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Abstract
In this paper, we consider the problem of learning from multiple related tasks for improved
generalization performance by extracting their shared structures. The alternating structure
optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has
been successfully applied in various multitask learning problems. However, ASO is nonconvex
and the alternating algorithm only finds a local solution. We first present an improved ASO
formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a
nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis
reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under
certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP),
which is, however, not scalable to large datasets. We propose to employ the block coordinate
descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find
the globally optimal solution to rASO; we also develop efficient algorithms for solving the key
subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and
the Drosophila gene expression pattern images datasets demonstrate the effectiveness and
efficiency of the proposed algorithms and confirm our theoretical analysis.
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1 Introduction
In many real-world pattern classification problems [1], [2], each of the tasks can often be
divided into several subtasks which are inherently related. The subtasks can be solved
traditionally via the single-task learning (STL) scheme, in which the subtasks are learned
independently, i.e., one task is learned at a time. Over the past decade, there has been an
upsurge of interest in multitask learning (MTL) [3], [4], [5], [6], [7], [8], [9]. MTL aims to
improve the generalization performance of the classifiers by learning from multiple related
subtasks. This can be achieved by learning the tasks simultaneously and meanwhile
exploiting the intrinsic relatedness among the tasks. Based on the MTL scheme, some useful
information can be shared across the tasks, thus facilitating individual task learning. It is
particularly desirable to share such knowledge across the tasks when there are a number of
related tasks but only limited training data is available for each one. MTL has been applied
successfully in several application domains such as bioinformatics [10], medical image
analysis [11], web search ranking [12], and computer vision [13], [14].

The problem of multitask learning has been addressed by many researchers. Thrun and
O’Sullivan [15] proposed a task-clustering (TC) algorithm to cluster multiple learning tasks
into groups of mutually related tasks (by measuring the generalization performance resulting
from sharing the same distance metric among the task pairs). Caruana [3] studied multitask
learning using the backpropagation net and demonstrated the effectiveness of MTL in
several real-world applications. Baxter [16] introduced an inductive bias learning model to
determine a common optimal hypothesis space for similar tasks. Bakker and Heskes [17]
employed a Bayesian approach for multitask learning in which the model parameters are
shared explicitly or are loosely connected through a joint prior distribution that can be
determined from the data. Lawrence and Platt [18] applied the multitask informative vector
machine to infer the parameters for a Gaussian process. Based on a hierarchical Bayesian
framework, Schwaighofer et al. [19] subsequently proposed learning nonparametric
covariance matrices from multitask data via EM-algorithm, which was further improved by
Yu et al. in [20]. Zhang et al. [21] proposed to model the task relatedness via the latent
independent components, which is a hierarchical Bayesian model based on the traditional
ICA. Jacob et al. [22] proposed to learn multiple tasks by assuming that tasks can be
clustered into different groups and the task weight vectors within a group are similar to each
other. In [23], [24], the kernel functions with a task-coupling parameter are employed for
modeling the relationship among multiple related tasks.

Recently, there has been growing interest in studying multitask learning in the context of
feature learning (selection). Jebara [25] considered the problem of feature selection with
SVM across the tasks. Obozinski et al. [26] presented multitask joint covariate selection
based on a generalization of 1-norm regularization. Argyriou et al. [27] proposed to learn a
common sparse representation from multiple tasks, which can be solved via an alternating
optimization algorithm. One following work in [8] proposed the convex multitask feature
learning formulation and showed that the alternating optimization algorithm converges to a
global optimum of the proposed formulation. Note that the MTL formulation in [8] is
essentially equivalent to the approach of employing the trace norm as a regularization for
multitask learning [28], [29], [30]. Ando and Zhang [5] proposed the alternating structure
optimization (ASO) to learn shared predictive structures from multiple related tasks. In
ASO, a separate linear classifier is trained for each task and dimension reduction is applied
on the classifier space, computing low-dimensional structures with the highest predictive
power. However, this framework is nonconvex and the alternating structure optimization
procedure is not guaranteed to find a global optimum, as pointed out in [5], [8]. The
relationship between ASO and clustered MTL was studied in [31].
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In this paper, we consider the problem of learning a shared structure from multiple related
tasks following the approach in [5]. We present an improved ASO formulation (called
iASO) using a new regularizer. The improved formulation is nonconvex; we show that it can
be converted into a relaxed convex formulation (called rASO). In addition, we present a
theoretical condition under which rASO finds a globally optimal solution to its nonconvex
counterpart iASO. rASO can be equivalently reformulated as a semidefinite program (SDP),
which is, however, not scalable to large datasets.

We proposed to employ the block coordinate descent (BCD) method [32] to solve rASO. In
BCD, the optimization variables are optimized via two alternating computation procedures;
we develop efficient algorithms for the procedures in BCD and show that the BCD
algorithm converges to a global optimum of rASO. We also propose to employ the
accelerated projected gradient (APG) algorithm to solve rASO. APG belongs to the category
of the first-order methods and its global convergence rate is optimal among all the first-order
methods [33], [34]. We show that the subproblem in each iteration of APG can be solved
efficiently. We also further discuss the computation cost in the BCD method and the APG
algorithm for solving rASO, respectively. We have conducted experiments on the Yahoo
webpages datasets [35] and the Drosophila gene expression pattern images datasets [36].
The experimental results demonstrate the effectiveness of the proposed MTL formulation
and the efficiency of the proposed optimization algorithms. Results also confirm our
theoretical analysis, i.e., rASO finds a globally optimal solution to its nonconvex counterpart
iASO under certain conditions.

The remainder of this paper is organized as follows: In Section 2, we present the improved
MTL formulation iASO; in Section 3, we show how to convert the nonconvex iASO into the
convex relaxation rASO; in Sections 4 and 5, we detail the BCD algorithm and the APG
algorithm, respectively, for solving rASO; in Section 6, we present a theoretical condition
under which a globally optimal solution to iASO can be obtained via rASO; we report the
experimental results in Section 7; and the paper concludes in Section 8.

Notations

Denote . Denote  if and only if B – A is positive semidefinite (PSD).
Let tr(X) be the trace. 0 and I denote the zero matrix and the identity matrix of appropriate
sizes, respectively.

2 Multitask Learning Framework
Assume that we are given m supervised (binary-class) learning tasks. Each of the learning
tasks is associated with a predictor fl and training data

. We focus on linear predictors

 where ul is the weight vector for the lth task.

The alternating structure optimization algorithm learns predictive functional structures from
multiple related tasks. Specifically, it learns all m predictors {f1; … ; fm} simultaneously by
exploiting a shared feature space in a simple linear form of low-dimensional feature map Θ
across the m tasks. Formally, the predictor fl can be expressed as

(1)

where the structure parameter Θ takes the form of an h × d matrix with orthonormal rows as

Chen et al. Page 3

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and ul, wl, and vl are the weight vectors for the full feature space, the high-dimensional
feature space, and the shared low-dimensional feature space, respectively. Note that since h
specifies the shared low-dimensional feature space of the m tasks, without loss of generality
h can always be chosen to be smaller than m and d. Mathematically, ASO can be formulated
as the following optimization problem:

(2)

where L(·) is a convex loss function, ‖wl‖
2 is the regularization term (wl = ul − ΘT

vl)
controlling the relatedness among m tasks, and α is prespecified nonnegative parameter.

The optimization problem in (2) is nonconvex due to its orthonormal constraint and the
regularization term in terms of ul, vl, and Θ. We present an improved ASO formulation
(called iASO) given by

(3)

where gl(ul; vl, Θ) is defined as

(4)

The regularization function in (4) controls the task relatedness (via the first component) as
well as the complexity of the predictor functions (via the second component) as commonly
used in traditional regularized risk minimization formulations for supervised learning. Note
that α and β are prespecified coefficients, indicating the importance of the corresponding
regularization components, respectively. For simplicity, we use the same α and β for all
tasks. The discussion below can be easily extended to the case where α and β are different
for different tasks.

The iASO formulation (F0) in (3) subsumes several multitask learning algorithms as special
cases: It reduces to the ASO algorithm in (2) by setting β = 0 in (4), and it reduces to m
independent quadratic programs (QP) by setting α = 0. It is worth noting that iASO is
nonconvex. In the next section, we convert iASO into a (relaxed) convex formulation, which
admits a globally optimal solution.

3 A Convex Multitask Learning Formulation
In this section, we consider a convex relaxation of the nonconvex F0 (iASO).

The optimal  to (3) can be expressed in the form of a function on Θ and . It

can be verified that . Let

 and . The optimal V* to (3) is given by
V* = ΘU. Therefore, we denote
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(5)

where η = β/α > 0. Moreover, it can be verified that (1 + η)I − ΘTΘ = η(1 + η)(ηI + ΘTΘ)−1.
We can reformulate G0(U, Θ) into an equivalent form as

(6)

Since the loss term in (3) is independent of the optimization variables , F0 can be
equivalently transformed into the following optimization problem F1 with optimization
variables Θ and U:

(7)

where G1(U, Θ) is defined in (6).

3.1 Convex Relaxation
The orthonormality constraint in (7) is nonconvex; so is the optimization problem F1. We
propose to convert F1 into a convex formulation by relaxing its feasible domain into a

convex set. Let . It has been known [37] that the
convex hull [38] of  can be precisely expressed as the convex set

and each element in  is referred to as an extreme point of . Since  consists of all
convex combinations of the elements in ,  is the smallest convex set that contains .

To convert the nonconvex problem F1 into a convex formulation, we replace ΘTΘ with M in
(7), and naturally relax its feasible domain into a convex set based on the relationship
between  and  presented above; this results in an optimization problem F2 (called
rASO) as

(8)

where G2(U, M) is defined as

(9)

It follows from [39, Theorem 3.1] that G2(U,M) is jointly convex in U and M; therefore, the
optimization problem F2 is convex. For any Θ feasible in F1, the construction M = ΘTΘ is
guaranteed to be feasible in F2; however, given a specific M feasible in F2, we may not be
able to decompose M into the expression ΘTΘ such that Θ is feasible in F1. Therefore, F2
has a larger feasible domain set compared to that of F1 and hence F2 is a convex relaxation
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of F1. Note that the convex relaxation technique used in this paper is similar to the one used
in [22] and leads to a convex formulation closely related to the one in [22].

3.2 The SDP Formulation
The optimization problem F2 can be reformulated into an equivalent semidefinite program

[38]. We add slack variables  and enforce  It follows
from the Schur complement Lemma [40] that we can rewrite F2 as

(10)

Given that the loss function L(·) is convex, the optimization problem F3 is convex.
However, it is not scalable to largescale datasets due to its positive semidefinite constraints.
If L(·) is the hinge loss function, F3 is an SDP. Note that many off-the-shelf optimization
solvers such as SeDuMi [41] can be used for solving SDP, which can only handle several
hundred optimization variables.

4 Block Coordinate Descent Method
In this section, we propose solving rASO in (8) using the block coordinate descent method
[32], in which the optimization variables are optimized alternatively with the rest of the
optimization variables fixed. Due to space constraints, we focus on discussing the main
computational procedures of BCD in this section. In the supplementary file, which can be
found in the Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2012.189, we provide a concrete example as well as detailed pseudocodes
to illustrate the BCD algorithm for solving rASO with the hinge loss.

4.1 Computation of U for a Given M
For a fixed M, the optimal U can be computed by solving the following problem:

(11)

where the regularization term  is given by

. Given any convex loss function L(·), the
objective function in (11) is strictly convex, and hence the corresponding optimization
problem admits a unique minimizer. The optimization problem in (11) can be solved via
different approaches depending on practical settings. In the supplementary file, available
online, we present a concrete example of solving (11) with the hinge loss; specifically, we
can equivalently reformulate (11) with the hinge loss into standard SVMs and then use
existing SVM solvers such as the LIBSVM package [42] to solve the primal or dual
formulations of SVMs.

4.2 Computation of M for a Given U
For a fixed U, the optimal M can be computed by solving the following problem:
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(12)

This problem can be recast into an SDP, which is computationally expensive to solve. We
propose an efficient approach to solve the optimization problem in (12); its optimal solution
can be obtained via solving an eigenvalue optimization problem. It is worth pointing out that
by setting h = 1 and η to a small value in (12), we essentially obtain a variational
formulation of the trace norm regularization [27].

Efficient computation of (12)—For any  in (12), let  be its SVD

[40], where  are orthogonal, and  has q nonzero singular
values on its main diagonal (q ≤ m ≤ d). We denote

(13)

where σ1 ≤ σ2 … σq ≥ 0 = σq+1 = … = σm. Note that since the value of h controls the size of
the shared low-dimensional structure, we focus on the setting of h ≤ q ≤ m ≤ d. We show
that the optimal M to (12) can be obtained via solving the following convex optimization
problem [38]:

(14)

Note that the optimization problem in (14) can be solved using a linear time algorithm
similar to the one proposed in [43] for solving a quadratic knapsack problem. For
completeness, we present the detailed algorithm for solving (14) in the supplementary file,
available online. We summarize an important property of the optimal solution to (14) in the
following lemma.

Lemma 4.1—The optimal  to (14) satisfy .

Proof: Prove by contradiction. For any σi > σi+1, assume . We can construct another

feasible solution by switching the positions of  and , and attain a smaller objective
value in (14), leading to a contradiction. This completes the proof.

An immediate and obvious consequence of the results of Lemma 4.1 is

(15)

Before presenting an efficient approach for solving (12), we first present the following
lemma, which will be useful for our following analysis.

Lemma 4.2—For any matrix , let  be its SVD, where  is

orthogonal, , and . Let  be the diagonal

entries of Z, and  be any integer subset with p(p ≤ d) distinct

elements. Then, .
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Proof: Denote the ith row-vector of  by . For any integer subset

π = {π1, … , πp}, we have . The ith

diagonal entry of Z can be expressed as . It follows that

where the last equality (the maximum) above is attained when the set

 has only one nonzero element of value one or p = d. This
completes the proof of this lemma.

We summarize the main result of the efficient approach for solving (12) in the following
theorem.

Theorem 4.1—Let  be optimal to (14) and denote

. Let  be orthogonal, consisting of the left

singular vectors of U. Then,  is an optimal solution to (12). Moreover, the
problem in (14) attains the same optimal objective value as the one in (12).

Proof: For any feasible M in (12), let M = QΛQT be its SVD, where  is
orthogonal, Λ = diag(λ1, … , λd), and λ1 ≥ ··· ≥ λd ≥ 0. The problem in (12) can be rewritten
as

(16)

where Σ is defined in (13). Note that the reformulated problem in (16) is equivalent to the
one in (12) and has two separate optimization variables, Q and Λ.

We show that the optimization variable Q can be factored out from (16), and the optimal Q*

can be obtained analytically. Let  and denote its diagonal entries by

. It follows from (13) that D is a positive semidefinite matrix with nonzero singular

values . Given any feasible Λ in (16), we have

(17)

where D ~ ΣΣT indicates that the eigenvalues of D are given by the diagonal elements of
ΣΣT, and the equality above means that these two problems attain the same optimal
objective value. Following the nondecreasing order of  in (15) and

Chen et al. Page 8

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 for any integer subset  (Lemma 4.2), we can verify that the
optimal objective value to (17) is given by

(18)

where this optimum can be attained when QTP1 = I and D = ΣΣT. It follows from (18) that

the optimal  to (14) satisfy .

In summary, the optimal objective value to (16) or, equivalently, (12) can be obtained via
solving (18) subject to the constraints on {λi} or equivalently solving (14). Since (17) is

minimized when Q = P1, we conclude that  is optimal to (12). This completes
the proof.

Note that the optimization problem (not strictly convex) in (12) may have multiple global
minimizers yet with the same objective value, while the formulation in (14) can find one of
those global minimizers. As a direct consequence of Theorem 4.1, we derive an optimization
problem which has the same optimal objective as (12), as summarized below (we omit the
proof as it follows the same techniques as the ones in Theorem 4.1).

Lemma 4.3—Given an arbitrary matrix , the optimal objective value to

(19)

is equal to the one attained in (12).

The optimization problems in (12) and (19) attain the same optimal objective value; they
differ mainly in two aspects: 1) The former has an optimization variable in , while the
latter has an optimization variable in ; 2) the eigenvectors of the optimal M in the
former (latter) are equal to the left (right) singular vectors of U. Moreover, it can be verified
that the optimal U to (8) can be obtained via solving (8) with the regularization term
replaced by the objective function in (19).

4.3 Discussion
The alternating optimization procedure employed in the BCD method is widely used for
solving many optimization problems efficiently. However, such a procedure does not
generally guarantee the global convergence. We summarize the global convergence property
of the BCD method in the following theorem. We omit the detailed proof for Theorem 4.2 as
the proof follows similar arguments in [39], [8].

Theorem 4.2—The BCD method converges to the global minimizer of the optimization
problem F2 in (8).

BCD computes the optimal solution to (8) by iteratively solving (11) and (12). We focus on
the setting where the feature dimensionality is much larger than the sample size, i.e., d > n.
As described in the supplementary file, available online, if the hinge loss is employed in this
setting, it will be more efficient for solving (11) in its equivalent dual form, with the worst-
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case complexity of ; for (12), the optimal solution can be obtained via computing the
economic SVD of a matrix of size d × m and solving a simple singular value projection

problem in (14); the former has the complexity of  and the latter can be
solved using a linear time algorithm [43]. Therefore, the computation complexity of the
BCD method for solving (8) grows cubically with the sample size, quadratically with the
task number, and linearly with the feature dimensionality.

5 Accelerated Projected Gradient Algorithm
In this section, we propose to apply the accelerated projected gradient algorithm [34] for
solving rASO in (8). Due to the space constraints, we present the efficient algorithms for
solving the key component, i.e., the proximal operator [44], involved in each iteration of
APG. In the supplementary file, available online, we provide a concrete example as well as
detailed pseudocodes to illustrate APG for solving rASO with the hinge loss. Note that from
Lemma 4.3, for practical efficiency we compute the optimal solution to rASO by solving (8)
with the regularization term replaced by the objective function in (19).

5.1 The Proximal Operator
For notational simplicity, we denote the convex optimization problem in (8) as

(20)

where Z symbolically represents the optimization variables U and M as

 is a closed and convex set defined as 
and g(Z) denote, respectively, the smooth and nonsmooth components of the objective
function in (8). Since the regularization term in (8) is smooth, the component g(Z) in (20)
vanishes if the loss function L(·) is smooth.

To solve the optimization problem in (20), APG maintains a solution point sequence f{Zi}
and a searching point sequence {Si} via iteratively solving an optimization problem in the
general form as

(21)

where τ = 1/γ. The optimization problem in (21) is commonly referred to as the proximal
operator [34], [44]. Note that the computation of (21) is key for the practical efficiency of
APG, as it is involved in each iteration of the optimization procedure.

5.2 Discussion on the APG Algorithm
The APG algorithm has been widely applied for solving mathematical formulations arising
in the areas of machine learning and data mining due to its optimal convergence rate among
all the first-order methods as well as its scalability for large-scale data analysis [45], [46]. It
is worth noting that the general framework in APG is standard; it iteratively updates the
intermediate solution point toward the globally optimal solution (via computing the
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proximal operator and estimating the step size). Using standard techniques in [34], [33], we
can show that the employed APG algorithm attains the optimal convergence rate of

, where k denotes the iteration number. For completeness, we present the detailed
convergence analysis in the supplementary file, available online.

The key challenge in the applications of APG is how to efficiently solve the associated
proximal operator, i.e., the optimization problem in (21). Recent work in [47] employs the
APG algorithm to solve a different multitask learning formulation; however, it focuses on
solving multitask learning formulations with only smooth loss functions. This paper
considers employing APG for a more general setting where the loss function can be
nonsmooth convex. For illustration, we present a concrete example of employing APG for
solving rASO with the nonsmooth hinge loss function in the supplementary file, available
online.

5.3 Efficient Algorithms
The APG algorithm requires solving the proximal operator (a constrained convex
optimization problem) in (21) in each of its iterations. We develop efficient algorithms for
solving solvingthis optimization problem as summarized below.

5.3.1 Smooth Loss Function—If the loss function L(·) in (8) is smooth, the nonsmooth
component g(Z) in the symbolical form of (20) vanishes. We can express f(Z) and g(Z) as

(22)

where U = [u1, … , um] and c = αη(1 + η). Note that the commonly used smooth loss
functions include least squares loss, logistic regression loss, and Huber’s robust loss.

In the setting of employing the smooth loss functions in (8), the proximal operator in (21)
can be explicitly expressed as

(23)

where  and . Note that S symbolically represents

, and  denote the derivatives of f(S)
with respect to  and , respectively. It can be verified that the optimal U and M to (23)
can be obtained by solving two optimization problems independently as below.

Computation of U. The optimal U to (23) can be obtained by solving

(24)

Obviously the optimal U to (24) is given by .

Computation of M. The optimal M to (23) can be obtained by solving
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(25)

where  is symmetric but may not be positive semidefinite. The optimal M to (25) can be
computed via solving a simple convex projection problem, as summarized in Theorem 5.1.
Before presenting Theorem 5.1, we present a lemma which is important for the analysis in
Theorem 5.1.

Lemma 5.1: Given an arbitrary diagonal matrix , the optimal
solution to

(26)

is diagonal, i.e., all off-diagonal entries are zeros.

Proof: Prove by contradiction. Let T* be the optimal solution to (26) and T* has nonzero

off-diagonal entries. Since , we can construct a feasible
solution to (26) by setting all off-diagonal entries in T* to zero; this solution leads to a
strictly smaller objective value in (26). Hence, the optimal solution to (26) must be diagonal.
This completes the proof.

In the following theorem, we show how to compute the optimal M to (25).

Theorem 5.1: Given an arbitrary symmetric matrix  in (25), let  be
its eigendecomposition, where  is orthogonal, and

 is diagonal with the eigenvalues on its main diagonal. Let

, where  is the optimal solution to the following
optimization problem:

(27)

Then, the global minimizer to (25) is given by M* = PΣ*PT.

Proof: For arbitrary M feasible in (25), we denote its eigendecomposition by M = QΛQT,

where  is orthogonal,  is diagonal with the
eigenvalues on its main diagonal. Since the orthogonal transformation does not change the
euclidean distance, the optimization problem in (25) is equivalent to

(28)

where Λ and Q are two separate optimization variables. From Lemma 5.1, we have that (27)
and (28) admit the same optimal objective value. It can be easily verified that the solution
pair {Λ = Σ*,Q = P} is feasible in (28) and attains the optimal objective value. Since the
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problem in (28) is strictly convex, M* = PΣ*PT is the unique global minimizer to (25). This
completes the proof.

The optimization problem in (27) can be solved via a linear time algorithm [43]. Note that
this algorithm is also adopted for solving (14) in this paper.

5.3.2 Nonsmooth Loss Function: If L(·) in (8) is nonsmooth, the smooth component f(Z) in
(20) can be expressed as

(29)

where c = αη(1 + η); the nonsmooth component g(Z) can be expressed as

(30)

where U = [u1, … , um]. Since g(Z) is independent of the variable M in (30), for clear
specification we denote g(Z) by g(U) in the following presentation. Note that the commonly
used nonsmooth loss function includes the hinge loss.

In the setting of employing nonsmooth loss functions, the optimization problem in (21) can
be expressed as

(31)

where , and . The optimization problem in
(31) is nonsmooth convex with two decoupled optimization variables U and M. Similarly,
the optimal U and M to (31) can be obtained by solving two convex optimization problems
independently.

Computation of U. The optimal U to (31) can be obtained by solving

(32)

The optimization problem in (32) can be solved using different algorithms, depending on the
specific structures of the nonsmooth component g(U). When the hinge loss is employed,
(32) can be reformulated as a set of QPs with a sparse Hessian matrix in the form of an
identity matrix; the QPs can be solved via various approaches as described in the
supplementary file, available online.

Computation of M. The optimal M to (31) can be obtained by solving

(33)

Similarly to the case of using the smooth loss function, the optimal M to (33) can be
obtained by solving a convex problem following the results in Theorem 5.1.
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5.4 Discussion on the Computation Cost
We discuss the main computation cost of APG for solving (8) with a smooth loss function
and a nonsmooth loss function, respectively. The employed APG converges at the rate of

, where k denotes the iteration number. We focus on discussing the computational
complexity of the themain components involved in each iteration of APG.

Using the smooth loss function—The main computational procedures in each iteration
of APG include the computation of (24) and (25). First, the optimal solution to (24) can be
trivially obtained; second, the optimal solution to (25) can be obtained via solving two
subproblems, i.e., computing the eigendecomposition of a symmetric matrix of size m × m,
and solving an optimization problem in (27) as presented in Theorem 5.1. Regarding the two

subproblems for solving (25), the former has a worst-case arithmetic complexity of 
[40] and the latter can be solved via an efficient algorithm with the arithmetic complexity of

 [43]. For this setting, the overall computation complexity of APG for solving (8)
grows cubically with the task number.

Using the nonsmooth loss function—The main computational procedures in each
iteration of APG include the computation of (32) and (33). The optimal solution to (32) can

be obtained via solving a set of QP problems with the worst complexity of . Note that
all the involved QP problems have sparse Hessian matrices (in the form of an identity
matrix) which can be solved using various approaches, as explained in the supplementary
file, available online. The computational complexity for solving (33) is identical to that for
solving (25). For this setting, the overall computation complexity of APG for solving (8)
grows cubically with the task number and the feature dimensionality, respectively.

6 Computation of an Optimal Solution to iASO
In this section, we present a theoretical condition under which a globally optimal solution to
iASO can be obtained via rASO. Note that rASO in (8) is a convex relaxation of iASO in
(3).

We first present the following lemma, which is the key building block of the analysis in this
section.

Lemma 6.1

Let  be defined in (13). For any , assume  is optimal to

(14), then  and .

Proof—Proof by Contrapositive. Assume that  and  do not

hold. Since  and  is nonincreasing with i (Lemma 4.1), the assumption leads to

 and hence . We can construct another feasible solution  such

that , which shows  is not optimal to (14).

Let  be the element in  with the smallest index , satisfying . Let  be

the element in  with the largest index , satisfying . Note that it can be
verified that a ≤ h and h + 1 ≤ b. For any , we can construct a feasible

solution  to (14) as
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such that . Moreover, we have

where the first inequality follows from σh/σh+1 ≥ 1 + 1/η, σa ≥ σh ≥ (1 + 1/η)σh+1 and σh+1 ≥
σb; the second (strict) inequality follows from  and .

Therefore, . This completes the proof.

We summarize the main result of this section in the following theorem.

Theorem 6.1
Let the problems F1 and F2 be defined in (7) and (8), respectively, and let (U*, M*) be the

optimal solution to F2. Let  be orthogonal consisting of the left singular vectors

of U*, and  be the corresponding nonzero singular values of U* in nonincreasing
order. Let Θ* consist of the first h column-vectors of P1 corresponding to the largest h
singular values. If σh/σh+1 ≥ 1 + 1/η, then the optimal solution to F1 is given by (U*, Θ*).

Proof—Since (U*, M*) is optimal to F2, it follows from Theorem 4.1 that M* can be

expressed as , where  can be computed via (14).
Given σh/σh+1 ≥ 1 + 1/η, we can verify that λi = 1 if , and 0 otherwise (Lemma 6.1);
therefore, M* = Θ*TΘ*, where  corresponds to the first h column-vectors of P1.
Moreover, given a fixed  in F1 and F2, respectively, we have

(34)

where G1(U, Θ) and G2(U.M) are defined in (6) and (9), respectively, and  and  are
defined in Section 3.1. The equality in (34) is attained when the optimal M to the right side
of (34) is an extreme point of the set , i.e., it belongs to the set . For a given U*, if σh/
σh+1 ≥ 1 + 1/η is satisfied, Θ* minimizes G1(U*, Θ) and the equality in (34) can be attained.
Hence, (U*, Θ*) is the optimal solution to F1. This completes the proof.

7 Experiments
In this section, we evaluate the proposed rASO in (8) in comparison with other
representative MTL formulations on two benchmark datasets: the Yahoo webpages datasets
[35] and the Drosophila gene expression pattern images datasets [36]. The competing
algorithms include the independent SVMs for multitask learning (SVM), the alternating
structure optimization [5], the convex multitask feature learning (cMTFL) [8], and the
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incoherent sparse and low-rank patterns for multitask learning (iSpLr) [47]. Note that
cMTFL is essentially equivalent to the approach of employing the trace norm regularization
for multitask learning [28], [29], [30]. In the following experiments, the hinge loss is
employed in SVM, ASO, and cMTFL, and the least squares loss is employed in iSpLr. We
also conduct numerical studies on the APG algorithm and the BCD method by solving (8).
All experiments were performed on a workstation with an Intel Xeon W3565 CPU (3.20
GHz) and 18 GB RAM.

We use the Yahoo webpages datasets [35] in our first experiment. The Yahoo datasets
consist of multiple top-level categories1 such as Arts and Humanities, Entertainment, and
Business and Economy. Each top-level category is further divided into a number of second-
level subcategories, for example, Entertainment (one of the top-level categories) is divided
into a set of second-level subcategories such as Music, Actors, Movies, Film, etc.2 We
preprocess the Yahoo datasets by extracting the Term Frequency-Inverse Document
Frequency (TF-IDF) features from the webpages and normalizing the obtained feature
vectors into unit length.

In our experiments, we employ 11 top-level categories as independent experimental datasets.
Note that the statistics of the Yahoo datasets, i.e., sample size, feature dimensionality, and
task number, can be found in the captions of Tables 1 and 2. Each dataset includes a number
of webpages and we focus on classifying the webpages into the associated second-level
subcategories. Since each webpage may belong to multiple second-level subcategories, we
can formulate the webpage classification problems into the multitask learning setting. Note
that classifying the webpages into one second-level subcategory is considered as a binary
classification problem and hence we have multiple binary classification problems associated
with a top-level category (corresponding to one dataset).

7.1 Evaluation of rASO
We evaluate the performance of rASO and study the sensitivity of its parameters. In the
following experiments, rASO is solved using the BCD method.

Performance comparison—We compare rASO with SVM, ASO, cMTFL, and iSpLr for
Yahoo webpages categorization tasks. We employ Macro F1 and Micro F1 [48], [49] as the
performance measures. Since in multitask learning the involved data are usually unbalanced,
the F1 measure better reflects the predictive power of the classifiers, compared to the
traditional misclassification rate. Note that the F1 measures computed from multiple tasks
are summarized, respectively, as Macro F1 and Micro F1; Macro F1 is obtained via
computing the respective F1 measure separately for each task, and then computing the mean
of the resulting F1 measures, while Micro F1 is obtained via computing the F1 measure
across the involved training data for all tasks as a single group. The parameters in the
competing algorithms are determined via threefold cross validation. Note that following the
strategy in [5], for rASO we heuristically set the value of h and then determine the
parameters α and β via cross validation. In ASO, rASO, cMTFL, and iSpLr, we stop the
iterative computational procedure if the relative change of the objective values in two
successive iterations is smaller than 10−5. We randomly choose 1,500 samples from each
Yahoo dataset as the training set, and the remaining ones are used as the test set.

We report the averaged Macro F1 and Micro F1 (over five random repetitions) and the
associated standard deviation in Tables 1 and 2. We can observe that rASO is competitive

1http://dir.yahoo.com/.
2http://dir.yahoo.com/Entertainment/.
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with other competing algorithms on all 11 of the Yahoo webpage datasets. We can also
observe that rASO outperforms ASO on nine datasets (except on the Arts data and the
Business data) in terms of both Macro F1 and Micro F1; this superiority may be due to the
employment of the different regularizer in (4), the flexibility of balancing the two
regularization components, and the guaranteed global optimal solution in rASO. The
relatively low performance of SVM may be due to its ignorance of the relationship among
the multiple learning tasks.

Sensitivity study—We study the effect of the parameter η on the generalization
performance of rASO. Recall that η = β/α is defined in Section 3, where α and β are used to
trade off the importance of the two regularization components in (4). We vary the value of η
by fixing α at 1, meanwhile varying β in the range [10−4, 10−2, 100, 102, 104]; we then
record the obtained Macro/Micro F1 using each combination of α and β. The Arts data are
used for this experiment.

The experimental results are presented in Fig. 1. We can observe that if the value of η is
smaller, rASO achieves relatively low performance in terms of Macro F1 and Micro F1; if η
is set to some value close to 1, rASO can achieve the best performance. We observe a
similar trend on other datasets. Since η is equal to the ratio of β to α, our empirical
observation (setting the value of η close to 1 leading to good performance) demonstrates that
adding the second regularization component of (4) in appropriate amount (corresponding to
the parameter β) can improve the performance.

7.2 Evaluation of APG and BCD
We study the APG algorithm and the BCD method in terms of the convergence curves and
the computation time (in seconds) by solving rASO with the hinge loss. For illustration, we
set α = 1; β = 5; h = 2 in (8) and perform the webpages categorization task for the first three
subcategories on the Arts data in the following experiments; for other parameters settings,
we have similar observations. Note that APG and BCD are terminated if the change of the
objective values in two successive iterations is smaller than 10−5 or the iteration number is
larger than 5,000.

Convergence curves comparison—We randomly sample 2,000 samples (of feature
dimensionality 17,973) from the Arts data for this experiment. We apply APG and BCD
separately for solving (8) on the experimental data and record the obtained objective value
in each of the iterations.

The experimental results are presented in Fig. 2. We can observe that APG requires about 15
iterations for convergence and its convergence curve is consistent with the theoretical
convergence analysis of the APG algorithm [33], [34]. We can also observe that BCD
converges very fast in practice; BCD converges within three iterations in this experiment
(when the value of β is smaller than the value of α, BCD require a larger number of
iterations for convergence).

Computation time comparison—We first consider the setting where the feature
dimensionality is much larger than the sample size. We construct the first four subsets by
randomly choosing {1, 000, 2, 000, 3, 000, 4, 000} samples (of dimensionality 17,973) from
the Arts data, respectively. We apply APG and BCD on the constructed subsets and record
the respective computation time in seconds. The experimental results are presented in Table
3. We observe that the computation time for APG and BCD increases with the increase of
the sample size. We also observe that by using a fixed dimensionality, when the sample size
is relatively small, for example, 1,000, APG requires more computation time than BCD;
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when the sample size is relatively large, for example, 2,000, 3,000, and 4,000, APG requires
less computation time than BCD.

We then consider the setting where the sample size is much larger than the feature
dimensionality. We construct the second four subsets by randomly choosing 3,000 samples
from the Arts data and then reduce the feature dimensionality to {100, 200, 300, 400} via
PCA. We apply APG and BCD on the constructed subsets and record the respective
computation time. The experimental results are presented in Table 4. We can observe that
the computation time for APG and BCD increases with the increase of the feature
dimensionality. We can also observe that by using a fixed sample size, when the feature
dimensionality is relatively small, for example, 100, APG requires less computation time
than BCD; when the feature dimensionality is relatively large, for example 200, 300, and
400, APG requires more computation time than BCD.

7.3 Empirical Comparison of F0 and F2

We compare F0 in (3) and F2 in (8) in terms of the obtained optimal objective values. Since
η is defined as η = β/α in Section 3, we vary the value of η by fixing α = 1, meanwhile
varying β in the range [103, 102, 101, 100, 10−1, 10−2, 10−3]; we then record the obtained
optimal objective values of F0 and F2, respectively, by using different combinations of α
and β. We randomly choose 500 samples from the Arts data for this experiment. Note that
the (locally) optimal objective value to F0 is obtained via solving its equivalent form F1 in
(7). We solve both F1 and F2 using the BCD method and initialize the entries of the
optimization variables from .

The experimental results over random 20 repetitions are presented in Table 5. We observe
that OBJF2 is always no larger than OBJF0; this is because F2 is a relaxed version of F1
(equivalently F0) and has a larger domain set compared to F0. We also observe that if σh/
σh+1 > 1 + 1/η (corresponding to the first three columns in Table 5), OBJF0 is equal to
OBJF2. The observations are consistent with the theoretical analysis in Theorem 6.1, that is,
if σh/σh+1 > 1 + 1/η, F0 and F2 have the same optimal objective value and the optimal
solution to F0 can be recovered from F2. Note that in general the condition σh/σh+1 > 1 + 1/η
is satisfied when β is relatively larger than α.

7.4 Automated Annotation of the Gene Expression Pattern Images
In this experiment, we apply rASO for the automated annotation of the Drosophila gene
expression pattern images from the FlyExpress [36] database. We use SVM, ASO, cMTFL,
and iSpLr as the baseline algorithms.

The Drosophila gene expression pattern images capture the spatial and temporal dynamics
of gene expression and hence facilitate the explication of the gene functions, interactions,
and networks during Drosophila embryogenesis [50], [51]. To provide text-based pattern
searching, the gene expression pattern images are annotated manually using a structured
controlled vocabulary (CV) in small groups, as shown in Fig. 3. Note that the CV terms are
used to describe the differential anatomical features of the Drosophila embryos and the
different stages of embryonic development; specifically, they provide specific terms for both
finally developed embryonic structures and for all the developmental intermediates that
precede those embryonic structures [52]. The annotation of CV terms is traditionally done
manually by domain experts. However, with a rapidly increasing number of gene expression
pattern images, it is desirable to design computational approaches to automate the CV
annotation process.
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We preprocess the Drosophila gene expression pattern images (of the standard size 128 ×
320) following the procedures in [53]. The Drosophila images are from 16 specific stages,
grouped into six stage ranges (1 ~ 3, 4 ~ 6, 7 ~ 8, 9 ~ 10, 11 ~ 12, 13 ~ 16). The image
groups (based on the genes and the developmental stages) are labeled using the structured
CV terms. Each image group is then represented by a feature vector based on the bag-of-
words and the soft-assignment sparse coding schemes [53]. Due to the variation in
morphology, shape, and position of various embryonic structures, we extract the scale-
invariant feature transform (SIFT) features [54] from the gene expression images with the
patch size set at 16 × 16 and the number of visual words in sparse coding set at 2,000. The
first stage range only contains two CV terms and is not sufficient for constructing an
experimental dataset. For other stage ranges, we construct the associated datasets by
considering the top 10 CV terms or 20 CV terms appearing most frequently in the image
groups.

For each constructed dataset, we focus on determining the relationship of the image groups
and the CV terms. Since each image group may be associated with multiple CV terms and
the CV terms are intrinsically related, we can formulate the image group annotation
problems as a multitask learning problem. Note that classifying the image groups into one
CV term is considered as a binary classification problem and hence we have multiple binary
classification problems for each dataset (corresponding to one stage range). Specifically for
each dataset, we randomly partition the data into training and test sets using the ratio 1:9.
The parameters in the competing algorithms are tuned via threefold cross validation as in
Section 7.1.

We report the averaged Macro F1 and Micro F1 over 10 random repetitions in Table 6 (10
CV terms) and Table 7 (20 CV terms), respectively. We observe that rASO performs the
best or competitively compared to other algorithms on all subsets. This experiment
demonstrates the effectiveness of rASO for the images annotation tasks in multitask learning
setting as well as the effectiveness of the proposed regularizer in (4) for capturing the
relationship of different CV terms of the gene expression images. We also observe that
rASO outperforms ASO, which empirically shows the effectiveness of the regularizer in (4)
for improving the performance among multiple tasks.

7.5 Discussion
First, our experiments focus on the empirical comparison between ASO and rASO; the
experimental results show that rASO usually outperforms ASO. Although we do not conduct
empirical evaluation on iASO, we expect that iASO outperforms ASO while rASO
outperforms iASO, due to several reasons: 1) iASO subsumes ASO as a special case: by
choosing specific regularization parameters, iASO reduces to ASO. 2) rASO is a convex
relaxation of iASO; in essence, rASO searches for a predictive model in a larger search
space compared to iASO; hence, rASO may find a better predictive model. Note that in
Section 2, we obtained iASO by adding an additional regularization to ASO, and then in
Section 3 we obtained rASO by naturally relaxing the domain set of iASO to its convex hull.

Second, although our experiments focus on the application of rASO on classification
problems, rASO can be naturally applied for regression problems. We apply rASO with the
least square loss on a commonly used multitask regression benchmark data, the school data
[8], in comparison with the boosted multitask learning algorithm proposed in [12].
Specifically, rASO achieves the explained variance at 37.3 ± 1.4, comparable to the best
result 37.7 ± 1.2 attained by the boosted multitask learning algorithm in [12].
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8 Conclusion and Future Work
In this paper, we present a multitask learning formulation (iASO) for learning a shared
feature representation from multiple related tasks. Since iASO is nonconvex, we convert it
into a relaxed convex formulation (rASO). In addition, we present a theoretical condition,
under which rASO can find a globally optimal solution to iASO. We employ the BCD
method and the APG method, respectively, to find the globally optimal solution to rASO;
we also develop efficient algorithms to solve the key subproblems involved in BCD and
APG. We have conducted experiments on the Yahoo datasets and the Drosophila gene
expression pattern images datasets. The experimental results demonstrate the effectiveness
and efficiency of the proposed algorithms and confirm our theoretical analysis. We are
currently investigating how the solutions of rASO depend on the parameters involved in the
formulation as well as their optimal value estimation. The rASO formulation shares some
similarity with the multitask learning formulation using the trace norm regularization. We
plan to examine their relationship in the future. We also plan to apply rASO to applications
such as the automatic processing of biomedical texts for tagging the gene mentions [10].
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Sensitivity study of the parameter η in rASO: We study the relationship between the
parameter η and the corresponding Micro F1 and Micro F1 obtained in rASO.
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Fig. 2.
Convergence plots of APG (left plot) and BCD (right plot) for solving rASO with the hinge
loss: We study the relationship between the objective value and the iteration number for
attaining such a value.
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Fig. 3.
Illustration of image groups (from two stage ranges) and their associated controlled
vocabulary terms.
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TABLE 1

Performance Comparison of the Competing Algorithms on Six Yahoo Datasets

Data
(n, d, m)

Arts
(7441, 17973, 19)

Business
(9968, 16621, 17)

Computers
(12317, 25259, 23)

Education
(11817, 20782, 14)

Entertainment
(12691, 27435, 14)

Health
(9209, 18430, 14)

Macro F1

SVM 33.93 ± 1.07 44.43 ± 0.56 30.09 ± 1.10 39.00 ± 2.42 46.88 ± 0.47 56.14 ± 2.58

ASO 37.93 ± 1.57 44.64 ± 0.40 28.33 ± 0.67 36.93 ± 1.98 47.46 ± 0.37 57.63 ± 0.74

rASO 37.35 ± 0.60 45.79 ± 0.69 33.35 ± 0.84 41.28 ± 0.90 49.66 ± 0.97 61.16 ± 1.70

cMTFL 37.06 ± 0.75 40.90 ± 1.66 32.50 ± 0.90 40.17 ± 0.55 50.94 ± 1.06 58.66 ± 2.22

iSpLr 36.19 ± 1.12 43.17 ± 1.95 32.14 ± 1.35 39.97 ± 1.24 48.12 ± 0.92 59.41 ± 1.08

Micro F1

SVM 43.99 ± 1.23 77.51 ± 0.51 55.36 ± 0.63 48.03 ± 1.56 55.69 ± 2.45 61.40 ± 4.76

ASO 43.96 ± 0.03 78.08 ± 0.25 54.43 ± 0.40 46.97 ± 0.37 57.71 ± 0.33 65.90 ± 0.39

rASO 47.69 ± 0.47 77.44 ± 0.94 54.54 ± 1.07 49.50 ± 0.57 57.90 ± 1.38 68.19 ± 1.01

cMTFL 46.31 ± 0.32 69.00 ± 1.01 49.38 ± 4.22 48.56 ± 0.40 58.25 ± 0.76 66.83 ± 1.72

iSpLr 46.25 ± 1.09 75.42 ± 1.12 52.27 ±1.22 47.63 ± 0.95 57.83 ±1.56 67.21 ± 0.97

The statistics of the datasets are presented in the second row, where n, d, and m denote sample size, feature dimensionality, and task numbers,
respectively. In ASO and rASO, the shared feature dimensionality h is set as ⌊(m − 1)/5⌋ × 5.
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TABLE 2

Performance Comparison of the Competing Algorithms on Five Yahoo Datasets

Data Set
(n, d,m)

Recreation
(12797, 25095, 18)

Reference
(7929, 26397, 15)

Science
(6345, 24002, 22)

Social
(11914, 32492, 21)

Society
(14507, 29189, 21)

Macro F1

SVM 43.01 ± 1.44 39.37 ± 1.15 41.80 ± 1.45 35.87 ± 0.79 30.68 ± 0.94

ASO 43.63 ± 1.29 37.46 ± 0.27 39.26 ± 0.82 35.29 ± 0.67 29.42 ± 0.30

rASO 47.12 ± 0.73 42.11 ± 0.60 45.46 ± 0.50 39.30 ± 1.28 34.84 ± 1.05

cMTFL 46.13 ± 0.58 43.25 ± 0.81 42.52 ± 0.59 38.94 ± 1.88 33.79 ± 1.43

iSpLr 46.92 ± 1.27 43.06 ± 0.76 43.64 ± 0.73 38.31 ± 1.24 33.70 ± 1.19

Micro F1

SVM 49.15 ± 2.32 55.11 ± 3.16 49.27 ± 4.64 63.05 ± 2.45 40.07 ± 3.42

ASO 50.68 ± 0.18 57.72 ± 0.51 49.05 ± 0.57 62.77 ± 3.59 46.13 ± 2.33

rASO 53.34 ± 0.90 59.39 ± 0.39 53.32 ± 0.45 66.04 ± 0.62 49.27 ± 0.55

cMTFL 52.52 ± 0.92 58.49 ± 0.51 50.60 ± 0.76 65.60 ± 0.63 46.46 ± 0.87

iSpLr 52.33 ± 1.41 58.82 ± 0.71 52.37 ± 0.91 65.23 ± 1.07 47.22 ± 0.92

Explanation can be found in Table 1.
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TABLE 3

Computation Time (in Seconds) Comparison for APG and BCD

Sample Size TimeAPG TimeBCD TimeAPG : TimeBCD

1000 43.96 17.86 2.4614

2000 118.69 140.64 0.8439

3000 280.69 685.18 0.4097

4000 480.79 1318.01 0.3648

We fix the feature dimensionality at 17,973 and vary the sample size in the set {1, 000, 2, 000, 3, 000, 4, 000}.
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TABLE 4

Computation Time (in Seconds) Comparison for APG and BCD

Dimension TimeAPG TimeBCD TimeAPG : TimeBCD

100 29.59 40.36 0.7332

200 60.90 67.28 0.9052

300 152.71 70.23 2.1744

400 212.80 85.47 2.4898

We fix the sample size at 3,000 and vary the dimensionality in the set {100, 200, 300, 400}.
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TABLE 5

Comparison of the Optimal Objective Values of F0 in (3) and F2 in (8) with Different Values of η

η = β/α 1000 100 10 1 0.1 0.01 0.001

1 + 1/η 1.001 1.01 1.1 2 11 101 1001

(σh/ση+1 1.23 1.25 1.34 1.75 3.07 13.79 89.49

OBJF0 52.78 52.65 51.37 40.73 22.15 5.95 0.69

OBJF2 52.78 52.65 51.37 40.71 20.73 4.11 0.41

We fix α = 1 and vary β in the range [103, 102, 101, 100, 10−1, 10−2, 10−3].
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TABLE 6

Performance Comparison of Competing Algorithms on the Gene Expression Pattern Images Annotation (10
CV Terms) in Terms of Macro F1 (Top Section) and Micro F1 (Bottom Section)

Stage Range
(n, d, m)

4 ~ 6
(925, 2000, 10)

7 ~8
(797, 2000, 10)

9 ~ 10
(919, 2000, 10)

11 ~ 12
(1622, 2000, 10)

13 ~ 16
(2228, 2000, 20)

Macro F1

SVM 40.88 ± 0.49 46.73 ± 0.51 50.28 ± 0.65 59.82 ± 0.83 59.62 ± 0.94

ASO 43.29 ± 0.46 48.82 ± 0.62 51.55 ± 0.90 62.15 ± 0.16 60.11 ± 0.32

rASO 44.54 ± 0.79 50.59 ± 0.23 54.16 ± 0.75 63.43 ± 0.79 60.90 ± 0.77

cMTFL 42.21 ± 0.69 48.17 ± 0.65 52.22 ± 0.35 62.17 ± 1.03 60.12 ± 0.27

iSpLr 43.98 ± 1.23 49.19 ± 0.82 53.26 ± 1.19 62.73 ± 0.74 59.09 ± 1.02

Micro F1

SVM 42.05 ± 0.61 60.09 ± 0.78 60.57 ± 0.75 67.08 ± 0.99 65.95 ± 0.80

ASO 45.89 ± 0.33 61.15 ± 0.57 63.01 ± 0.52 67.91 ± 0.51 66.53 ± 0.25

rASO 47.34 ± 0.18 62.77 ± 0.61 64.37 ± 0.19 70.61 ± 1.21 67.13 ± 1.01

cMTFL 46.07 ± 0.92 60.35 ± 0.31 63.22 ± 0.67 68.43 ± 0.25 67.35 ± 0.59

iSpLr 46.91 ± 1.11 60.82 ± 1.07 63.34 ± 0.87 68.81 ± 0.95 66.90 ± 0.72

In the second row, n, d, and m denote sample size, dimension, and task numbers, respectively. In ASO and rASO, the shared feature
dimensionality h is set as ⌊(m − 1)/5⌋ × 5.
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TABLE 7

Performance Comparison of the Competing Algorithms on the Gene Expression Pattern Images Annotation
(20 CV Terms)

Stage Range (n, d, m) 4 ~ 6(1023, 2000,
20) 7 ~ 8(827, 2000, 20) 9 ~ 10(1015, 2000,

20)
11 ~ 12(1940, 2000,

20)
13 ~ 16(2476, 2000,

20)

Macro F1

SVM 29.47 ± 0.46 28.85 ± 0.62 30.03 ± 1.68 41.63 ± 0.58 40.80 ± 0.66

ASO 30.33 ± 0.91 30.01 ± 0.67 32.22 ± 0.79 41.77 ± 1.43 40.98 ± 0.76

rASO 31.01 ± 0.75 32.27 ± 0.91 35.01 ± 1.12 45.12 ± 0.21 43.81 ± 0.46

cMTFL 30.66 ± 0.24 30.84 ± 0.39 34.13 ± 0.87 44.73 ± 0.49 43.13 ± 0.65

iSpLr 30.08 ± 0.91 31.34 ± 1.01 34.89 ± 0.72 45.07 ± 0.77 42.90 ± 1.03

Micro F1

SVM 39.24 ± 0.82 55.40 ± 0.15 55.75 ± 0.70 58.33 ± 0.53 53.61 ± 0.36

ASO 41.11 ± 0.32 57.72 ± 0.51 53.29 ± 0.21 61.77 ± 1.09 53.45 ± 0.92

rASO 41.21 ± 1.24 59.34 ± 0.39 59.81 ± 0.33 63.25 ± 0.71 54.93 ± 0.78

cMTFL 40.79 ± 0.31 58.39 ± 1.11 58.12 ± 0.84 61.22 ± 0.21 54.60 ± 0.62

iSpLr 40.24 ± 0.69 58.87 ± 0.73 58.75 ± 0.81 62.90 ± 0.85 53.78 ± 0.87
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