∈k′

σ
dj

aj ,bj
(xj)

and thepositive-side error contributionof decision stumpi as:

Ek
′
d

ab
(i)

def
= E(Gk

′′
d

′

a′b′ )− E(Gk
′
d

ab
)

=
∑

(x,y)∈S

y
[

1− σdi

ai,bi
(xi)

]

∏

j∈k′

σ
dj

aj ,bj
(xj)

Typically, the covering contribution of decision stumpi should increase its “utility” and its positive-side error should
decrease it. Moreover, we want to decrease the “utility” of decision stumpi by an amount which would become large
whenever it has a small separating margin. Our expression for KL(Q‖P ) suggests that this amount should be proportional
to ln((Bi − Ai)/(bi − ai)). Furthermore we should compare this margin term with thefraction of the remaining negative
examples that decision stumpi has covered (instead of the absolute amount of negative examples covered). Hence the covering
contributionCk

′
d

ab
(i) of decision stumpi should be divided by the amountN k

′
d

ab
of negative examples thatremains to be

covered before considering decision stumpi:

N k
′
d

ab

def
=

∑

(x,y)∈S

(1− y)
∏

j∈k′

σ
dj

aj ,bj
(xj)

which is simply the amount of negative examples that have been assigned to class 1 byGk
′
d

ab
. If P denotes the set of positive

examples, we define theutility Uk
′
d

ab
(i) of adding decision stumpi to Gk

′
d

ab
as:

Uk
′
d

ab
(i)

def
=

Ck
′
d

ab
(i)

N k′d

ab

− p
Ek

′
d

ab
(i)

|P |
− η ln

Bi −Ai

bi − ai

where parameterp represents thepenaltyof misclassifying a positive example andη is another parameter that controls the
importance of having a large margin. These learning parameters can be chosen by cross-validation. For fixed values of these
parameters, the “soft greedy” algorithm simply consists ofadding, to the current Gibbs classifier, a decision stump with
maximum added utility until either the maximum numberv of decision stumps has been reached or all the negative examples
have been (totally) covered. It is understood that, during this soft greedy algorithm, we can remove an example(x, y) from S

whenever it is totally covered. This occurs whenever
∏

j∈k′ σ
dj

aj ,bj
(xj) = 0.

Hence, we use the above utility function for the PAC-Bayes learning strategy. Note that, in the case ofUPB
i andUOccam

i ,
we normalize the number of covered and erred examples so as toincrease their sensitivity to the respectiveη terms.

1) Time Complexity Analysis:Let us analyze the time complexity of this algorithm for fixedp and η. For each attribute,
we first sort them examples with respect to their values for the attribute under consideration. This takesO(m logm) time.
Then, we examine each potentialai value (defined by the values of that attribute on the examples). Corresponding to eachai,
we examine all the potentialbi values (all the values greater thanai). This gives us a time complexity ofO(m2). Now if k is
the largest number of examples falling into[ai, bi], calculating the covering and error contributions and thenfinding the best
interval [ai, bi] takesO(km2) time. Moreover, we allowk ∈ O(m) giving us a time complexity ofO(m3) for each attribute.
Finally, we do this over all the attributes. Hence, the overall time complexity of the algorithm isO(nm3). Note, however,
that for microarray data, we haven >> m (hence, we can considerm3 to be a constant). Moreover once the best stump is
found, we remove the examples covered by this stump from the training set and repeat the algorithm. Now, we know that
greedy algorithms of this kind have the following guarantee: if there existr decision stumps that covers all them examples,
the greedy algorithm will find at mostr ln(m) decision stumps. Since we almost always haver ∈ O(1), the running time of
the whole algorithm will almost always be∈ O(nm3 log(m)). The good news is, sincen >> m, the time complexity of our
algorithm is roughly linear inn.

2) Fixed-Margin Heuristic: In order to show why we prefer a uniformly distributed threshold as opposed to the one fixed
at the middle of the interval[ai, bi] for each stumpi, we use an alternate algorithm that we call the fixed margin heuristic.
The algorithm is similar to the one described above but with an additional parameterγ. This parameter decides a fixed
margin boundary around the threshold, i.e.γ decides the length of the interval[ai, bi]. The algorithm still chooses the attribute
vectork, the direction vectord and the vectorsa andb. However, theai’s and bi’s for each stumpi are chosen such that,
|bi − ai| = 2γ. The thresholdti is then fixed in the middle of this interval, that isti =

(ai+bi)
2 . Hence, for each stumpi, the

interval [ai, bi] = [ti − γ, ti + γ]. For fixedp andγ, a similar analysis as in the previous subsection yields a time complexity
of O(nm2 log(m)) for this algorithm.
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Data Set SVM SVM+gs SVM+rfe Adaboost
Name ex Genes Errs Errs S Errs S Itrs Errs
Colon 62 2000 12.8±1.4 14.4±3.5 256 15.4±4.8 128 20 15.2±2.1
B MD 34 7129 13.2±1 7.2±2.6 32 10.4±2.4 64 20 9.8±1.1
C MD 60 7129 28.2±2.2 23.1±2.8 1024 28.2±2.2 7129 50 21.2±2.4
Leuk 72 7129 21.3±1.4 14±2.8 64 21±3.2 256 20 17.8±1.8
Lung 52 918 8.8±1.3 6.8±1.9 64 7.2±1.8 32 1 2.4±1.4

BreastER 49 7129 15.3±2.4 10.3±2.7 256 11.2±2.8 256 50 9.8±1.7

TABLE I
RESULTS OFSVM, SVM COUPLED WITH GOLUB’ S FEATURE SELECTION ALGORITHM(FILTER), SVM WITH RECURSIVEFEATURE ELIMINATION

(WRAPPER) AND ADABOOST ALGORITHMS ONGENE EXPRESSION DATASETS.

Data Set Occam SC
Name ex Genes Errs S bits Errs S
Colon 62 2000 23.6±1.2 1.8±.6 6 18.2±1.8 1.2±.6
B MD 34 7129 17.2±1.8 1.2±.8 3 17.2±1.3 1.4±.8
C MD 60 7129 28.6±1.8 2.6±1.1 4 29.2±1.1 1.2±.6
Leuk 72 7129 27.8±1.7 2.2±.8 6 27.3±1.7 1.4±.7
Lung 52 918 21.7±1.1 1.8±1.2 5 18±1.3 1.2±.5

BreastER 49 7129 25.4±1.2 3.2±.6 2 21.2±1.5 1.4±.5

TABLE II
RESULTS OF THE PROPOSEDOCCAM’ S RAZOR AND SAMPLE COMPRESSION LEARNING ALGORITHMS ONGENE EXPRESSION DATASETS.

VII. E MPIRICAL RESULTS

The proposed approaches for learning conjunctions ofdecision stumpswere tested on the six real-world binary microarray
datasets viz. thecolon tumor[Alon et al., 1999], theLeukaemia[Golub et al., 1999], theB MD andC MD Medulloblastomas
data [Pomeroy et al., 2002], theLung [Garber et al., 2001], and theBreastERdata [West et al., 2001].

Thecolon tumordata set [Alon et al., 1999] provides the expression levels of 40 tumor and 22 normal colon tissues measured
for 6500 human genes. We use the set of 2000 genes identified tohave the highest minimal intensity across the 62 tissues. The
Leukdata set [Golub et al., 1999] provides the expression levelsof 7129 human genes for 47 samples of patients with Acute
Lymphoblastic Leukemia (ALL) and 25 samples of patients with Acute Myeloid Leukemia (AML). TheB MD and C MD
data sets [Pomeroy et al., 2002] are microarray samples containing the expression levels of 7129 human genes. Data setB MD
contains 25 classic and 9 desmoplastic medulloblastomas whereas data setC MD contains 39 medulloblastomas survivors and
21 treatment failures (non-survivors). TheLung dataset consists of gene expression levels of 918 genes of 52patients with 39
Adenocarcinoma and 13 Squamous Cell Cancer [Garber et al., 2001]. This data has some missing values which were replaced
by zeros. Finally, theBreastERdataset is the Breast Tumor data of West et al. [2001] used with Estrogen Receptor status
to label the various samples. The data consists of expression levels of 7129 genes of 49 patients with 25 positive Estrogen
Receptor samples and 24 negative Estrogen Receptor samples.

The number of examples and the number of genes in each data aregiven in the “ex” and “Genes” columns respectively under
the “Data Set” tab in each table. The algorithms are referredto as “Occam” (Occam’s Razor), “SC” (Sample Compression) and
“PAC-Bayes” (PAC-Bayes) in Tables II to V. They utilize the respective theoretical frameworks discussed in Sections III, IV
and V along with the respective learning strategies of Section VI.

We have compared our learning algorithm with a linear-kernel soft-margin SVM trained both on all the attributes (gene
expressions) and on a subset of attributes chosen by the filter method of Golub et al. [1999]. The filter method consists of
ranking the attributes as function of the difference between the positive-example mean and the negative-example mean and then
use only the firstℓ attributes. The resulting learning algorithm, namedSVM+gsis the one used by Furey et al. [2000] for the
same task. Guyon et al. [2002] claimed obtaining better results with the recursive feature elimination method but, as pointed
out by Ambroise and McLachlan [2002], their work contained amethodological flaw. We use the SVM recursive feature
elimination algorithm with this bias removed and present these results as well for comparison (referred to as “SVM+rfe”in
Table I). Finally, we also compare our results with the state-of-the-art Adaboost algorithm. For this, we use the implementation
in the Weka data mining software [Witten and Frank, 2005].

Each algorithm was tested over 20 random permutations of thedatasets, with the 5-fold cross validation (CV) method. Each
of the five training sets and testing sets was the same for all algorithms. The learning parameters of all algorithms and the
gene subsets (for “SVM+gs” and “SVM+rfe”) were chosen from the training setsonly. This was done by performing a second
(nested) 5-fold CV on each training set.

For the gene subset selection procedure of SVM+gs, we have considered the firstℓ = 2i genes (fori = 0, 1, . . . , 12) ranked
according to the criterion of Golub et al. [1999] and have chosen thei value that gave the smallest 5-fold CV error on the
training set. The “Errs” column under each algorithm in Tables I to III refer to the average (nested) 5-fold cross-validation
error of the respective algorithm with one standard deviation two-sided confidence interval. The “bits” column in TableII
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Data Set PAC-Bayes
Name ex Genes S G-errs B-errs
Colon 62 2000 1.53±.28 14.68±1.8 14.65±1.8
B MD 34 7129 1.2±.25 8.89±1.65 8.6±1.4
C MD 60 7129 3.4±1.8 23.8±1.7 22.9±1.65
Leuk 72 7129 3.2±1.4 24.4±1.5 23.6±1.6
Lung 52 918 1.2±.3 4.4±.6 4.2±.8

BreastER 49 7129 2.6±1.1 12.8±.8 12.4±.78

TABLE III
RESULTS OF THEPAC-BAYES LEARNING ALGORITHM ON GENE EXPRESSION DATASETS.

refer to the number of bits used for the Occam’ Razor approach. The “G-errs” and the “B-errs” columns in Table III refer to
the average nested 5-fold CV error of the optimal Gibbs classifier and the corresponding Bayes classifier with one standard
deviation two-sided interval respectively.

For Adaboost,10, 20, 50, 100, 200, 500, 1000 and 2000 iterations for each datasets were tried and the reported results
correspond to the best obtained 5-fold CV error. The size values reported here (the “S” columns for “SVM+gs”and “SVM+rfe”,
and “Itr” column for “AdaBoost” in Table I) correspond to thenumber of attributes (genes) selected most frequently by the
respective algorithms over all the permutation runs.5 Choosing, by cross-validation, the number of boosting iteration is somewhat
inconsistent with Adaboost’s goal of minimizing the empirical exponential risk. Indeed, to comply with Adaboost’s goal, we
should choose a large-enough number of boosting rounds thatassures the convergence of the empirical exponential risk to its
minimum value. However, as shown by Zhang and Yu [2005], Boosting is known to overfit when the number of attributes
exceeds the number of examples. This happens in the case of microarray experiments frequently where the number of genes
far exceeds the number of samples, and is also the case in the datasets mentioned above. Early stopping is the recommended
approach in such cases and hence we have followed the method described above to obtained the best number of boosting
iterations.

Further, Table IV gives the result for a single run of the deterministic algorithm using the fixed-margin heuristic described
above. Table V gives the results for the PAC-Bayes bound values for the results obtained for a single run of the PAC-Bayes
algorithm on the respective microarray data sets. Recall that the PAC-Bayes bound provides a uniform upper bound on the
risk of the Gibbs classifier. The column labels refer to the same quantities as above although the errors reported are overa
single nested 5-fold CV run. The “Ratio” column of Table V refers to the average value of(bk − ak)/(Bk − Ak) obtained
over the decision stumps used by the classifiers over5 testing folds and the “Bound” columns of Tables IV and V referto the
average risk bound of Theorem 5 multiplied by the total number of examples in respective data sets. Note, again, that these
results are on a single permutation of the datasets and are presented just to illustrate the practicality of the risk bound and the
rationale of not choosing the fixed-margin heuristic over the current learning strategy.

A. A Note on the Risk Bound

Note that the risk bounds are quite effective and their relevance should not be misconstrued by observing the results in just
the current scenario. One of the most limiting factor in the current analysis is the unavailability of microarray data with larger
number of examples. As the number of examples increase, the risk bound of Theorem 5 gives tighter guarantees. Consider,
for instance, if the datasets for the Lung and Colon Cancer had 500 examples. A classifier with the same performance over
500 examples (i.e. with the same classification accuracy andnumber of features as currently) would have a bound of about 12
and 30 percent error instead of current 34.6 and 54.6 percentrespectively. This only illustrates how the bound can be more
effective as a guarantee when used on datasets with more examples. Similarly, a dataset of 1000 examples for Breast Cancer

5There were no close ties with classifiers with fewer genes.

Data Set Stumps:PAC-Bayes(fixed margin)
Name ex Genes Size Errors Bound
Colon 62 2000 1 14 34
B MD 34 7129 1 7 20
C MD 60 7129 3 28 48
Leuk 72 7129 2 21 46
Lung 52 918 2 9 29

BreastER 49 7129 3 11 31

TABLE IV
RESULTS OF THEPAC-BAYES APPROACH WITHFIXED-MARGIN HEURISTIC ONGENE EXPRESSIONDATASETS.
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Data Set Stumps:PAC-Bayes
Name ex Genes Ratio Size G-errs B-errs Bound
Colon 62 2000 0.42 1 12 11 33
B MD 34 7129 0.10 1 7 7 20
C MD 60 7129 0.08 5 21 20 45
Leuk 72 7129 0.002 3 22 21 48
Lung 52 918 0.12 1 3 3 18

BreastER 49 7129 0.09 2 11 11 29

TABLE V
AN ILLUSTRATION OF THE PAC-BAYES RISK BOUND ON A SAMPLE RUN OF THEPAC-BAYES ALGORITHM.

with a similar performance can have a bound of about 30 percent instead of current 63 percent. Hence, the current limitation
in the practical application of the bound comes from limiteddata availability. As the number of examples increase, the bounds
provides tighter guarantees and become more significant.

VIII. A NALYSIS

The results clearly show that even though “Occam” and “SC” are able to find sparse classifiers (with very few genes), they
are not able to obtain acceptable classification accuracies. One possible explanation is that these two approaches focus on
the most succinct classifier with their respective criterion. The Sample compression approach tries to minimize the number of
genes used but does not take into account the magnitude of theseparating margin and hence compromises accuracy. On the
other hand, the Occam’s Razor approach tries to find a classifier that depends on marginonly indirectly. Approaches based on
sample compression as well as minimum description length have shown encouraging results in various domains. An alternate
explanation for their suboptimal performance here can be seen in terms of extremely limited sample sizes. As a result, the
gain in accuracy does not offset the cost of adding additional features in the conjunction. The PAC-Bayes approach seemsto
alleviate these problems by performing a significant margin-sparsity tradeoff. That is, the advantage of adding a new feature is
seen in terms of a combination of the gain in both margin and the empirical risk. This can be compared to the strategy used
by the regularization approaches. The classification accuracy of PAC-Bayes algorithm is competitive with the best performing
classifier but has an added advantage, quite importantly, ofusingvery few genes.

For the PAC-Bayes approach, we expect the Bayes classifier togenerally perform better than the Gibbs classifier. This is
reflected to some extent in the empirical results for Colon, CMD and Leukaemia datasets. However, there is no means to
prove that this will always be the case. It should be noted that there exist several different utility functions that we can use
for each of the proposed learning approaches. We have tried some of these and reported results only for the ones that were
found to be the best (and discussed in the description of the corresponding learning algorithms).

A noteworthy observation with regard to Adaboost is that thegene subset identified by this algorithm almost always include
the ones found by the proposed PAC-Bayes approach for decision stumps. Most notably, theonly geneCyclin D1, a well
known marker for Cancer, found for the lung cancer dataset isthe most discriminating factor and is commonly found by both
approaches. In both cases, the size of the classifier is almost always restricted to1. These observations not only give insights
into the absolute peaks worth investigating but also experimentally validates the proposed approaches.

Finally, many of the genes identified by thefinal6 PAC-Bayes classifier include some prominent markers for thecorresponding
diseases as detailed below.

A. Biological Relevance of the Selected Features

Table VI details the genes identified by thefinal PAC-Bayes classifier learned over each dataset after the parameter selection
phase. There are some prominent markers identified by the classifier. Some of the main genes identified by the PAC-Bayes
approach are the ones identified by previous studies for eachdisease— giving confidence in the proposed approach. Some
of the discovered genes in this case includeHuman monocyte-derived neutrophil-activating protein (MONAP) mRNAin the
case of Colon Cancer dataset andoestrogen receptorin the case of Breast Cancer data,D79205 at-Ribosomal protein L39,
D83542 at-Cadherin-15and U29195 at-NPTX2 Neuronal pentraxin IIin the case of Medulloblastomas datasets BMD and
C MD. Other genes identified have biological relevance, for instance, the identification ofAdipsin, LAF-4 and HOX1C with
regard to ALL/AML by our algorithm is in agreement with that of the findings of Chow et al. [2001], Hiwatari et al. [2003]
and Lawrence and Largman [1992] respectively and the studies that followed.

Further, in the case of breast cancer, Estrogen receptors (ER) have shown to interact with BRCA1 to regulate VEGF
transcription and secretion in breast cancer cells [Kawai et al., 2002]. These interactions are further investigated by Ma et al.
[2005]. Further studies for ER have also been done. For instance, Moggs et al. [2005] discovered 3 putative estrogen-response
elements in Keratin6 (the second gene identified by the PAC-Bayes classifier in the case of BreastER data) in the context of

6This is the classifier learned after choosing the best parameters using nested 5-fold CV and trained on the full dataset.
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Dataset Gene(s) identified by PAC-Bayes Classifier
Colon 1. Hsȧ627 M26383-Human monocyte-derived neutrophil-activating protein (MONAP) mRNA
B MD 1. D79205 at-Ribosomal protein L39
C MD 1. S71824at-Neural Cell Adhesion Molecule, Phosphatidylinositol-Linked Isoform Precursor

2. D83542 at-Cadherin-15
3. U29195 at-NPTX2 Neuronal pentraxin II
4. X73358 s at-HAES-1 mRNA
5. L36069 at-High conductance inward rectifier potassium channel alpha subunit mRNA

Leuk 1. M84526 at-DF D component of complement (adipsin)
2. U34360 at-Lymphoid nuclear protein (LAF-4) mRNA
3. M16937 at-Homeo box c1 protein, mRNA

Lung 1. GENE221X-IMAGE 841641-cyclin D1 (PRAD1-parathyroid adenomatosis 1) Hs8̇2932 AA487486
BreastER 1. X03635 at,X03635- class C, 20 probes, 20 in allX03635 5885 - 6402

Human mRNA for oestrogen receptor
2. L42611 f at, L42611- class A, 20 probes, 20 in L42611 1374-1954,
Homo sapiens keratin 6 isoform K6eKRT6E mRNA, complete cds

TABLE VI
GENES IDENTIFIED BY THE Final PAC-BAYES CLASSIFIER

E2-responsive genes identified by microarray analysis of MDA-MD-231 cells that re-express ERα. An important role played
by cytokeratins in cancer development is also widely known (see for instance Gusterson et al. [2005]).

Furthermore, the importance ofMONAP in the case of colon cancer andAdipsin in the case of leukaemia data has further
been confirmed by various rank based algorithms as detailed by Su et al. [2003] in the implementation of “RankGene”, a
program that analyzes and ranks genes for the gene expression data using eight ranking criteria including Information Gain
(IG), Gini Index (GI), Max Minority (MM), Sum Minority (SM),Twoing Rule (TR), t-statistic (TT), Sum of variances (SV)
and one-dimensional Support Vector Machine (1S). In the case of Colon Cancer data,MONAP is identified as the top ranked
gene by four of the eight criteria (IG, SV, TR, GI), second by one (SM), eighth by one (MM) and in top 50 by 1S. Similarly,
in the case of Leukaemia data,Adipsin is top ranked by 1S, fifth by SM, seventh by IG, SV, TR, GI and MM and is in top
50 by TT. These observations provides a strong validation for our approaches.

Cyclin as identified in the case of Lung Cancer dataset is a well knownmarker for cell division whose perturbations are
considered to be one of the major factors causing cancer [Driscoll et al., 1999, Masaki et al., 2003].

Finally, the discovered genes in the case of Medulloblastomas are important with regard to the neuronal functioning (esp.
S71824, U29195 and L36039) and can have relevance for nervous system related tumors.

IX. CONCLUSION

Learning from high-dimensional data such as that from DNA microarrays can be quite challenging especially when the aim
is to identify only a few attributes that characterizes the differences between two classes of data. We investigated thepremise of
learning conjunctions ofdecision stumpsand proposed three formulations based on different learning principles. We observed
that the approaches that aim solely to optimize sparsity or the message code with regard to the classifier’s empirical risk limits
the algorithm in terms of its generalization performance, at least in the present case of small dataset sizes. By trading-off the
sparsity of the classifier with the separating margin in addition to the empirical risk, the PAC-Bayes approach seem to alleviate
this problem to a significant extent. This allows the PAC-Bayes algorithm to yield competitive classification performance while
at the same time utilizing significantly fewer attributes.

As opposed to the traditional feature selection methods, the proposed approaches are accompanied by atheoretical justification
of the performance. Moreover, the proposed algorithmsembed the feature selection as a part of the learning processitself.7

Furthermore, the generalization error bounds are practical and can potentially guide the model (parameter) selection. When
applied to classify DNA microarray data, the genes identified by the proposed approaches are found to be biologically significant
as experimentally validated by various studies, an empirical justification that the approaches can successfully perform meaningful
feature selection. Consequently, this represents a significant improvement in the direction of successful integration of machine
learning approaches for use in high-throughput data to provide meaningful, theoretically justifiable, andreliable results. Such
approaches that yield a compressed view in terms of a small number of biological markers can lead to a targeted and well
focussed study of the issue of interest. For instance, the approach can be utilized in identifying gene subsets from the microarray
experiments that should be further validated using focusedRT-PCR techniques which are otherwise both costly and impractical
to perform on the full set of genes.

Finally, as mentioned previously, the approaches presented in this wor have a wider relevance, and can have significant
implications in the direction of designing theoretically justified feature selection algorithms. These are one of the few approaches
that combines the feature selection with the learning processandprovide generalization guarantees over the resulting classifiers
simultaneously. This property assumes even more significance in the wake of limited size of microarray datasets since it limits
the amount of empirical evaluation that can be reliably performed otherwise. Most natural extensions of the approachesand
the learning bias proposed here would be in other similar domains including other forms of microarray experiments such as

7Note that Huang and Chang [2007] proposed one such approach.However, they need multiple SVM learning runs. Hence, theirmethod basically works
as a wrapper.
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Chromatin Immunoprecipitation promoter arrays (chIP-Chip) and from Protein arrays. Within the same learning settings, other
learning biases can also be explored such as classifiers represented by features or sets of features built on subsets of attributes.
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