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Orientation Field Estimation
for Latent Fingerprint Enhancement
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Abstract—Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and
terrorists. Compared to livescan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex
image background, unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is
indispensable for enhancing and recognizing poor quality latents. However, conventional orientation field estimation algorithms,
which can satisfactorily process most livescan and inked fingerprints, do not provide acceptable results for most latents. We
believe that a major limitation of conventional algorithms is that they do not utilize prior knowledge of the ridge structure in
fingerprints. Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation
field estimation algorithm based on prior knowledge of fingerprint structure. We represent prior knowledge of fingerprints using
a dictionary of reference orientation patches, which is constructed using a set of true orientation fields, and the compatibility
constraint between neighboring orientation patches. Orientation field estimation for latents is posed as an energy minimization
problem, which is solved by loopy belief propagation. Experimental results on the challenging NIST SD27 latent fingerprint
database and an overlapped latent fingerprint database demonstrate the advantages of the proposed orientation field estimation
algorithm over conventional algorithms.

Index Terms—Fingerprint matching, fingerprint enhancement, latent fingerprint, orientation field, dictionary, spelling correction.
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1 INTRODUCTION

L ATENT fingerprints refer to the impressions uninten-
tionally left on items handled or touched by fingers.

Such fingerprints are often not directly visible unless some
physical or chemical technique is applied to enhance them
[1]. Since the early 20th century, latent fingerprints have
served as important evidence for law enforcement agencies
to apprehend and convict criminals [2].

Compared to fingerprints captured using inking or lives-
can techniques (see Fig. 1), the quality of most latent
fingerprints is very low, with unclear ridge structure, uneven
contrast, and overlapping patterns, such as printed letters,
handwriting, or even other fingerprints [3]. Because of the
poor image quality, features (such as minutiae) in latents
need to be manually marked by latent examiners so that
they can be searched against large fingerprint databases by
automated fingerprint identification systems (AFIS).

Automatic latent feature extraction is desirable for sev-
eral reasons.

1) Reducing the time spent by latent examiners in man-
ual markup. A crime scene can contain as many as
hundreds of latents. However, only a small portion
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of them can be processed simply because law en-
forcement agencies do not have sufficient manpower.
It can take twenty minutes or even longer to mark
the minutiae in a single latent. Automatic feature
extraction can improve the efficiency of processing
latents, leading to more identifications quickly [4].

2) Improving the compatibility between minutiae in
latent and full fingerprints. In current practice, minu-
tiae in latents are manually marked while minutiae
in full fingerprints are automatically extracted. This
can cause the compatibility problem. Although this
compatibility issue is not a severe problem for full
fingerprint matching, this problem cannot be underes-
timated in the case of latent matching, since in a tiny
and smudgy latent, every minutia plays an important
role. To address this issue, AFIS vendors usually
provide training courses to latent examiners on how
to better mark minutiae for their particular AFIS
system since different vendors’ systems are not very
consistent in extracting minutiae. However, it takes
time for fingerprint examiners to get familiar with
a system. This problem can be alleviated provided
features in latents are also extracted by automatic
algorithms.

3) Improving repeatability/reproducibility of latent iden-
tification. The minutiae in the same latent marked
by different latent examiners or even by the same
examiner (but at different times) may not be the same.
This is one of reasons why different latent examiners
or even the same examiner (but at different times)
make different matching decisions on the same latent-
exemplar pair [5], [6]. The Daubert standard, which
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Fig. 1. Fingerprints obtained using three types of tech-
niques. (a) Inked fingerprint, (b) live-scan fingerprint,
and (c) latent fingerprint.

specifies the admissibility of scientific testimony in
United States courts, requires that the error rate of
latent matching should be known. However, lack
of repeatability/reproducibility makes estimating the
error rates of latent examiners very difficult [7]. Even
if an error rate can be estimated by a “black box”
test1 [5], it cannot apply to a different examiner’s
decision on a new latent-exemplar pair. The only
viable solution appears to be to keep improving
automated fingerprint systems’ performance so that
the role of latent examiners is limited to very difficult
latents. Hence, automating latent feature extraction is
an indispensable step towards this long-term goal.

To enable reliable feature extraction, a latent fingerprint
image, which is often of very poor quality, needs to
go through an image enhancement stage, which connects
broken ridges, separates joined ridges, and removes over-
lapping patterns. After the latent is enhanced, conventional
minutiae extraction algorithm can be used [8]. Contex-
tual filtering (or directional filtering) is the most widely
used fingerprint enhancement technique [9]–[11]. Although
different contextual filters differ in details, the intended
behavior is the same: (i) performing low-pass filtering along
the ridge in order to fill gaps and pores, and (ii) performing
bandpass filtering across the ridges in order to separate
joined ridges [8].

The contextual filtering techniques require reliable esti-
mation of local ridge orientation, which is not a trivial task
for poor quality fingerprints. That is why orientation field
estimation and a very related topic, singularity detection,
are two of the most active topics in the fingerprint recog-
nition literature [10]–[37]. However, all these algorithms
were developed for plain or rolled fingerprints. As shown
in Fig. 2, the performance of representative orientation field
estimation algorithms on latents is far from satisfactory.
Realizing the gap between human and machine’s perfor-
mance in extracting orientation field for latents, a few recent
studies have focused on latent orientation field estimation
[38], [39]. However these algorithms require manually
marked singular points in order to obtain a reasonable

1. In a black box test [5], the latent matching process of examiners is
treated as a black box and only the final accuracy in making the decisions
is studied.

performance.
In this paper, a robust orientation field estimation al-

gorithm is proposed to process poor quality fingerprints,
especially latents. Given prior knowledge of fingerprint
structure, which is represented by a dictionary of reference
orientation patches and compatibility constraints between
adjacent orientation patches, the proposed algorithm obtains
better performance for latents than published algorithms
(see Fig. 2). For some latents, the match scores using
minutiae automatically extracted from latents enhanced by
the proposed algorithm are even higher than the match
scores using manually marked minutiae.

The rest of the paper is organized as follows. In section
2, published orientation field estimation algorithms are
reviewed. In section 3, the motivation of the proposed al-
gorithm is discussed. The details of the proposed algorithm
are presented in section 4. Experimental results are reported
and analyzed in section 5. Finally, we conclude the paper
and suggest future research directions for this topic.

2 RELATED WORK
In this section, we review published algorithms for orien-
tation field estimation, which are coarsely classified into
three categories.

2.1 Local Estimation
Local estimation approaches compute a local ridge orienta-
tion at pixel x = (x, y) using only the neighborhood around
x, which is typically 32×32 pixels for 500 ppi fingerprints.

The most well-known local estimation approach is
gradient-based [13], [14], [41], [42]. Since gradient opera-
tors, such as Prewitt or Sobel operators [43], are sensitive to
noise and pores (regularly placed on the ridges), a dominant
orientation is computed using the gradients in the local
neighborhood.

Slit-based approach is another widely used orientation
field estimation method [30]. This approach explicitly uti-
lizes the fact that the variation of intensity is the smallest
along the ridge orientation and largest along the orthogonal
orientation. By testing such a hypothesis along a number
of different orientations, the best orientation is chosen.

Ridge pattern in a local area of a finger can be ap-
proximated by a 2D sine wave [44]. Thus the magnitude
spectrum of the Fourier transform of a local fingerprint
image will contain a pair of peaks whose location corre-
sponds to the parameters of the sine wave. The magnitude
spectrum can be mapped to the polar coordinate system.
The normalized magnitude spectrum can be viewed as a
probability distribution [11]. The best orientation can be
estimated as the most probable orientation or the mean.

Orientation fields obtained by local estimation ap-
proaches for poor quality fingerprints are usually very
noisy. To deal with this problem, two types of algorithms
have been adopted to regularize the noisy orientation field,
namely, orientation field smoothing and global parametric
model fitting. Typically, some constraints or knowledge
about the fingerprint orientation field is utilized in the
regularization algorithm.
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Fig. 2. A latent fingerprint (a), its mated rolled fingerprint (b) with the corresponding region marked by a
green box, and its enhanced latents using three different orientation field estimation algorithms: (c) FOMFE
[25], (d) STFT [11], (e) proposed. Minutiae in (a) are manually marked by latent examiners, minutiae in (b) are
automatically extracted using VeriFinger SDK 6.2 [40], while minutiae in (c, d, e) are automatically extracted from
the enhanced images using VeriFinger. The minutiae match scores (computed by VeriFinger) between (a, c, d,
e) and the mated rolled fingerprint (b) are 39, 35, 24, and 54, respectively.

2.2 Smoothing

Many orientation field regularization techniques have been
proposed to deal with noise present in the fingerprint. The
most commonly used smoothing method is based on low-
pass filtering [14]. Although the low-pass filtering method
is simple and effective, the size of the filtering window
is a critical parameter. A large window can suppress the
noise better while a small window can preserve the true
orientation in high curvature region. Several authors have
suggested using multi-resolution orientation fields to ad-
dress this problem [9], [21], [30], [45]. However, when the
noise is severe as in latents, smoothing techniques are not
able to recover the true orientation field.

Several researchers have implemented orientation field
smoothing by using the Markov random field (MRF) model
or energy minimization approach [16], [19], [31]. A well
known limitation of these algorithms is that the orientation
variable corresponds to a very small image region so that
it can be represented by a single dominant orientation.
However, a MRF model with small neighborhood or context
is able to exploit only limited prior knowledge about
fingerprint structure [46], [47] and thus cannot deal with
fingerprints of very poor quality.

2.3 Global Parametric Models

Researchers have proposed several mathematical models to
represent the whole fingerprint orientation field. Some of
the models are quite general, such as polynomials [22] and
Fourier series [25], while the others are more specific to
fingerprints [12], [20], [29]. Without invoking constraints
on the parameters [22], [25], general models tend to have
over-fitting (e.g., if the order of the polynomial is high) or
under-fitting problems (e.g., if the order of the polynomial
is low) especially when the initial orientation field is very
noisy. Models which explicitly consider singular points
[12], [20], [29] rely on reliable extraction of singular points.
However, extracting singular points in latents is a very
challenging problem itself. That is why the orientation
field estimation approaches in [38], [39] require manually
marked singular points as input.

3 MOTIVATION

Although conventional orientation field estimation algo-
rithms can satisfactorily process most live-scan and inked
fingerprints, their performance on most of the latents are
far from satisfactory (see Fig. 2). We believe that a major
limitation of conventional algorithms is that they do not
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Fig. 3. A fingerprint image in (a) is divided into a
number of non-overlapping blocks of 16 × 16 pixels in
(b). A patch contains 10 × 10 blocks and neighboring
patches are overlapped as shown in (b). Given a
subimage in (c), the associated blocks and orientation
patch is shown in (d) and (e). The orientation element
represents the dominant ridge flow in a block.

adequately incorporate prior knowledge of fingerprints. It is
now widely recognized that representing and learning prior
knowledge is of fundamental importance in many natural
language processing and computer vision tasks [47], [48].
However, in the fingerprint recognition area, it has received
little attention.

We can draw an analogy between fingerprint orientation
field and a sentence in a natural language. A sentence is
comprised of words which are further comprised of letters.
Similarly, a fingerprint orientation field is comprised of
orientation patches which are further comprised of orienta-
tion elements. Hence, a fingerprint orientation field can be
viewed as a sentence, an orientation patch can be viewed
as a word, and an orientation element can be viewed as a
letter. These definitions are illustrated in Fig. 3.

Spelling correction [48] in a sentence is possible because
not all possible combinations of letters are valid to form
words and not all possible combinations of words form
a valid sentence. Similarly, error correction in orientation
fields is possible because not all possible combinations of
orientation elements are valid and not all possible combina-
tions of orientation patches are valid for a fingerprint. For
example, Fig. 4 shows 60 orientation patches, which are
generated by sampling an independent uniform distribution
(namely, each orientation element has the same uniform
distribution and the elements are assumed to be statistically
independent). None of these orientation patches is likely to
appear in real fingerprints.

Spelling correction techniques use dictionary (or lexicon,
word list) and context information to detect and correct

spelling errors [48]. While dictionary can be used to detect
and correct most non-word errors, contextual information
is required to resolve ambiguity when there are multiple
candidate words. For example, without context, ater can
be explained as after, later, water, alter, or ate.

The proposed orientation field estimation algorithm is
inspired by the above spelling correction method. We first
build a dictionary of reference orientation patches using
a set of orientation fields extracted from real fingerprints.
Given an input fingerprint, we estimate an initial orien-
tation field using traditional orientation field estimation
approaches. For poor quality fingerprints, such as most
latents, the initial orientation fields are very noisy. Errors
in the initial orientation field need to be corrected using
dictionary as well as context information. Specifically, for
each initial orientation patch, we find a list of candidates
from the dictionary which might be the true orientation
patch. Contextual information is then used to determine a
single candidate for each patch.

4 PROPOSED ALGORITHM

4.1 Overview
The proposed orientation field estimation algorithm consists
of an off-line dictionary construction stage and an on-line
orientation field estimation stage. In the off-line stage, a
set of good quality fingerprints of various pattern types
(arch, loop, and whorl) are manually selected and their
orientation fields are used to construct a dictionary of
orientation patches. In the on-line stage, given a fingerprint
image, its orientation field is automatically estimated using
the following steps:

1) initial estimation: The initial orientation field is ob-
tained using a local orientation estimation method,
such as local Fourier analysis [44].

2) dictionary lookup: The initial orientation field is
divided into overlapping patches. For each initial
orientation patch, its six nearest neighbors in the
dictionary are viewed as candidates for replacing the
noisy initial orientation patch.

3) context-based correction: The optimal combination of
candidate orientation patches is found by considering
the compatibility between neighboring orientation
patches.

In the following subsections, we first describe the off-line
dictionary construction and then present the three steps in
the on-line orientation field estimation algorithm.

4.2 Dictionary Construction
The dictionary consists of a number of orientation patches
of the same size. An orientation patch consists of b × b
orientation elements and an orientation element refers to
the dominant orientation in a block of size 16× 16 pixels.

We construct a dictionary of orientation patches from
a set of high quality fingerprints (referred to as reference
fingerprints). The orientation fields (defined on blocks of
size 16×16 pixels) of these fingerprints are estimated using
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Fig. 4. Orientation patches sampled from a uniform distribution of orientation element. None of these orientation
patches is likely to appear in real fingerprints. An orientation patch contains 10× 10 orientation elements and an
orientation element represents the dominant direction in a block of 16× 16 pixels.

Fig. 5. The proposed system consists of an off-line dictionary construction stage and an on-line orientation field
estimation stage.
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a state-of-the-art algorithm, VeriFinger 6.2 SDK [40]. High
quality fingerprints and the state-of-the-art algorithm are
used to ensure that the dictionary does not contain invalid
words. A number of orientation patches, whose orientation
elements are all available, are obtained by sliding a window
(whose size is b×b blocks) across each reference orientation
field and its mirrored version. Considering that the direction
of the latent fingerprint is unknown, each orientation patch
is rotated by 21 different angles {i · 5◦,−10 ≤ i ≤ 10} to
generate additional orientation patches.

Given these orientation patches, a greedy algorithm is
employed to construct a set of reference orientation patches,
which forms the dictionary (see Fig. 6 for a few examples).
The greedy algorithm is described below.

1) The first orientation patch is added into the dictionary,
which is initially empty.

2) Then we test whether the next orientation patch is
sufficiently different from all the orientation patches
in the dictionary. If yes, it is also added into the
dictionary; otherwise the next orientation patch is
tested. Here, the similarity measure between two
orientation patches of b × b blocks is computed as
ns/b

2, where ns denotes the number of orientation
elements whose difference is less than 10 degrees.

3) Repeat step 2 until all orientation patches have been
tested.

The number of reference orientation patches in the dictio-
nary depends on the number of reference orientation fields
and the size of the patch. When the size of the patch is
10×10 blocks and 50 reference orientation fields are used,
the number of reference orientation patches is around 23K.

The size of the orientation patch has a direct impact
on the ability of correcting errors in the initial orientation
field. However, a large patch also requires a large dictionary
which takes more time to search. An example is given in
Fig. 7 to demonstrate the impact of patch size on dictionary-
based correction performance. If the patch is of size 3× 3
or 5 × 5 blocks, the closest reference orientation patch
(similarity measure is described in the next subsection)
is incorrect. However, when a 9 × 9 patch is used, the
closest reference orientation patch is very close to the true
orientation field. To further demonstrate the impact of patch
size, we apply a simple nearest neighbor approach to correct
the initial orientation field of two latent fingerprints. Here,
the initial orientation patches are directly replaced by the
closest reference orientation patches without considering
compatibility between neighboring patches. As we can see
from Fig. 8, the performance of this approach improves
with the increase in patch size. The estimation errors close
to the finger boundary are due to border effect (those
patches contain very few foreground blocks).

4.3 Initial Orientation Field Estimation
The initial orientation field is obtained using a simple
algorithm [44]. Other local estimation algorithms, such as
gradient-based and slit-based, should also suffice for this
initial step. The dominant orientation in a 16× 16 block is

Fig. 7. Nearest neighbors of different patch sizes.

(a) (b)

Fig. 9. A latent fingerprint (a) and its initial orientation
field (b).

computed by detecting the peak in the magnitude spectrum
of the local image. Due to the poor quality of latents, the
initial orientation field is usually very noisy (see Fig. 9).
However, orientation field smoothing should be avoided in
this stage since correct orientation elements may even be
degraded by strong noise in the neighboring regions. The
problem of correcting noisy orientation field is left to the
later stages, which utilize prior knowledge of fingerprints.

4.4 Dictionary Lookup

Given an initial orientation patch that contains at least one
foreground block, we retrieve a list of candidate reference
orientation patches from the dictionary, which are sorted
according to their similarity with the initial patch. In order
to retrieve the correct orientation patches at high rank,
proper similarity measure and retrieval strategy need to be
designed.

The similarity S(Θ,Φ) between an initial orientation
patch Θ and a reference orientation patch Φ is computed
by comparing corresponding orientation elements. Let nf be
the number of orientation elements in the initial orientation
patch. Let ns be the number of orientation elements whose
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Fig. 6. Examples of reference orientation patches in the dictionary. Recall that an orientation patch contains
10× 10 orientation elements and an orientation element corresponds to a block of 16× 16 pixels.

(a)

(b)

Fig. 8. Orientation fields of two latents ((a) and (b)) estimated using different patch sizes (increasing from left to
right: 3× 3, 5× 5, 7× 7, 9× 9, 11× 11). Contextual information is not utilized here.
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(a) Image patch (b) Initial orientation patch

(c) Retrieved candidate patches without diversity rule

(d) Retrieved candidate patches with diversity rule

Fig. 10. Candidate orientation patches obtained with-
out (c) and with (d) diversity rule.

differences are less than a predefined threshold (empirically
set as π/12). The similarity between two patches is defined
as

S(Θ,Φ) = ns/nf. (1)

Orientation field correction is posed as a combinational
optimization problem. The total number of possible solu-
tions is nc

np , where nc is the length of candidate list, and
np is the number of patches in the input fingerprint. While
a shorter list makes the search more efficient, a longer list
will more likely contain the optimal solution.

After observing the top candidate orientation patches of
many initial orientation patches, we determined that the top
candidates of the same initial orientation patch are quite
similar to each other (see Fig. 10(c)). However, to increase
the probability of including the correct patches in a short
candidate list, it is better to have a diverse set of candidates.
Hence, a diverse set of nc (empirically set as 6) candidates
is selected from the top 10nc initial candidates using the
following greedy strategy:

1) Choose the first initial candidate.
2) The next initial candidate is compared to each of the

chosen candidates. If its similarity to all the chosen
candidates is below a predefined threshold (empiri-
cally set as 0.8 in our experiment), it is chosen. Note
that similarity is measured using only the foreground
blocks in the initial orientation patch.

3) Repeat step 2 for all the initial candidates until nc
candidates have been chosen or all initial candidates
have been checked.

Figure 10 compares the candidates obtained without and
with this diversity rule. With the diversity rule, the candi-
dates contain more variations. As a result, when the initial
orientation patch is very noisy or incomplete, the possibility
that correct orientation patches appear in the candidate list
is larger.

4.5 Context-based Orientation Field Correction
After dictionary lookup, we obtain a list of ci (1 ≤ ci ≤ nc)
candidate orientation patches, Φi = {Φi,1,Φi,2, ...,Φi,ci},

for an initial orientation patch Θi. To resolve the ambiguity,
i.e., determine a single candidate for each patch, contextual
information needs to be utilized.

We address this problem by searching for a set of
candidates, r∗, which minimizes an energy function E(r).
Let ri denote the index of the selected candidate for patch
i, and r = {r1, r2, ..., rnp} be the vector of the indices
of the selected candidates for all np foreground patches.
The solution space for r is all possible combinations of
candidate indices, which is very large. Choice of a proper
energy function is crucial for the success of this method.
We consider two factors in designing the energy function:
(i) the similarity between the reference orientation patches
and the corresponding initial orientation patches, and (ii)
the compatibility between neighboring reference orientation
patches.

The energy function is defined as

E(r) = Es(r) + wcEc(r), (2)

where Es(r) denotes the similarity term, Ec(r) denotes the
compatibility term, and wc (empirically set to 1) is the
weight of compatibility term. The similarity term is defined
as

Es(r) =
∑
i∈V

(
1− S(Θi,Φi,ri)

)
, (3)

where V denotes the set of foreground patches and S(·) is
defined in Eq. (1). The compatibility term is defined as

Ec(r) =
∑

(i,j)∈N

(
1− C(Φi,ri ,Φj,rj )

)
, (4)

where N denotes the set of adjacent foreground patches
which are four-connected neighbors.

The compatibility between two neighboring orientation
patches Φi,ri and Φj,rj is measured by the similarity of
orientations in the overlapping blocks. Let {αn}No

n=1 and
{βn}No

n=1 be the set of orientations in the No overlapping
blocks of two orientation patches. The compatibility is
computed as

C(Φi,ri ,Φj,rj ) =
1

No

No∑
n=1

| cos(αn − βn)|. (5)

Two examples are given in Fig. 11 to illustrate the
compatibility between two neighboring patches. The two
reference orientation patches in Fig. 11(a) are compatible,
while the two reference orientation patches in Fig. 11(b)
are not compatible. Fig. 12 shows the compatibility matrix
between two neighboring patches. Due to the fact that
relatively large size orientation patches are treated as a
whole and adjacent patches contain an overlapping region,
the compatibility constraint holds in both low curvature
regions as well as high curvature regions (such as core
and delta). However, in previous work [16], [19], [31],
compatibility constraint did not hold in high curvature
regions.

To minimize the energy function in Eq. (2), a number
of optimization algorithms can be employed. Since this
is not the focus of this study, we adopt the well-known
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(a)

(b)

Fig. 11. Compatibility between neighboring orientation
patches. (a) A pair of orientation patches (one shown
in blue and the other in red) with high compatibility
value (0.92), (b) a pair of orientation patches with low
compatibility value (0.69).

Fig. 12. Compatibility matrix between the candidate
orientation patches for two neighboring patches. The
compatibility value between two candidates is depicted
by the brightness of the corresponding square.

loopy belief propagation algorithm [47]. It was originally
proposed to perform exact inference on trees (e.g., graphs
without closed loops) [49]. But many empirical studies have
shown that it also yields good approximate results on graphs
with closed loops, such as Markov random field [47].

5 EXPERIMENTS

In this section, we first describe the databases used in
this study. We report the orientation field estimation per-
formance and the resulting matching performances on the
NIST SD27 latent fingerprint database and an overlapped
fingerprint database. Finally, we discuss the impact of
reference fingerprints on orientation field estimation.

5.1 Databases

To construct a dictionary of reference orientation patches,
we used a set of 50 good quality fingerprints in the NIST
SD4 database2. All five major pattern types (plain arch,
tented arch, left loop, right loop, and whorl) are covered by
these 50 fingerprints. The distribution of different pattern
types in this sample is not necessarily similar to the
distribution in large population or the NIST SD27 database.

The latent orientation field estimation and subsequent
matching experiments are conducted on the public domain
latent fingerprint database, NIST SD27, which contains 258
latent fingerprints and their corresponding rolled finger-
prints. Each latent image in this database was assigned
one of three (subjective) quality levels - “good”, “bad”,
and “ugly” - by latent examiners. The numbers of “good”,
“bad” and “ugly” latents are 88, 85 and 85, respectively.

We also tested this algorithm on the Tsinghua OLF
database3 which consists of 100 overlapped latent finger-
prints. These overlapped latent fingerprints were obtained
using the following procedure: 1) press two fingers at
roughly the same location on a white paper, 2) enhance the
latent prints using black powder and brush, and 3) convert
the enhanced prints into electronic version using a general
purpose scanner. For each of the twelve different fingers
used to form the latents, one flat fingerprint obtained using
an optical fingerprint scanner was used as the template
fingerprint.

To make the latent matching problem more realistic and
challenging, 27,000 rolled fingerprints (file fingerprints) in
the NIST SD14 database were used as the background
database. Details of databases used in this study are sum-
marized in Table 1.

5.2 Performance Evaluation

The direct goal of an orientation field estimation algorithm
is to obtain an accurate estimation of fingerprint orientation
field, while its final goal is to improve the fingerprint
matching accuracy. Thus, we conducted experiments to

2. The filename list of these fingerprints is available as supplemental
material.

3. Available at http://ivg.au.tsinghua.edu.cn.
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TABLE 1
Fingerprint databases used in this study.

Database Description Purpose
NIST SD4 2,000 pairs of rolled fingerprints;

http://www.nist.gov/srd/nistsd4.
cfm

dictionary
construction

NIST
SD14

27,000 pairs of rolled fingerprints;
http://www.nist.gov/srd/nistsd14.
cfm

background
database

NIST
SD27

258 pairs of latent fingerprints and
mated rolled fingerprints; http://
www.nist.gov/srd/nistsd27.cfm

algorithm
evaluation

Tsinghua
OLF

100 overlapped latent fingerprints
and 12 mated plain fingerprints;
http://ivg.au.tsinghua.edu.cn

algorithm
evaluation

TABLE 2
Average estimation error (in degrees) of the proposed
and two published orientation estimation algorithms

on the NIST SD27 database.

Algorithm All Good Bad Ugly
Proposed 18.44 14.40 19.18 21.88
FOMFE [25] 28.12 22.83 29.09 32.63
STFT [11] 32.51 27.27 34.10 36.36

evaluate the accuracy of orientation field estimation and
the accuracy of fingerprint matching, respectively.

In addition to the proposed orientation field estimation
algorithm, two other approaches were included:

1) combination of gradient-based local estimation and
FOMFE-based global model [25], and

2) combination of STFT-based local estimation and low-
pass filtering [11].

The accuracy of orientation field estimation algorithm is
measured using the average Root Mean Square Deviation
(RMSD) from the ground truth suggested in [37]. The
ground truth was established based on the manual marking
of the orientation field by one of the authors. Average
RMSD of the proposed algorithm and FOMFE and STFT
are computed on all the 258 latents in the NIST SD27
database and also on the subsets of NIST SD27 belonging
to three quality levels (Good, Bad and Ugly). As shown
in Table 2, the proposed algorithm outperforms the other
two algorithms on latents of all three quality levels. To
facilitate comparison by other interested researchers, the
manually marked orientation fields and the orientation
fields estimated by the three algorithms are available as
supplemental material.

To evaluate the matching accuracy, we need to integrate
an orientation field estimation approach with the other mod-
ules in the matching system, namely fingerprint enhance-
ment, feature extraction, and matching. Latent fingerprints
are enhanced using a Gabor filter whose frequency param-
eter is fixed at 1/9 cycles per pixel, standard deviations
of the Gaussian envelope are fixed as 4, and orientation
parameter is tuned to the estimated orientation field [10].
VeriFinger SDK 6.2 [40] is used to extract features from
enhanced latents and original full fingerprints. The same
SDK is then used to compute the match scores between

(a) Local image region (b) Manual (c) Proposed

Fig. 16. Three latent examples where the proposed
orientation field estimation algorithm performs slightly
better than manual approach. Regions showing the
difference in orientation field estimation are marked
with red boxes.

latents and full fingerprints.
The Cumulative Match Characteristic (CMC) curves on

the NIST SD27 latent database corresponding to the three
algorithms and the manual markup are shown in Fig.
13. The proposed algorithm consistently outperforms the
two published algorithms on latents of all three quality
levels. Three examples are given in Fig. 14 to compare
the enhanced latents using the orientation fields obtained
by the three algorithms (proposed, FOMFE and STFT).
Orientation fields estimated for twelve additional latents of
various qualities by the proposed algorithm are given in
Fig. 15.

For many latents of good quality, the proposed algorithm
even outperforms the manual ground truth (see Fig. 13(b)).
Our analysis of these examples (see Fig. 16) shows that
the propose algorithm has smaller deviation from true ridge
orientation for good quality latents. It is difficult and time-
consuming for a fingerprint expert to accurately mark the
complete orientation field in a latent. However, fingerprint
experts still perform better than the proposed algorithm in
estimating orientation field of poor quality latents, but the
proposed algorithm has narrowed the performance gap.

5.3 Overlapped Latent Fingerprints
Some latents may contain overlapped texture with regular
direction and high contrast (see Fig. 17). For such latents,
the initial orientation field can be completely wrong, mak-
ing it difficult to recover the true orientation field. Although
several specific orientation field estimation algorithms have
been developed for overlapped fingerprints [50]–[52], we
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(a) All latents
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(b) Good quality latents
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(c) Bad quality latents
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(d) Ugly quality latents

Fig. 13. CMC curves comparing three orientation field estimation algorithms and the manual approach on the
NIST SD27 latent database: (a) all (258 latents), (b) good quality (88 latents), (c) bad quality (85 latents), and (d)
ugly quality (85 latents).

will show that, with a minor modification, the proposed
algorithm can also deal with overlapped latent fingerprints.
Given a region mask for the fingerprint of interest and
the region mask for the overlapped pattern, following
changes are needed in initial orientation field estimation
and similarity computation.

1) The initial orientation field estimation algorithm de-
tects one dominant orientation element in the non-
overlapped fingerprint region and two dominant ori-
entation elements in the overlapped region. This is
under the assumption that the true ridge pattern is
the first or the second strongest component in the
overlapped image.

2) While the similarity between an initial orientation
patch and a reference orientation patch is still com-
puted using Eq. (1), in counting the number ns of
similar blocks between two orientation patches, a
block with at least one similar orientation element
is viewed as a similar block.

Fig. 17 shows that the modified algorithm can correctly
estimate orientation fields of fingerprints with overlapped
texture. To perform a systematic comparison between the
proposed algorithm and the constrained relaxation labeling
algorithm in [52], which was specially designed for sepa-
rating overlapped fingerprints, a matching experiment was
conducted using 100 overlapped latents in the Tsinghua
OLF database. All 27,000 rolled fingerprints in the NIST
SD14 database are used as the background database. The
CMC curves in Fig. 18 show that the proposed algorithm
performs as well as the specially designed overlapped
fingerprint separating algorithm.

5.4 Impact of Reference Fingerprints

A proper choice of corpus is very important in natural
language processing. Since reference fingerprints used to
construct the dictionary serve a similar role in our problem,
we conducted two experiments to study the impact of
reference fingerprints.
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(a) Latent fingerprint (b) FOMFE (c) STFT (d) Proposed

Fig. 14. Enhanced images of three latent fingerprints in (a) using orientation fields estimated by three algorithms
(FOMFE, STFT, and the proposed algorithm).

Fig. 17. Estimated orientation fields for two fingerprint
images with overlapping textures using the proposed
method.

First, we examine whether orientation field estimation
performance is related to the type of the latent fingerprints
(e.g., arch, whorl, loop) and the reference fingerprints used
for constructing the dictionary. Two reference fingerprints
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Fig. 18. CMC curves of the proposed algorithm and
the constrained relaxation labeling algorithm [52] on
the Tsinghua overlapped latent fingerprint database.
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Fig. 15. Orientation fields estimated by the proposed algorithm for twelve latent fingerprints in the NIST SD27
database.

(one left loop and one whorl) were used to construct a
dictionary, respectively. For a subset of 26 latents in the
NIST SD27 database, two orientation fields were estimated
using these two dictionaries and then used to enhance the
latent. Fig. 19 shows that the enhancement result is better
when the pattern types of reference and latent fingerprints
are the same. This indicates that reference fingerprints
should include fingerprints of all five major pattern types
that are most commonly observed in practice.

We also tested different combinations of patch size
(ranging from 4 × 4 to 12 × 12 blocks) and the number
of reference fingerprints (ranging from 5 to 50). When
more than 10 reference fingerprints (containing all five
pattern types) were used, we did not observe any significant
difference in the orientation field estimation performance.
But the speed of the proposed orientation field estimation
algorithm is clearly related to patch size and dictionary size,
which depends on the number of reference fingerprints. On
a PC with 2.93 GHz CPU, the average time for processing a

latent by the proposed orientation field estimation algorithm
(implemented in MATLAB) ranges from 4 seconds (for
patch size 8× 8) to 50 seconds (for patch size 4× 4).

The implementation using smaller patch size is slow
because the number of patches is large and the clustering-
based diversifying algorithm for each patch is computa-
tionally intensive. For large patch size (12×12), dictionary
lookup is slow because of the large size of the dictionary.
The implementation based on medium patch size (ranging
from 7 × 7 to 10 × 10 blocks) is better in terms of both
matching accuracy and efficiency. The CMC curves in Fig.
13 are obtained using 8× 8 patches. However, considering
the small number of latents in the NIST SD27 database,
this experiment is just a qualitative study on the parameters
of the algorithm. In order to make quantitative and more
reliable conclusions about the impact of various parameters
(including patch size, the number of reference fingerprint,
parameters of energy function, parameters of similarity
measure, etc.) on accuracy and efficiency, we need to utilize
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Fig. 19. Enhancement results using the dictionary constructed from reference orientation fields of the same
pattern type is better than the results from different pattern types. Major differences are marked by red boxes.

a much larger latent database.

6 SUMMARY AND FUTURE WORK

Although automatic fingerprint recognition technology has
evolved over the past forty years, fingerprint matching is
far from a fully solved problem. There is a consensus in the
fingerprint community that the capability of state-of-the-art
fingerprint recognition systems is still not comparable to
the ability of fingerprint examiners. This is particularly true
for low quality latent fingerprint matching. For this reason,

manual markup of various features (such as minutiae) in
latents is a common practice in forensics.

There has been a growing interest in improving automatic
latent fingerprint encoding and matching capabilities [4].
Law enforcement agencies have shown a great interest in
supporting the development of “lights-out” latent identifi-
cation techniques [53]. Government sponsored performance
evaluations have been organized by NIST to evaluate au-
tomatic latent feature extraction and matching algorithms
[54].

To significantly improve the performance of automatic



15

systems, it is necessary to examine which specific capa-
bility of fingerprint examiners is lacking in the systems.
We believe that, at the fundamental level, it is the prior
knowledge of fingerprints acquired through observing a
large number of fingerprints that gives fingerprint examiners
an edge over automatic algorithms in accurately identifying
features (e.g., marking minutiae) in latent prints of poor
quality. However, there have been only a few attempts
in the literature to incorporate such prior knowledge into
fingerprint recognition algorithms.

Inspired by spelling correction techniques in natural
language processing, we have proposed a robust orientation
field estimation algorithm for latent fingerprint enhance-
ment. A simple local estimation approach is used to obtain
an initial orientation field of the latent fingerprint. For each
patch in the initial orientation field, candidate patches are
found in an orientation patch dictionary learnt from a set
of true fingerprint orientation fields. The final orientation
field for the latent is obtained by finding the combination
of candidates that minimizes an energy function. The ex-
perimental results on the challenging NIST SD27 latent
fingerprint database showed that the proposed algorithm
outperformed two well-known orientation field estimation
algorithms. With a minor modification, the proposed algo-
rithm can also estimate the orientation field of overlapped
latent fingerprints and its performance is comparable to the
state-of-art special purpose algorithm.

However, the proposed algorithm is still inferior to
manual marking especially on low quality latents and its
speed is slow. The following aspects should be considered
to improve the current algorithm:

1) developing an indexing algorithm for fast retrieval of
candidate orientation patches from a large dictionary,

2) using a multi-resolution approach to construct ori-
entation patch dictionaries for both small and large
fingerprint regions,

3) developing an automatic region segmentation algo-
rithm, and

4) conducting a comprehensive study of various al-
gorithmic parameters using large latent fingerprint
databases.
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