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Locally Orderless Registration
Sune Darkner and Jon Sporring

Abstract—This paper presents a unifying approach for cal-
culating a wide range of popular, but seemingly very differ-
ent, similarity measures. Our domain is the registration of n-
dimensional images sampled on a regular grid, and our approach
is well suited for gradient-based optimization algorithms. Our
approach is based on local intensity histograms and built upon
the technique of Locally Orderless Images. Histograms by Locally
Orderless Images are well posed and offer explicit control over
the 3 inherent and unavoidable scales: the spatial resolution,
intensity levels, and spatial extent of local histograms. Through
Locally Orderless Images, we offer new insight into the rela-
tions between these scales. We demonstrate our unification by
developing a Locally Orderless Registration algorithm for two
quite different similarity measures, namely, Normalized Mutual
Information and Sum of Squared Differences, and we compare
these variations both theoretically, and empirically. Finally, using
our algorithm, we explain the empirically observed differences
between two popular joint density estimation techniques used in
registration: Parzen Windows and Generalized Partial Volume.

Index Terms—Similarity Measure, Registration, Normalized
Mutual Information, Sum of Squared Differences, Density Esti-
mation, Local Histogram, Scale-Space, Locally Orderless Images.

I. INTRODUCTION

IMAGE similarity measures are crucial components in im-

age registration, and Mutual Information (MI) [1], [2] and

Normalized Mutual Information (NMI) [3] are considered state

of the art for image registration. MI and NMI are particularly

useful for registering Magnetic Resonance Images (MRI) to

MRI, and for multi-modal image registration in general. MI

and NMI are entropy-based measures and hence rely on prob-

ability distributions. Probability distributions are most often

approximated by discrete histograms, which pose a challenge

to gradient-based optimization schemes. The most common

estimation techniques are: the Parzen Window (PW) [2] and

the Generalized Partial Volume (GPV) [4], [5]. Empirical

comparisons have previously been presented [6], and, recently,

we investigated their theoretical connection [7].

In this paper, we present Locally Orderless Registration

(LOR). LOR is a framework for performing N -dimensional

image registration, and it includes a common framework for a

wide range of image similarity measures such as Correlation

Ratio, MI, NMI, Huber Norm etc.. The framework is based

on local histograms, and we use the technique of Locally

Orderless Images (LOI) [8], [9], which makes the 3 natural and

unavoidable scale parameters available for image registration,

namely: the measurement scale – the effective resolution of

the initial image; the intensity or value scale - the effective
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number of bins in the histogram, and the integration scale -

the effective local spatial extent of local histograms. These 3

scales are implemented by smoothing with Gaussian kernels,

which imposes what may be the simplest analytical structure

on the local histograms. Nevertheless, these scales interact in

a nontrivial manner, and we explore their relation theoretically

by the local intensity moments, as well as on a simple local

image model. We perform extensive empirical investigations

on the influence of the scales on the density estimates, as well

as NMI, through GPV and PW. To enhance the interpretability

and the usability of our results, we summarize and extend our

earlier theoretical work [7], where LOR is used to compare

PW and GPV, and we demonstrate, both theoretically and

empirically, that GPV is asymmetric, and therefore the less-

preferred choice of the two. Finally, we present a unifying

algorithm for PW and GPV for various measures, in addition

to analytical and empirical investigations of its computational

complexity. Timing results on our algorithm show that NMI

is almost as fast as Sum of Squared Differences (SSD), and

that (non-massively) multi-threaded implementation has only

13% overhead when compared to the theoretical computational

speed.

A. Previous work

The use of MI for image registration was originally pro-

posed by [1], [2]. An extensive overview was given in [10].

NMI was introduced as a more robust alternative, especially

designed for multi-modal image registration [3]. The first im-

plementations relied on Powell’s method [4], hill climbing [3],

and similar methods without gradients, which were accurate

but slow. A GPU speed-up was suggested in [11]. Today, state-

of-the-art implementations are gradient-based methods and

group in two algorithm types. The first type is based on PW [2]

and relies on the fact that the marginal and joint histograms

are made continuous by using different kernels, e.g., Gaussian

or B-splines [12]. The second type is based on GPV, where the

distribution is sampled from the image directly [4]. Analytical

derivatives of this method were presented in [13] and a gen-

eralization using B-splines was presented in [5]. A variational

method relating to LOI [9] for MI (and other measures) was

presented in [14]. GPV and PW were compared numerically

in [6], concluding that PW is precise and GPV has a larger

convergence radius. MI and NMI are notorious for their local

minima and difficulty of implementation, and the choice of

interpolation scheme greatly influences the smoothness of

the objective function. Some investigations into this can be

found in [15], [16]. An alternative approach is the Conditional

Mutual Information [17]. In [7] we investigated PW and

GPV for NMI, using differential calculus in a thorough step-

by-step presentation. The derivations were an alternative to
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the variational approach in [14], and our approach revealed

much faster algorithms, which allowed for a direct comparison

between PW and GPV. [14] allowed for a local variant of

MI, which was implemented in [18]. Furthermore, a density

estimation alternative through a computational complex esti-

mation scheme was suggested in [19], but is, however, unsuited

for fast gradient-based optimization schemes.

The remainder of this article is organized as follows: in

Section II the general registration framework is described. In

Section III we revisit LOI as a basis for analyzing relations

between scales for local histograms and discuss both GPV

and PW. In Section IV we provide a theoretical comparison

between GPV and PW, and in Section V we augment the

theoretical comparison with empirical demonstrations of the

asymmetry of GPV. In Section VI, we discuss empirical

relations between scales. In Section VII we present a fast

algorithm for computing PW and GPV for a large range of

similarity measures, and in Section VIII we summarize our

findings and conclude on our work.

II. IMAGE REGISTRATION

Image registration is the process of transforming one image

Ĩ : Ω → Γ, where Ω ⊆ R
N and Γ ⊆ R, w.r.t. a reference

image J : Ω → Γ such that some functional F(Ĩ , J) is

minimized. We consider the diffeomorphic transformation of

M parameters, φ : Ω × R
M → Ω, and for brevity we write

I = Ĩ ◦ φ. We consider functionals, F , of the form,

F = M(I, J) + S(φ), (1)

where M is a (dis-)similarity measure and S is a regularization

term. Typical forms of S are elasticity [20], fluid deforma-

tions [21], and the recent Kernel Bundle LDDMM [22]. This

article focus solely on M.

A. The Similarity Measure

Many similarity measures are of the form,

MΩ =

∫
Ω

F
(
x, I(x), J(x)

)
dx, (2)

where the loss-function, F , is integrated over the spatial

domain. Popular choices of loss-functions are monomials,

F (I(x), J((x))) = (I(x)−J(x))q for q > 0. Other similarity

measures have the form of,

MΓ =

∫
Γ2

F
(
x, i, j, hI,J(i, j)

)
di dj, (3)

where hI,J : Γ2 → R+ is the joint histogram of image I and

J with intensity variables i and j. A popular choice is Mutual

Information (MI) [23], MMI = HI + HJ − HI,J , where H
is the (joint) entropy, in which case F = p(i, j) ln p(i, j) −
p(i) ln p(i)− p(j) ln p(j). The natural logarithm is often used

for convenience, and the distribution p is the normalized (joint)

histogram p(i, j) = h(i, j)/
∫
Γ2 h(i, j) di dj, such that p(i) =∫

Γ
p(i, j) dj, and p(j) =

∫
Γ
p(i, j) di.

A seemingly major difference between (2) and (3) is the

integration domain. However, we will show that by reordering

the integral by the distribution of I and J values, we may

rewrite (2) in terms of local histograms h(x, i, j). This has

several advantages: 1) it creates a common form for both

classes of similarity measures; 2) the histogram perspective

makes the 3 fundamental scales of images – measure, intensity,

and integration – available for similarity measures on the form

of (2); 3) the loss-function F for q-norms and similar becomes

linear w.r.t. the transformation parameters; and 4) with the use

of smooth kernels, the derivatives w.r.t. space and intensity

are trivial, and thus are readily available for gradient descent

schemes. Nevertheless, there is a minor disadvantage: in the

limit of infinitely closely sampled images, the histograms

have poles corresponding to image values, where the spatial

gradient of the image is zero. This is a theoretical problem for

similarity measures on the form of (3), which our approach

carries over to measures on the form of (2). However, in

practice this is of little importance, since we consider generic

images, i.e., images whose structure is stable w.r.t. negligible

noise, and for such images, the set of areas with zero gradients

are singular points with measure zero, i.e., constant patches are

non-generic in real images. We will assume that the poles in

the histograms likewise have measure zero, which is supported

by our observations, but which we leave to be proven in

subsequent work.

Our approach for calculating similarity measures for a wide

range of loss-functions, F , linear as well as non-linear, has the

following form:

M =

∫
Ω×Γ2

F
(
x, i, j, hI,J(x, i, j)

)
dx di dj. (4)

Most functionals in the literature are position-independent,

which will be our focus as well. Henceforth, we will con-

centrate on two specializations of (4): Mlin or Mnlin. The

similarity measure Mlin uses the position-independent, linear

loss-functions,

Mlin =

∫
Γ2

F (i, j)hI,J(i, j) di dj. (5)

This measure includes (2) with any position independent loss-

function, such as monomials; it is linear w.r.t. F and h, and

the transformation parameters only influence h. To understand

the relation between (2) and (5), consider
∫
I2(x) dx. By

introducing a discretization of intensities, i1 < i2 < i3 . . . , we

approximate the integral as
∑

n i
2
nμn, where μn is the area of

{x|in ≤ I(x) < in+1}. In the limit of Δn = in+1 − in → 0,

this area is equal to the integral of 1/|∇I| along the isophote

in in its arc-length parameter, but more importantly, it is

well approximated by hnΔn, where hn is the length of the

isophote in. Hence, we take the limit and write
∫
I2(x) dx �∑

n i
2
nμn � ∫

i2h(i) di.
The similarity measure, Mnlin, uses the position-

independent, non-linear loss-function,

Mnlin =

∫
Γ2

F
(
hI,J(i, j)

)
di dj, (6)

where F now denotes some non-linear functional, and this

form includes MI. As will be shown later, the added com-

plexity from linear to non-linear measures has little influence

on computation time.
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In this paper we will consider Normalized Mutual Infor-

mation (NMI) [3], which has proven to be very powerful for

the registration of medical images in general, and the Sum

of Squared Differences (SSD), as a representative of a simple

similarity measure.

III. DENSITY ESTIMATION

A common algorithm for estimating the histogram of an

image is counting: given an image I , a set of isophotes, I(x) =
in, m > n ⇒ im > in, bin-widths Δin > 0, and an indicator

function,

Pn(i) =

{
1, if in ≤ i < in +Δin,

0, otherwise.
(7)

The histogram may then be found as,

h(n) =

∫
Ω

Pn(I(x)) dx, (8)

or as a sum using a suitable discretization of Ω. The bin-widths

act as scale parameters, in the sense that increasing Δin results

in a histogram with less detail. This can be stated precisely:

select a discrete set of sample points and bin-widths such that

Δin = in+1−in, and consider 2 neighboring histogram values,

h(n) and h(n+1). In this case, the sum, h′(n) = h(n)+h(n+
1), is equivalent to evaluating the integral with a modified

indicator function,

P ′
n(i) =

{
1, if in ≤ i < in+1 +Δin+1 = in +Δi′n
0, otherwise,

(9)

where Δi′n = Δin + Δin+1. By induction it becomes clear

that filtering h(n) with a Boxcar function (0-order b-spline)

of height 1 and width m is equivalent to increasing the extent

of the indicator function as Δi′n =
∑m−1

k=0 Δin+k. Thus,

increasing Δi is equivalent to smoothing the histogram with

a Boxcar function.

In general, the interesting scales of i are not provided by the

data, and therefore the only option is to study all scales, that

is, all discretizations of intensity. Along with the scale-space

on the spatial parameter x, this leads to a scale-space theory

for space and intensity known as Imprecision Space [8]. In

the general case, histograms are local. Since the scale of the

region of interest is not generally given, we are also required

to study all scales. This scale we denote the integration scale.

The Boxcar function is often not the optimal filter for many

data analysis applications, since its Fourier transformation

contains zero crossings. A better, possibly most conservative,

alternative is the Gaussian filter, which leads to the technique

of Locally Orderless Images (LOI) [9] to be reviewed in the

following section.

A. Estimating local histograms

According to LOI, a local histogram is obtained as follows:

First, a (possibly deformed) image I is smoothed with the

kernel K, a soft isophote i is extracted using kernel P , and

(a)

0.46 0.48 0.5 0.52 0.54
50

60

70

80

Histogram of Original Image

(b)

Fig. 1. (a) A random image and (b) its histogram.

finally the isophote mass is calculated in a neighborhood of a

point x with kernel W . Formally,

hI(i,x,Φ, α, β, σ) = P (I(x,Φ, σ)− i, β) ∗W (x, α), (10)

I(x,Φ, σ) = I(x,Φ) ∗K(x, σ), (11)

where P : R × R+ → [0, 1], is an intensity measurement

of scale β and is often called the Parzen Window (PW),

K : R
N × R+ → R+ is a spatial measurement kernel of

scale σ, W : RN × R+ → R+ is an integration window of

integration scale α, · ∗ · is the convolution operator taken w.r.t.

the variable x, and Φ ∈ R
M denotes the parameters for the

transformation. We will further assume that
∫
K(x, σ) dx =∫

W (x, α) dx = 1. The histogram hJ is defined in a sim-

ilar way, independently of Φ. In [9] it is proposed to use

P (i, β) = e−i2/(2β2), K(x, σ) = e−xTx/(2σ2)/(2πσ2)N/2,

and W (x, α) = e−xTx/(2α2)/(2πα2)N/2, which implies the

structure of the heat diffusion in all 3 scale parameters and

is considered the simplest structure imposable for studying

data by all scales. In typical registration scenarios, such as

registering CT and MR images, intensity and spatial scale

are of quite different natures. The spatial scales can often

be related to a common frame of reference, but this is often

difficult for intensity scales.

In the following we will give a tutorial on how local

histograms are calculated in a step by step manner, and provide

intuition on the 3 scale parameters. Consider a random image

and its histogram as calculated by the Matlab hist function,

shown in Fig. 1. In terms of local histogram parameters, this

corresponds to: α = ∞, σ = 0, and β = 1/
√
12, the standard

deviation of a Boxcar function of width 1. To estimate a local

histogram we go through 3 steps: the first step is to smooth

the original image with kernel K. The kernel K controls the

image scale, σ. This is illustrated in Fig. 2 and corresponds

to α = ∞, σ > 0, and β = Δi/
√
12, where Δi is the

original intensity scale. Since smoothing an image implies

a monotonic contraction of image intensity around the mean

value, we expect that the histogram is likewise contracted,

when increasing σ. This is confirmed by the experiment

illustrated in Fig. 2(b). The second step is to calculate the

soft isophote i with kernel P : The kernel P controls intensity

scale, β. This is illustrated in Fig. 3 and corresponds to α = 0,

σ > 0, and β > 0. Fig. 3(b) and 3(c) show the spread of 2 fixed

isophotes for the chosen P . For a fixed position x, the image

contains the value of the local histogram at x. Hence, the stack

of images for all isophotes gives all the local histograms. The
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(a) (b) (c)

Fig. 3. Measuring isophotes in Fig. 2. Images (a) 3 isophote lines as produced by Matlab’s contour function; (b) and (c) the yellow and red isophotes as
extracted with a kernel P using i = 0.48 and i = 0.50 and in both instances β = 0.005.

(a)

0.46 0.48 0.5 0.52 0.54

50

100

150

Histogram of Smoothed Image

(b)

Fig. 2. (a) The image in Fig. 1(a), smoothed with σ = 4, and (b) its
histogram.

spread of a soft isophote depends on the image geometry at

I(x, σ) = i: The spread will be large, where the gradient

magnitude is small, and small, where the gradient magnitude

is large. In general the width β acts as the bin-width in the

histogram, and varying β corresponds to varying the degree

of smoothing of the histogram. The last step is to calculate

the local isophote area near x with kernel W : The kernel

W controls the locality of the local histogram, α, illustrated

in Fig. 4. Note that the histograms change quite significantly

depending on the position of the kernel W .

B. Some relations between scales

The relation between α and σ may be stated in terms of the

histogram’s raw and central moments. The raw and central

moments of order n ≥ 0 of the histogram h at position x are

given as,

μ′
n =

∫ ∞

−∞
inh(i,x)/k(x) di, (12)

μn =

∫ ∞

−∞
(i− μ(x))nh(i,x)/k(x) di, (13)

where k(x) =
∫∞
−∞ h(i,x) di and μ(x) = μ′

1 is the mean

value. In the following, we will evaluate these moments. We

will use L = I ∗K as a convenient shorthand

• Normalization constant k: Convolution is linear, thus

k(x) =
∫∞
−∞ P (L(x)− i) ∗W (x) di =

( ∫∞
−∞ P (L(x)−

i) di
) ∗ W (x). The value L(x) is constant w.r.t. the

integration in i, and since the integral in i is over the

entire domain, we conclude that it is independent of

(a)

0.46 0.48 0.5 0.52 0.54

1

2

3

4

5

6

Local Histogram (x=(16,16), alpha=8)

(b)

(c)

0.46 0.48 0.5 0.52 0.54

2

4

6

8

Local Histogram (x=(32,32), alpha=8)

(d)

Fig. 4. Examples of local histograms generated by Locally Orderless Images
in neighbourhoods as indicated by the red overlays.

finite translations L(x), and hence, independent of L,

and therefore, of x. Finally, since W has unit integral,

we conclude that

k =

∫ ∞

−∞
P (i) di (14)

independently of x. In the case of a Gaussian Parzen

window with variance β2, then kGauss = β
√
2π.

• Mean value μ: If the Parzen window, P , is centered at

zero, i.e.,
∫
P (i)i di = 0, then P (L(x)− i) is centered at

L(x), i.e.,
∫
P (L(x)−i)i di = L(x)

∫
P (i) di = L(x)k.

Using the linearity of convolution with W , and expanding

L, we find that

μ =

∫ ∞

−∞
ih(i,x)/k di = k−1L(x) ∗W (x) (15)

= k−1I(x) ∗K(x) ∗W (x) (16)

= k−1I(x) ∗W ′(x), (17)
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where W ′(x) = K(x) ∗ W (x). In case of Gaussian K
of variance σ2 and W of variance α2, then W ′(x) is a

Gaussian of variance σ2 + α2.

• Raw moments μ′
n: Expanding h and using the linearity

of convolution, we find that the raw moments may be

written as,

μ′
n =

∫ ∞

−∞
inP (L(x)− i)/k ∗W (x) di (18)

=

(∫ ∞

−∞
inP (L(x)− i)/k di

)
∗W (x) (19)

= η′n ∗W (x), (20)

where η′n is the n’th raw moment of a random variable

distributed as P/k and with mean value L. A useful

relation between the scales σ and α may be derived

by considering the relation between the raw and central

moments of P/k: Consider the general case of the

raw moments of a given statistical variable X , with

mean E(X) = 0, and E as the expectation opera-

tor. If we construct another variable Y = X + ȳ for

some constant ȳ, then the n’th raw moment of Y is

E(Y n) = E
(
(X + ȳ)n

)
= E

(∑n
j=0

(
n
j

)
Xj ȳn−j

)
=∑n

j=0

(
n
j

)
E
(
Xj

)
ȳn−j , where E(Xj) are the central mo-

ments of Y . In our case, we may consider P/k the

distribution of a random variable with raw and central

moments η′n and ηn, which for the above reasons are

related as,

η′n =
n∑

j=0

(
n

j

)
ηj(η

′
1)

n−j . (21)

For Parzen windows centered at zero, we have that η′1 =
L(x), and ηj is independent of L. Thus we conclude,

that for Parzen windows centered at zero, μ′
n is a linear

combination of the terms L(x)n−j ∗W (x), j = 0 . . . n.

Hence, the relation between σ and α is non-linear for

n > 1, and for Gaussian K and W the relation behaves

locally in L-values as a pseudo-linear scale-space [24].

Finally, for a Gaussian Parzen window with variance β2,

the n’th central moment is (n− 1)!!βn for even n and 0

otherwise, where n!! = n(n− 2)(n− 4) . . . is the double

factorial function. Examples of raw moments, when using

a Gaussian as the Parzen window, are given in Table I.

• Central moments μn: The central moments of h may be

constructed from its raw moments, since

μn =
n∑

j=0

(−1)n−j

(
n

j

)
μ′
jμ

n−j . (22)

Examples of central moments, when using a Gaussian as

Parzen window, are given in Table I.

To gain intuition on the relation between β and α, consider

an image, which in the neighborhood of the point x0, is linear

with gradient ∇I(x). The image in the neighborhood of x0 is

then given as

I(x) � I(x0) + (x− x0) · ∇I(x0), (23)

and the isophotes near I(x0) are all lines perpendicular to the

gradient. The image in the neighborhood around x0 is invariant

w.r.t. smoothing with symmetric and normalized kernels, hence

σ has no influence on the local histograms for small values of

σ. However, the interplay between β and α is nontrivial: the

soft isophotes are constant in the perpendicular direction of

the gradient. Hence, we may consider this a one-dimensional

problem along the axis of the gradient x, for instance, and

I(x) � ax+b, where a = |∇I(x0)|, ax = (x−x0) ·∇I(x0),
and b = I(x0). The soft isophote b using a Gaussian P
is P (ax, β) = P (x, β/a), and convolution with a Gaussian

integration kernel W (x, α) yields another Gaussian

P (ax, β) ∗W (x, α) = P (x,
√

β2/a2 + α2), (24)

due to the semi-group properties of Gaussian convolution.

In general, varying β and varying σ yields different results,

since the width of a soft isophote in a point is proportional to

the gradient in the point, while the extent of the local average

is irrespective of the gradient in the point. In addition, near

the symmetry set [25], the soft isophote will exhibit ridge-like

behavior.

C. Estimating local densities

The local density distributions are obtained by normalizing

to unity,

pI(i|x,Φ, α, β, σ) � hI(i,x,Φ, α, β, σ)∫
Γ
hI(j,x,Φ, α, β, σ)dj

, (25)

pI(i|Φ, α, β, σ) =
1

|Ω|
∫
Ω

pI(i|x,Φ, α, β, σ) dx, (26)

and where we have assumed (conditional) independence

and uniformity, such that pI(i,x|Φ, α, β, σ) =
pI(i|x,Φ, α, β, σ)/|Ω|. The density pJ is defined in a

similar manner. As in [14], we extend the concept to the joint

distributions as follows:

hI,J(i, j,x,Φ, α, β, σ) =

(P (I(x,Φ, σ)− i, β)P (J(x, σ)− j, β)) ∗W (x, α), (27)

pI,J(i, j|x,Φ, α, β, σ) � hI,J(i, j,Φ,x, α, β, σ)∫
Γ2 hI,J(k, l,x, α, β, σ) dk dl

,

(28)

pI,J(i, j|Φ, α, β, σ) =
1

|Ω|
∫
Ω

pI,J(i, j|Φ,x, α, β, σ) dx,

(29)

where we also have assumed (conditional) independence

and uniformity such that pI,J(i, j,x|Φ, α, β, σ) =
pI,J(i, j|x,Φ, α, β, σ)/|Ω|.

IV. THEORETICAL COMPARISON OF PW AND GPV

DENSITY ESTIMATION

LOI is the cornerstone for understanding the difference

between the PW and GPV density estimators. In the following

we will show, how these methods are related to our approach

and to each other. The histogram update for the two schemes

is illustrated in Fig. 5. We will now briefly introduce the two

density estimation techniques.

The PW approach to estimating the joint density was

originally proposed along with MI in [2], and is often used in
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n ηn μ′
n μn

0 1 1 1
1 0 L(x) ∗W (x) 0

2 β2
(
L(x)2 + β2

) ∗W (x) −(μ′
1)

2 + μ′
2

3 0
(
L(x)3 + 3β2L(x)

) ∗W (x) 2(μ′
1)

3 − 3μ′
1μ

′
2 + μ′

3
4 3β4

(
L(x)4 + 6β2L(x)2 + 3β4

) ∗W (x) −3(μ′
1)

4 + 6(μ′
1)

2μ′
2 − 4μ′

1μ
′
3 + μ′

4
5 0

(
L(x)5 + 10β2L(x)3 + 15β4L(x)

) ∗W (x) 4(μ′
1)

5 − 10(μ′
1)

3μ′
2 + 10(μ′

1)
2μ′

3 − 5μ′
1μ

′
4 + μ′

5

TABLE I
EXAMPLES OF RAW AND CENTRAL MOMENTS μ′

n AND μn OF ORDER n, WHEN THE PARZEN WINDOW HAS CENTRAL MOMENTS ηj , j = 0 . . . n, AS DOES

A GAUSSIAN OF ZERO MEAN AND VARIANCE β2 .

Fig. 5. The histogram update of the Parzen Window (PW) and the partial
volume (PV) for a 2-dimensional example. The top left shows two images,
where one has been transformed w.r.t. the other. Considering the white-spot:
The bottom left shows the corresponding PW update, the top right shows the
weight calculations for GPV, which results in the 4 updates illustrated in the
bottom right.

the literature. Given the transformation, PW estimates the joint

intensity histogram by summing the number of co-occurrences

of intensities over space,

hPW(i, j) =
1

N

N∑
n=1

P

([
I(xn)
J(xn)

]
−
[
i
j

])
(30)

where P is a distribution, typically of the Gaussian type. This

is illustrated in the figure as the step from the upper to the

lower left. Note that this requires an interpolation; typically

grid points of J(x) are used, and values of Ĩ(x̃) are found by

interpolation, where x̃ = φ−1(x).

Shortly after the introduction of PW, Partial Volume was

introduced in [4] and extended to GPV in [5]. The algorithm

is most easily explained by an example in 2-dimensions: An

expanded view of the top right graph in Fig. 5 is given

in Fig. 6. In the figure there are shown 9 grid points in

J’s coordinate system, xi,j , i, j ∈ {1, 2, 3}. Assume that

the mapping is such that 4 neighboring grid points of I
happen to land between grid points of J , as depicted by

the circles, φ(x̃m,n), m, n ∈ {1, 2}. In that case, each

mapped point defines 4 rectangles, for example the areas

w11
r,s r, s ∈ {1, 2}. Now consider the mapping φ(x̃11). For

Fig. 6. 2-dimensional example of GPV variables: xi,j , i, j ∈ {1, 2, 3}
are neighboring grid points of J , φ(x̃m,n), m, n ∈ {1, 2} are assumed
mappings of neighboring grid points of I , and w11

r,s r, s ∈ {1, 2} are areas
defined by the mapping φ.

this point the histogram is updated as,

h(Ĩ(x̃11), J(x11)) += w11
22, (31)

h(Ĩ(x̃11), J(x12)) += w11
21, (32)

h(Ĩ(x̃11), J(x21)) += w11
12, (33)

h(Ĩ(x̃11), J(x22)) += w11
11, (34)

which implies that the point in the histogram corresponding

to the pair x and φ(x̃) that are closest, gets the highest incre-

ment. The rhs. corresponds to the updating of the histogram

along a line, as depicted on the bottom right of Fig. 5.

A variant of the algorithm is obtained if we switch view

point: Each grid point J(x) is included in a number of

updates in our example, and here we may instead consider

the summation for a fixed grid point in J , e.g., the center

point x22 in Fig. 6. The update for this becomes,

h(Ĩ(x̃11), J(x22)) += w11
11 (35)

h(Ĩ(x̃12), J(x22)) += w21
21 (36)

h(Ĩ(x̃22), J(x22)) += w22
22 (37)

h(Ĩ(x̃21), J(x22)) += w12
12. (38)

GPV extends Partial volume by replacing the areas, w, with

the values of a smoothing kernel, W , such that the updates in

our example are performed as,

h(Ĩ(x̃mn), J(x22)) += W (φ(x̃mn)). (39)
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In general, this is slightly different from the original GPV

algorithm, since cases, such as those where 4 points φ(x̃)
are mapped into the same square, are handled differently.

However, we consider the two algorithms to be similar ap-

proximations of histogram updates as the intersection between

isophotes from J and soft isophotes from Ĩ .

A. The PW is a special case of Locally Orderless Images

We will now show that PW is a special case of LOI.

Consider (10)–(11) and let α → ∞. In that case, the window

hI simplifies as,

hI(i,x,Φ, α, β, σ) → const.

∫
Ω

P (I(ψ,Φ, σ)− i, β) dψ,

(40)

pI(i|Φ, α, β, σ) →
∫
Ω
P (I(ψ,Φ, σ)− i, β) dψ∫

Γ

∫
Ω
P (I(ψ,Φ, σ)− j, β) dψ dj

.

(41)

Choosing

P (i, β) = e−i2/(2β2), (42)

we find that∫
Γ

∫
Ω

P (I(ψ,Φ, σ)− j, β) dψ dj = |Ω|
√

2πβ2, (43)

and

pI(i|Φ, α, β, σ) → 1

|Ω|
√
2πβ2

∫
Ω

e−(I(x,Φ,σ)−i)2/(2β2) dx.

(44)

Likewise, we have

pI,J(i, j|Φ, α, β, σ) →∫
Ω
e−(I(x,Φ,σ)−i)2+(J(x,σ)−j)2/(2β2) dx

|Ω|2πβ2
. (45)

This is precisely the PW method using a Gaussian kernel with

infinite support given in (30). Similar results are obtained

for any integrable Parzen window, P (i, β). The PW can

be interpreted as a globally orderless image, as W extends

globally.

As a side note, since both (44) and (45) obey the diffusion

equation w.r.t. β2/2, we may use Green’s theorem and write,

pI(i|
√

β2
0 + β2) = pI(i|β0) ∗G(i, β), (46)

pI,J(i, j|
√

β2
0 + β2) = pI,J(i, j|β0) ∗G([i, j]T , β), (47)

for the quick computation of a range of PW sizes, where G is

a Gaussian kernel with standard deviation β. Further, α → 0
in MI for 2D images reduces to − log(∠(∇I,∇J)) [26], i.e.,

the angle between the gradients of the images at x, which is

similar to the Normalized Gradient Fields proposed in [16].

B. GPV is an approximation of Locally Orderless Images

GPV may be derived from the joint histograms as follows.

First, calculate the joint histogram,

hI,J(i, j,x, α, β, σ)

=

∫
Ω

P (I(ψ, σ)− i, β)P (J(ψ, σ)− j, β)W (x−ψ, α) dψ
(48)

≈ P (J(x, σ)− j, β)

∫
Ω

P (I(ψ, σ)− i, β)W (x−ψ, α) dψ
(49)

= P (J(x, σ)− j, β) [P (I(x, σ)− i, β) ∗W (x, α)] (50)

Then set P to a Boxcar function,

P (i, β) =

{
1 if − β

2 ≤ i < β
2

0 otherwise
(51)

where β is chosen such that I(ψ,Φ, σ) is mapped into non-

coinciding isophote curves. The motivation for this is that all

isophotes can be evaluated simultaneously at x and can be

thought of as an 0-order b-spline PW. Thus, our formulation

is the intersection between isophotes in J with soft isophotes

in I , as discussed below (39). When integrating over the

entire domain Ω, the GPV scheme is obtained. Thus GPV

uses small local histograms, which are integrated to form

the globally orderless image as in the PW approach. This

introduces an asymmetry for α > 0 in the joint densities,

making registration results inconsistent w.r.t. inversion. This

asymmetry has a direct influence on the marginal densities,

giving 3 different estimates of the marginal density: estimated

from the histogram of a single image, or as the integral of

either of the two joint histograms. That is, ignoring the scale

parameters, the histograms, say, of J are given as,

h(j) =

∫
Ω

P (J(x)− j) dx, (52)

and the corresponding marginal in the GPV approximation is

found either as,

h̃(j) =

∫
Ω

∫
Γ

P (J(x)− j)[P (I(x)− i) ∗W (x)] di dx (53)

=

∫
Ω

P (J(x)− j)

∫
Γ

P (I(x)− i) ∗W (x) di dx, (54)

or as

h′(j) =
∫
Ω

∫
Γ

P (I(x)− i)[P (J(x)− j) ∗W (x)] di dx

(55)

=

∫
Ω

∫
Γ

P (I(x)− i) di P (J(x)− j) ∗W (x) dx.

(56)

The difference between these three estimates depends on the

gradient of I(x), and due to the scale of W , the gradient will

differ for the two estimates based on the joint histograms. The

asymmetry in GPV causes M(A,B) �= M(B,A). In the limit

of α → 0, and when using identical kernels and parameters

as Parzen windows for I and J , then GPV is symmetric,

but, unfortunately, at the limit differentiability is lost, and
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Fig. 7. GPV using NMI is asymmetric and has different optima, when
comparing M(A,B) and M(B,A). Images compared are (a) two 3-
dimensional Gaussians of standard deviation 5 and 11 under translation, (b)
baseline and follow-up of patient number 16 from the OASIS collection [27]
under translation, and (c) image 16 under rotation around the center. The
optimum on each curve is denoted by a star.

gradient-based optimizations schemes have to be abandoned.

The consequence of the asymmetry in the estimate of the

joint distribution will be investigated further in the following

section.

V. EMPIRICAL INVESTIGATIONS INTO THE ASYMMETRY IN

GPV

The asymmetry of GPV, i.e., M(A,B) �= M(B,A), has

been analyzed in the previous section, and we will demonstrate

that the asymmetry has not only theoretical, but also practical

implications. We start by illustrating the asymmetry of GPV

used for NMI. Fig. 7(a) shows M(A◦φ, B) and M(B,A◦φ)
for two 3-dimensional images of spatial Gaussian, with a

standard deviation of 5 and 11, and centered in the middle

of the image, sized 256× 256× 128. We apply a translational

motion, φ, one image w.r.t. the other along a fixed axis, and

due to the symmetry of the Gaussians, the points of optima

are nearly identical. However, on real medical images this is

not the case: In Fig. 7(b), we have plotted the cost functional

M(A◦φ, B) and M(B,A◦φ) for a linear translation of two

images, baseline and follow-up, of patient 16 from the OASIS

collection [27]. The points of optima are clearly different.

The asymmetry is also visible for rotational motion: Fig. 7(c)

shows the asymmetry w.r.t. the rotation of patient 16 around

the image center. The pattern is less pronounced, but it should

be noted that even a small rotation around the center has a

large and increasing displacement effect away from the center.

To further study the asymmetry of GPV using NMI em-

pirically, we have constructed two images with a constant

gradient, the same magnitude but different direction for each

as shown in Fig. 8. We focus on a single isophote, I(x, y) = I0
and J(x, y) = J0, extracted using a Boxcar function. These are

shown in Fig. 8(c) and 8(d). The value of the joint histogram

for these intensities (I0, J0) is depicted in Fig. 9 as a function

of space and using various estimation techniques. Fig. 9(a)

shows the joint histogram’s values when comparing Fig. 8(c)

to Fig. 8(d) using GPV, i.e., where I(x, y) = I0 is smoothed

and intersected with J(x, y) = J0 as M(J, I) in GPV, and

Fig. 9(c) shows the opposite case, M(I, J). For reference,

Fig. 9(b) shows the LOI estimate of the intersection of isophote

I0 and J0. As can be observed, the spatial distribution of

intensities is oriented according to the non-smoothed isophote.

Curvature adds further asymmetry, since the mass of the

isophote moves in the direction of the center of the osculating

(a) (b)

(c) (d)

Fig. 8. Two artificially generated images (a) and (b) with the same gradient
magnitude, but different directions and the corresponding single isophotes (c)
and (d) extracted using a Boxcar function.
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Fig. 9. The GPV approximation is asymmetric. Image (a) is M(A,B), and
(c) is M(B,A). Image (b) depict what (a) and (c) are approximating.

circle, when smoothed spatially. Thus, unless the two images

curve in the exact same manner, the asymmetric smoothing

of the GPV method will introduce further asymmetry in the

similarity measure. This asymmetry is illustrated in Fig. 10,

where an isophote is first extracted using a Boxcar function.

The extracted isophote is then smoothed spatially, yielding

the image in Fig. 10(a). This is compared with an isophote

extracted as a soft isophote, as shown in Fig. 10(b). It can be

seen that the images differ, especially where isophotes have

high curvature. To substantiate this qualitative conclusion, we

have conducted the following experiment: For a fixed image,

an image of a given isophote is extracted using the 2 different

methods: 1) PW as a soft isophote with fixed width βPW =
0.005, and 2) GPV as an isophote extracted using a Boxcar

with varying width βGPV followed by spatial smoothing with a

Gaussian of varying width α. Thus, for a fixed image with PW

isophote width βPW, we have searched for the values of βGPV

and α such that they minimize the Sum of Squared Differences

between the two isophote images shown in Fig. 10(c). Notice

in particular, that the difference between the two images of

the isophotes is greatest near high curvature of the original

isophote. In Fig. 10(d) is shown the result of finding optimal

α for a given isophote extracted using the two methods and

for varying β’s. We conclude that there does not seem to be

a simple relation across β’s.

To empirically evaluate the degree of asymmetry as a

function of α, we have conducted the following experiment:

For 10 baseline and follow-up images from [27], we have
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Fig. 11. GPV using NMI gives inconsistent optimization results for a simple, artificial translation (a-c), and rotation (d-f), and the inconsistency depends
linearly on α but not on σ. For each boxplot, the circles represent individual measurement with slight noise added in the horizontal direction for legibility,
the black line denotes the mean, the dark and light gray areas denote the 50% and 75% fractiles.
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Fig. 10. The difference between smoothing Boxcar isophotes and soft
isophotes appears near points of high isophote curvature. (a) The GPV
isophote using βGPV = 0.0013, smoothed with W using α = 0.9. (b) The
PW isophote using βPW = 0.005, (c) the signed difference of (a) and (b),
and (d) the SSD or MISE for a range of α and βGPV using a start to denote
optimum for each curve.

rigidly registered the baseline and follow-up pair using NMI

and GPV with a very small α, and then for a range of αs

measured the spatial asymmetry in the similarity measure

along the x-axis, caused by the increase in α. This is repeated

for a range of σ values. The result is illustrated in Fig. 11.

The experiment reveals that smoothing of the image does
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Fig. 12. Examples of the asymmetry of GPV in the estimated densities: We
have subtracted the joint density distribution estimated in M(A,B) from the
estimated density distribution in M(B,A). The figures show the difference
between densities at (a) σ = 1, which is found to have a Jensen-Shannon
divergence of 1.9, and at (b) σ = 4, which has a Jensen-Shannon divergence
of 3.2.

not eliminate the problem, and as our investigations show,

asymmetry persists over all image scales. The asymmetry can

also be observed in the joint density estimates. In Fig. 12

is shown the difference between the joint density used to

evaluate M(B,A) and M(B,A) for 2 different values of α.

The difference is seen to be non-negligible for both scales,

and thus cannot be ignored.

To summarize, the GPV is asymmetric, and the degree of

asymmetry increases proportionally to the curvature of the

isophotes, as well as to α. The asymmetry cannot be alleviated

using image smoothing, and we conclude that GPV does not

offer inverse consistent registration.
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VI. EMPIRICAL COMPARISON OF PW AND GPV BY

SCALES

The main difference between GPV and PW is the explicit

modeling of the intensity coherence: where PW enforces

coherence by Gaussian smoothing, GPV does not. In the

following and using NMI, we will empirically evaluate and

compare PW and GPV in terms of scales, i.e., the influences

of the different kernels on the similarity measure, NMI, and

the estimated joint density distribution, to provide intuition

about the influence of different scales on NMI. Two types

of algorithms for GPV and PW have been implemented: A

fast cubic uniform B-spline approach (hereafter referred to

as B-spline), which is described and analyzed in the next

section, and a version based on Gaussian kernels. For a direct

comparison of B-splines and Gaussians we have estimated

the variance of a B-spline to be σ ≈ 0.6. This allows us

to investigate the effect of tuning the standard deviations of

each of the kernels for both PW and GPV. We note here that

some computational restrictions imposed on GPV are due to

computational complexity, thus a Gaussian with local support

has been used, i.e., very small values are truncated. We have

performed intra-subject registration using rigid registration on

a series of T1-weighted MRI of the human brain for 10

different subjects [27]. For each subject a follow-up image

is registered rigidly to the baseline, such that the pair of the

two volumes are aligned for a given set of scales. For a given

direction (x-axis) we have translated one of the two with ±1.5
voxels in steps of 0.1 voxel, and calculated the NMI similarity.

This has been repeated for a wide range of kernels in the

different spaces, i.e., different σ, β, and α including our fast

B-spline-based algorithm for 10 different subjects.

A. Spatial scale, σ

When registering images, most algorithms exploit the scale-

space of the images by smoothing the image with the kernel K.

The idea is to capture large-scale structures of the images, so

as to get closer to the optima before switching scales, in order

to capture the structure at a finer scale. The actual influence

on the different similarity measures has only been vaguely

investigated in the literature. In spite of this uncertainty,

smoothing the images is an often-used technique, and it has

been empirically shown to yield good results, e.g., in [28].

We have examined the effect of image smoothing on NMI,

and the results can be seen in Fig. 13 for PW and GPV

respectively. Furthermore, Fig. 14 shows the estimated joint

probability distribution for both PW and GPV. As can be seen,

the distribution is more concentrated in a smaller area and

NMI increases, when σ is large. The figures indicate that PW

in general has a more pronounced peak than GPV for NMI,

and that the optima is not shifted much over scales for this

particular set of T1-weighted MRI of brains and using NMI.

B. Intensity scale, β

The intensity scale controls the resolution in the intensity

domain, and as PW is a smoothing kernel in the intensity

domain, the entropy is increased [29] proportionally to β. The
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Fig. 13. The effect of image smoothing on the objective function (NMI)
using the different density estimation schemes: (a) The PW using a Gaussian
kernel β = 0.6, (b) PW using a cubic b-spline, and (c) GPV using a Gaussian
α = 0.6, (d) GPV using a cubic B-spline.
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Fig. 14. The effect of image smoothing on the joint density using different
estimation schemes: (a) & (b) The PW using β = 0.3, (a) σ = 0.5, and (b)
σ = 2; (c) & (d) GPV using α = 0.6, β = 0.3, and (c) σ = 0.5 and (d)
σ = 2.

smoothing disperses the densities within the joint density, thus

decreasing the overall NMI scores, as can be seen in Fig. 15.

The effect of β on the joint density is illustrated in Fig. 16.

As expected, the joint histogram becomes smoother as β is

increased. The consequence of increasing β is that small scale

changes in the image become negligible (see Section III-B),

whereas large changes are preserved, i.e., putting more empha-

sis on large gradients with increasing β. We have not included

GPV in this experiment; however, GPV also has an intensity

scale, i.e., the width of its Boxcar function.
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Fig. 15. The similarity measure PW and NMI as a function of translation
(a), and rotation (b), for a number of β values. The optimum on each curve
is denoted by a star.
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Fig. 16. The effect of image smoothing with PW on the joint density estimate:
the PW using σ = 1, and (a) β = 0.5, and (b) β = 2.

C. Integration scale, α

The kernel W can be used to describe local density es-

timates such as local MI or NMI [14], where each local

histogram has its own NMI functional as in (4). PW is the

special case of LOI, where α → ∞, and is thus a global

density estimate, whereas GPV is an integration of local

densities to become global. GPV uses a Boxcar function for P
and smoothes the isophotes with W , as illustrated in Fig. 9(a)

and 9(c). The effect of varying α on NMI using GPV is shown

in Fig. 17. It is seen that NMI decreases and becomes more

dispersed as α is increased. Comparison with Fig. 15 reveals

that the effect of α on GPV is similar to the effect of β on

PW: it reduces the function value due to the dispersion effect.

Our theoretical investigation has revealed that smoothing is

performed asymmetrically for GPV, and this is illustrated in

Fig. 18, where we see horizontal dispersion but no particular

vertical dispersion visible in the upper left corner. Previous

empirical investigations [6] using the same B-spline kernel

as PW β and partial volume α, reported that PW is more
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Fig. 17. The effect of varying α on the NMI functional using GPV with
σ = 0.2 as a function of translation (a), and rotation (b). The optimum on
each curve is denoted by a star.

I

R

20 40 60 80

20

40

60

80

(a) GPV

I

R

20 40 60 80

20

40

60

80

(b) GPV

Fig. 18. The effect of the integration scale on the joint density estimate for
GPV and NMI using σ = 1: (a) α = 0.5 and (b) α = 2.

precise, and that GPV has a larger convergence radius. From

our experiments it is obvious that this difference is merely a

consequence of the additional smoothing introduced by W as

discussed in Section III-B. This is supported by Fig. 13: As

can be seen, the PW is significantly more peaked than the

GPV, which appears superficially to be a smoothed version of

PW.

VII. FAST IMPLEMENTATIONS

We use a quasi-Newton gradient descent algorithm for

optimizing (1). This results in a very fast and general algorithm

that with only a few changes, works for many different loss-

functions.

In order to use quasi-Newton methods for optimization,

we need to derive the gradient of (1) w.r.t. the parameters

of the uniform cubic B-spline, Φ. We use the notation of

differentials, dg(x) = Dg(x) dx, and D is the partial derivative

operator. Note that dx is a vector of differentials, not the

hypercube of its elements dx, as in the case of integration.

Further, we will only write up non-zero terms that depend on

dΦ. The differential of (1) is,

dE = dM+ dS, (57)

where arguments have been omitted for brevity. Ignoring

the regularization term, we focus on the differential of the

similarity measures. For (5), the differential is found to be,

dMlin =

∫
Γ2

F (i, j)dhI,J di dj, (58)

under the mild Leibnitz integration rule, and where

dh = d
(
P (I(x)− i)P (J(x)− j) ∗W (x)

)
(59)

=
(
DP (I(x)− i)dI

)
P (J(x)− j) ∗W (x), (60)

avoiding irrelevant arguments for brevity. In contrast, the

differential of (2) is dMΩ =
∫
Ω

DF (x, I(x), J(x))dI(x) dx,

where smoothness typically is imposed on F and/or I . In

comparison, our formulation (5) naturally allows for the added

smoothing in intensity and integration space, and replaces

technical difficulties in evaluating DF with Dh. One advan-

tage is thus that it becomes easier to compare loss-functions

directly. For (4) the differential is found to be,

dM =∫
Γ2

DF (x, hI,J(x, i, j)) dhI,J(x, i, j) dx di dj,
(61)
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using the mild Leibnitz integration rule. As shown in Sec-

tion VII, the form of (61) suggests only a slight computational

overhead as compared to (58). The derivatives for a range of

F ’s are given in [30].

Using Leibnitz integration rule, the differentials of the

distributions are given as

dpI(i,Φ) =
1

|Ω|
∫
Ω

dpI(i|x,Φ) dx, (62)

dpI(i|x,Φ) � dhI(i,x,Φ)∫
Γ
hI(j,x,Φ)dj

− hI(i,x,Φ)
∫
Γ

dhI(j,x,Φ)dj(∫
Γ
hI(j,x,Φ)dj

)2 , (63)

dhI(i,x,Φ) = (dP (I(x,Φ, σ)− i, β) ∗W (x, α)) , (64)

where irrelevant arguments have been omitted for brevity.

Likewise, we have:

dpI,J(i, j) =
1

|Ω|
∫
Ω

dpI,J(i, j|x) dx, (65)

dpI,J(i, j|x) � dhI,J(i, j,x)∫
Γ2 hI,J(k, l,x) dk dl

− hI,J(i, j,x)
∫
Γ2 dhI,J(k, l,x) dk dl(∫

Γ2 hI,J(k, l,x) dk dl
)2 , (66)

dhI,J(i, j,x) =(
dP (I(ψ,Φ, σ)− i, β)P (J(ψ, σ)− j, β)

) ∗W (x−ψ, α).
(67)

In the context of Locally Orderless Images (LOI), GPV can

be derived as follows:

dhI = d (P (I(x,Φ, σ)− i, β) ∗W (x, α)) (68)

= P (I(x̃,Φ, σ)− i, β) ∗ (DxW (x, α)) , (69)

and the differential w.r.t. x is found to be,

dhI,J(i, j,x, α, β, σ)

= P (J(x, σ)− j, β)

((
P (I(φ(x̃), σ)− i, β)

)
∗ (DxW (x, α)

))
. (70)

In Fig. 19 is shown the pseudocode for the Sum of Squared

Differences, using a spatial integration (SSD), the Parzen win-

dow approximation of the general sum of p-norms (PNORM),

and the Parzen window and Generalized partial volume ap-

proximation of Normalized Mutual Information (PW and

GPV). Binary code interfacing to Matlab is available [31]. The

code assumes 3D images, cubic B-splines for all kernels, and

M bins in the histograms. We assume that today’s processors

have equal processing time, e.g., of sum, log, sin etc. From

the pseudocode in Fig. 19 and its notes, we see that PW

and GPV have almost identical computational complexity.

Results by actual implementations may vary, but in general

the computation of NMI, using either GPV or PW, appears to

be about as complex as SSD using B-splines. W.r.t. memory,

GPV requires 192 × N × 8 bytes of memory to obtain the

speed, where the PW only requires 8 ×N × 8 bytes (on 64-

bit, double precision).

# Given 2 images , I and J , and t h e d e t e r m i n a n t o f t h e
# t r a n s f o r m a t i o n , de t , a s a f u n c t i o n o f space ,
# c a l c u l a t e PW f o r NMI and PNorm , GPV f o r NMI and
# SSD , based on N image e v a l u a t i o n p o i n t s , and
# M m a r g i n a l and Mˆ2 j o i n t h i s t o g r a m b i n s . F l o p s a r e
# based on c u b i c B−s p l i n e s

FOR N e v a l u a t i o n p o i n t s
c a l c u l a t e image s p l i n e c o e f f .
(60 f l o p s )
IF ( SSD | | PW | | PNorm )

c a l c u l a t e d e r i v a t i v e o f image s p l i n e c o e f f .
(48 f l o p s )

FOR 64 c o m b i n a t i o n s o f image s p l i n e c o e f f .
IF ( SSD | | PW | | PNorm )

u p d a t e image a t e v a l u a t i o n p o i n t
(4 f l o p s )
u p d a t e image g r a d i e n t a t e v a l u a t i o n p o i n t
(12 f l o p s )

IF (GPV)
u p d a t e h i s t o g r a m s
(4 f l o p s )

IF ( SSD)
u p d a t e r e s i d u a l
(2 f l o p s )

IF (PW | | PNorm )
c a l c u l a t e h i s t o g r a m s p l i n e c o e f f .
(20 f l o p s )
FOR 16 h i s t o g r a m s p l i n e c o e f f .

IF ( PNorm )
compute P−norm
u p d a t e r e s i d u a l
u p d a t e d e r i v a t i v e
(5 f l o p s )

ELSE
u p d a t e h i s t o g r a m s
(2 f l o p s )

IF (PW | | GPV)
c a l c u l a t e NMI and d e r i v a t i v e on h i s t o g r a m s
(9∗Mˆ2+6M f l o p s )
FOR N e v a l u a t i o n p o i n t s

IF (GPV)
c a l c u l a t e d e r i v a t i v e o f image s p l i n e c o e f f .
(48 f l o p s )
FOR 64 c o m b i n a t i o n s o f image s p l i n e c o e f f .

u p d a t e d e r i v a t i v e o f h i s t o g r a m
(16 f l o p s )

IF (PW)
FOR 16 h i s t o g r a m s p l i n e c o e f f .

u p d a t e d e r i v a t i v e o f h i s t o g r a m
(9 f l o p s )

u p d a t e d e r i v a t i v e s
(3 f l o p s )

# T o t a l f l o p usage :
# SSD : 1134N f l o p s
# PW: 1331N +9Mˆ2 +6M f l o p s
# PNorm : 1379N f l o p s
# GPV: 1383N +9Mˆ2 +6M f l o p s

Fig. 19. Pseudocode for SSD, NMI using PW and GPV, and P-Norm using
PW.
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# samples Similarity measure SSD PW
1000000 Avg. execution time (in sec) 1.21 1.63

Relative exec. time to SSD 1 1.34
Theoretic relative exec. time to SSD 1 1.17

Overhead 1 1.13

TABLE II
THE TABLE SHOWS THE AVERAGE EXECUTION TIME ACROSS 100

FUNCTION EVALUATIONS OF SSD VS PW-NMI FOR 1000000 POINTS

USING 256 BINS.

To substantiate our theoretical computation we have per-

formed some empirical experiments. First we note that the

overhead of GPV and PW is in general small. The his-

togram calculations will only dominate in the special case

of a small number of samples and many histogram bins. We

have compared computational complexity empirically for PW

and GPV registration and SSD. We use cubic B-spline for

K, P , and W , and histograms with 256 bins for marginal

histograms and 2562 for the joint histograms. We perform

the computations on a laptop with i7-core Q820 (Quad-core)

operating at 1.7 GHz and 12 GB shared memory. All similarity

measures have been implemented in parallel using the Intel

Threading Building Blocks library. As the code runs multi-

threaded, we believe that most of the 13% overhead seen in

Table II comes from the threads, which are initialized twice

as many times in PW as in SSD. Our results are valid for

the general algorithm but not for massive parallelism e.g. on

GPU. However, it clearly demonstrates that NMI and MI no

longer should be considered as severe bottlenecks in image

registration. Furthermore, thread blocking can cause further

latency during histogram update, thus the estimated times for

single threaded implementation are very close to our estimate

for large N .

A. A non-rigid registration example

To show that the computational framework is capable of

performing registration, we have included a small example

from the OASIS longitudinal database. We registered, in 3D,

a baseline with a follow-up using the Parzen window NMI as

described in this paper with 128×128 bins in joint histogram.

We use a uniform B-splines deformation representation with

a hyper elastic prior [20] with a node distance of 10 voxels.

The results are seen in Fig. 20. The sample density is every

second voxel in each direction.

VIII. CONCLUSION

We have introduced Locally Orderless Registration, a frame-

work that encompasses most of the currently used similarity

measures. Our framework allows us to divide a wide range

of similarity measures into 3 categories from simple global

linear measures, such as the P-norm or Huber norm over

non-linear global measures, such as Correlation Coefficient,

Mutual Information and Normalized Mutual Information to

position dependent schemes, such as Correlation Ratio and

spatially encoded Mutual Information. All of these measures,

or any combination thereof, are formulated in a scale-space

over measurement, intensity, and integration space, offering

(a) (b) (c)

(d) (e)

Fig. 20. Non-rigid registration in 3D using our framework with NMI and a
cubic B-spline deformation model. Sagittal sections of (a) the baseline image
and the follow-up image (b) rigidly registered and (c) non-rigidly registered.
(d) and (e) show the difference between (a) and (b) and (a) and (c) respectively.

the flexibility to easily create application-specific similarity

measures in a smooth formulation well suited for gradient-

based schemes. We have presented a thorough analysis of the

scales in the different spaces both theoretically, through the

moments of the density distribution and a simple local image

model, and through rigorous empirical experiments.

We have extended our previous work [7] on the difference

between Parzen window and the Generalized partial volume.

Our analysis clearly shows that Generalized partial volume is

an asymmetric density estimator not suited for problems that

require inverse consistency. We have shown that depending

on the smoothing, this error can become larger than a single

voxel. Generalized partial volume achieves its computational

speed by making an approximation to the local histogram and

by using 0-order B-spline as the Parzen estimator. In [6] it

is reported that the Parzen window is more accurate than

Generalized partial volume for kernels W with α > 0, and

we show that this is due to the difference in smoothing, and

not to the properties of the two density estimators. Worse still,

Generalized partial volume measures the dissimilarity of the

images at two different scales, and thus the effect becomes

more pronounced with increased α - histograms of larger

areas.

We have given an efficient implementation of LOR, and our

theoretical as well as empirical analysis of the computational

and storage complexity demonstrate that the Parzen window

is more attractive for intensity-based registration.

We believe that the choice of density estimator should

be based on the particular application. Generalized partial

volume may be preferred for cases, where intensities in

the two images are incoherent. However, if intensity images

are to be registered, and computational efficiency or inverse

consistency is a desired property, then our analysis reveals that

the Parzen window is a far more attractive density estimator

in comparison to Generalized partial volume.
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