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Abstract— In this work we address the subspace clustering
problem. Given a set of data samples (vectors) approximately
drawn from a union of multiple subspaces, our goal is to cluster
the samples into their respective subspaces and remove possible
outliers as well. To this end, we propose a novel objective function
named Low-Rank Representation (LRR), which seeks the lowest-
rank representation among all the candidates that can represent
the data samples as linear combinations of the bases in a given
dictionary. It is shown that the convex program associated with
LRR solves the subspace clustering problem in the following
sense: when the data is clean, we prove that LRR exactly recovers
the true subspace structures; when the data are contaminated by
outliers, we prove that under certain conditions LRR can exactly
recover the row space of the original data and detect the outlier as
well; for data corrupted by arbitrary sparse errors, LRR can also
approximately recover the row space with theoretical guarantees.
Since the subspace membership is provably determined by the
row space, these further imply that LRR can perform robust
subspace clustering and error correction, in an efficient and
effective way.

Index Terms— low-rank representation, subspace clustering,
segmentation, outlier detection.

I. I NTRODUCTION

In pattern analysis and signal processing, an underlying
tenet is that the data often contains some type ofstructure
that enables intelligent representation and processing. So one
usually needs a parametric model to characterize a given set
of data. To this end, the well-known (linear)subspacesare
possibly the most common choice, mainly because they are
easy to compute and often effective in real applications. Sev-
eral types of visual data, such as motion [1], [2], [3], face [4]
and texture [5], have been known to be well characterized by
subspaces. Moreover, by applying the concept of reproducing
kernel Hilbert space, one can easily extend the linear models
to handle nonlinear data. So the subspace methods have been
gaining much attention in recent years. For example, the
widely used Principal Component Analysis (PCA) method and
the recently established matrix completion [6] and recovery [7]
methods are essentially based on the hypothesis that the data
is approximately drawn from a low-rank subspace. However,
a given data set can seldom be well described by asingle

(a) (b)

Fig. 1

A MIXTURE OF SUBSPACES CONSISTING OF A 2D PLANE AND TWO 1D

LINES . (A) THE SAMPLES ARE STRICTLY DRAWN FROM THE UNDERLYING

SUBSPACES. (B) THE SAMPLES ARE APPROXIMATELY DRAWN FROM THE

UNDERLYING SUBSPACES.

subspace. A more reasonable model is to consider data as
lying near severalsubspaces, namely the data is considered
as samples approximately drawn from a mixture of several
low-rank subspaces, as shown in Fig.1.

The generality and importance of subspaces naturally lead
to a challenging problem of subspace segmentation (or clus-
tering), whose goal is to segment (cluster or group) data
into clusters with each cluster corresponding to a subspace.
Subspace segmentation is an important data clustering problem
and arises in numerous research areas, including computer
vision [3], [8], [9], image processing [5], [10] and system
identification [11]. When the data is clean, i.e., the samples
are strictly drawn from the subspaces, several existing methods
(e.g., [12], [13], [14]) are able to exactly solve the subspace
segmentation problem. So, as pointed out by [3], [14], the
main challenge of subspace segmentation is to handle the
errors (e.g., noise and corruptions) that possibly exist in data,
i.e., to handle the data that may not strictly follow subspace
structures. With this viewpoint, in this paper we therefore
study the followingsubspace clustering[15] problem.

Problem 1.1 (Subspace Clustering):Given a set of data
samplesapproximately (i.e., the data may contain errors)
drawn from a union of linear subspaces, correct the possible
errors and segment all samples into their respective subspaces
simultaneously.

http://arxiv.org/abs/1010.2955v6
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(a) noise (b) random corruptions (c) sample−specific corruptions

Fig. 2

I LLUSTRATING THREE TYPICAL TYPES OF ERRORS : (A) NOISE [6],

WHICH INDICATES THE PHENOMENA THAT THE DATA IS SLIGHTLY

PERTURBED AROUND THE SUBSPACES(WHAT WE SHOW IS A PERTURBED

DATA MATRIX WHOSE COLUMNS ARE SAMPLES DRAWN FROM THE

SUBSPACES); (B) RANDOM CORRUPTIONS[7], WHICH INDICATE THAT A

FRACTION OF RANDOM ENTRIES ARE GROSSLY CORRUPTED; (C)

SAMPLE-SPECIFIC CORRUPTIONS(AND OUTLIERS), WHICH INDICATE THE

PHENOMENA THAT A FRACTION OF THE DATA SAMPLES(I .E., COLUMNS

OF THE DATA MATRIX ) ARE FAR AWAY FROM THE SUBSPACES.

Notice that the word “error” generally refers to thedeviation
between model assumption (i.e., subspaces) and data. It could
exhibit as noise [6], missed entries [6], outliers [16] and
corruptions [7] in reality. Fig.2 illustrates three typical types
of errors under the context of subspace modeling. In this
work, we shall focus on the sample-specific corruptions (and
outliers) shown in Fig.2(c), with mild concerns to the casesof
Fig.2(a) and Fig.2(b). Notice that an outlier is from a different
model other than subspaces, and is essentially different from a
corrupted sample that belongs to the subspaces. We put them
into the same category just because they can be handled in the
same way, as will be shown in Section V-B.

To recover the subspace structures from the data containing
errors, we propose a novel method termedlow-rank represen-
tation (LRR) [14]. Given a set of data samples each of which
can be represented as a linear combination of the bases in a
dictionary, LRR aims at finding thelowest-rankrepresentation
of all data jointly. The computational procedure of LRR is to
solve anuclear norm[17] regularized optimization problem,
which is convex and can be solved in polynomial time. By
choosing a specific dictionary, it is shown that LRR can well
solve the subspace clustering problem: when the data is clean,
we prove that LRR exactly recovers therow spaceof the data;
for the data contaminated by outliers, we prove that under
certain conditions LRR canexactlyrecover the row space of
the original data and detect the outlier as well; for the data
corrupted by arbitrary errors, LRR can also approximately
recover the row space with theoretical guarantees. Since the
subspace membership is provably determined by the row space
(we will discuss this in Section III-B), these further imply
that LRR can perform robust subspace clustering and error
correction, in an efficient way. In summary, the contributions
of this work include:

• We develop a simple yet effective method, termed LRR,
which has been used to achieve state-of-the-art perfor-
mance in several applications such as motion segmenta-
tion [4], image segmentation [18], saliency detection [19]
and face recognition [4].

• Our work extends the recovery of corrupted data from a

single subspace [7] to multiple subspaces. Compared to
[20], which requires the bases of subspaces to be known
for handling the corrupted data from multiple subspaces,
our method isautonomous, i.e., no extra clean data is
required.

• Theoretical results for robust recovery are provided.
While our analysis shares similar features as previous
work in matrix completion [6] and robust PCA (RPCA)
[7], [16], it is considerably more challenging due to the
fact that there is a dictionary matrix in LRR.

II. RELATED WORK

In this section, we discuss some existing subspace segmen-
tation methods. In general, existing works can be roughly
divided into four main categories: mixture of Gaussian, fac-
torization, algebraic and spectral-type methods.

In statistical learning, mixed data is typically modeled asa
set of independent samples drawn from a mixture of proba-
bilistic distributions. As a single subspace can be well modeled
by a (degenerate) Gaussian distribution, it is straightforward
to assume that each probabilistic distribution is Gaussian, i.e.,
adopting a mixture of Gaussian models. Then the problem
of segmenting the data is converted to a model estimation
problem. The estimation can be performed either by using the
Expectation Maximization (EM) algorithm to find a maximum
likelihood estimate, as done in [21], or by iteratively finding a
min-max estimate, as adopted by K-subspaces [8] and Random
Sample Consensus (RANSAC) [10]. These methods are sensi-
tive to errors. So several efforts have been made for improving
their robustness, e.g., the Median K-flats [22] for K-subspaces,
the work [23] for RANSAC, and [5] use a coding length to
characterize a mixture of Gaussian. These refinements may
introduce some robustness. Nevertheless, the problem is still
not well solved due to the optimization difficulty, which is a
bottleneck for these methods.

Factorization based methods [12] seek to approximate the
given data matrix as a product of two matrices, such that the
support pattern for one of the factors reveals the segmentation
of the samples. In order to achieve robustness to noise, these
methods modify the formulations by adding extra regular-
ization terms. Nevertheless, such modifications usually lead
to non-convex optimization problems, which need heuristic
algorithms (often based on alternating minimization or EM-
style algorithms) to solve. Getting stuck at local minima may
undermine their performances, especially when the data is
grossly corrupted. It will be shown that LRR can be regarded
as a robust generalization of the method in [12] (which is
referred to as PCA in this paper). The formulation of LRR is
convex and can be solved in polynomial time.

Generalized Principal Component Analysis (GPCA) [24]
presents an algebraic way to model the data drawn from a
union of multiple subspaces. This method describes a subspace
containing a data point by using the gradient of a polynomial
at that point. Then subspace segmentation is made equivalent
to fitting the data with polynomials. GPCA can guarantee the
success of the segmentation under certain conditions, and it
does not impose any restriction on the subspaces. However,
this method is sensitive to noise due to the difficulty of
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estimating the polynomials from real data, which also causes
the high computation cost of GPCA. Recently, Robust Alge-
braic Segmentation (RAS) [25] has been proposed to resolve
the robustness issue of GPCA. However, the computation
difficulty for fitting polynomials is unfathomably large. So
RAS can make sense only when the data dimension is low
and the number of subspaces is small.

As a data clustering problem, subspace segmentation can be
done by firstly learning an affinity matrix from the given data,
and then obtaining the final segmentation results by spectral
clustering algorithms such as Normalized Cuts (NCut) [26].
Many existing methods such as Sparse Subspace Clustering
(SSC) [13], Spectral Curvature Clustering (SCC) [27], [28],
Spectral Local Best-fit Flats (SLBF) [29], [30], the proposed
LRR method and [2], [31], possess such spectral nature, so
called as spectral-type methods. The main difference among
various spectral-type methods is the approach for learning
the affinity matrix. Under the assumption that the data is
clean and the subspaces are independent, [13] shows that
solution produced by sparse representation (SR) [32] could
achieve the so-calledℓ1 Subspace Detection Property (ℓ1-
SDP): the within-class affinities are sparse and the between-
class affinities are all zeros. In the presence of outliers, it
is shown in [15] that the SR method can still obeyℓ1-
SDP. However,ℓ1-SDP may not be sufficient to ensure the
success of subspace segmentation [33]. Recently, Lerman and
Zhang [34] prove that under certain conditions the multiple
subspace structures can be exactly recovered viaℓp (p ≤
1) minimization. Unfortunately, since the formulation is not
convex, it is still unknown how to efficiently obtain the
globally optimal solution. In contrast, the formulation ofLRR
is convex and the corresponding optimization problem can be
solved in polynomial time. What is more, even if the data
is contaminated by outliers, the proposed LRR method is
proven to exactly recover the right row space, which provably
determines the subspace segmentation results (we shall discuss
this in Section III-B). In the presence of arbitrary errors (e.g.,
corruptions, outliers and noise), LRR is also guaranteed to
produce near recovery.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Summary of Main Notations

In this work, matrices are represented with capital symbols.
In particular,I is used to denote the identity matrix, and the
entries of matrices are denoted by using[·] with subscripts.
For instance,M is a matrix, [M ]ij is its (i, j)-th entry,
[M ]i,: is its i-th row, and [M ]:,j is its j-th column. For
ease of presentation, the horizontal (resp. vertical) concate-
nation of a collection of matrices along row (resp. column)
is denoted by[M1,M2, · · · ,Mk] (resp. [M1;M2; · · · ;Mk]).
The block-diagonal matrix formed by a collection of matrices
M1,M2, · · · ,Mk is denoted by

diag (M1,M2, · · · ,Mk) =











M1 0 0 0
0 M2 0 0

0 0
. . . 0

0 0 0 Mk











. (1)

Fig. 3

AN EXAMPLE OF THE MATRIX V0V T
0

COMPUTED FROM DEPENDENT

SUBSPACES. IN THIS EXAMPLE, WE CREATE11 PAIRWISE DISJOINT

SUBSPACES EACH OF WHICH IS OF DIMENSION20, AND DRAW 20

SAMPLES FROM EACH SUBSPACE WITHOUT ERRORS. THE AMBIENT

DIMENSION IS 200,WHICH IS SMALLER THAN THE SUM OF THE

DIMENSIONS OF THE SUBSPACES. SO THE SUBSPACES ARE DEPENDENT

AND V0V T
0

IS NOT STRICTLY BLOCK-DIAGONAL . NEVERTHELESS, IT IS

SIMPLE TO SEE THAT HIGH SEGMENTATION ACCURACY CAN BE ACHIEVED

BY USING THE ABOVE AFFINITY MATRIX TO DO SPECTRAL CLUSTERING.

The only used vector norm is theℓ2 norm, denoted by‖·‖
2
.

A variety of norms on matrices will be used. The matrixℓ0,
ℓ2,0, ℓ1, ℓ2,1 norms are defined by‖M‖

0
= #{(i, j) : [M ]ij 6=

0}, ‖M‖
2,0 = #{i : ‖[M ]:,i‖2 6= 0}, ‖M‖

1
=

∑

i,j |[M ]ij |
and ‖M‖

2,1 =
∑

i ‖[M ]:,i‖2, respectively. The matrixℓ∞
norm is defined as‖M‖∞ = maxi,j |[M ]ij |. The spectral
norm of a matrixM is denoted by‖M‖, i.e., ‖M‖ is the
largest singular value ofM . The Frobenius norm and the
nuclear norm (the sum of singular values of a matrix) are
denoted by‖M‖F and ‖M‖∗, respectively. The Euclidean
inner product between two matrices is〈M,N〉 = tr

(

MTN
)

,
whereMT is the transpose of a matrix andtr (·) is the trace
of a matrix.

The supports of a matrixM are the indices of its nonzero
entries, i.e.,{(i, j) : [M ]ij 6= 0}. Similarly, its column
supports are the indices of its nonzero columns. The symbol
I (superscripts, subscripts, etc.) is used to denote the column
supports of a matrix, i.e.,I = {(i) : ‖[M ]:,i‖2 6= 0}. The
corresponding complement set (i.e., zero columns) isIc. There
are two projection operators associated withI andIc: PI and
PIc . While applying them to a matrixM , the matrixPI(M)
(resp.PIc(M)) is obtained fromM by setting[M ]:,i to zero
for all i 6∈ I (resp.i 6∈ Ic).

We also adopt the conventions of usingspan (M) to denote
the linear space spanned by the columns of a matrixM , using
y ∈ span (M) to denote that a vectory belongs to the space
span (M), and usingY ∈ span (M) to denote that all column
vectors ofY belong tospan (M).

Finally, in this paper we use several terminologies, includ-
ing “block-diagonal matrix”, “union and sum of subspaces”,
“independent (and disjoint) subspaces”, “full SVD and skinny
SVD”, “pseudoinverse”, “column space and row space” and
“affinity degree”. These terminologies are defined in Ap-
pendix.
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B. Relations Between Segmentation and Row Space

Let X0 with skinny SVDU0Σ0V
T
0 be a collection of data

samplesstrictly drawn from a union of multiple subspaces
(i.e., X0 is clean), the subspace membership of the samples
is determined by the row space ofX0. Indeed, as shown
in [12], when subspaces are independent,V0V

T
0

forms a
block-diagonal matrix: the(i, j)-th entry of V0V

T
0 can be

nonzero only if thei-th andj-th samples are from the same
subspace. Hence, this matrix, termed as Shape Interaction
Matrix (SIM) [12], has been widely used for subspace seg-
mentation. Previous approaches simply compute the SVD of
the data matrixX = UXΣXV T

X and then use|VXV T
X | 1 for

subspace segmentation. However, in the presence of outliers
and corruptions,VX can be far away fromV0 and thus the
segmentation using such approaches is inaccurate. In contrast,
we show that LRR can recoverV0V

T
0

even when the data
matrix X is contaminated by outliers.

If the subspaces are not independent,V0V
T
0 may not be

strictly block-diagonal. This is indeed well expected, since
when the subspaces have nonzero (nonempty) intersections,
then some samples may belong to multiple subspaces simul-
taneously. When the subspaces are pairwise disjoint (but not
independent), our extensive numerical experiments show that
V0V

T
0 may still be close to be block-diagonal, as exemplified

in Fig. 3. Hence, to recoverV0V
T
0

is still of interest to
subspace segmentation.

C. Problem Statement

Problem 1.1 only roughly describes what we want to study.
More precisely, this paper addresses the following problem.

Problem 3.1 (Subspace Clustering):Let X0 ∈ R
d×n with

skinny SVDU0Σ0V0 store a set ofn d-dimensional samples
(vectors) strictly drawn from a union ofk subspaces{Si}ki=1

of unknown dimensions (k is unknown either). Given a set of
observation vectorsX generated by

X = X0 + E0,

the goal is to recover the row space ofX0, or to recover the
true SIM V0V

T
0 as equal.

The recovery of row space can guarantee high segmentation
accuracy, as analyzed in Section III-B. Also, the recovery of
row space naturally implies the success in error correction. So
it is sufficient to set the goal of subspace clustering as the
recovery of the row space identified byV0V

T
0

. For ease of
exploration, we consider the problem under three assumptions
of increasing practicality and difficulty.

Assumption 1:The data is clean, i.e.,E0 = 0.
Assumption 2:A fraction of the data samples are grossly

corrupted and the others are clean, i.e.,E0 has sparse column
supports as shown in Fig.2(c).

Assumption 3:A fraction of the data samples are grossly
corrupted and the others are contaminated by small Gaussian
noise, i.e.,E0 is characterized by a combination of the models
shown in Fig.2(a) and Fig.2(c).

1For a matrixM , |M | denotes the matrix with the(i, j)-th entry being the
absolute value of[M ]ij .

Unlike [14], the independent assumption on the subspaces is
not highlighted in this paper, because the analysis in this work
focuses on recoveringV0V

T
0 other than a pursuit of block-

diagonal matrix.

IV. L OW-RANK REPRESENTATION FORMATRIX

RECOVERY

In this section we abstractly present the LRR method
for recovering a matrix from corrupted observations. The
basic theorems and optimization algorithms will be presented.
The specific methods and theories for handling the subspace
clustering problem are deferred until Section V.

A. Low-Rank Representation

In order to recover the low-rank matrixX0 from the given
observation matrixX corrupted by errorsE0 (X = X0+E0),
it is straightforward to consider the following regularized rank
minimization problem:

min
D,E

rank (D) + λ ‖E‖ℓ , s.t. X = D + E, (2)

where λ > 0 is a parameter and‖·‖ℓ indicates certain
regularization strategy, such as the squared Frobenius norm
(i.e., ‖ · ‖2F ) used for modeling the noise as show in Fig.2(a)
[6], the ℓ0 norm adopted by [7] for characterizing the random
corruptions as shown in Fig.2(b), and theℓ2,0 norm adopted
by [14], [16] for dealing with sample-specific corruptions
and outliers. SupposeD∗ is a minimizer with respect to the
variableD, then it gives a low-rank recovery to the original
dataX0.

The above formulation is adopted by the recently established
Robust PCA (RPCA) method [7] which has been used to
achieve the state-of-the-art performance in several applications
(e.g., [35]). However, this formulation implicitly assumes that
the underlying data structure is a single low-rank subspace.
When the data is drawn from a union of multiple subspaces,
denoted asS1,S2, · · · ,Sk, it actually treats the data as being
sampled from a single subspace defined byS =

∑k
i=1

Si.
Since the sum

∑k
i=1

Si can be much larger than the union
∪k
i=1

Si, the specifics of the individual subspaces are not well
considered and so the recovery may be inaccurate.

To better handle the mixed data, here we suggest a more
general rank minimization problem defined as follows:

min
Z,E

rank (Z) + λ ‖E‖ℓ , s.t. X = AZ + E, (3)

whereA is a “dictionary” that linearly spans the data space.
We call the minimizerZ∗ (with regard to the variableZ)
the “lowest-rank representation” of dataX with respect to a
dictionaryA. After obtaining an optimal solution(Z∗, E∗),
we could recover the original data by usingAZ∗ (or X −
E∗). Since rank (AZ∗) ≤ rank (Z∗), AZ∗ is also a low-
rank recovery to the original dataX0. By settingA = I, the
formulation (3) falls back to (2). So LRR could be regarded
as a generalization of RPCA that essentially uses the standard
bases as the dictionary. By choosing an appropriate dictionary
A, as we will see, the lowest-rank representation can recover
the underlying row space so as to reveal the true segmentation
of data. So, LRR could handle well the data drawn from a
union of multiple subspaces.
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B. Analysis on the LRR Problem

The optimization problem (3) is difficult to solve due to the
discrete nature of the rank function. For ease of exploration,
we begin with the “ideal” case that the data is clean. That is,
we consider the following rank minimization problem:

min
Z

rank (Z) , s.t. X = AZ. (4)

It is easy to see that the solution to (4) may not be unique.
As a common practice in rank minimization problems, we
replace the rank function with the nuclear norm, resulting in
the following convex optimization problem:

min
Z

‖Z‖∗ , s.t. X = AZ. (5)

We will show that the solution to (5) is also a solution to (4)
and this special solution is useful for subspace segmentation.

In the following, we shall show some general properties of
the minimizer to problem (5). These general conclusions form
the foundations of LRR (the proofs can be found in Appendix).

1) Uniqueness of the Minimizer:The nuclear norm is
convex, but not strongly convex. So it is possible that problem
(5) has multiple optimal solutions. Fortunately, it can be
proven that the minimizer to problem (5) isalwaysuniquely
defined by a closed form. This is summarized in the following
theorem.

Theorem 4.1:AssumeA 6= 0 andX = AZ have feasible
solution(s), i.e.,X ∈ span (A). Then

Z∗ = A†X, (6)

is the unique minimizer to problem (5), whereA† is the
pseudoinverse ofA.

From the above theorem, we have the following corollary
which shows that problem (5) is a good surrogate of problem
(4).

Corollary 4.1: AssumeA 6= 0 andX = AZ have feasible
solutions. LetZ∗ be the minimizer to problem (5), then
rank (Z∗) = rank (X) andZ∗ is also a minimal rank solution
to problem (4).

2) Block-Diagonal Property of the Minimizer:By choos-
ing an appropriate dictionary, the lowest-rank representation
can reveal the true segmentation results. Namely, when the
columns ofA andX are exactly sampled from independent
subspaces, the minimizer to problem (5) can reveal the sub-
space membership among the samples. Let{S1,S2, · · · ,Sk}
be a collection ofk subspaces, each of which has a rank
(dimension) ofri > 0. Also, let A = [A1, A2, · · · , Ak] and
X = [X1, X2, · · · , Xk]. Then we have the following theorem.

Theorem 4.2:Without loss of generality, assume thatAi

is a collection ofmi samples of thei-th subspaceSi, Xi

is a collection ofni samples fromSi, and the sampling of
eachAi is sufficient such thatrank (Ai) = ri (i.e.,Ai can be
regarded as the bases that span the subspace). If the subspaces
are independent, then the minimizer to problem (5) is block-

diagonal:

Z∗ =











Z∗
1

0 0 0
0 Z∗

2
0 0

0 0
. . . 0

0 0 0 Z∗
k











,

whereZ∗
i is anmi × ni coefficient matrix withrank (Z∗

i ) =
rank (Xi) , ∀ i.

Note that the claim ofrank (Z∗
i ) = rank (Xi) guarantees

the high within-class homogeneity ofZ∗
i , since the low-rank

properties generally requiresZ∗
i to be dense. This is different

from SR, which is prone to produce a “trivial” solution if
A = X , because the sparsest representation is an identity
matrix in this case. It is also worth noting that the above block-
diagonal property does not require the data samples have been
grouped together according to their subspace memberships.
There is no loss of generality to assume that the indices of
the samples have been rearranged to satisfy the true subspace
memberships, because the solution produced by LRR is glob-
ally optimal and does not depend on the arrangements of the
data samples.

C. Recovering Low-Rank Matrices by Convex Optimization

Corollary 4.1 suggests that it is appropriate to use the
nuclear norm as a surrogate to replace the rank function in
problem (3). Also, the matrixℓ1 and ℓ2,1 norms are good
relaxations of theℓ0 andℓ2,0 norms, respectively. So we could
obtain a low-rank recovery toX0 by solving the following
convex optimization problem:

min
Z,E

‖Z‖∗ + λ‖E‖
2,1, s.t. X = AZ + E. (7)

Here, theℓ2,1 norm is adopted to characterize the error termE,
since we want to model the sample-specific corruptions (and
outliers) as shown in Fig.2(c). For the small Gaussian noise
as shown in Fig.2(a),‖E‖2F should be chosen; for the random
corruptions as shown in Fig.2(b),‖E‖1 is an appropriate
choice. After obtaining the minimizer(Z∗, E∗), we could use
AZ∗ (or X−E∗) to obtain a low-rank recovery to the original
dataX0.

The optimization problem (7) is convex and can be solved
by various methods. For efficiency, we adopt in this paper the
Augmented Lagrange Multiplier (ALM) [36], [37] method. We
first convert (7) to the following equivalent problem:

min
Z,E,J

‖J‖∗ + λ‖E‖
2,1, s.t.X = AZ + E,Z = J.

This problem can be solved by the ALM method, which
minimizes the following augmented Lagrange function:

L = ‖J‖∗ + λ‖E‖
2,1 + tr

(

Y T
1
(X −AZ − E)

)

+

tr
(

Y T
2 (Z − J)

)

+ µ
2
(‖X −AZ − E‖2F + ‖Z − J‖2F ).

The above problem is unconstrained. So it can be minimized
with respect toJ , Z and E, respectively, by fixing the
other variables, and then updating the Lagrange multipliers
Y1 andY2, whereµ > 0 is a penalty parameter. The inexact
ALM method, also called the alternating direction method,
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Algorithm 1 Solving Problem (7) by Inexact ALM
Input: data matrixX , parameterλ.
Initialize: Z = J = 0, E = 0, Y1 = 0, Y2 = 0, µ =
10−6, µmax = 106, ρ = 1.1, andε = 10−8.
while not convergeddo

1. fix the others and updateJ by

J = argmin
1

µ
||J ||∗ +

1

2
||J − (Z + Y2/µ)||2F .

2. fix the others and updateZ by

Z = (I+ATA)−1(AT (X −E) + J + (ATY1 − Y2)/µ).

3. fix the others and updateE by

E = argmin
λ

µ
||E||2,1 +

1

2
||E − (X −AZ + Y1/µ)||2F .

4. update the multipliers

Y1 = Y1 + µ(X −AZ − E),

Y2 = Y2 + µ(Z − J).

5. update the parameterµ by µ = min(ρµ, µmax).
6. check the convergence conditions:

||X −AZ − E||∞ < ε and ||Z − J ||∞ < ε.

end while

is outlined in Algorithm 12. Note that although Step 1 and
Step 3 of the algorithm are convex problems, they both have
closed-form solutions. Step 1 is solved via the Singular Value
Thresholding (SVT) operator [38], while Step 3 is solved via
the following lemma:

Lemma 4.1 ([39]):Let Q be a given matrix. If the optimal
solution to

min
W

α||W ||2,1 +
1

2
||W −Q||2F

is W ∗, then thei-th column ofW ∗ is

[W ∗]:,i =

{

||Q:,i||2−α

||Q:,i||2
Q:,i, if ||Q:,i||2 > α;

0, otherwise.
1) Convergence Properties:When the objective function

is smooth, the convergence of the exact ALM algorithm has
been generally proven in [37]. For inexact ALM, which is a
variation of exact ALM, its convergence has also been well
studied when the number of blocks is at most two [36],
[40]. Up to present, it is still difficult togenerally ensure
the convergence of inexact ALM with three or more blocks
[40]. Since there are three blocks (includingZ, J andE) in

2To solve the problemminZ,E ‖Z‖
∗
+ λ‖E‖

1
, s.t.X = AZ + E, one

only needs to replace Step 3 of Algorithm 1 byE = argmin λ
µ
||E||1 +

1

2
||E − (X − AZ + Y1/µ)||2F , which is solved by using the shrinkage

operator [36].
Also, please note here that the setting ofε = 10−8 is based on the

assumption that the values inX has been normalized within the range of
0 ∼ 1.

Algorithm 1 and the objective function of (7) is not smooth,
it would be not easy to prove the convergence in theory.

Fortunately, there actually exist some guarantees for en-
suring the convergence of Algorithm 1. According to the
theoretical results in [41], two conditions aresufficient (but
may not necessary) for Algorithm 1 to converge: the first
condition is that the dictionary matrixA is of full column
rank; the second one is that the optimality gap produced in
each iteration step is monotonically decreasing, namely the
error

ǫk = ‖(Zk, Jk)− argmin
Z,J

L‖2F

is monotonically decreasing, whereZk (resp.Jk) denotes the
solution produced at thek-th iteration,argminZ,J L indicates
the “ideal” solution obtained by minimizing the Lagrange
function L with respect to bothZ and J simultaneously.
The first condition is easy to obey, since problem (7) can be
converted into an equivalent problem where the full column
rank condition is always satisfied (we will show this in the
next subsection). For the monotonically decreasing condition,
although it is not easy tostrictly prove it, the convexity of the
Lagrange function could guarantee its validity to some extent
[41]. So, it could be well expected that Algorithm 1 has good
convergence properties. Moreover, inexact ALM is known to
generallyperform well in reality, as illustrated in [40].

Thatµ should be upper bounded (Step 5 of Algorithm 1) is
required by the traditional theory of the alternating direction
method in order to guarantee the convergence of the algorithm.
So we also adopt this convention. Nevertheless, please note
that the upper boundedness may not be necessary for some
particular problems, e.g., the RPCA problem as analyzed in
[36].

2) Computational Complexity:For ease of analysis, we
assume that the sizes of bothA and X are d × n in the
following. The major computation of Algorithm 1 is Step 1,
which requires computing the SVD of ann × n matrix. So
it will be time consuming ifn is large, i.e., the number of
data samples is large. Fortunately, the computational costof
LRR can be easily reduced by the following theorem, which
is followed from Theorem 4.1.

Theorem 4.3:For any optimal solution(Z∗, E∗) to the
LRR problem (7), we have that

Z∗ ∈ span
(

AT
)

.
The above theorem concludes that the optimal solutionZ∗

(with respect to the variableZ) to (7) always lies within the
subspace spanned by the rows ofA. This means thatZ∗ can
be factorized intoZ∗ = P ∗Z̃∗, whereP ∗ can be computed
in advance by orthogonalizing the columns ofAT . Hence,
problem (7) can be equivalently transformed into a simpler
problem by replacingZ with P ∗Z̃:

min
Z̃,E

‖Z̃‖∗ + λ ‖E‖
2,1 , s.t.X = BZ̃ + E,

whereB = AP ∗. After obtaining a solution(Z̃∗, E∗) to the
above problem, the optimal solution to (7) is recovered by
(P ∗Z̃∗, E∗). Since the number of rows of̃Z is at mostrA (the
rank ofA), the above problem can be solved with a complexity
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of O(dnrA+nr2A+r3A) by using Algorithm 1. So LRR is quite
scalable for large-size (n is large) datasets, provided that a low-
rank dictionaryA has been obtained. While usingA = X , the
computational complexity is at mostO(d2n + d3) (assuming
d ≤ n). This is also fast provided that the data dimensiond
is not high.

While considering the cost of orthogonalization and the
number of iterations needed to converge, the complexity of
Algorithm 1 is

O(d2n) +O(ns(dnrA + nr2A + r3A)),

wherens is the number of iterations. The iteration numberns

depends on the choice ofρ: ns is smaller whileρ is larger, and
vice versa. Although largerρ does produce higher efficiency,
it has the risk of losing optimality to use largeρ [36]. In our
experiments, we always setρ = 1.1. Under this setting, the
iteration number usually locates within the range of50 ∼ 300.

V. SUBSPACECLUSTERING BY LRR

In this section, we utilize LRR to address Problem 3.1,
which is to recover the original row space from a set of cor-
rupted observations. Both theoretical and experimental results
will be presented.

A. Exactness to Clean Data

When there are no errors in data, i.e.,X = X0 andE0 = 0,
it is simple to show that the row space (identified byV0V

T
0 )

of X0 is exactly recovered by solving the following nuclear
norm minimization problem:

min
Z

‖Z‖∗ , s.t. X = XZ, (8)

which is to choose the data matrixX itself as the dictionary
in (5). By Theorem 4.1, we have the following theorem which
has also been proven by Wei and Lin [42].

Theorem 5.1:Suppose the skinny SVD ofX is UΣV T ,
then the minimizer to problem (8) is uniquely defined by

Z∗ = V V T .

This naturally implies thatZ∗ exactly recoversV0V
T
0

when
X is clean (i.e.,E0 = 0).

The above theorem reveals the connection between LRR and
the method in [12], which is a counterpart of PCA (referred to
as “PCA” for simplicity). Nevertheless, it is well known that
PCA is fragile to the presence of outliers. In contrast, it can be
proven in theory that LRR exactly recovers the row space of
X0 from the data contaminated by outliers, as will be shown
in the next subsection.

B. Robustness to Outliers and Sample-Specific Corruptions

Assumption 2 is to imagine that a fraction of the data
samples are away from the underlying subspaces. This implies
that the error termE0 has sparse column supports. So, the
ℓ2,1 norm is appropriate for characterizingE0. By choosing
A = X in (7), we have the following convex optimization
problem:

min
Z,E

||Z||∗ + λ||E||2,1, s.t. X = XZ + E. (9)

U*(U*)T E*

Fig. 4

AN EXAMPLE OF THE MATRICES U∗(U∗)T AND E∗ COMPUTED FROM

THE DATA CONTAMINATED BY OUTLIERS . IN A SIMILAR WAY AS [14],

WE CREATE5 PAIRWISE DISJOINT SUBSPACES EACH OF WHICH IS OF

DIMENSION 4, AND DRAW 40 SAMPLES(WITH AMBIENT DIMENSION 200)

FROM EACH SUBSPACE. THEN, 50 OUTLIERS ARE RANDOMLY GENERATED

FROMN (0, s), WHERE THE STANDARD DEVIATIONs IS SET TO BE THREE

TIMES AS LARGE AS THE AVERAGED MAGNITUDES OF THE SAMPLES. BY

CHOOSING0.16 ≤ λ ≤ 0.34, LRR PRODUCES A SOLUTION(Z∗, E∗)

WITH THE COLUMN SPACE OFZ∗ EXACTLY RECOVERING THE ROW SPACE

OFX0 , AND THE COLUMN SUPPORTS OFE∗ EXACTLY IDENTIFYING THE

INDICES OF THE OUTLIERS.

The above formulation “seems” questionable, because the
data matrix (which itself can contain errors) is used as the
dictionary for error correction. Nevertheless, as shown inthe
following two subsections,A = X is indeed a good choice
for several particular problems3.

1) Exactness to Outliers:When an observed data sample
is far away from the underlying subspaces, a typical regime is
that this sample is from a different model other than subspaces,
so called as anoutlier 4. In this case, the data matrixX
contains two parts, one part consists of authentic samples
(denoted byX0) strictly drawn from the underlying subspaces,
and the other part consists of outliers (denoted asE0) that are
not subspace members. To precisely describe this setting, we
need to impose an additional constraint onX0, that is,

PI0
(X0) = 0, (10)

whereI0 is the indices of the outliers (i.e., the column supports
of E0). Furthermore, we usen to denote the total number of
data samples inX , γ , |I0|/n the fraction of outliers, andr0
the rank ofX0. With these notations, we have the following
theorem which states that LRR can exactly recover the row
space ofX0 and identify the indices of outliers as well.

Theorem 5.2 ([43]):There existsγ∗ > 0 such that LRR
with parameterλ = 3/(7‖X‖√γ∗n) strictly succeeds, as long
asγ ≤ γ∗. Here, the success is in a sense that any minimizer
(Z∗, E∗) to (9) can produce

U∗(U∗)T = V0V
T
0 and I∗ = I0, (11)

where U∗ is the column space ofZ∗, and I∗ is column
supports ofE∗.

3Note that this does not deny the importance of learning the dictionary.
Indeed, the choice of dictionary is a very important aspect in LRR. We leave
this as future work.

4Precisely, we define an outlier as a data vector that is independent to the
samples drawn from the subspaces [43].
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(a) (b)

Fig. 5

TWO EXAMPLES OF THE MATRIX U∗(U∗)T COMPUTED FROM THE

DATA CORRUPTED BY SAMPLE -SPECIFIC CORRUPTIONS . (A) THE

MAGNITUDES OF THE CORRUPTIONS ARE SET TO BE ABOUT0.7 TIMES AS

LARGE AS THE SAMPLES. CONSIDERING|U∗(U∗)T | AS AN AFFINITY

MATRIX , THE AVERAGE AFFINITY DEGREE OF THE CORRUPTED SAMPLES

IS ABOUT 40, WHICH MEANS THAT THE CORRUPTED SAMPLES CAN BE

PROJECTED BACK ONTO THEIR RESPECTIVE SUBSPACES. (B) THE

MAGNITUDES OF THE CORRUPTIONS ARE SET TO BE ABOUT3.5 TIMES AS

LARGE AS THE SAMPLES. THE AFFINITY DEGREES OF THE CORRUPTED

SAMPLES ARE ALL ZERO, WHICH MEANS THAT THE CORRUPTED SAMPLES

ARE TREATED AS OUTLIERS. IN THESE EXPERIMENTS, THE DATA SAMPLES

ARE GENERATED IN THE SAME WAY AS INFIG.4. THEN, 10%SAMPLES

ARE RANDOMLY CHOSEN TO BE CORRUPTED BY ADDITIVE ERRORS OF

GAUSSIAN DISTRIBUTION. FOR EACH EXPERIMENT, THE PARAMETERλ IS

CAREFULLY DETERMINED SUCH THAT THE COLUMN SUPPORTS OFE∗

IDENTIFY THE INDICES OF THE CORRUPTED SAMPLES.

There are several importance notices in the above theorem.
First, although the objective function (9) is not strongly convex
and multiple minimizers may exist, it is proven thatany
minimizer is effective for subspace clustering. Second, the
coefficient matrixZ∗ itself does not recoverV0V

T
0

(notice
that Z∗ is usually asymmetric exceptE∗ = 0), and it is the
column space ofZ∗ that recovers the row space ofX0. Third,
the performance of LRR is measured by the value ofγ∗ (the
larger, the better), which depends on some data properties such
as the incoherence and the extrinsic rankr0 (γ∗ is larger when
r0 is lower). For more details, please refer to [43].

Fig.4 shows some experimental results, which verify the
conclusions of Theorem 5.2. Notice that the parameter setting
λ = 3/(7‖X‖√γ∗n) is based on the conditionγ ≤ γ∗ (i.e.,
the outlier fraction is smaller than a certain threshold), which is
just a sufficient (but not necessary) condition for ensuringthe
success of LRR. So, in practice (even for synthetic examples)
whereγ > γ∗, it is possible that other values ofλ achieve
better performances.

2) Robustness to Sample-Specific Corruptions:For the phe-
nomenon that an observed sample is away from the subspaces,
another regime is that this sample is an authentic subspace
member, but grossly corrupted. Usually, such corruptions
only happen on a small fraction of data samples, so called
as “sample-specific” corruptions. The modeling of sample-
specific corruptions is the same as outliers, because in both
casesE0 has sparse column supports. So the formulation (9)
is still applicable. However, the setting (10) is no longer valid,
and thus LRR may not exactly recover the row spaceV0V

T
0

in this case. Empirically, the conclusion ofI∗ = I0 still holds

U*(U*)T E*

Fig. 6

AN EXAMPLE OF THE MATRICES U∗(U∗)T AND E∗ COMPUTED FROM

THE DATA CONTAMINATED BY NOISE , OUTLIERS AND

SAMPLE -SPECIFIC CORRUPTIONS . IN THIS EXPERIMENT, FIRST, WE

CREATE 10 PAIRWISE DISJOINT SUBSPACES(EACH OF WHICH IS OF

DIMENSION 4) AND DRAW 40 SAMPLES(WITH AMBIENT DIMENSION

2000)FROM EACH SUBSPACE. SECOND, WE RANDOMLY CHOOSE10%

SAMPLES TO BE GROSSLY CORRUPTED BY LARGE ERRORS. THE REST90%

SAMPLES ARE SLIGHTLY CORRUPTED BY SMALL ERRORS. FINALLY , AS IN

FIG.4, 100OUTLIERS ARE RANDOMLY GENERATED. THE TOTAL AMOUNT

OF ERRORS(INCLUDING NOISE, SAMPLE-SPECIFIC CORRUPTIONS AND

OUTLIERS) IS GIVEN BY ‖E0‖F /‖X0‖F = 0.63. BY SETTINGλ = 0.3,

U∗(U∗)T APPROXIMATELY RECOVERSV0V T
0

WITH ERROR

‖U∗(U∗)T − V0V T
0
‖F /‖V0V T

0
‖F = 0.17, AND THE COLUMN SUPPORTS

OFE∗ ACCURATELY IDENTIFY THE INDICES OF THE OUTLIERS AND

CORRUPTED SAMPLES. IN CONTRAST, THE RECOVER ERROR PRODUCED

BY PCA IS 0.66,AND THAT BY THE RPCAMETHOD (USING THE BEST

PARAMETERS) INTRODUCED IN [16] IS 0.23.

[14], which means that the column supports ofE∗ can identify
the indices of the corrupted samples.

While both outliers and sample-specific corruptions5 are
handled in the same way, a question is how to deal with
the cases where the authentic samples are heavily corrupted
to have similar properties as the outliers. If a sample is
heavily corrupted so as to be independent from the underlying
subspaces, it will be treated as an outlier in LRR, as illustrated
in Fig.5. This is a reasonable manipulation. For example, itis
appropriate to treat a face image as a non-face outlier if the
image has been corrupted to be look like something else.

C. Robustness in the Presence of Noise, Outliers and Sample-
Specific Corruptions

When there is noise in the data, the column supports of
E0 are not strictly sparse. Nevertheless, the formulation (9)
is still applicable, because theℓ2,1 norm (which is relaxed
from ℓ2,0 norm) can handle well the signals that approximately
have sparse column supports. Since all observations may be
contaminated, it is unlikely in theory that the row spaceV0V

T
0

can be exactly recovered. So we target on near recovery in this
case. By the triangle inequality of matrix norms, the following
theorem can be simply proven without any assumptions.

Theorem 5.3:Let the size ofX be d× n, and the rank of
X0 be r0. For any minimizer(Z∗, E∗) to problem (9) with
λ > 0, we have

‖Z∗ − V0V
T
0 ‖F ≤ min(d, n) + r0.

5Unlike outlier, a corrupted sample is unnecessary to be independent to the
clean samples.
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Algorithm 2 Subspace Segmentation
Input: data matrixX , numberk of subspaces.
1. obtain the minimizerZ∗ to problem (9).
2. compute the skinny SVDZ∗ = U∗Σ∗(V ∗)T .
3. construct an affinity matrixW by (12).
4. useW to perform NCut and segment the data samples
into k clusters.

Algorithm 3 Estimating the Subspace Numberk

Input: data matrixX .
1. compute the affinity matrixW in the same way as in
Algorithm 2.
2. compute the Laplacian matrixL = I − D− 1

2WD− 1

2 ,
whereD = diag

(

∑

j [W ]1j , · · · ,
∑

j [W ]nj

)

.
3. estimate the subspace number by (13).

Fig.6 demonstrates the performance of LRR, in the presence
of noise, outliers and sample-specific corruptions. It can be
seen that the results produced by LRR are quite promising.

One may have noticed that the bound given in above
theorem is somewhat loose. To obtain a more accurate bound
in theory, one needs to relax the equality constraint of (9) into:

min
Z,E

||Z||∗ + λ||E||2,1, s.t. ‖X −XZ − E‖F ≤ ξ,

whereξ is a parameter for characterizing the amount of the
dense noise (Fig.2(a)) possibly existing in data. The above
problem can be solved by ALM, in a similar procedure as
Algorithm 1. However, the above formulation needs to invoke
another parameterξ, and thus we do not further explore it in
this paper.

D. Algorithms for Subspace Segmentation, Model Estimation
and Outlier Detection

1) Segmentation with Given Subspace Number:After ob-
taining(Z∗, E∗) by solving problem (9), the matrixU∗(U∗)T

that identifies the column space ofZ∗ is useful for subspace
segmentation. Let the skinny SVD ofZ∗ asU∗Σ∗(V ∗)T , we
define an affinity matrixW as follows:

[W ]ij = ([Ũ ŨT ]ij)
2, (12)

whereŨ is formed byU∗(Σ∗)
1

2 with normalized rows. Here,
for obtaining better performance on corrupted data, we assign
each column ofU∗ a weight by multiplying(Σ∗)

1

2 . Notice
that when the data is clean,Σ∗ = I and thus this technique
does not take any effects. The technical detail of using(·)2
is to ensure that the values of the affinity matrixW are
positive (note that the matrix̃UŨT can have negative values).
Finally, we could use the spectral clustering algorithms such
as Normalized Cuts (NCut) [26] to segment the data samples
into a given numberk of clusters. Algorithm 2 summarizes
the whole procedure of performing segmentation by LRR.

2) Estimating the Subspace Numberk: Although it is
generally challenging to estimate the number of subspaces
(i.e., number of clusters), it is possible to resolve this model
estimation problem due to the block-diagonal structure of the
affinity matrix produced by specific algorithms [13], [44], [45].

While a strictly block-diagonal affinity matrixW is obtained,
the subspace numberk can be found by firstly computing the
normalized Laplacian (denoted asL) matrix of W , and then
counting the number of zero singular values ofL. While the
obtained affinity matrix is just near block-diagonal (this is the
case in reality), one could predict the subspace number as the
number of singular values smaller than a threshold. Here, we
suggest a soft thresholding approach that outputs the estimated
subspace number̂k by

k̂ = n− int(

n
∑

i=1

fτ (σi)). (13)

Here,n is the total number of data samples,{σi}ni=1
are the

singular values of the Laplacian matrixL, int(·) is the function
that outputs the nearest integer of a real number, andfτ (·) is
a soft thresholding operator defined as

fτ (σ) =

{

1, if σ ≥ τ,

log2(1 +
σ2

τ2 ), otherwise,

where0 < τ < 1 is a parameter. Algorithm 3 summarizes the
whole procedure of estimating the subspace number based on
LRR.

3) Outlier Detection:As shown in Theorem 5.2, the mini-
mizerE∗ (with respect to the variableE) can be used to detect
the outliers that possibly exist in data. This can be simply done
by finding the nonzero columns ofE∗, when all or a fraction
of data samples are clean (i.e., Assumption 1 and Assumption
2). For the cases where the learntE∗ only approximately has
sparse column supports, one could use thresholding strategy;
that is, thei-th data vector ofX is judged to be outlier if and
only if

‖[E∗]:,i‖2 > δ, (14)

whereδ > 0 is a parameter.
Since the affinity degrees of the outliers are zero or close

to being zero (see Fig.4 and Fig.6), the possible outliers
can be also removed by discarding the data samples whose
affinity degrees are smaller than a certain threshold. Such a
strategy is commonly used in spectral-type methods [13], [34].
Generally, the underlying principle of this strategy is essential
the same as (14). Comparing to the strategy of characterizing
the outliers by affinity degrees, there is an advantage of using
E∗ to indicate outliers; that is, the formulation (9) can be
easily extended to include more priors, e.g., the multiple visual
features as done in [18], [19].

VI. EXPERIMENTS

LRR has been used to achieve state-of-the-art performance
in several applications such as motion segmentation [4], image
segmentation [18], face recognition [4] and saliency detection
[19]. In the experiments of this paper, we shall focus on
analyzing the essential aspects of LRR, under the context of
subspace segmentation and outlier detection.

A. Experimental Data

1) Hopkins155:To verify the segmentation performance of
LRR, we adopt for experiments the Hopkins155 [46] motion
database, which provides an extensive benchmark for testing
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TABLE I

SOME INFORMATION ABOUT HOPKINS155.

data # of data # of error
dimension samples subspaces level

max 201 556 3 0.0130
min 31 39 2 0.0002

mean 59.7 295.7 2.3 0.0009
std. 20.2 140.8 0.5 0.0012

Fig. 7

EXAMPLES OF THE IMAGES IN THEYALE-CALTECH DATASET.

various subspace segmentation algorithms. In Hopkins155,
there are 156 video sequences along with the features extracted
and tracked in all the frames. Each sequence is a sole dataset
(i.e., data matrix) and so there are in total 156 datasets of
different properties, including the number of subspaces, the
data dimension and the number of data samples. Although
the outliers in the data have been manually removed and the
overall error level is low, some sequences (about 10 sequences)
are grossly corrupted and have notable error levels. Table
I summarizes some information about Hopkins155. For a
sequence represented as a data matrixX , its error level is esti-
mated by its rank-r approximation:‖X−UrΣrV

T
r ‖F/‖X‖F ,

whereΣr contains the largestr singular values ofX , and
Ur (resp.Vr) is formed by taking the topr left (resp. right)
singular vectors. Here, we setr = 4k (k is the subspace
number of the sequence), due to the fact that the rank of each
subspace in motion data is at most 4.

2) Yale-Caltech:To test LRR’s effectiveness in the pres-
ence of outliers and corruptions, we create a dataset by
combining Extended Yale Database B [47] and Caltech101
[48]. For Extended Yale Database B, we remove the images
pictured under extreme light conditions. Namely, we only use
the images with view directions smaller than 45 degrees and
light source directions smaller than 60 degrees, resultingin
1204 authentic samples approximately drawn from a union of
38 low-rank subspaces (each face class corresponds to a sub-
space). For Caltech101, we only select the classes containing
no more than 40 images, resulting in 609 non-face outliers.
Fig.7 shows some examples of this dataset.

B. Baselines and Evaluation Metrics

Due to the close connections between PCA and LRR, we
choose PCA and RPCA methods as the baselines. Moreover,
some previous subspace segmentation methods are also con-
sidered.

1) PCA (i.e., SIM): The PCA method is widely used for
dimension reduction. Actually, it can also be applied to sub-
space segmentation and outlier detection as follows: first,we

use SVD to obtain the rank-r (r is a parameter) approximation
of the data matrixX , denoted asX ≈ UrΣrV

T
r ; second, we

utilize VrV
T
r , which is an estimation of the true SIMV0V

T
0 ,

for subspace segmentation in a similar way as Algorithm 2 (the
only difference is the estimation of SIM); finally, we compute
Er = X − UrΣrV

T
r and useEr to detect outliers according

to (14).
2) RPCA: As an improvement over PCA, the robust PCA

(RPCA) methods can also do subspace segmentation and out-
lier detection. In this work, we consider two RPCA methods
introduced in [7] and [16], which are based on minimizing

min
D,E

‖D‖∗ + λ‖E‖ℓ, s.t.X = D + E.

In [7], the ℓ1 norm is used to characterize random corrup-
tions, so referred to as “RPCA1”. In [16], the ℓ2,1 norm is
adopted for detecting outliers, so referred to as “RPCA2,1”.
The detailed procedures for subspace segmentation and outlier
detection are almost the same as the PCA case above. The only
difference is thatVr is formed from the skinny SVD ofD∗

(not X), which is obtained by solving the above optimization
problem. Note here that the value ofr is determined by the
parameterλ, and thus one only needs to selectλ.

3) SR: LRR has similar appearance as SR, which has been
applied to subspace segmentation [13]. For fair comparison, in
this work we implement anℓ2,1-norm based SR method that
computes an affinity matrix by minimizing

min
Z,E

‖Z‖
1
+ λ‖E‖2,1, s.t.X = XZ + E, [Z]ii = 0.

Here, SR needs to enforce[Z]ii = 0 to avoid the trivial
solution Z = I. After obtaining a minimizer(Z∗, E∗), we
useW = |Z∗|+ |(Z∗)T | as the affinity matrix to do subspace
segmentation. The procedure of usingE∗ to perform outlier
detection is the same as LRR.

4) Some other Methods:We also consider for compari-
son some previous subspace segmentation methods, including
Random Sample Consensus (RANSAC) [10], Generalized
PCA (GPCA) [24], Local Subspace Analysis (LSA) [2], Ag-
glomerative Lossy Compression (ALC) [3], Sparse Subspace
Clustering (SSC) [13], Spectral Clustering (SC) [31], Spectral
Curvature Clustering (SCC) [27], Multi Stage Learning (MSL)
[49], Locally Linear Manifold Clustering (LLMC) [50], Local
Best-fit Flats (LBF) [29] and Spectral LBF (SLBF) [29].

5) Evaluation Metrics: Segmentation accuracy (error) is
used to measure the performance of segmentation. The areas
under the receiver operator characteristic (ROC) curve, known
as AUC, is used for for evaluating the quality of outlier
detection. For more details about these two evaluation metrics,
please refer to Appendix.

C. Results on Hopkins155

1) Choosing the Parameterλ: The parameterλ > 0 is
used to balance the effects of the two parts in problem (9).
In general, the choice of this parameter depends on the prior
knowledge of the error level of data. When the errors are slight,
we should use relatively largeλ; when the errors are heavy,
we should setλ to be relatively small.
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Fig. 8

THE INFLUENCES OF THE PARAMETER λ OF LRR. (A) ON ALL 156

SEQUENCES OFHOPKINS155,THE OVERALL SEGMENTATION

PERFORMANCE IS EQUALLY GOOD WHILE3 ≤ λ ≤ 5. (B) ON THE 43-TH

SEQUENCE, THE SEGMENTATION ERROR IS ALWAYS0 FOR

0.001 ≤ λ ≤ 1000. (C) ON THE 62-TH SEQUENCE, THE SEGMENTATION

PERFORMANCE IS GOOD ONLY WHEN0.8 ≤ λ ≤ 1.6.

TABLE II

SEGMENTATION RESULTS(ON HOPKINS155)OF PCA, RPCA1, RPCA2,1,

SRAND LRR.

segmentation errors (%) over all 156 sequences
PCA RPCA1 RPCA2,1 SR LRR

mean 4.56 4.13 3.26 3.89 1.71
std. 10.80 10.37 9.09 7.70 4.85
max 49.78 45.83 47.15 32.57 33.33

average run time (seconds) per sequence
0.2 0.8 0.8 4.2 1.9

Fig.8(a) shows the evaluation results over all 156 sequences
in Hopkins155: whileλ ranges from1 to 6, the segmentation
error only varies from1.69% to 2.81%; while λ ranges from
3 to 5, the segmentation error almost remains unchanged,
slightly varying from 1.69% to 1.87%. This phenomenon is
mainly due to two reasons as follows. First, on most sequences
(about 80%) which are almost clean and easy to segment, LRR
could work well by choosingλ arbitrarily, as exemplified in
Fig.8(b). Second, there is an “invariance” in LRR, namely
Theorem 4.3 implies that the minimizer to problem (9) always
satisfiesZ∗ ∈ span

(

XT
)

. This implies that the solution of
LRR can be partially stable whileλ is varying.

The analysis above does not deny the importance of model
selection. As shown in Fig.8(c), the parameterλ can largely
affect the segmentation performance on some sequences. Ac-
tually, if we turnλ to the best for each sequence, the overall
error rate is only 0.07%. Although this number is achieved in
an “impractical” way, it verifies the significance of selecting
the parameterλ, especially when the data is corrupted. For
the experiments below, we chooseλ = 4 for LRR.

2) Segmentation Performance:In this subsection, we show
LRR’s performance in subspace segmentation with the sub-
space number given. For comparison, we also list the resultsof
PCA, RPCA1, RPCA2,1 and SR (these methods are introduced
in Section VI-B). Table II illustrates that LRR performs better
than PCA and RPCA. Here, the advantages of LRR are mainly
due to its methodology. More precisely, LRRdirectly targets
on recovering the row spaceV0V

T
0 , which provably determines

the segmentation results. In contrast, PCA and RPCA methods
are designed for recovering the column spaceU0U

T
0

, which is
designed for dimension reduction. One may have noticed that
RPCA2,1 outperforms PCA and RPCA1. If we use instead

TABLE III

RESULTS(ON HOPKINS155)OF ESTIMATING THE SUBSPACE NUMBER.

# total # predicted prediction rate (%) absolute error
156 121 77.6 0.25

influences of the parameterτ
parameterτ 0.06 0.07 0.08 0.09 0.10 0.11

prediction rate 66.7 71.2 77.6 75.0 72.4 71.2
absolute error 0.37 0.30 0.25 0.26 0.29 0.30

TABLE IV

SEGMENTATION ERRORS(%) ON HOPKINS155 (155SEQUENCES).

GPCA RANSAC MSL LSA LLMC
mean 10.34 9.76 5.06 4.94 4.80

PCA LBF ALC SCC SLBF
mean 4.47 3.72 3.37 2.70 1.35

LRR
SSC SC [51] [4] this paper

mean 1.24 1.20 1.22 0.85 1.59

the ℓ1 norm to regularizeE in (9), the segmentation error is
2.03% (λ = 0.6, optimally determined). These illustrate that
the errors in this database tend to be sample-specific.

Besides the superiorities in segmentation accuracy, another
advantage of LRR is that it can work well under a wide range
of parameter settings, as shown in Fig.8. Whereas, RPCA
methods are sensitive to the parameterλ. Taking RPCA2,1
for example, it achieves an error rate of 3.26% by choosing
λ = 0.32. However, the error rate increases to 4.5% at
λ = 0.34, and 3.7% atλ = 0.3.

The efficiency (in terms of running time) of LRR is
comparable to PCA and RPCA methods. Theoretically, the
computational complexity (with regard tod andn) of LRR is
the same as RPCA methods. LRR costs more computational
time because its optimization procedure needs more iterations
than RPCA to converge.

3) Performance of Estimating Subspace Number:Since
there are 156 sequences in total, this database also provides a
good benchmark for evaluating the effectiveness of Algorithm
3, which is to estimate the number of subspaces underlying
a collection of data samples. Table III shows the results. By
choosingτ = 0.08, LRR correctly predicts the true subspace
number of 121 sequences. The absolute error (i.e.,|k̂ − k|)
averaged over all sequences is0.25. These results illustrate that
it is hopeful to resolve the problem of estimating the subspace
number, which is a challenging model estimation problem.

4) Comparing to State-of-the-art Methods:Notice that pre-
vious methods only report the results for 155 sequences. After
discarding the degenerate sequence, the error rate of LRR is
1.59% which is comparable to the state-of-the-art methods,as
shown in Table IV. The performance of LRR can be further
improved by refining the formulation (9), which uses the
observed data matrixX itself as the dictionary. When the data
is corrupted by dense noise (this is usually true in reality), this
certainly is not the best choice. In [51] and [42], a non-convex
formulation is adopted to learn the original dataX0 and its
row spaceV0V

T
0 simultaneously:

min
D,Z,E

‖Z‖∗ + λ‖E‖1 s.t.X = D + E,D = DZ,
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TABLE V

SEGMENTATION ACCURACY (ACC) AND AUC COMPARISON ON THE

YALE-CALTECH DATASET.

PCA RPCA1 RPCA2,1 SR LRR
ACC (%) 77.15 82.97 83.72 73.17 86.13

AUC 0.9653 0.9819 0.9863 0.9239 0.9927
time (sec.) 0.6 60.8 59.2 383.5 152.6

where the unknown variableD is used as the dictionary.
This method can achieve an error rate of 1.22%. In [4], it is
explained that the issues of choosing dictionary can be relieved
by considering the unobserved, hidden data. Furthermore, it is
deduced that the effects of hidden data can be approximately
modeled by the following convex formulation:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖1 s.t.X = XZ + LX + E,

which intuitively integrates subspace segmentation and feature
extraction into a unified framework. This method can achieve
an error rate of 0.85%, which outperforms other subspace
segmentation algorithms.

While several methods have achieved an error rate below
3% on Hopkins155, subspace segmentation problem is till
far from solved. A long term difficult is how to solve the
model selection problems, e.g., estimating the parameterλ of
LRR. Also, it would not be trivial to handle more complicated
datasets that contain more noise, outliers and corruptions.

D. Results on Yale-Caltech

The goal of this test is to identify 609 non-face outliers
and segment the rest 1204 face images into 38 clusters. The
performance of segmentation and outlier detection is evalu-
ated by segmentation accuracy (ACC) and AUC, respectively.
While investigating segmentation performance, the affinity
matrix is computed from all images, including both the face
images and non-face outliers. However, for the convenience
of evaluation, the outliers and the corresponding affinities are
removed (according to the ground truth) before using NCut to
obtain the segmentation results.

We resize all images into20 × 20 pixels and form a data
matrix of size 400 × 1813. Table V shows the results of
PCA, RPCA, SR and LRR. It can be seen that LRR is better
than PCA and RPCA methods, in terms of both subspace
segmentation and outlier detection. These experimental results
are consistent with Theorem 5.2, which shows that LRR has
a stronger guarantee than RPCA methods in performance.
Notice that SR is behind the others6. This is because the
presence or absence of outliers is unnecessary to notably alert
the sparsity of the reconstruction coefficients, and thus itis
hard for SR to handle well the data contaminated by outliers.

Fig.9 shows the performance of LRR while the parameterλ
varies from 0.06 to 0.22. Notice that LRR is more sensitive to
λ on this dataset than on Hopkins155. This is because the error

6The results (for outlier detection) in Table V are obtained by using the
strategy of (14). While using the strategy of checking the affinity degree, the
results produced by SR is even worse, only achieving an AUC of0.81 by
using the best parameters.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

parameter λ

 

 

AUC
Segmentation Accuracy

Fig. 9

THE INFLUENCES OF THE PARAMETER λ OF LRR. THESE RESULTS ARE

COLLECTED FROM THEYALE-CALTECH DATASET. ALL IMAGES ARE

RESIZED TO20× 20 PIXELS.

X = *
XZ + *

E

Fig. 10

SOME EXAMPLES OF USING LRR TO CORRECT THE ERRORS IN THE

YALE -CALTECH DATASET . LEFT: THE ORIGINAL DATA MATRIX X ;

M IDDLE : THE CORRECTED DATAXZ∗ ; RIGHT: THE ERRORE∗.

level of Hopkins155 is quite low (see Table I), whereas, the
Yale-Caltach dataset contains outliers and corrupted images
(see Fig.7).

To visualize LRR’s effectiveness in error correction, we
create another data matrix with size8064× 1813 by resizing
all images into96×84. Fig.10 shows some results produced by
LRR. It is worth noting that the “error” termE∗ can contain
“useful” information, e.g., the eyes and salient objects. Here,
the principle is to decompose the data matrix into a low-
rank part and a sparse part, with the low-rank part (XZ∗)
corresponding to the principal features of the whole dataset,
and the sparse part (E∗) corresponding to the rare features
which cannot be modeled by low-rank subspaces. This implies
that it is possible to use LRR to extract the discriminative
features and salient regions, as done in face recognition [4]
and saliency detection [19].
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VII. C ONCLUSION AND FUTURE WORK

In this paper we proposed low-rank representation (LRR) to
identify the subspace structures from corrupted data. Namely,
our goal is to segment the samples into their respective
subspaces and correct the possible errors simultaneously.LRR
is a generalization of the recently established RPCA methods
[7], [16], extending the recovery of corrupted data from single
subspace to multiple subspaces. Also, LRR generalizes the
approach of Shape Interaction Matrix (SIM), giving a way to
define an SIM between two different matrices (see Theorem
4.1), and providing a mechanism to recover the true SIM
(or row space) from corrupted data. Both theoretical and
experimental results show the effectiveness of LRR. However,
there still remain several problems for future work:

• It may achieve significant improvements by learning a
dictionaryA, which partially determines the solution of
LRR. In order to exactly recover the row spaceV0,
Theorem 4.3 illustrates that the dictionaryA must satisfy
the condition ofV0 ∈ span

(

AT
)

. When the data is only
contaminated by outliers, this condition can be obeyed
by simply choosingA = X . However, this choice cannot
ensure the validity ofV0 ∈ span

(

AT
)

while the data
contains other types of errors, e.g., dense noise.

• The proofs of Theorem 5.2 are specific to the case
of A = X . As a future direction, it is interesting to
see whether the technique presented can be extended to
general dictionary matrices other thanX .

• A critical issue in LRR is how to estimate or select the
parameterλ. For the data contaminated by various errors
such as noise, outliers and corruptions, the estimation of
λ is quite challenging.

• The subspace segmentation should not be the only ap-
plication of LRR. Actually, it has been successfully used
in the applications other than segmentation, e.g., saliency
detection [19]. In general, the presented LRR method can
be extended to solve various applications well.

APPENDIX

A. Terminologies

In this subsection, we introduce some terminologies used in
the paper.

1) Block-Diagonal Matrix: In this paper, a matrixM is
called block-diagonal if it has the form as in (1). For the matrix
M which itself is not block-diagonal but can be transformed
to be block-diagonal by simply permuting its rows and/or
columns, we also say thatM is block-diagonal. In summary,
we say that a matrixM is block-diagonal whenever there
exist two permutation matricesP1 andP2 such thatP1MP2

is block-diagonal.
2) Union and Sum of Subspaces:For a collection ofk sub-

spaces{S1,S2, · · · ,Sk}, their union is defined by∪k
i=1

Si =
{y : y ∈ Sj , for some1 ≤ j ≤ k}, and their sum is
defined by

∑k
i=1

Si = {y : y =
∑k

j=1
yj, yj ∈ Sj}. If any

y ∈
∑k

i=1
Si can be uniquely expressed asy =

∑k
j=1

yj,
yj ∈ Sj , then the sum is also called the directed sum, denoted
as

∑k
i=1

Si = ⊕k
i=1

Si.

3) Independent Subspaces:A collection of k subspaces
{S1,S2, · · · ,Sk} are independent if and only ifSi ∩
∑

j 6=i Sj = {0} (or
∑k

i=1
Si = ⊕k

i=1
Si). When the subspaces

are of low-rank and the ambient dimension is high, the inde-
pendent assumption is roughly equal to the pairwise disjoint
assumption; that isSi ∩ Sj = {0}, ∀i 6= j.

4) Full SVD and Skinny SVD:For an m × n matrix
M (without loss of generality, assumingm ≤ n), its
Singular Value Decomposition (SVD) is defined byM =
U [Σ, 0]V T , whereU andV are orthogonal matrices andΣ =
diag (σ1, σ2, · · · , σm) with {σi}mi=1

being singular values. The
SVD defined in this way is also called thefull SVD. If
we only keep the positive singular values, the reduced form
is called theskinny SVD. For a matrixM of rank r, its
skinny SVD is computed byM = UrΣrV

T
r , whereΣr =

diag (σ1, σ2, · · · , σr) with {σi}ri=1
being positive singular

values. More precisely,Ur andVr are formed by taking the
first r columns ofU andV , respectively.

5) Pseudoinverse:For a matrix M with skinny SVD
UΣV T , its pseudoinverse is uniquely defined by

M † = V Σ−1UT .

6) Column Space and Row Space:For a matrixM , its
column (resp. row) space is the linear space spanned by
its column (resp. row) vectors. Let the skinny SVD ofM
be UΣV T , then U (resp.V ) are orthonormal bases of the
column (resp. row) space, and the corresponding orthogonal
projection is given byUUT (resp.V V T ). SinceUUT (resp.
V V T ) is uniquelydetermined by the column (resp. row) space,
sometimes we also useUUT (resp. V V T ) to refer to the
column (resp. row) space.

7) Affinity Degree:Let M be a symmetric affinity matrix
for a collection ofn data samples, the affinity degree of the
i-th sample is defined by#{(j) : [M ]ij 6= 0}, i.e., the number
of samples connected to thei-th sample.

B. Proofs

1) Proof of Theorem 4.1:The proof of Theorem 4.1 is
based on the following three lemmas.

Lemma 7.1:Let U , V and M be matrices of compatible
dimensions. Suppose bothU andV have orthogonal columns,
i.e., UTU = I andV TV = I, then we have

‖M‖∗ = ‖UMV T ‖∗.
Proof: Let the full SVD ofM beM = UMΣMV T

M , then
UMV T = (UUM )ΣM (V VM )T . As (UUM )T (UUM ) = I

and(V VM )T (V VM ) = I, (UUM )ΣM (VMV )T is actually an
SVD of UMV T . By the definition of the nuclear norm, we
have‖M‖∗ = tr (ΣM ) =

∥

∥UMV T
∥

∥

∗
.

Lemma 7.2:For any four matricesB, C, D and F of
compatible dimensions, we have

∥

∥

∥

∥

[

B C
D F

]∥

∥

∥

∥

∗

≥ ‖B‖∗ ,

where the equality holds if and only ifC = 0, D = 0 and
F = 0.
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Proof: The proof is simply based on the following fact:
for any two matricesM1 andM2, we have

‖[M1,M2]‖∗ ≥ ‖M1‖∗ and/or ‖[M1;M2]‖∗ ≥ ‖M1‖∗
and the equality can hold if and only ifM2 = 0.

Lemma 7.3:Let U , V andM be given matrices of com-
patible dimensions. Suppose bothU and V have orthogonal
columns, i.e.,UTU = I and V TV = I, then the following
optimization problem

min
Z

‖Z‖∗ , s.t. UTZV = M, (15)

has a unique minimizerZ∗ = UMV T .
Proof: First, we prove that‖M‖∗ is the minimum

objective function value andZ∗ = UMV T is a minimizer.
For any feasible solutionZ, let Z = UZΣZV

T
Z be its full

SVD. Let B = UTUZ andC = V T
Z V . Then the constraint

UTZV = M is equal to

BΣZC = M. (16)

SinceBBT = I andCTC = I, we can find the orthogonal
complements7 B⊥ andC⊥ such that

[

B
B⊥

]

and [C,C⊥]

are orthogonal matrices. According to the unitary invariance
of the nuclear norm, Lemma 7.2 and (16), we have

‖Z‖∗ = ‖ΣZ‖∗ =

∥

∥

∥

∥

[

B
B⊥

]

ΣZ [C,C⊥]

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

[

BΣZC BΣZC⊥

B⊥ΣZC B⊥ΣZC⊥

]
∥

∥

∥

∥

∗

≥ ‖BΣZC‖∗ = ‖M‖∗ ,
Hence,‖M‖∗ is the minimum objective function value of
problem (15). At the same time, Lemma 7.1 proves that
‖Z∗‖∗ =

∥

∥UMV T
∥

∥

∗
= ‖M‖∗. So Z∗ = UMV T is a

minimizer to problem (15).
Second, we prove thatZ∗ = UMV T is the unique min-

imizer. Assume thatZ1 = UMV T + H is another optimal
solution. ByUTZ1V = M , we have

UTHV = 0. (17)

SinceUTU = I and V TV = I, similar to above, we can
construct two orthogonal matrices:[U,U⊥] and [V, V⊥]. By
the optimality ofZ1, we have

‖M‖∗ = ‖Z1‖∗ =
∥

∥UMV T +H
∥

∥

∗

=

∥

∥

∥

∥

[

UT

UT
⊥

]

(UMV T +H)[V, V⊥]

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

[

M UTHV⊥

UT
⊥HV UT

⊥HV⊥

]∥

∥

∥

∥

∗

≥ ‖M‖∗ .
According to Lemma 7.2, the above equality can hold if and
only if

UTHV⊥ = UT
⊥HV = UT

⊥HV⊥ = 0.

7WhenB and/orC are already orthogonal matrices, i.e.,B⊥ = ∅ and/or
C⊥ = ∅, our proof is still valid.

Together with (17), we conclude thatH = 0. So the optimal
solution is unique.

It is worth noting that Lemma 7.3 allows us to get closed-
form solutions to a class of nuclear norm minimization prob-
lems, and leads to a simple proof of Theorem 4.1.

Proof: (of Theorem 4.1)SinceX ∈ span (A), we have
rank ([X,A]) = rank (A). Let’s defineVX andVA as follows:
Compute the skinny SVD of the horizontal concatenation of
X and A, denoted as[X,A] = UΣV T , and partitionV as
V = [VX ;VA] such thatX = UΣV T

X and A = UΣVA
T

(note thatVA andVX may be not column-orthogonal). By this
definition, it can be concluded that the matrixV T

A has full row
rank. That is, if the skinny SVD ofV T

A is U1Σ1V
T
1

, thenU1

is an orthogonal matrix. Through some simple computations,
we have

VA(V
T
A VA)

−1 = V1Σ
−1

1
UT
1
. (18)

Also, it can be calculated that the constraintX = AZ is equal
to V T

X = V T
A Z, which is also equal toΣ−1

1
UT
1 V T

X = V T
1 Z. So

problem (5) is equal to the following optimization problem:

min
Z

‖Z‖∗ , s.t. V T
1
Z = Σ−1

1
UT
1
V T
X .

By Lemma 7.3 and (18), problem (5) has a unique minimizer

Z∗ = V1Σ
−1

1
UT
1
V T
X = VA(V

T
A VA)

−1V T
X .

Next, it will be shown that the above closed-form solution
can be further simplified. Notice thatV T

A = Σ−1UTA and
V T
X = Σ−1UTX . Then we have

Z∗ = ATUΣ−1(Σ−1UTAATUΣ−1)−1Σ−1UTX

= ATU(UTAATU)−1UTX

= (UTA)†UTX

= A†X,

where the last equality is due to that(UTA)†UT =
(ΣAV

T
A )†UT = (UΣAV

T
A )† = A†.

2) Proof of Corollary 4.1: Proof:By X ∈ span (A),
we have rank

(

A†X
)

= rank (X). Hence, rank (Z∗) =
rank (X). At the same time, for any feasible solutionZ to
problem (5), we haverank (Z) ≥ rank (AZ) = rank (X).
So,Z∗ is also optimal to problem (4).

3) Proof of Theorem 4.2:The proof of Theorem 4.2 is
based on the following well-known lemma.

Lemma 7.4:For any four matricesB, C, D and F of
compatible dimensions, we have
∥

∥

∥

∥

[

B C
D F

]∥

∥

∥

∥

∗

≥
∥

∥

∥

∥

[

B 0
0 F

]∥

∥

∥

∥

∗

= ‖B‖∗ + ‖F‖∗ .
The above lemma allows us to lower-bound the objective

value at any solutionZ by the value of the block-diagonal
restriction ofZ, and thus leads to a simple proof of Theorem
4.2.

Proof: Let Z∗ be the optimizer to problem (5). Form a
block-diagonal matrixW by setting

[W ]ij =







[Z]ij , [A]:,i and [X ]:,j belong to
the same subspace,

0, otherwise.
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Write Q = Z∗ −W . For any data vector[X ]:,j, without loss
of generality, suppose[X ]:,j belongs to thei-th subspace; i.e.,
[AZ∗]:,j ∈ Si. Then by construction, we have[AW ]:,j ∈ Si

and [AQ]:,j ∈ ⊕m 6=iSm. But [AQ]:,j = [X ]:,j − [AW ]:,j ∈
Si. By independence, we haveSi ∩ ⊕m 6=iSm = {0}, and so
[AQ]:,j = 0, ∀ j.

Hence,AQ = 0, and W is feasible for (5). By Lemma
7.4, we have‖Z∗‖∗ ≥ ‖W‖∗. Also, by the uniqueness of the
minimizer (see Theorem 4.1), we conclude thatZ∗ = W and
henceZ∗ is block-diagonal.

Again, by the uniqueness of the minimizerZ∗, we can
conclude that for alli’s, Z∗

i is also the unique minimizer to
the following optimization problem:

min
J

‖J‖∗ , s.t. Xi = AiJ.

By Corollary 4.1, we conclude thatrank (Z∗
i ) = rank (Xi).

4) Proof of Theorem 4.3: Proof:Note that the LRR
problem (7) always has feasible solution(s), e.g.,(Z = 0, E =
X) is feasible. So, an optimal solution, denoted as(Z∗, E∗),
exists. By Theorem 4.1, we have

Z∗ = argmin
Z

‖Z‖∗ s.t. X − E∗ = AZ

= A†(X − E∗),

which simply leads toZ∗ ∈ span
(

AT
)

.
5) Proof of Theorem 5.3: Proof:Let the skinny SVD

of X beUΣV T . It is simple to see that(V V T , 0) is feasible
to problem (9). By the convexity of (9), we have

‖Z∗‖∗ ≤ ‖Z∗‖∗ + λ‖E∗‖ ≤ ‖V V T ‖∗
= rank (X)

≤ min(d, n).

Hence,

‖Z∗ − V0V
T
0 ‖F ≤ ‖Z∗ − V0V

T
0 ‖∗ ≤ ‖Z∗‖∗ + ‖V0V

T
0 ‖∗

= ‖Z∗‖∗ + r0 ≤ min(d, n) + r0.

C. Evaluation Metrics

1) Segmentation Accuracy (or Error):The segmentation re-
sults can be evaluated in a similar way as classification results.
Nevertheless, since segmentation methods cannot provide the
class label for each cluster, a postprocessing step is needed to
assign each cluster a label. A commonly used strategy is to
try every possible label vectors that satisfy the segmentation
results. The final label vector is chosen as the one that best
matches the ground truth classification results. Such aglobal
searchstrategy is precise, but inefficient when the subspace
numberk is large. Namely, the computational complexity is
k!, which is higher than2k for k ≥ 2. Hence, we suggest
a local searchstrategy as follows: given the ground truth
classification results, the label of a cluster is the index of
the ground truth class that contributes the maximum number
of samples to the cluster. This local search strategy is quite
efficient because its computational complexity is onlyO(k),

and can usually produce the same evaluation results as global
search. Nevertheless, it is possible that two different clusters
are assigned with the same label. So, we use the local search
strategy only whenk ≥ 10.

2) Receiver Operator Characteristic:To evaluate the ef-
fectiveness of outlier detection without choosing a parameter
δ for (14), we consider the receiver operator characteristic
(ROC), which is widely used to evaluate the performance of
binary classifiers. The ROC curve is obtained by trying all
possible thresholding values, and for each value, plottingthe
true positives rate on the Y-axis against the false positiverate
value on the X-axis. The areas under the ROC curve, known as
AUC, provides a number for evaluating the quality of outlier
detection. Note that the AUC score is the larger the better, and
always ranges between 0 and 1.
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