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A Prototype Learning Framework using EMD:
Application to Complex Scenes Analysis

Elisa Ricci, Gloria Zen, Nicu Sebe and Stefano Messelodi

Abstract—In the last decades, many efforts have been devoted to develop methods for automatic scene understanding in the
context of video surveillance applications. This paper presents a novel non-object centric approach for complex scene analysis.
Similarly to previous methods, we use low-level cues to individuate atomic activities and create clip histograms. Differently from
recent works, the task of discovering high-level activity patterns is formulated as a convex prototype learning problem. This
problem results into a simple linear program that can be solved efficiently with standard solvers. The main advantage of our
approach is that, using as objective function the Earth Mover’s Distance (EMD), the similarity among elementary activities is
taken into account in the learning phase. To improve scalability we also consider some variants of EMD adopting L; as ground
distance for one and two dimensional, linear and circular histograms. In these cases only the similarity between neighboring
atomic activities, corresponding to adjacent histogram bins, is taken into account. Therefore we also propose an automatic
strategy for sorting atomic activities. Experimental results on publicly available datasets show that our method compares favorably

with state-of-the-art approaches, often outperforming them.

Index Terms—YVideo surveillance, Complex scene analysis, Earth Mover’s Distance, Parametric Linear Programming.

1 INTRODUCTION

In the last few years the large deployment of dis-
tributed visual surveillance systems in public spaces
has increased the demand for sophisticated tools per-
forming the automatic analysis of long video streams.
There is an increasing need for developing approaches
which are able to extract typical and anomalous pat-
terns in complex and crowded scenes. These scenarios
are particularly challenging due to the presence of
many occluded targets and to the need of complex
models taking into account the spatial and temporal
correlations between objects. Recently, unsupervised
non-object centric approaches for dynamic scene un-
derstanding have gained popularity [6], [7], [43]. They
have shown to be a reliable alternative to traditional
visual surveillance approaches based on an object
centric perspective [9], [10], i.e. relying on the classical
detection/tracking scheme. These methods use low
level features (e.g. position, size and motion of small
blobs) to individuate elementary activities. Then by
analyzing the co-occurrences of atomic activities, high
level patterns are discovered.

The most recent and successful approaches for com-
plex scene analysis are based on Probabilistic Topic
Models (PTMs) [6], [7], [43]. These methods have
shown to be very effective for discovering spatio-
temporal patterns as well as for inferring behav-
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iors’correlation over time and space. Their main limi-
tation lies on the use of the standard word-document
paradigm for representing atomic activity occurrences
into clips. In this way the dependencies among atomic
activities are not considered in the learning process.
To overcome this drawback in this paper we pro-
pose a different approach. We show that the problem
of discovering high-level activity patterns in dynamic
scenes can be modeled as a simple and convex opti-
mization problem, i.e. a Linear Program (LP). At the
core of our approach there is the idea that choosing as
objective function a cross-bin distance, i.e. the EMD,
rather than a bin-to-bin one, dependencies among
atomic activities can be easily encoded in the learning
process. To analyze long video sequences, in this
paper we also consider some efficient variations of
EMD which use L; norm and its variants for ground
distance definition. In these cases, the flow network
involved in the computation of the EMD is simpli-
fied and a words’order needs to be defined as only
the similarity among adjacent bins is considered. To
compute automatically the order of atomic activities
a novel strategy based on simulated annealing is pro-
posed. Interestingly, our approach permits to perform
a multiscale analysis of the scene by varying a single
parameter. We also show that anomalous patterns can
be detected by comparing activity patterns at multiple
scales and we propose a novel Multiscale Anomaly
Score (MAS). Our approach is extensively evaluated
on five datasets, four of which are publicly available.
The rest of the paper is organized as follows:
Section 2 reviews related work. Section 3 gives an
overview of the proposed approach for extracting
spatio-temporal patterns in complex scenes. In Sec-
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tion 4 the Earth Mover’s prototype learning algorithm
is presented. Our approach for ordering atomic ac-
tivities is also discussed. In Section 5 we show that,
under some assumptions, all possible prototypes can
be computed with improved efficiency exploiting the
theory of Parametric LP. Results and conclusions are
presented respectively in Sections 6 and 7.

2 RELATED WORKS

The approaches for complex scenes analysis without
object tracking/detection have recently gained an in-
creasing popularity [6], [7], [8], [13], [14]. Most of these
methods adopt a probabilistic framework: a word-
document paradigm is employed to represent the co-
occurrences of atomic events and sophisticated PTMs
are used to extract salient activities (topics). These
approaches, specifically developed for unsupervised
scene analysis, have several advantages over standard
clustering techniques (e.g. k-means), such as a greater
flexibility to model complex tasks and the ability to
infer spatio-temporal dependencies among discovered
activities. The approach we propose is significantly
different from PTMs-based methods. In this paper
the task of discovering high-level activity patterns is
formulated as a Parametric LP. This permits not only
to avoid the typical local minima problems but, more
interestingly, to efficiently compute, under special
conditions, the so-called regularization path associ-
ated to the LP. This means that we can explore the
most k relevant activities for all possible values of k
at roughly the same time as for one fixed value k = k.
In other words a multiscale video scene analysis arises
naturally using our approach.

A large number of works in video analysis adopts
a bag-of-words representation, not only in the context
of complex scene analysis [15], [38] but also for related
tasks such as human action recognition [2], [3]. This
representation, while being very powerful, ignores the
spatio-temporal arrangement of elementary features.
Differently our approach explicitely focuses on ex-
ploiting atomic activity dependencies.

The most similar work to ours in the context of
video scene understanding is perhaps [15]. In [15]
a multiscale analysis is also proposed and diffusion
maps are used in a preprocessing step before clus-
tering. Differently our multi-resolution analysis is ob-
tained during the clustering phase and it is also used
for individuating unusual behaviors. Being able to de-
tect anomalous patterns is of fundamental importance
not only in visual surveillance applications [4], [5],
but in many other contexts (see [16] for a review).
Our MAS is related to previous nonparametric out-
lier mining techniques where the global and local
density of the data are used to define the so-called
outlier factors [17], [18]. However, MAS is novel since
it is specifically tailored to the proposed clustering
algorithm, aiming to quantify how the clusters size

changes at subsequent scales. Previous approaches [4],
[5] do not exploit multiscale segmentation levels for
detecting unusual behaviours.

Our approach draws its inspiration from sparse
signal approximation algorithms such as the fused
lasso [19]. However, to the best of our knowledge we
are the first to adopt a similar strategy for mining
complex video scenes and to show that parametric
LP can be a useful tool for multiscale analysis. To
compute the entire solution path we resort on the
approach described in [20]. However, our clustering
algorithms are novel with respect to sparse signal
approximation methods in [20]. In particular EMD
has never been used in this context. This choice is
motivated by the fact that with noisy histogram data
the EMD is a better metric with respect to bin-to-bin
distances.

Our work is related to [21] where EMD is used
in the objective function of an optimization problem.
However, in [21] the authors focused on Nonneg-
ative Matrix Factorization. Finally recent clustering
methods [23], [41], [42] are also closely related to our
approach. In [41], [42] two algorithms for clustering
with EMD are also presented, while in [23] the link
between sensitivity analysis in LP and multiscale
clustering is exploited. However, these works, not
developed in the context of dynamic scene analysis,
rely on optimization problems which are significantly
different from ours.

3 DISCOVERING SPATIO-TEMPORAL PAT-
TERNS IN DYNAMIC SCENES

This Section gives an overview of the proposed ap-
proach for discovering high-level activity patterns in
dynamic scenes.

In the first phase (Fig.1) low level features are
extracted from the video, i.e. for each pixels the fore-
ground /background information and the optical flow
are computed. As background subtraction algorithm
we use a simple dynamic Gaussian-Mixture back-
ground model [24]. Then for each pixel of foreground
we also compute the optical flow vector using the
Lucas-Kanade algorithm. By thresholding the magni-
tude of the flow vector foreground pixels are divided
into static and moving pixels. For moving pixels we
also quantize the optical flow into ny = 8 directions.
Then we divide the scene into p x ¢ patches. For
each patch we build a patch descriptor vector v =
[y fy dos os] Where (z,y) denotes the coordinates
of the patch center in the image plane, f; is the
percentage of foreground pixels in the patch, d, is the
mode of the optical flow orientations distribution and
Moy is the average magnitude of optical flow vectors
with direction d, ;. For patches of static pixels we set
d, ¢ = Mo = 0. To limit the influence of noise in low
level features extraction we discard patches with few
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Fig. 1. Flowchart of the proposed approach

pixels of foreground, i.e. such that f, < T',. We define
an afomic event as a valid patch descriptor v.

In the second phase a codebook of atomic activities
is constructed. To this aim we define the following
distance function between two atomic events v, =
It mb ] as

(2?7 y? ql, ml;] and vy = [2* y* d},

dgt = alAp + (1 — a)(Am + Af) (1)
where:

Ap = /(zt —29)2 + (yt —y9)?
Am= |gr — Mgyl

N 0 if mg, =0Vimg =0
| min(|di, - sz\,ng —|db; — cZZfD otherwise

In practice the parameter o in (1) controls the relative
importance of position and motion information. In our
experiments we set @ = 0.5. Then we group atomic
events using K-medoids clustering. Each cluster rep-
resents an atomic activity. Subsequently we divide
the video into short video clips and for each clip ¢
we construct an activity histogram h. representing the
distribution of atomic activities. In the last phase the
video clips are grouped according to their similarity.
We propose a novel algorithm which, given a training
set of clips histograms, outputs a small set of his-
tograms constituting a synthetic representation of the
original data. These histogram prototypes represent
the salient activities occurring in the scene.

4 EARTH MOVER'S PROTOTYPES

In this Section we first review some basic concepts
about EMD and its variations, then we present our
Earth Mover’s prototypes learning approach.

4.1 Earth Mover’s Distance

The EMD [25] Dg(h, p) between two histograms h, p
normalized to unit mass is obtained as the solution of
the following transportation problem:

D D D
D dotfa st Y fa=h' Y fa=p" Q)
q=1 t=1

t,qg=1
The variable f;; denotes a flow representing the
amount transported from the g-th supply to the t¢-th

demand and d; the ground distance between ¢ and ¢.
Usually dg; is defined by L; or L, distance. Figure 2.a
depicts the flow network associated to EMD. The
problem (2) is a LP which can be solved efficiently

min
fqt ZO

convex learning

due to the special structure of its sparse constraints
[25], [26]. However, in the case of high dimensional
histograms solving (2) can be very time consuming
due to the large number of flow variables involved.

4.2 Linear, Circular and Thresholded EMD-L;

Several methods have been proposed in the past to
speed up the EMD distance computation. In %26], it
is observed that, for histograms normalized to unit
mass and L; ground distance (i.e. dy = |g —t|), every
Eositive flow between faraway histograms bins can

e replaced by a sequence of flows between neighbor
bins. This implies that for unidimensional histograms

(ie. h,pDGAB ), (2) can be simplified:

min Y foar1+ Y faa- ®)
g=1 q=2

st fog+1 = forrq + faq-1— fom14=0"VYg,¢=1...D
faa+1; fa,q-1 20

with b¢ = h? — qu. The number of flow variables
reduces from O(D?) in (2) to O(D). This is greatly ben-
eficial in terms of computational cost since the number
of variables is a dominant factor in the time com-
plexity of all LP algorithms. Moreover, the number
of equality constraints is reduced by half and all the
ground distances involved in the EMD-L; are ones.
This is practically useful saving multiplications dur-
ing computation. Eqn. (3) considers unidimensional
histograms but the EMD-L; can be defined also for
higher dimensional cases [39]. For example for two-
dimensional histograms (i.e. h,p € IRP1*P2 DD, = D)
the only difference is that the neighborhood structure
is not a line but a grid. The resulting optimization
problem is:

minfm,,n;q,tzo E E
gt m,neN(q,t)
s.t. E

m,neN(q,t)

fqyt;m,n (4)

2

m,neN(q,t)

Smonsq,t = bt Vg, t

fq,t;m»n -

where b%! = h%' — p?t, the indices ¢, ¢ correspond to
the position of a bin while its neighborhood N (g, t)
is represented by the four adjacent bins (see Fig.2.c).
In [27], [28] other computationally efficient variations
of EMD have been proposed. In [28] the EMD with
thresholded L; ground distance (i.e. dyy = min(|q —
t|,2)) is considered for robust comparison of noisy his-
tograms. The adoption of the threshold implies the in-
troduction of a transhipment vertex, slightly increas-
ing the number of flow variables [28]. However, it has
been shown that saturated distances are beneficial in
terms of accuracy results in several applications. In
[27] the same authors proposed a circular histogram
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Fig. 2. The flow networks associated to (a) EMD, (b)
EMD with thresholded L, ground distance for circular
histograms. In (b) the yellow node is the transhipment
vertex. Ingoing edge (green) cost is the threshold (2
in this case) and outgoing edge (blue) cost is 0. Red
edges have cost 0. Black edges are 1-cost edges. (c)
The two dimensional grid associated to (4).

representation. In this case a different ground distance
is needed, i.e. d;y = min(min(|g—t|, D—|g—t|),2). With
thresholded ground distance and circular histograms,
(2) assumes the form:

D D D
Z fq,q+1 + Z fq,qfl +2 Z fq,D+1
q=1 q=1 q=1

st fogr1 — forrg + foa—1 — fam1,a + fo.ps1 = b7 = p°
fq,q-t—l,fq,q—h fq,D+1 >0

where the flow variables f; p41 correspond to the
links connecting sources to the transhipment vertex.
Figure 2.b depicts the associated flow network. In
practice with respect to (3) in (5) also flows between
sources and the transhipment vertex are considered.
However, the number of flow variables is still O(D).

©)

4.3 Convex Optimization for Prototypes Learning

Given a set of histograms H = {hq,...,hy}, the task
of prototype learning is the problem of computing
a set P = {p;,...,py}, such that the following two
requirements are jointly satisfied:

« each prototype p; must be as much similar as
possible to the associated histogram h;

o the set of prototypes is a sparse representation of
the original dataset # (i.e. the number of different
prototypes must be small)

The prototype learning problem can be formalized as
follows:

min Zﬁ »P;) T A Z Mij {HaX Ip} — P]|(6)
i=1 i#j, i,5=1 B

st. p; >0, Zpizl Vi=1...N

where the constraints ensure that the computed
prototypes are histograms normalized to unit mass.

The objective function consists of two terms. The loss
function £(-) penalizes the difference between the
original histograms and the associated prototypes. In
this paper we focus on the specific form of (6) when
L(+) is a convex function. The second term is meant to
minimize the number of different prototypes. In fact

the adoption of the L; — Lo, norm induces sparsity,
thus producing a small number of prototypes. The set
of binary coefficients 7;; € {0, 1} indicates the pairs of
histograms which must be merged. In the absence of
prior knowledge, for each histogram h, a set of Np
nearest neighbors can be identified and the associated
n;; set to 1 if h; is a neighbor of h;. In alternative
temporal dependencies can be encoded into 7;;: for
example if histograms represent temporally adjacent
clips it is reasonable to set n;; = 1if i = j — 1,5 =
2...N, n;; = 0 otherwise. The relative importance of
loss and regularization is controlled by the positive
coefficient A. When A = 0 all prototypes p, must be
equal to their corresponding histograms h; while for
A — oo all prototypes should be equal to each others.
For 0 < A < oo a number of prototypes k between
N and 1 can be obtained. In truth, for large values of
A and few prototypes the L; norm also induces the
prototypes to be quite similar to each other. In practice
as A decreases the effect of the loss function is stronger
and the computed prototypes are quite different.

4.4 Learning Prototypes with EMD

In this paper we present a specific formulation of (6)
where the EMD is adopted as loss function:

mln ZDE zvpz +)\ZTI’LJ Lnax ‘p1 |
=1 i#£]

p;i>0, > pi=1 Vi=1...N

Therefore to compute the prototypes we introduce
(2) into (7) and we get the following LP:
N D

mingye ri ¢ >0 SO dgfi A i
i=1 t,q=1 i#£]

D D

S fa=hi, vt > fi =pl, Vg, Vi
q=1 t=1

Note that the constraints >, p!

@)

s.t.

®)

s.t.

= 1 are removed

since they are automatically satisfied as the original
histograms are normalized. It is worth noting that at
the coordinate level we adopt the L., norm rather
than the L; norm. This does not promote sparsity but
produces the effects that all coordinates of a proto-
type go to zero together and significantly reduces the
computational cost of solving (8) limiting the number
of slack variables ¢;;.

Regarding the ground distance d,; definition, we
use the fact that each histogram bin corresponds to
an atomic activity g, which is represented by the as-
sociated centroid ¢, = [z y? ¢!, m{ ;] computed by K-
medoids in the first phase of our approach Therefore
we define the ground distance between two atomic
activities ¢, = [z7 y? di; ml ] and ¢; = [z y* d; m ]
as follows:

dgr = alp+ B(Am+ A0) + (1 —a — B)(1 — ATe) (9)
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where the terms Ap, Am and Af are defined as in (1).
The last term ATc takes into account the temporal
correlation between atomic activities: starting from
a training set of activity histograms {hi,...,hn.},
where N, is a fixed number of clips, we consider,
for each pair ¢, c; of atomic activities, the vectors
Hy, = (h{,...,hy ) and H; = (hf,...,hy ) and set
ATe equal to the correlation coefficient between H,,
and H;. In (9) the ground distance depends on two
parameters, o and J which control the relative impor-
tance of position, motion and temporal correlation.

4.5 Speeding up Prototype Learning

For large N and D solving (8) is still time consuming
even for today’s sophisticated LP solvers. The compu-
tational cost is especially high due to the large number
of flow variables f;;. Actually we do not specifically
need them since we are only interested in computing
the prototypes p,. Therefore to speed up calculations
we also propose to modify (8) as follows.

We consider the special case of EMD with L; dis-
tance over bins as ground distance. In our specific
aﬁplication the idea is that similar atomic activities
should correspond to neighboring bins in activity
histograms. To this aim the atomic activities are sorted
according to the associated location and motion in-
formation (see subsection 4.6). With this premises, we
propose to simplify (8) using (3). So substituting the
definition of EMD-L; (3) into (7) we get:

N /D-1 D
min Z <Z faasr + Zf;,ql) + /\ijcij (10)
i=1 \g=1 q=2 7]
faarr = forrq + fago1 — fo-1.4 = h{ —p{, Vg, Vi
pgvf;,q+17f$,q717<ij > 0

The resulting optimization problem is a LP with
Nyar = N +np +ne = 2N(D — 1)+ ND + :NNp
variables if we adopt the nearest neighbor approach
for setting the coefficients 7;; = 1. In this case for large
datasets and small histograms (N >> D) the computa-
tional cost of (10) is dominated by the number of slack
variables. However, by considering a small number
of neighbors Np, (10) can be solved efficiently even
for large datasets. Analogously a prototype learning
approach can be devised for two dimensional his-
tograms by considering the EMD-L; definition (4).
Similarly for circular histograms and EMD with
thresholded L; ground distance, the prototype learn-
ing algorithm can be obtained by inserting (5) in (7):

min Z f;,q+1 + Z f;,q_l +2 Z fé,D+1 +A Z Ni5Gij
1,9 i,q iq itj

st =Gy <p!—pi <Gy, Vg, Vi, g, i #j (11)
foat1 = Jarra + faa—1 = fo-1.q + fops1 = h{ = pf
P, faasts Faq1s fap41:Gig = 0

The resulting optimization problem is a LP with
Nyar =4ND + 1N Np.

(path) @—@—@—@—@  (cycle) ::} (grid) B;i}

Fig. 3. Structures used to arrange atomic activities.

4.6 Ordering Atomic Activities

Elementary activities are not independent and it is
desirable to take into account their similarity when
learning activity prototypes. A straightforward way
to impose this is to encode atomic activities similarity
in the ground distance definition (9). This means con-
sidering similarity among all possible pairs of atomic
activities and a high computational cost of solving
(8) even for problems with a small N. A similar
requirement can be imposed also in the case of the
more efficient EMD variants based on L;. In this case
considering atomic activities similarity means sorting
them according to a prespecified criterion. The idea is
that, when constructing clip histograms, neighboring
activities correspond to similar ones.

To this aim we propose to find the best arrangement
of the atomic activities into appropriate graph struc-
tures in order to minimize the distortion between the
ground distances d,; and the distances D, of the nodes
g and ¢ within the graph (i.e. the length of the shortest
path connecting them). As discussed at the beginning
of this section, in this work we consider the three
following graph structures: path graph, cycle graph
and square grid graph (corresponding respectively to
1D, circular and 2D histograms, see Fig.3), where the
number of nodes is equal to the number of atomic
activities. The distortion is defined as follows:

D D
Y > (g —Dyloley) —o(cr)))’

q=1t=q+1

(12)

which has to be minimized with respect to o (), a one-
to-one function mapping atomic activities to nodes
of the graph. The minimization is achieved by Al-
gorithm 1 which implements a simulated annealing
approach. The temperature Tj is set to a value such
that a given fraction (about 0.75) of the moves would
be initially accepted. The values of N, and 1 used
in the experiments are 10000 and 0.99, respectively.

4.7 Learning Prototypes with bin-to-bin Distances

To demonstrate the advantages of considering cross-
bin similarities when learning prototypes, we briefly
discuss the form that (6) assumes when bin-to-bin
distances are used as metrics and some related ap-
proaches in the literature. For example when the L,
norm is chosen as loss function, (6) assumes the form:

N D
min Y R = pll+AY miy max |pf - pjl (13)
i=1 q=1 itj

st. p; >0, > pl=1 Vi=1...N
t

The resulting optimization is still a LP (as in the case
of EMD) and can be solved efficiently with standard
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Algorithm 1 Sorting atomic activities

1: Input:  atomic activities C = {cu,..
G(‘/7 E), with V = {’U17 ceny ’UD}

2: T+ Tpy

3: o(¢;) «v,i=1...D
4: Dy < initial distortion
5 M+ 1
6
7
8

.cp}, graph

initialize temperature

initialize o()

equation (12)

counter of accepted moves
: while M >0

M+ 0 reset the counter

repeat N, times generate move hypothesis
9: ¢k < randomly selected atomic activity
10: v; < randomly selected node from V' \ {o(ck)}
11: ci <+ o (vy)
12: o(ci) < o(ew)
13: o(ek) < vj
14: D,, < compute distortion
15: AD < Dy, — Dy;
16: Accept move with probability min(e=4%/7 1)
17: if move accepted then
18: M+ M+ 1; Dy < D,
190 T+ n«T decrease the temperature (n < 1)

20: end
21: Output: function o()

solvers once slack variables have been introduced.
The proposed approach (6) can also be used with
Kullback-Leibler distance as loss functions:
N D B
min Z Z hllog p—fl +A Z T MBX Ip{ — pjl
i=1 gq=1 ? i#£]
Similarly to L; and KL, also the Ly norm can be used
in the loss function in (6). In particular, if a sum of L,
norms rather than a combination of L;-L, is used as
regularization term and no constraints are imposed on
the prototypes p;, the following optimization problem
is obtaineg[l:

min Y (B —p|P+ 2D ny Y 1o -l (14)
i=1 i#] q

The special case where n;; = 1 if i = j — 1 and

n;; = 0 otherwise leads to the well known “total

variation denoising” procedure [32] or to a special
case of the fused lasso [19]. However, it is worth
nothing that in our case the choice of using a L;-
Lo norm rather than a sum of L; is motivated by
computational efficiency reasons. In fact since our
optimization problem is an LP and we solve it with
standard solvers, the number of slack variables is kept
limited. In all these cases, only bin-to-bin compar-
isons are allowed. Indeed the experimental results
presented in the Section 6 demonstrate that bin-to-bin
distances are less effective than EMD when learning
prototypes for dynamic scene understanding.

4.8 Multiscale Anomaly Score

A crucial property of (6) is that the sparsity achieved is
controlled by a single parameter, i.e. the regularization
constant \. In other words, for A varying between oo
and 0, a different number of prototypes between 1
and N can be obtained. In the case of automatic scene

understanding, this corresponds to discover different
salient activities at multiple scales. For example, for
traffic scene analysis, for large values of A we can
obtain a very rough description of the activities differ-
entiating among clips with moving vehicles or clips
corresponding to vehicles stopped at the traffic lights.
As X\ decreases we gradually enhance the level of
details of the analysis differentiating among vehicles
flows of different intensity.

Instead of finding the value of A which provides
the optimal prototypes we propose to exploit the so-
lutions of (6) for different values of A\. More formally,
given a set of N histograms h; we first introduce the
following characterization of sets of fused histograms
as they are generated by our algorithms.

Definition 1. (Sets of Fused Histograms) Let A = A
and H) be a set of histograms with £ = 1,..., N(\) where
N () is the number of different prototypes obtained for
A\ = \. Then a valid set of fused histograms H) satisfies
the following properties:

e UV =

o H}NH,, =0, V0 #m.

o V hy,hy, € Hp we have p} =p?, ¥V q=1...D

o« Vhy € H) and h,,, € H), 3q: pl #pl,

In a nutshell a set of fused histograms corresponds to
histograms associated to the same prototype. Different
sets of histograms are generated for different values
of A\. Comparing clustering results at multiple scales
(i.e. comparing sets of fused histograms for different
values of \) we can detect unusual behaviors cor-
responding to atypical histograms. To this aim we
define for each h; an associated anomaly score. The
general idea behind this score is to monitor how the
clusters size changes for decreasing values of \. From
A = oo (where all the histograms are represented by a
single prototype) to A = 0 where each histogram cor-
responds to a different prototype, the anomaly score
of hj, can be computed as the sum of the ratios of the
size of the clusters containing h, at two subsequent
scales. Analyzing multiple levels we can distinguish
between cases where a cluster with a single histogram
is merged at higher level with a small cluster and
situations where it belongs to a big cluster: in the first
case its anomaly score is higher. Formally:
Definition 2. (MAS) Let h, € 7—[?1 and h, € ’Hz\,“l with
Xi—1 > A;. We define the Multiscale Anomaly Score
(MAS) of the histogram hy as:

L Ai—

1 H
MAS =1- — £
NL ~ |7-[2i

In practice the most anomalous clips tend to get a
higher MAS. Let us consider the case of a cluster made
by a single clip. In this case the ratio in the MAS
definition is very low (actually zero) until the clip is
merged into a large cluster. The later it is merged, the
smaller the ratio value is, thus the higher the MAS is.
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Note that while large values of L may lead to more
accurate estimates of MAS, this also increases the
computational cost since (8), (10) and (11) must be
solved L times. However, in the following we show
how in the special case of temporal segmentation a
multiscale analysis can be obtained with computa-
tional cost comparable with that of solving (8), (10)
or (11) for a single value of A. As a final remark we
should say that we experimentally observed that if
two histograms are fused for a certain value of A\ = \
(i.e. they belong to the same fused set) they will not
necessarily remain fused for any A > . However, we
found that for moderately large values of L, this does
not decrease the accuracy of MAS analysis.

5 MULTISCALE ANALYSIS IN ONE SHOT

In this Section we focus our attention on linear his-
tograms and on the temporal segmentation approach
i.e. we consider n;; =1fori=j—-1,7=2...N and
n;; = 0 otherwise. In particular we consider (8) and
(13). We show that since (8) and (13) are parametric LP,
an algorithm based on a variant of the revised simplex
method can be developed to compute all possible sets
of histogram prototypes for increasing values of A.

5.1 Preliminaries: LP and Parametric LP

Given a matrix A € IR"*™ and the vectors ¢ € IR™,
b € IR™ a LP in standard form [29], [30] is given by:

Ax=b (15)

If the matrix A is of full rank n and the polyhedron
P = {x : Ax = b,x > 0} is bounded and non-
empty, the LP has a bounded optimal solution. Let
B eI ={1,...,m} be an ordered set of n column
indexes. Let Ag be the n x n sub-matrix of A whose
i-th column is A;. The set B is called a feasible basis if
Ap is of full-rank and Aglb > (. Since A is of full
rank and the linear program is feasible, a feasible basis
always exists. A column A; with i € B is called a basic
column, otherwise it is called a non-basic column and
belongs to the set N' = Z — B. A basic feasible solution
(bfs) xg of the LP corresponding to a feasible basis
B is obtained by x5 = Az'b and xy = 0. A bfs
is optimal if it corresponds to a solution of the LP.
There is a bijection between bfs and vertices of P. The
simplex method systematically explores the extreme
points (bfs) of P, i.e. starting from an initial extreme
point, until an optimal extreme point is found.
A parametric LP problem has the form:

(c+Xa)x st Ax=Db (16)

with a € IR™ and A € [R. In [20] Yao and Lee
showed that many algorithms in machine learning
and specifically the family of regularization problems
with piecewise linear loss and L; penalties (such as L,
SVM) can be written in the form of (16) and a variant
of the simplex method can be used for solving (16)
for all possible values of A simultaneously.

mings>g ¢'x s.t.

miny>q

5.2 Multiscale Analysis

Let p, 64, 6_ € RNP, ¢ € RN~! and H € R"P be
the vector obtained concatenating the histograms in
the training set (i.e. H' = (h],...,hy)). We first define
the following matrices: the block diagonal matrix D €
RWN-DDXN=1) D = diag(-1) and -1 € IR” and the
block Toeplitz matrix X € R(N-DPxND,

I I o0 0

0 1 - 0
Y= ;

0 0 R | -1

with I, 0 and —I € RP*P.
Proposition 1. The following elements:

x= (f ¢ poy/s))

a= (w0 0 0 0 0)

d=(0 1 0 0 0)
0 DX 10 0
0 D - 0 I 0

A=l F 0o o o0 o0 b= m
G o0 -I 00 0

with f € RN?*, w € RN?*, w = (d...d), d € R™,
d = (d11; ...dipdoy ... dDD)/ F.G € ]RNDXNDZ be-
ing two block diagonal matrices, F = diag(Q),G =
diag(T),Q, T € RP*P*, Q = diag(1'), 1’ € R

e’1 e’1 e e’1

E'Q 8’2 . e’g
T =

e’D e’D e’D

with e’; € RP is a vector of all 0 and 1 in the i-th position,
define (8) in the standard form (16) of a parametric LP.

Given a parametric LP problem in standard form
all possible solutions X for different values of A can
be computed. For this purpose in this paper we use
a variation of the algorithm proposed in [20] by
considering a different variant of the simplex methods
rather than the tableau simplex i.e. the revised sim-
plex method with the lexico-min rule since it offers
computational advantages for sparse LPs and avoid
situations of degeneracy. According to this, the basic
column to exit the current basis B is selected according
to the lexico-min rule: the column which exits the
basis is A;, where £ is the index of the lexicographi-
cally smallest row A’/u;, u; >0, u= Az'A; and A’
denotes the i-th row of Ag. The index ¢ always exists,
since otherwise u; < 0 for all ¢ and the problem is
unbounded. The resulting algorithm is presented in
Algorithm 2.

The main difference and the main issue when run-
ning Algorithm 2 is how to individuate an optimal bfs
By. This can be obtained using any feasible basic index
set By and running the standard simplex algorithm for
the associated LP problem i.e. for a = 0. The following
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Algorithm 2 Mutiscale analysis in one-shot

1: Input: H= (hf,...,hly), i=0.

2: Set (8) (or (13)) in standard form (16) according to
Proposition 1 (Proposition 3).

3: Find an optimal bfs By for A\g = oo following Proposi-
tion 2 (Proposition 4).

4: while \; >0

5: Compute x!, with xgi = Agilb and xj\/i =0.
6: Cj =c¢j — CB,iAl;lAj with JjE M

7: a; =a; —ag,Ag'A; with j € Ni.

8: m = arg maxj{—;—j s @; > 0} (entry index)

9: ANip1 = —%
10: u=A;'A,.
11: if the support I(u) is empty then
12: return problem is unbounded
13: ¢ = arg lexico- mint{%} :t € I(u)} (exit index)
14: Update B;+1 = B; U{m}\{¢{}
15: Create the set P; = {pi,...,py} extracting the

corresponding coordinates from x’.

16: i1+ 1.
17: end

18: Output: The sets of prototypes P1, Pa,...PN,, o

proposition shows how a basic feasible set By can be
individuated for the proposed problem (8).

Proposition 2. The set of indices By = I; U Iy with
Iy ={kD+1:k=0,....ND—1/D}, I, = {ND? +
N+k:k=0,...,3ND — 1} individuates a bfs for (8).
Proof. See Appendix A.

Algorithm 2 can generally be applied not only to
(8) but also to (10), (11), (13) provided that a suitable
bfs is found. Due to lack of space in the following we
only show the results associated to (13).

Proposition 3. The following elements:

X! :(p/ S/ CI 5+/ 5! 0+/ 9.’ )/
a=(0 10000 0)

/

=0 010 0 0 0)
-1 I 0 I 0 0 0 H
I 1 0 01 00 -H
A=| X 0 D 0 0 I 0 (b=|0
-% 0 D 0 0 0 I 0
E 0 0 0 0 0 0 0

with the block diagonal matrix E € RN*NP E = diag(1),
€ 0,,0_ ¢ RN~V and 1 € RP define (13) in the
standard form (16) of a parametric LP.

Proposition 4. The set of indices By = T, UL, UZsUT,U
IswithZy ={kD+1:k=0,... N-1},Ty = {ND+k :
k=1,2,...,ND}, Is = {2ND+ N -1+ kD + 1 :
k=01,..N-1},Ty={3ND+N—1+k: k=
1,2...,ND\{3ND+N—14+kD+1:k=0,1...,N—
1}, s ={4ND+N—-1+k:k=1,2,...,2(N —1)D},
individuates a bfs for (13).

Proof. See Appendix B.

As a final remark we should note that in general
even when the coefficients 7;; assume different values
that in the case of temporal segmentation, (8) and (13)

are also parametric LP problems and Algorithm 2 can
be used for computing the entire solution path. How-
ever, in this cases (e.g. for nearest neighbor clustering)
determining a suitable bfs Bj is more complex and we
leave it to future works.

6 EXPERIMENTAL RESULTS

6.1 Datasets and Experimental Setup

Experiments were conducted on five datasets, four of
which are publicly available. The first dataset consists
of a Traffic scene sequence. As the vehicles flow is
controlled by traffic lights, different events occur at
regular periods. The second video sequence depicts
a basketball match and is taken from the APIDIS!
website. The images are cropped to include only the
basketball court and resized. The last three datasets
Junction, Roundabout, Junction2 are also available?
(for the first two sequences, ground truth for two
levels temporal segmentation is available; for the third
one, we manually annotated a sequence of 80 clips at
2 and 3 levels, based on the traffic lights” changes).
The videos depict some traffic scenes in London and
have been extensively used in previous works [6], [7],
[31], [38].

In this section, we first show temporal segmentation
results obtained with EMD-L,-linear (10); the other
experiments are meant to test the proposed approach
for nearest neighbor clustering. In the first case, tem-
poral segmentation is obtained setting in (10) n;; = 1 if
i = j—1and 7;; = 0 elsewhere; in the case of clustering,
the nearest neighbor graph for prototype learning is
computed based on histograms similarity, using EMD
with L; ground distance. In all the experiments we
found that Np = 3 or Np = 4 correspond to the best
performance. A discussion about how to choose the
values of o and f is reported in subsection 6.3.3. The
value of A\ changes in all the different experiments
according to the required number of clusters. While
for temporal segmentation Algorithm 2 can be used
to obtain all possible prototypes at varying A, for
nearest neighbor clustering is necessary to test several
A to get the required number of clusters. More details
about the datasets and our experimental setup are
summarized in Table 1. The proposed algorithms are
listed in Table 2 and are fully implemented in C++ us-
ing the publicly available libraries OpenCV for video
processing and feature extraction and GLPK 4.2.1
(GNU Linear Programming Kit) as the backend linear
programming solver. The code® for solving problems
(8), (10), (11) and (13) and the video* showing our
results are available online.

1. http:/ /www.apidis.org/Dataset/

2. http:/ /www.eecs.qmul.ac.uk/~jianli/Dataset_List.html
3. http:/ /disi.unitn.it/~zen

4. http:/ /disi.unitn.it/ ~zen/demo_emp.html
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TABLE 1

: : T
Details on datasets and experimental setup W e
n° n° frame atch cli Low intensity
frames fps clips size psize D lengt}I? [s] .E‘;;:ii‘;m ST
Traffic 6000 12 300 | 276x336 | 23x21 8 12 .fﬁfi?:e":‘” crossing
Basket 6000 23 100 320x368 | 16x16 16 3
Junction 90000 25 300 288x360 | 12x12 16 12
Roundabout 93500 25 311 288x360 | 12x12 16 12
Junction2 78000 25 312 288x360 | 12x12 | 16,24,30 10

TABLE 2

Proposed approaches tested in our experiments.
\ [ L [ EMD-L,-lin. | EMD-L;-circ. | EMD-L,-2D |
| Equation | (13) | (10) | (11) | deducible from (10) |

6.2 Temporal Segmentation

We demonstrate the effectiveness of the proposed
temporal segmentation approach on the Traffic
dataset. This sequence despite being short is interest-
ing, as it corresponds to few cycles of the traffic lights
status and it contains some interesting anomalous
events. When applying temporal segmentation only
the similarity among adjacent clips is considered.
Therefore several clusters/prototypes correspond to
the same patterns (i.e. green traffic light). These
clusters must be merged manually after learning.
This supplementary phase may result annoying when
dealing with long sequences (e.g. Junction, Round-
about). In these cases nearest neighbor clustering is
preferred. For this reason we evaluate the perfor-
mance of temporal segmentation results in term of
correctly individuated breakpoints while for nearest
neighbor clustering the accuracy is computed consid-
ering the percentage of correctly labeled clips. In the
Traffic scene two main traffic flow patterns are distin-
guished: (i) two parallel flows when the traffic light
is on green and (ii) vehicles stopping and forming a
queue in the lane on the left when the traffic light
is on red. Rare events also occur such as pedestrians
crossing the street outside zebra crossing or vehicles
making not allowed U-turns. Figure 4 shows the
multi-scale segmentation results on 100 clips obtained
by solving EMD-L,-linear (10) for different values of
A.. The temporal segmentation results with 10 clusters,
obtained with A =5, is highlighted with a red frame.
From each of the 10 clusters obtained we extract
one frame, representative for the salient activities.
As expected, clips with similar activity histograms
are associated to the same cluster. Interestingly we
successfully detect the changes in vehicles flow trig-
gered by the traffic lights. As shown in Fig. 4, the
orange, yellow, red and blue clusters correspond to
the activity of parallel vehicle flows (green traffic
light), while the light blue, white and cyan clusters
are associated to stationary vehicles (red traffic light).
The green, violet and pink clusters are still associated
to red traffic lights and, in particular, they represent
the phase when the traffic queue begins, hence the
traffic flow is characterized by low density.

It is interesting to analyze the way clusters merge as
A increases. For example, the clusters associated to the

Fig. 4. Traffic dataset. (a) Temporal segmentation re-
sults obtained varying A with EMD-L4(10). (b) Ground-
truth and (top, right) corresponding legend. (Bottom)
salient activities automatically extracted from the seg-
mentation result highlighted in red.

TABLE 3
Traffic dataset: temporal segmentation accuracy

[ EMD (8) | EMD-L;-linear(10) | Li(13) [ Fused Lasso |
[ 832 | 524 25 | 687 |

same traffic light status but with different traffic den-
sity (i.e. pink and cyan, green and light blue) merge at
the superior level. A visual inspection confirms that
the segmentation results obtained with EMD distance
are consistent with the human annotation (Fig.4.b).
We manually annotated it. A quantitative comparison
of the proposed methods (8) and (10) and bin-to-bin
approaches (Fused lasso [19] and (13)) for the entire
Traffic sequence is shown in Table 3. The performance
is measured in terms of percentage of break points
correctly individuated. The results clearly demon-
strate that bin-to-bin distances are less powerful as
they do not take into account similarity among atomic
activities. It is worth noting that (10) can be consid-
ered as a good approximation of (8). An important
observation concerns the computational cost of our
multiscale analysis. As (8) is a parametric LP, all so-
lutions (i.e. all possible prototypes) can be found with
a slightly increased computational cost with respect
to computing just one solution (corresponding to a
fixed value of A). Therefore, the speedup is huge. For
example all possible prototypes associated to 100 clips
can be computed in approximately 5 min whilst the
solution for a single value of A takes about 1 min.

6.3 Clustering
6.3.1 Salient Activities

This Section demonstrates that the proposed nearest
neighbor clustering approach can be used to detect
typical activities in various scenarios. For example
for the Basket dataset five main activities are auto-
matically identified: (A) when the yellow team is on
defense and the blue team is trying to shot, (B) when
the players are moving from the yellow team’s court
side to the blue team’s side, (C) when the blue team
is on the defense, (D) when the players are moving
back towards the yellow team’s side. Moreover, due to
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(b) Junction2 dataset

.y Bl iyl ey

=

e

(d) Roundabout dataset

Fig. 5. Salient activities extracted with our method. Cir-
cles and arrows represent static and dynamic atomic
activities respectively (size is proportional to bin value)

the asymmetric disposition of the camera with respect
to the basketball court, different phases of the match
can be observed when players are in the yellow team’s
side, such as the case of free throws (E). A representa-
tive frame for each of the five activities automatically
extracted solving (10) is shown in Fig.5.a.

For the dataset Junction2 we use our approaches for
both two and three classes segmentation. The repre-
sentative frames corresponding to the 3 clusters case
automatically extracted are shown in Fig.5.b. These
three flow patterns are regulated by three traffic lights,
one in the bottom left, the second in the center and
the third one in the right part of the image. Flow (A)
corresponds to red traffic light in the bottom left lane;
flow (B) to red traffic light in the central lane; flow (C)
to red traffic lights in the bottom left and in the right
lane. Atomic activities corresponding to pedestrians
crossing the main road are also individuated (see the
small arrows in the lower part of the images).

For the Junction dataset (Fig.5.c) by solving (10)
or (11) we discover three main activities which cor-
respond to different phases of the traffic flow: A)

10
TABLE 4
Comparison of our approach with pLSA

n° | EMD-L; EMD-I; L Lsa PLSA

clusters | linear(10)  circular(11) (13) p bin

Basket 2 98.42 98.42 98.42 | 94.15 92.25

5 90.84 9084 7517 | 835 TT5

Junction2 | 2 96.20 93.67 93.67 | 93.67 86.08

° 3 84.81 86.08 7089 | 79.40 75.60
TABLE 5

Junction2 dataset: clustering accuracy for different
number of atomic activities

n°activities 30 24 16
n°clusters 2 3 2 3 2 3
Ly 93.67 | 70.89 | 96.20 | 69.20 | 96.20 | 70.89
EMD-L;-lin. | 96.20 | 84.81 96.20 | 55.70 | 86.08 | 56.96
EMD-L;-circ.| 93.67 | 86.08 | 96.20 | 68.35 | 96.20 | 70.89
EMD-L;-2D | 96.20 | 89.87 | 96.20 | 72.15 | 96.20 | 73.42
k-means 88.83 | 68.24 | 96.20 | 67.05 | 94.41 | 59.73

vertical flow and B) and C) respectively horizontal
traffic flow from right to left and from left to right.
These activities are also found in [1], [6], [7], with the
difference that the cluster A is split in two different
activities, corresponding to vertical flow with and
without interleaved turning traffic. This division is
less evident as it is confirmed by the transition behav-
ior matrix in Fig.3.e in [6]. In fact, with our algorithm
these patterns emerge when refining the analysis with
more than three clusters. For the Roundabout dataset
(Fig.5.d) two salient activities are discovered: they
roughly correspond to the vertical (orange cluster)
and the horizontal traffic flow (green cluster).

6.3.2 Comparison with Results in the Literature

In this Section we perform a quantitative comparison
between our methods and PTMs. Table 4 shows the
results (percentage of correctly labeled clips) obtained
by applying our methods (10) and (11) to the Basket
sequence compared to (13) and to pLSA with binary
and tf-idf features representation. For pLSA cluster-
ing labels are obtained by taking the topic with larger
probability. pLSA has been chosen as a baseline since
it has been extensively used in previous works [8],
[31]. We consider the results for 2 and 5 clusters. The
ground truth is taken from the APIDIS website’. In

5. We consider the timestamps of annotated events (e.g. ‘Ball
possession’, ‘Lost-ball’, ‘Free-throw’, etc.) and added some missing
information, e.g. the one representing a switch from events B to C
or from D to A (Fig.5.a).

TABLE 6

Comparison with previous works: clustering accuracy

Standard

pLSA [38]
89.74
84.46

EMD-L; EMD-L; Ly

linear(10)  circular(11) (13)
92.31 92.31 89.74
86.40 86.40 86.40

Hierarchical DDP-HMM
pLSA [38] [7]
76.92 87.18
72.30 85.14

Junction
Roundabout

Fig. 6. Junction2 dataset: different atomic activities
extracted with D = 30, D =24 and D = 16.
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4001 | EEMD-L1 lin.
CIEMD-L1 circ.
MEMD-L1 2D

zon

]

D=30
Fig. 7. Junction2 dataset: average computational time
(sec) for solving our learning problems at varying D.

D=16

the case of 2 clusters the ground truth is created by
merging the activities A and E on one side, fusing B, C
and D on the other. Table 4 confirms the advantages of
EMD-based approaches w.r.t. competing methods. For
example, in the case of 5 clusters our methods outper-
forms pLSA with 7% in accuracy. We explain this with
the fact that our approaches differently from (13) and
pLSA takes into account atomic activities similarity.
Moreover, it is worth noting that pLSA results depend
upon initialization conditions, as training relies on
a non-convex problem. On the 2 clusters task there
is no advantage on using EMD based methods with
respect to using bin-to-bin clustering approach (13).
We believe that in some easy tasks bin-to-bin distances
may sulffice.

Similar conclusions can be made for the dataset
Junction2 (see Table 4). Also in this case EMD-based
approaches outperform L; clustering and pLSA for
the most difficult task (3 clusters). Other interesting
remarks can be made observing Table 5. Here the
results obtained with all proposed approaches are
compared at varying number of atomic activities. The
table demonstrates that few atomic activities may not
suffice for accurate segmentation. This is basically due
to the fact that missing atomic activities hinder the
recognition of high level behaviour. For example for
D = 16 the absence of the static atomic activities in
upper left corner of the image inhibits the possibility
to detect situations of traffic line (see Fig. 6). In these
cases a 2D histogram representation with appropriate
sorting compensates the decrease in accuracy. In this
experiment we also report the results associated to k-
means clustering as a baseline (Table 5). As expected,
ad-hoc approaches as the ones we developed outper-
form standard clustering techniques.

In our datasets we found that the EMD-L; with
linear histograms and EMD with thresholded L; dis-
tance and circular histograms perform similarly (see
Table 4 for the Basket and Junction2 sequences) with
a slightly better performance for the latter represen-
tation (Table 5). Therefore with our approach we
did not found great benefits in using a thresholded
ground distance opposite to what was reported in the
previous works [28]. This is probably due to the fact
that we do not simply compute the EMD between
noisy histograms as in [28] but we use EMD as an
objective function to calculate the set of prototypes.

An important consideration concerns the compu-
tational cost associated to our approaches. Figure 7
reports the average time (sec) for solving the proposed

11

TABLE 7
Clustering accuracy with and without sorting.

Roundabout  Basket
sorted 92.31 86.4 90.84 84.81
unsorted 86.7 72.3 82 75.95

Ground it 351 I
" e s o1 o R S
standard pL3A. Li et al.[38]

Emo-Li-1in. [ S

H 10 15 ) 25 a0 B
wuettel ot al. (7] [ I N D I I T
Nater et al 1] [ I N T
enp-Ui-in [ NN NN DN e

30 B0 90 120 150 180 210 2400 2¥0 300 330 360

Junction dataset. Comparison with previous

Junction Junction2

EMD-L,-lin.

Fig. 8.
works.

optimization problems (3.5 GHz Intel Xeon machine).
As expected the computational costs associated to
prototype learning of 1D histograms are comparable,
while a 2D representation implies an increased cost
due to a larger number of flow variables.

Table 6 compares our approach with previously
published results. In particular we consider the results
reported in [7], [38]. We apply (10) and (11) on the
same data (the datasets Junction and Roundabout)
using the same clip size as [38]. Results reported in
[7] are obtained using a slightly different settings,
ie. clip length= 3 sec and 6 clusters. We manually
merged these clusters to directly compare with the
ground truth in [38]. The corresponding temporal seg-
mentation bars for the Junction dataset are shown in
Fig.8(top). On both datasets the proposed algorithms
outperforms DDP-HMM [7], pLSA and hierarchical
PLSA [38] (the experimental setup is slightly different
as in [38] a training/test approach is used). EMD-
based clustering is also more accurate than proto-
type learning with L; distance (13). These results
confirm the fact that higher clustering accuracy can
be obtained by considering atomic activities simi-
larity during the learning phase. In the case of the
Junction dataset we also compare our approach with
the results presented in [1] which correspond to the
short sequence of 360 sec, between frame 9201 and
18200, segmented at 7 levels. These results do not
refer to the same part of the sequence annotated in
[38], so a quantitative comparison is not possible. A
qualitative comparison between our approach and [1],
[7] is provided in Fig.8(bottom). As shown, the results
of all three approaches are similar.

6.3.3 Ordering Atomic Activities

In this Section we present results demonstrating the
validity of the proposed approach for sorting atomic

Fig. 9. Automatically sorted atomic activities.
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Fig. 11. Junction2 dataset (D=30). Clustering accuracy
for 2 (left) and 3 (right) clusters with different atomic
activities orders using (top) EMD-L;-lin. and (bottom)
EMD-L,-2D.

activities. Table 7 proves the importance of choosing
an appropriate order of atomic activities for EMD
prototype learning: for all the datasets a random
order of atomic activities entails a decrease in terms
of accuracy. Figure 9 shows an example of atomic
activities automatically sorted for the Basket and the
Junction2 datasets in the case of EMD-1; with circu-
lar histograms and thresholded ground distance. For
Basket dataset, this order corresponds to the highest
accuracy (90.84% in the 5 clusters case) and it is
obtained for values o = § = 0.5, i.e. considering
both the motion and the position information when
computing the optimal sorting. It is straightforward
to observe that similar atomic activities are grouped
(for example the first 5 activities correspond to zero
motion). In this way atomic activities typically corre-
sponding to the same cluster (e.g. number 0, 1 and
2 for the Free Throw) are close in the histogram
representation. Figure 11 reports the performance of
the proposed approaches for the Junction2 dataset
at varying values of the parameters o and f, ie.
for different sorting. The plots demonstrate that in
general while for an easy task (2 clusters) almost
all type of sorting produces good results (accuracy
around 95%), when more clusters are required it is
very important to take into account both the motion
and the position information. Temporal correlation is
less important. Similar results were also obtained for
the other datasets. Therefore as a practical rule of
thumb we set o = 8 = 0.5. Interestingly, in most of
the cases we observe a certain correlation between the
values of distortions computed with Eqn. (12) and the

Fig. 10. Junction2 dataset (D=24). a) Clustering accuracy for 2 (left) and 3 (right) clusters for different atomic
activities orders using EMD-L; circular. b) Associated distortion matrix (higher is darker)
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Fig. 13. Junction dataset: detected anomalies (top)
and the associated MAS plot (bottom).

clustering accuracy (see Fig. ??). Therefore looking at
the distortion values can also be a valuable hint for
sorting atomic activities.

6.4 Detecting Anomalous Patterns

By computing the MAS on an entire video sequence
we detected some anomalous activities (persistent
clusters of small size). In the case of the Traffic
dataset an example of an unusual pattern is the violet
cluster shown in Fig.4 corresponding to a jaywalker.
By looking at the multiscale segmentation in Fig.4.a
it is evident that the violet cluster, opposite to the
others, “survives” for several levels. This single clip
cluster correctly obtains a high MAS score as it is
associated to an anomalous activity. Another example
of anomalous activity in this sequence is shown in
Fig.12. Here a motorbike makes a U-turn. This also
corresponds to a single clip cluster which persist at
several levels.

Figure 13 (top) shows some examples of anomalous
activities found by MAS analysis (Fig. 13, bottom)
for the dataset Junction. Anomalous activities corre-
sponding to persistent small size clusters show the
moments where the vertical traffic flows are inter-
rupted as a pedestrian is crossing the street (clip 27)
and a fireman truck is passing (clip 83). The last
anomaly (clip 98) corresponds to a rare event where
two large vehicles are passing at the same time. These
results, similar to those in [1], [31], [38], confirm the
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Fig. 14. Junction2 dataset: detected anomalies (top)
and the associated MAS plot (bottom).

Fig. 15. Junction2 dataset: detected anomalies (top)
and the associated MAS plot (bottom) when atomic
activities are not correctly sorted.

validity of MAS analysis in finding anomalous events.
In our experiments the MAS is computed considering
L = 9 subsequent levels of segmentation. Figure 14
shows some anomalies detected for the Junction2
dataset. Anomalies are due to an usual presence of
a biker stopped next to the vehicles at the red traffic
light (clip 28), a traffic jam (clip 62) and a traffic jam
on the left lane when the traffic light is on green for
the central lane (clip 77). Finally Fig. 15 demonstrates
that a good atomic activities sorting is also crucial for
detecting anomalous patterns. In fact in the case of
an incorrect order also wrong clips are indicated as
anomalous. For example in Fig. 15 clip 28 is correctly
individuated but clips 21-23 have a high MAS value
even if they do not correspond to critical situations.

7 DiscuUssiON AND CONCLUSIONS

We proposed a multiscale approach for discovering
activity patterns in complex scenes. The main nov-
elty of this paper is the EMD prototype learning
algorithm. By taking into account similarity amongst
atomic activities, typical patterns can be extracted
with improved accuracy with respect to previous ap-
proaches. The prototype learning algorithm has been
presented in the context of dynamic scene analysis,
but we believe that it could be successfully deployed
in other tasks, such as facial expression analysis or
action recognition.

In this work we considered the EMD approximation
approach proposed in [26]. Recently, other methods
[40], [41] have been proposed to speed-up the EMD
distance calculation. These approaches are in general
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computationally more efficient than the one proposed
in [26]. However, we chose Ling and Okada’s ap-
proximation as it basically provides a simplification
of the EMD definition proposing a LP with reduced
flow variables. This LP can be easily embedded into
our optimization framework and allows us to de-
velop a Multiscale Analysis by Parametric LP theory.
Moreover, the EMD wavelet approximation [40], [41]
is especially convenient when the histogram size is
larger than 200/300 bins. Differently, when very short
histograms (D < 50) are considered as in this paper,
the EMD wavelet approach is not advantageous since
the overall computational cost is dominated by the
initial wavelets coefficients calculation.

Our experiments showed that the proposed ap-
proach is a valuable alternative to PTMs in the context
of complex scene analysis. Differently from PTMs
our approach takes into account words similarity.
However, it is worth noting that PTMs can be more
versatile in applications when it is necessary to con-
sider a large number of words, to learn the temporal
dependencies among behaviors or to model the tem-
poral information within the topics themselves. The
proposed prototype learning algorithms can be also
extended in several directions. For example in our
previous work [11] we have shown how to embed the
temporal information present inside the clips into our
learning framework. Also we expect that by adopting
the EMD approximation in [40], [41] our clustering
approach can be applied to other problems where
high dimensional histograms are needed. Finally fu-
ture works include further exploiting the importance
of atomic activity sorting: we expect to enhance even
more the performance of our approach by introducing
some form of weak supervision.
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