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Abstract—In this work we address the subspace clusterin
'I:'problem. Given a set of data samples (vectors) approximatg
! __ drawn from a union of multiple subspaces, our goal is to clusr

= the samples into their respective subspaces and remove piide
outliers as well. To this end, we propose a novel objective fiction
named Low-Rank Representation (LRR), which seeks the lowes
rank representation among all the candidates that can reprsent
o) the data samples as linear combinations of the bases in a giv
dictionary. It is shown that the convex program associated vth
D LRR solves the subspace clustering problem in the following Fig. 1
sense: when the data is clean, we prove that LRR exactly reces A yxture oF SUBSPACES CONSISTING OF A 2D PLANE AND TWO 1D
the true subspace structures; when the data are contaminateby LINES. (A) THE SAMPLES ARE STRICTLY DRAWN FROM THE UNDERLYING
outliers, we prove that under certain conditions LRR can exatly '
O\ recover the row space of the original data and detect the ouir as ~ SUBSPACES (B) THE SAMPLES ARE APPROXIMATELY DRAWN FROM THE
- well; for data corrupted by arbitrary sparse errors, LRR can also UNDERLYING SUBSPACES
o approximately recover the row space with theoretical guaratees.
1 Since the subspace membership is provably determined by the

row space, these further imply that LRR can perform robust b A bl del is t ider dat
< 'subspace clustering and error correction, in an efficient ad subspace. more reasonable model IS 10 consider data

5 effective way. lying nearseveralsubspaces, namely the data is considere

. . . as samples approximately drawn from a mixture of sever:
>< Index Terms—low-rank representation, subspace clustering, | K sub h in Big.1
a segmentation, outlier detection. ow-rank subspaces, as snown in £g.1.

G The generality and importance of subspaces naturally leg
to a challenging problem of subspace segmentation (or clu:
. INTRODUCTION tering), whose goal is to segment (cluster or group) dat
In pattern analysis and signal processing, an underlyifitfo clusters with each cluster corresponding to a subspac
tenet is that the data often contains some typestaficture Subspace segmentation is an important data clusteringgonob
that enables intelligent representation and processiogr® and arises in numerous research areas, including compu
usually needs a parametric model to characterize a given %éion [3], [8], [9], image processing [5]/ [10] and system
of data. To this end, the well-known (lineaspibspacesre identification [11]. When the data is clean, i.e., the sasiple
possibly the most common choice, mainly because they #€ strictly drawn from the subspaces, several existingouist
easy to compute and often effective in real applications- Sd€.9., [12], [13], [14]) are able to exactly solve the sulzspa
eral types of visual data, such as motibh [L], [2], [3], fad [ Segmentation problem. So, as pointed out by [3]J [14], the
and texture[[5], have been known to be well characterized Bjain challenge of subspace segmentation is to handle tt
subspaces. Moreover, by applying the concept of reproduci@Tors (€.g., noise and corruptions) that possibly exist in data
kernel Hilbert space, one can easily extend the linear nsodeg., to handle the data that may not strictly follow subspac
to handle nonlinear data. So the subspace methods have bdgiftures. With this viewpoint, in this paper we therefore
gaining much attention in recent years. For example, téudy the followingsubspace clusterinfll5] problem.
widely used Principal Component Analysis (PCA) method and Problem 1.1 (Subspace Clusteringgiven a set of data
the recently established matrix completidoh [6] and recpy€f samplesapproximately (i.e., the data may contain errors)
methods are essentially based on the hypothesis that the dmawn from a union of linear subspaces, correct the possib
is approximately drawn from a low-rank subspace. Howeveatrors and segment all samples into their respective sabspa
a given data set can seldom be well described bgingle simultaneously.
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our method isautonomousi.e., no extra clean data is

single subspace [7] to multiple subspaces. Compared |
[20], which requires the bases of subspaces to be know
for handling the corrupted data from multiple subspaces

D IR required.
(&) noise (b) random corruptions () sample—specific corruptions e Theoretical results for robust recovery are provided
While our analysis shares similar features as previou
Fig. 2 work in matrix completion[[6] and robust PCA (RPCA)
| LLUSTRATING THREE TYPICAL TYPES OF ERRORS : (A) NOISE[6], [7], [A8], it is considerably more challenging due to the
WHICH INDICATES THE PHENOMENA THAT THE DATA IS SLIGHTLY fact that there iS a dictionary matrix in LRR.
PERTURBED AROUND THE SUBSPACESNHAT WE SHOW IS A PERTURBED
DATA MATRIX WHOSE COLUMNS ARE SAMPLES DRAWN FROM THE Il. RELATED WORK
SUBSPACE$; (B) RANDOM CORRUPTIONS[7], WHICH INDICATE THAT A In this section, we discuss some existing subspace segme
FRACTION OF RANDOM ENTRIES ARE GROSSLY CORRUPTEIC) tation methods. In general, existing works can be roughl

SAMPLE-SPECIFIC CORRUPTION$AND OUTLIERS), WHICH INDICATE THE divided into four main Categories: mixture of Gaussian’_ fac
PHENOMENA THAT A FRACTION OF THE DATA SAMPLES(I.E., COLUMNS torization, algebraic and Spectral_type methods.
OF THE DATA MATRIX) ARE FAR AWAY FROM THE SUBSPACES In statistical learning, mixed data is typically modeledaas
set of independent samples drawn from a mixture of probe
] o bilistic distributions. As a single subspace can be well eled
Notice that the word “e_rror".generally refers to theviation by a (degenerate) Gaussian distribution, it is straightiod
between model assumption (i.e., subspaces) and data.ltt cqy assume that each probabilistic distribution is Gaussian
exhibit as noisel[6], missed entries! [6], outliefs [[16] andqopting a mixture of Gaussian models. Then the probler
corruptions [[7] in reality. Fif]2 illustrates three typlidglpes of segmenting the data is converted to a model estimatio
of errors under the context of subspace modeling. In thigoplem, The estimation can be performed either by using th
work, we shall focus on the sample-specific corruptions (aitpectation Maximization (EM) algorithm to find a maximum
outliers) shown in Figl2(c), with mild concerns to the cases |ielihood estimate, as done ifi [21], or by iteratively fingia
Fig[2(a) and Fi@2(b). Notice that an outlier is from a diéfet in_max estimate, as adopted by K-subspaces [8] and Randc
model other than subspaces, and is essentially different & Sample Consensus (RANSAC) [10]. These methods are sen
corrupted sample that belongs to the subspaces. We put thgm 1o errors. So several efforts have been made for impgovi
into the same ca_tegoryjust bgcause.they can be handled inifhg, robustness, e.g., the Median K-flats|[22] for K-sultgsa
same way, as will be shown in Sectibn V-B. the work [23] for RANSAC, and[[5] use a coding length to
To recover the subspace structures from the data containghracterize a mixture of Gaussian. These refinements m:
errors, we propose a novel method terniea-rank represen- introduce some robustness. Nevertheless, the problenilis s
tation (LRR) [14]. Given a set of data samples each of whichot well solved due to the optimization difficulty, which is a
can be represented as a linear combination of the bases igo#leneck for these methods.
dictionary, LRR aims at finding thiewest-rankrepresentation  ggctorization based methods [12] seek to approximate t
of all data jointly. The computational procedure of LRR is t%iven data matrix as a product of two matrices, such that th
solve anuclear norm[17] regularized optimization problem, synnort pattern for one of the factors reveals the segmentat
which is convex and can be solved in polynomial time. Byt the samples. In order to achieve robustness to noisee the
choosing a specific dictionary, it is shown that LRR can welhethods modify the formulations by adding extra regular
solve the subspace clustering problem: when the data is,clegation terms. Nevertheless, such modifications usualiyl le
we prove that LRR exactly recovers tiewv spaceof the data; o non-convex optimization problems, which need heuristic
for the data contaminated by outliers, we prove that undgfyorithms (often based on alternating minimization or EM-
certain conditions LRR caexactlyrecover the row space of style algorithms) to solve. Getting stuck at local minimayma
the original data and detect the outlier as well; for the daigdermine their performances, especially when the data
corrupted by arbitrary errors, LRR can also apprOXimategLossly corrupted. It will be shown that LRR can be regarde
recover the row space with theoretical guarantees. Sinee a robust generalization of the method [in][12] (which is
subspace membership is provably determined by the row spggfrred to as PCA in this paper). The formulation of LRR is
(we will discuss this in Section II[3B), these further implyconvex and can be solved in polynomial time.
that LRR can perform robust subspace clustering and erroigeneralized Principal Component Analysis (GPCA)] [24]
corre_ction, in an efficient way. In summary, the contribotio presents an algebraic way to model the data drawn from
of this work include: union of multiple subspaces. This method describes a sabspe
e We develop a simple yet effective method, termed LRRpontaining a data point by using the gradient of a polynomia
which has been used to achieve state-of-the-art perfat-that point. Then subspace segmentation is made equivale
mance in several applications such as motion segmen@afitting the data with polynomials. GPCA can guarantee the
tion [4], image segmentatioh [18], saliency detection [1%uccess of the segmentation under certain conditions, tand
and face recognitiori_[4]. does not impose any restriction on the subspaces. Howev:
e Our work extends the recovery of corrupted data fromthis method is sensitive to noise due to the difficulty of



estimating the polynomials from real data, which also cause
the high computation cost of GPCA. Recently, Robust Alge-
braic Segmentation (RAS) [25] has been proposed to resolve
the robustness issue of GPCA. However, the computation
difficulty for fitting polynomials is unfathomably large. So
RAS can make sense only when the data dimension is low
and the number of subspaces is small.

As a data clustering problem, subspace segmentation can be
done by firstly learning an affinity matrix from the given data
and then obtaining the final segmentation results by sgdectra Fig. 3
clustering algorithms such as Normalized Cuts (NCUt) [26].An ExAMPLE OF THE MATRIX VoV COMPUTED FROM DEPENDENT
Many existing methods such as Sparse Subspace Clusteringusspaces IN THIS EXAMPLE, WE CREATE 11 PAIRWISE DISJOINT
(SSC) [13], Spectral Curvature Clustering (SCC)I[27].][28] suBSPACES EACH OF WHICH IS OF DIMENSIOR0, AND DRAW 20
Spectral Local Best-fit Flats (SLBF) [29], [B0], the propdse sampLES FROM EACH SUBSPACE WITHOUT ERRORS HE AMBIENT
LRR method and([2],[[31], possess such spectral nature, SO DIMENSION IS200,WHICH IS SMALLER THAN THE SUM OF THE
called as spectral-type methods. The main difference amongmensions oF THE SUBSPACESSO THE SUBSPACES ARE DEPENDENT
various spectral-type methods is the approach for learninguo VoV 1s NOT STRICTLY BLOCK-DIAGONAL . NEVERTHELESS IT IS
the affinity matrix. Under the assumption that the data iSmpLE To SEE THAT HIGH SEGMENTATION ACCURACY CAN BE ACHIEVD
clean and the subspaces are independent, [13] shows tBatsinG THE ABOVE AFFINITY MATRIX TO DO SPECTRAL CLUSTERING
solution produced by sparse representation (SR) [32] could
achieve the so-called; Subspace Detection Property;{

SDP): the within-class affinities are sparse and the between
class affinities are all zeros. In the presence of outligrs, i :
is shown in [15] that the SR methIcD)d can still obéy- The only used vector norm is ttfg norm, denoted by-||,.

. A variety of tri ill b d. Th tfj

SDP. However/;-SDP may not be sufficient to ensure th% Va;llez;(l)ng?:nngsa?endgﬁng%e@y\v/[lu iu#s{e(i i) EE]\/T]a i{
success of subspace segmentation [33]. Recently, Lermhna O'HMH T 40 ¢ [|[M].al]2 # 0} 0HM|| i Z .|[JVT[J]~|
Zhang [34] prove that under certain conditions the multipl n’d HMHM — Y |[M] ﬂQ respéctivel;} The%atri%w
2,1 — i B ’ . [e'e]

s Suctycs can b SHAC CCOVTE ik = ot i e a1~ 1], The special
inimization. u Y, Sl ufation | norm of a matrixM is denoted by||M ||, i.e., ||M]| is the

convex, it is still unknown how to efficiently obtain theIargest singular value ofiZ. The Frobenius norm and the
globally optimal solution. In contrast, the formulationldRR uclear norm (the sum of singular values of a matrix) are

is convex and the corresponding optimization problem can ggnoted by|[ M|, and |M]., respectively. The Euclidean

solved in polynomial time. What is more, even if the datﬁ\ner product between two matrices (&, N) — tr (MTN)
is contaminated by outliers, the proposed LRR method ere M7 is the transpose of a matrix 7amd(-) is the trac’e
proven to exactly recover the right row space, which proyab f a matrix

determines the subspace segmentation results (we shalbdis
this in SectiorL-B). In the presence of arbitrary erroesyt,  The supports of a matrid/ are the indices of its nonzero
corruptions, outliers and noise), LRR is also guaranteed detries, i.e.,{(i,j) : [M];; # 0}. Similarly, its column
produce near recovery. supports are the indices of its nonzero columns. The symb:
T (superscripts, subscripts, etc.) is used to denote therrolu
supports of a matrix, i.eZ = {(i) : ||[[M]..l]2 # 0}. The
A. Summary of Main Notations corresponding complement set (i.e., zero columngy i here
. . _ ) are two projection operators associated WitandZ<: Pz and
In this work, matrices are represented with capital symbolﬁzc' While applying them to a matri#/, the matrixPz (M)

In particular,I is used to denote the identity matrix, and th?resp.PIc (M)) is obtained fromM by setting[M]. ; to zero
entries of matrices are denoted by usipgwith subscripts. ¢, ol ; ¢ T (resp.i ¢ I°). o

For instance,M is a matrix, [M];; is its (i,7)-th entry,

[M];. is its i-th row, and[M].; is its j-th column. For  We also adopt the conventions of usisygn (M) to denote
ease of presentation, the horizontal (resp. vertical) amc the linear space spanned by the columns of a matfjxusing
nation of a collection of matrices along row (resp. column) € span (M) to denote that a vectay belongs to the space
is denoted by[M;, Mo, - -+, My] (resp.[My; Ma;--- ; Mi]). span (M), and usingt” € span (M) to denote that all column
The block-diagonal matrix formed by a collection of matsicevectors ofY” belong tospan (M).

My, My, --- , My is denoted by

IIl. PRELIMINARIES AND PROBLEM STATEMENT

Finally, in this paper we use several terminologies, in¢lud

My 0 O 0 ing “block-diagonal matrix”, “union and sum of subspaces”,
0 M, 0 O “independent (and disjoint) subspaces”, “full SVD and skin
diag (My, Ma, - -+, M) = (1) svD”, “pseudoinverse”, “column space and row space” an
8 8 0 ]3 “affinity degree”. These terminologies are defined in Ap-
k

pendix.



B. Relations Between Segmentation and Row Space Unlike [14], the independent assumption on the subspaces
Let X, with skinny SVD UyS,VT be a collection of data not highlighted in this paper, because the analysis in tlidkw

samplesstrictly drawn from a union of multiple subspaced0cuses on recovering; V" other than a pursuit of block-
(i.e., Xy is clean), the subspace membership of the sampf@@gonal matrix.
is determined by the row space dfy. Indeed, as shown IV. L OW-RANK REPRESENTATION FORMATRIX
in [12], when subspaces are independeit),/ forms a RECOVERY
block-diagonal matrix: the(i, j)-th entry of 1,V can be In this section we abstractly present the LRR methoc
nonzero only if thei-th and j-th samples are from the samefor recovering a matrix from corrupted observations. The
subspace. Hence, this matrix, termed as Shape Interacti@isic theorems and optimization algorithms will be preseént
Matrix (SIM) [12], has been widely used for subspace seghe specific methods and theories for handling the subspa
mentation. Previous approaches simply compute the SVD @Mistering problem are deferred until Sectigh V.
the data matrixX = UxXxVE and then uséVx VZ| [l for
subspace segmentation. However, in the presence of sutli@r Low-Rank Representation
and corruptionsyx can be far away fronl;, and thus the  In order to recover the low-rank matriX, from the given
segmentation using such approaches is inaccurate. Inastntrobservation matrixX corrupted by error&, (X = Xo+ Ep),
we show that LRR can recovér,Vl even when the dataitis straightforward to consider the following regularizeank
matrix X is contaminated by outliers. minimization problem:

If the subspaces are not independérity;/ may not be
strictly block-diagonal. This is indeed well expected,cgin
when the subspaces have nonzero (nonempty) mtersectl%&nﬁére A > 0 is a parameter and-|, indicates certain

then some samples may belong to multiple subspaces simul- T .
P Y 9 P P regularization strategy, such as the squared Frobenius nol

taneously. When the subspaces are pairwise disjoint (but io |12 used for modeling the noise as show in Big.2(a)

rgiélrank(D)—i-/\HEHé, st. X=D+E, 2

)

. ; ) . le.
independent), our extensive numerical experiments shaiv th. " .
VoV may still be close to be block-diagonal, as exemplifie 6], the ¢, norm adopted by 7] for characterizing the random

in Fig. [3. Hence, to recovebyV is still of interest to corruptions as shown n F.'Z(b)’ and theo norm adoptgd
. by [14], [1€] for dealing with sample-specific corruptions
subspace segmentation.

and outliers. Suppos®* is a minimizer with respect to the
variable D, then it gives a low-rank recovery to the original
dataXjg.

ProblenLL only roughly describes what we want to study. The above formulation is adopted by the recently estaldishe
More precisely, this paper addresses the following problemRobust PCA (RPCA) method][7] which has been used tc
Problem 3.1 (Subspace Clusterind)et X, € R**™ with  achieve the state-of-the-art performance in several egpins

skinny SVD Uy V; store a set of: d-dimensional samples (e.g., [35]). However, this formulation implicitly assumthat
(vectors) strictly drawn from a union df subspace$S;}Y_, the underlying data structure is a single low-rank subspac:
of unknown dimensionsi(is unknown either). Given a set of When the data is drawn from a union of multiple subspaces
observation vectors( generated by denoted asS;, S, - - - , S, it actually treats the data as being
sampled from a single subspace defined®y= Zle&.
Since the sume:1 S; can be much larger than the union
the goal is to recover the row space &f, or to recover the Ui—:Si, the specifics of the individual subspaces are not wel
true SIM VoV as equal. considered and so the recovery may be inaccurate.
The recovery of row space can guarantee high segmentatiof© better handle the mixed data, here we suggest a mo
accuracy, as analyzed in Section 1ll-B. Also, the recovery general rank minimization problem defined as follows:
row space naturally implies the success in error correcon minrank (Z) + A||E|l,, st X=AZ+E, (3)
it is sufficient to set the goal of subspace clustering as the Z,E
recovery of the row space identified By V. For ease of where 4 is a “dictionary” that linearly spans the data space
exploration, we consider the problem under three assumptiaye call the minimizerZ* (with regard to the variable?)
of increasing practicality and difficulty. the “lowest-rank representation” of dafé with respect to a
Assumption 1:The data is clean, i.efp = 0. dictionary A. After obtaining an optimal solutioiZ*, E*),
Assumption 2:A fraction of the data samples are grosslye could recover the original data by usinyZ* (or X —
corrupted and the others are clean, if&),has sparse column E*). Sincerank (AZ*) < rank(Z*), AZ* is also a low-
supports as shown in Fig.2(c). rank recovery to the original datd,. By settingA = I, the
Assumption 3:A fraction of the data samples are grosslyormulation [3) falls back to[{2). So LRR could be regardec
corrupted and the others are contaminated by small Gaussiara generalization of RPCA that essentially uses the stdnde
noise, i.e.,Fy is characterized by a combination of the modellsases as the dictionary. By choosing an appropriate datyon
shown in Fid.2(a) and Fig.2(c). A, as we will see, the lowest-rank representation can recov
the underlying row space so as to reveal the true segmemtati
'For a matrixM, | M| denotes the matrix with the, j)-th entry being the of data. So, LRR could handle well the data drawn from &
absolute value ofM}i;. union of multiple subspaces.

C. Problem Statement

X = Xo + FEo,



B. Analysis on the LRR Problem diagonal:

The optimization probleni{3) is difficult to solve due to the Zf 0 0 0
discrete nature of the rank function. For ease of explanatio . 0 Z; 0 O
we begin with the “ideal” case that the data is clean. That is, Z" = 0 o - 0 )
we consider the following rank minimization problem: ' X
0o 0 0 Zz
min rank (Z), st X =AZ (4) whereZ} is anm; x n; coefficient matrix withrank (Z;) =

rank (X;), Vi.
It is easy to see that the solution fd (4) may not be unique.Note that the claim ofank (Z;) = rank (X;) guarantees
As a common practice in rank minimization problems, wthe high within-class homogeneity &, since the low-rank
replace the rank function with the nuclear norm, resulting Properties generally requirgs’ to be dense. This is different

the following convex optimization problem: from SR, which is prone to produce a “trivial” solution if
A = X, because the sparsest representation is an identi
min || Z| st. X = AZ (5) matrix in this case. It is also worth noting that the aboveskio
i ., St .

diagonal property does not require the data samples have be
rouped together according to their subspace membershiy
here is no loss of generality to assume that the indices ¢

ct)ttle samples have been rearranged to satisfy the true sgbsp

memberships, because the solution produced by LRR is glol
lly optimal and does not depend on the arrangements of tt
ata samples.

We will show that the solution td15) is also a solution fid (4
and this special solution is useful for subspace segmentati

In the following, we shall show some general properties
the minimizer to probleni{5). These general conclusionsfor
the foundations of LRR (the proofs can be found in Appendix

1) Uniqueness of the MinimizerThe nuclear norm is
convex, but not strongly convex. So it is possible that pgobl ¢ Recovering Low-Rank Matrices by Convex Optimization
(8 has multiple optimal solutions. Fortunately, it can be
proven that the minimizer to problerl (5) @waysunigquely
defined by a closed form. This is summarized in the followin
theorem.

Theorem 4.1:AssumeA # 0 and X = AZ have feasible
solution(s), i.e.,.X € span (A). Then

Corollary [4.1 suggests that it is appropriate to use th
uclear norm as a surrogate to replace the rank function i
groblem [(8). Also, the matri¥; and ¢>; norms are good
relaxations of thé, and/¢; , norms, respectively. So we could
obtain a low-rank recovery t, by solving the following
convex optimization problem:

7r = A'X, (6) win[|Z]|, + ME],,, st X=AZ+E. (7

is the unique minimizer to probleni](5), wher¢' is the Here, the/,; norm is adopted to characterize the error téfm
pseudoinverse ofl. since we want to model the sample-specific corruptions (an
From the above theorem, we have the following corollamgutliers) as shown in Figl2(c). For the small Gaussian nois
which shows that probleni](5) is a good surrogate of probleas shown in Fi§l2(a)|E£||% should be chosen; for the random
@). corruptions as shown in Fig.2(b),E||; is an appropriate
Corollary 4.1: AssumeA # 0 and X = AZ have feasible choice. After obtaining the minimizgrZ*, E*), we could use
solutions. LetZ* be the minimizer to problem]5), thenAZ* (or X — E*) to obtain a low-rank recovery to the original
rank (Z*) = rank (X) andZ* is also a minimal rank solution data Xo.
to problem [(&). The optimization probleni{7) is convex and can be solve
2) Block-Diagonal Property of the MinimizerBy choos- Y various methods. For effigiency, we adopt in this paper th
ing an appropriate dictionary, the lowest-rank repreganta Augmented Lagrange Multiplier (ALM] [36]. [37] method. We
can reveal the true segmentation results. Namely, when fHgt convert((y) to the following equivalent problem:
columns of A and X are exactly sampled from independent in (|7, + M| B, St X =AZ+E,Z=J.

L. min
subspaces, the minimizer to problei (5) can reveal the sub-z,E,J

space membership among the samples. {8t Sz, .Sk} This problem can be solved by the ALM method, which

be a collection ofk subspaces, each of which has a ran,imizes the following augmented Lagrange function:
(dimension) ofr; > 0. Also, let A = [A1, As,--- , Ax] and

X = [X1, X5, , Xi]. Then we have the following theorem. £ = |[J||, + X[ E||,, + tr (Y, (X — AZ - E)) +

T © 2 2
Theorem 4.2:Without loss of generality, assume that tr (Y12 =) + §(IX = AZ = Ellp + 12 = JlIp)
is a collection ofm; samples of thei-th subspaceS;, X; The above problem is unconstrained. So it can be minimize
is a collection ofn; samples fromsS;, and the sampling of with respect toJ, Z and E, respectively, by fixing the
eachA; is sufficient such thatank (4;) = r; (i.e., A; can be other variables, and then updating the Lagrange multgplier
regarded as the bases that span the subspace). If the sedbsgacand Y, wherey > 0 is a penalty parameter. The inexact
are independent, then the minimizer to probléin (5) is blocklLM method, also called the alternating direction method



Algorithm 1 Solving Problem({[7) by Inexact ALM Algorithm [ and the objective function of1(7) is not smooth,

Input: data matrixX, parameten. it would be not easy to prove the convergence in theory.
Initialize: Z = J = 0,E = 0,Y; = 0,Y, = 0,p = Fortunately, there actually exist some guarantees for er
1076, ftynae = 108, p = 1.1, ande = 1078, suring the convergence of Algorithfd 1. According to the
while not convergedio theoretical results in_[41], two conditions aselfficient(but
1. fix the others and updaté by may not necessary) for Algorithinl 1 to converge: the firs
1 1 ) condition is that the dictionary matrixd is of full column
J = argmin ;||J||* +5llJ = (Z + Yo/ w)llF. rank; the second one is that the optimality gap produced i
each iteration step is monotonically decreasing, nhamedy th
error

2. fix the others and updatg by
Z=(1+ATA) N AT(X —E)+ T+ (ATY] — Ya)/1). ¢k = [|(Z, Ji) — argpin L%

is monotonically decreasing, whef, (resp.J) denotes the
3. fix the others and updatg by solution produced at the-th iteration,arg minz ; £ indicates

A 1 the “ideal” solution obtained by minimizing the Lagrange
E = argmin —[|E||21 + §||E — (X —AZ+Y1/pl|%-  function £ with respect to bothZ and J simultaneously.

K The first condition is easy to obey, since problém (7) can b
converted into an equivalent problem where the full columr
rank condition is always satisfied (we will show this in the
Y1 = i+ u(X-AZ - E), next subsection). For the monotonically decreasing candit
Y, Y + u(Z — J). although it is not easy tetrictly prove it, the convexity of the

Lagrange function could guarantee its validity to some reixte
[47]. So, it could be well expected that AlgoritHth 1 has gooc

4. update the multipliers

5. update the parameter by 1 = min(pu, pimaz)- convergence properties. Moreover, inexact ALM is known tc
6. check the convergence conditions: generallyperform well in reality, as illustrated in [40].
IX — AZ — El|o < and|[|Z — J||wo < e. Th.atu should be upper bounded (Step 5 of Algoritﬁ_l_n 1) is
_ required by the traditional theory of the alternating dii@t
end while method in order to guarantee the convergence of the algarith

So we also adopt this convention. Nevertheless, please nc
that the upper boundedness may not be necessary for sol
is outlined in AlgorlthmDE Note that although Step 1 andparticular problems, e.g., the RPCA problem as analyzed i
Step 3 of the algorithm are convex problems, they both haf@s].
closed-form solutions. Step 1 is solved via the Singulau®al 2) Computational ComplexityFor ease of analysis, we
Thresholding (SVT) operator [38], while Step 3 is solved viassume that the sizes of both and X are d x n in the

the following lemma: following. The major computation of Algorithinl 1 is Step 1,
Lemma 4.1 ([39]): Let @ be a given matrix. If the optimal which requires computing the SVD of anx n matrix. So
solution to it will be time consuming ifn is large, i.e., the number of

data samples is large. Fortunately, the computational @bst

. 1 2
mml/no‘||W||2=1 T §||W —Qllr LRR can be easily reduced by the following theorem, whict

is W*, then thei-th column of W* is is followed from Theoreri 411. _
Theorem 4.3:For any optimal solution(Z*, E*) to the
W, = ”ﬁQMfHZO‘Q i Q2 > o LRR problem[[7), we have that
o otherwise.

* T
1) Convergence PropertiesWhen the objective function The ab h Z7 € Splar(lj(A r)] h imal solufié
is smooth, the convergence of the exact ALM algorithm has e above theorem concludes that the optimal so n

been generally proven i [37]. For inexact ALM, which is W|th respect to the variabl&) to (@) always lies within the

variation of exact ALM, its convergence has also been w Fb{ep?ce s%a_nrtle;*bx t?ﬁ ZKC:WSfﬁfThﬁ*meanE thaz™ ca;n d
studied when the number of blocks is at most twol[36 ’e 3‘3 onzebm Oth - i i, wthere | can jfcorpue
[40]. Up to present, it is still difficult togenerally ensure advance by orthogonalizing the columns ence
the convergence of inexact ALM with three or more blockgrObIem (7) can be equwalently transformed into a simple

*
[40]. Since there are three blocks (includiggJ and E) in problem by replacingZ with P*Z
2To solve the problemminz, | Z||, + M| E|;, st. X = AZ + E, one %113 HZH* +A ”E”21 , SLX=BZ+E,
only needs to replace Step 3 of AlgoritHoh 1 B = argmin 7HEH1 +
L|E — (X — AZ + Y1/w)||%, which is solved by using the shrinkagewhere B = AP*. After obtaining a solutio( Z*, E*) to the
operator (35, _ e above problem, the optimal solution tQ] (7) is recovered b
Also, please note here that the setting cof= 1078 is based on the AN h b f i h
assumption that the values i has been normalized within the range of(P Z*5E ) Ince the number of rows & Is at mostr 4 (t €

0~ 1. rank of A), the above problem can be solved with a complexity



of O(dnr s+nr? +r%) by using Algorithnf1. So LRR is qui
scalable for large-size(is large) datasets, provided that a l¢
rank dictionaryA has been obtained. While usidg= X, the
computational complexity is at mo§(d?n + d*) (assumin
d < n). This is also fast provided that the data dimensit
is not high.

While considering the cost of orthogonalization and
number of iterations needed to converge, the complexi .t .
Algorithm[T is v E

O(d*n) + O(ng(dnra +nry +13)), Fig. 4
AN EXAMPLE OF THE MATRICES U*(U*)T AND E* COMPUTED FROM
wheren, is the number of iterations. The iteration NUMBEr 14 pATA CONTAMINATED BY OUTLIERS . IN A SIMILAR WAY AS [[14],

depends on the choice pf n is smaller whilep is larger, and e creaTES PAIRWISE DISIOINT SUBSPACES EACH OF WHICH IS OF
vice versa. Although larges does produce higher efficiency, pimension 4, AND DRAW 40 SAMPLES (WITH AMBIENT DIMENSION 200)
it has the risk of losing optimality to use large[36]. In our  rrom eAcH SUBSPACETHEN, 50 OUTLIERS ARE RANDOMLY GENERATED
experiments, we always spt= 1.1. Under this setting, the rromA/(0, s), WHERE THE STANDARD DEVIATIONs IS SET TO BE THREE
iteration number usually locates within the rang&0f~ 300.  1\ves As LARGE AS THE AVERAGED MAGNITUDES OF THE SAMPLESBY
CHOOSING0.16 < X\ < 0.34, LRRPRODUCES A SOLUTIONZ*, E*)
V. SUBSPACECLUSTERING BY LRR WITH THE COLUMN SPACE OFZ* EXACTLY RECOVERING THE ROW SPACE

|n thlS SeCtion we utilize LRR to addreSS PrObl 3 1OFX0,AND THE COLUMN SUPPORTS OHZ* EXACTLY IDENTIFYING THE
which is to recover the original row space from a set of cor- INDICES OF THE OUTLIERS
rupted observations. Both theoretical and experimentallte
will be presented.

The above formulation “seems” questionable, because tf
data matrix (which itself can contain errors) is used as th
) , dictionary for error correction. Nevertheless, as showithim
_ When there are no errors in data, i.&.= Xo andEo = 0, ¢510wing two subsectionsA — X is indeed a good choice
it is simple to show that the row space (identified @l/;") for several particular problen&
of Xo is_ e_xgctly recovered by solving the following nuclear 1) Exactness to OutliersWhen an observed data sample
horm minimization problem: is far away from the underlying subspaces, a typical regsne i

min || Z||,, st X =XZ, (8) thatthis sample is from a different model other than subspac
z so called as aroutlier fi. In this case, the data matrix
which is to choose the data matriX itself as the dictionary contains two parts, one part consists of authentic sample
in G). By Theoreni 4]1, we have the following theorem whicldenoted byX) strictly drawn from the underlying subspaces,
has also been proven by Wei and Lin [42]. and the other part consists of outliers (denotedgsthat are

Theorem 5.1:Suppose the skinny SVD ok is USVT, not subspace members. To precisely describe this settiag, \

then the minimizer to probleni](8) is uniquely defined by need to impose an additional constraint &g, that is,

A. Exactness to Clean Data

zr=vvT Pr,(Xo) = 0, (10)
This naturally implies thatZ* exactly recoverd;V/ when whereZ, is the indices of the outliers (i.e., the column supports
X is clean (i.e.,.Fy = 0). of Ey). Furthermore, we use to denote the total number of

The above theorem reveals the connection between LRR atala samples ik, v £ |Z|/n the fraction of outliers, and,
the method in[[12], which is a counterpart of PCA (referred tthe rank of X,. With these notations, we have the following
as “PCA’ for simplicity). Nevertheless, it is well known tha theorem which states that LRR can exactly recover the ro\
PCA is fragile to the presence of outliers. In contrast, it ba space ofX, and identify the indices of outliers as well.
proven in theory that LRR exactly recovers the row space of Theorem 5.2 {[43]): There existsy* > 0 such that LRR
Xo from the data contaminated by outliers, as will be showwith parametei = 3/(7|| X ||\/7*n) strictly succeeds, as long
in the next subsection. as~y < v*. Here, the success is in a sense that any minimize
] -~ . (z*, E*) to (Q) can produce
B. Robustness to Outliers and Sample-Specific Corruptions
Assumption 2 is to imagine that a fraction of the data Ut =%V and I° =1, (11)
samples are away from the underlying subspaces. This imphghere 7* is the column space of*, and Z* is column
that the error term&, has sparse column supports. So, theypports of*.
¢3,1 norm is appropriate for characterizirg,. By choosing

A= Xin QZ]), we have the following convex optimization SNote that this does not deny the importance of learning tieodiary.
. Indeed, the choice of dictionary is a very important aspedtRR. We leave
problem: .
this as future work.

: _ “4Precisely, we define an outlier as a data vector that is indkp# to the
IEILQHZ”* + Bz, st X=XZ+E. ©) samples drawn from the subspades] [43].
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Fig. 5
TWO EXAMPLES OF THE MATRIX U*(U*)T COMPUTED FROM THE

DATA CORRUPTED BY SAMPLE -SPECIFIC CORRUPTIONS. (A) THE
MAGNITUDES OF THE CORRUPTIONS ARE SET TO BE ABOU®.7 TIMES AS

Fig. 6
AN EXAMPLE OF THE MATRICES U*(U*)T AND E* COMPUTED FROM
THE DATA CONTAMINATED BY NOISE , OUTLIERS AND
SAMPLE-SPECIFIC CORRUPTIONS. IN THIS EXPERIMENT, FIRST, WE

LARGE AS THE SAMPLES CONSIDERING|U*(U*)T | AS AN AFFINITY
MATRIX , THE AVERAGE AFFINITY DEGREE OF THE CORRUPTED SAMPLES
IS ABOUT 40, WHICH MEANS THAT THE CORRUPTED SAMPLES CAN BE
PROJECTED BACK ONTO THEIR RESPECTIVE SUBSPACE®) THE
MAGNITUDES OF THE CORRUPTIONS ARE SET TO BE ABOU3.5TIMES AS
LARGE AS THE SAMPLES THE AFFINITY DEGREES OF THE CORRUPTED
SAMPLES ARE ALL ZERO, WHICH MEANS THAT THE CORRUPTED SAMPLES
ARE TREATED AS OUTLIERS IN THESE EXPERIMENTSTHE DATA SAMPLES
ARE GENERATED IN THE SAME WAY AS INFIG[4. THEN, 10%SAMPLES
ARE RANDOMLY CHOSEN TO BE CORRUPTED BY ADDITIVE ERRORS OF
GAUSSIAN DISTRIBUTION. FOR EACH EXPERIMENT THE PARAMETERA IS
CAREFULLY DETERMINED SUCH THAT THE COLUMN SUPPORTS OE™*

IDENTIFY THE INDICES OF THE CORRUPTED SAMPLES

CREATE 10 PAIRWISE DISJOINT SUBSPACE$EACH OF WHICH IS OF
DIMENSION 4) AND DRAW 40 SAMPLES(WITH AMBIENT DIMENSION
2000)FROM EACH SUBSPACE SECOND, WE RANDOMLY CHOOSE10%
SAMPLES TO BE GROSSLY CORRUPTED BY LARGE ERRORSHE REST90%
SAMPLES ARE SLIGHTLY CORRUPTED BY SMALL ERRORSFINALLY, AS IN
Fic[4, 1000UTLIERS ARE RANDOMLY GENERATEDR THE TOTAL AMOUNT
OF ERRORS(INCLUDING NOISE, SAMPLE-SPECIFIC CORRUPTIONS AND
OUTLIERS) IS GIVEN BY || Eg|| /|| Xo|| r = 0.63. BY SETTINGA = 0.3,
U*(U*)T APPROXIMATELY RECOVERSV) Vgl WITH ERROR
|U*(U*)T = VoV || #/IVoVE || F = 0.17, AND THE COLUMN SUPPORTS
OF E* ACCURATELY IDENTIFY THE INDICES OF THE OUTLIERS AND
CORRUPTED SAMPLESIN CONTRAST, THE RECOVER ERROR PRODUCED
BY PCA1s0.66,AND THAT BY THE RPCAMETHOD (USING THE BEST

PARAMETERS) INTRODUCED IN[16] 1S 0.23.

There are several importance notices in the above theorem.
First, although the objective functiofl (9) is not strongbnuex  [14], which means that the column supportstf can identify
and multiple minimizers may exist, it is proven thany the indices of the corrupted samples.
minimizer is effective for subspace clustering. Secone, th While both outliers and sample-specific corruptiéhare
coefficient matrixZ* itself does not recovek;V, (notice handled in the same way, a question is how to deal witl
that Z* is usually asymmetric excef* = 0), and it is the the cases where the authentic samples are heavily corrupt
column space of* that recovers the row space &. Third, to have similar properties as the outliers. If a sample i
the performance of LRR is measured by the value'ofthe heavily corrupted so as to be independent from the undelyir
|arge|" the better), which depends on some data propem Ssubspaces, it will be treated as an outlier in LRR, as ilatstt
as the incoherence and the extrinsic rapk~* is larger when in Fig[5. This is a reasonable manipulation. For examplis, it
ro is lower). For more details, please refer ftol[43]. appropriate to treat a face image as a non-face outlier if th

Figld shows some experimental results, which verify tHE'age has been corrupted to be look like something else.
conclusions of Theorefn 5.2. Notice that the parametemsgettiC. Robustness in the Presence of Noise, Outliers and Samp
A = 3/(7|| X||lv/y*n) is based on the condition < ~* (i.e., Specific Corruptions
_the outher_fr_actlon is smaller than acertalr)_thresholdjgoh is When there is noise in the data, the column supports
just a sufficient (but not necessary) condition for ensuti® ' 516 not strictly sparse. Nevertheless, the formulatign (9
success of LRR. So, in practice (even for synthetic examplgs il applicable, because the ; norm (which is relaxed
wherey > 7, it is possible that other values of achieve fom g, 'norm) can handle well the signals that approximately
better performances. have sparse column supports. Since all observations may

2) Robustness to Sample-Specific Corruptidhs: the phe-  contaminated, it is unlikely in theory that the row spagé/;”
nomenon that an observed sample is away from the subspaggs he exactly recovered. So we target on near recoverysin tt
another regime is that this sample is an authentic subspagge. By the triangle inequality of matrix norms, the foliogy
member, but grossly corrupted. Usually, such corruptioRgeprem can be simply proven without any assumptions.
only happen on a small fraction of data samples, so calledTheorem 5.3:Let the size ofX bed x n, and the rank of
as “sample-specific” corruptions. The modeling of samplex pe . For any minimizer(Z*, E*) to problem [®) with
specific corruptions is the same as outliers, because in btk ), we have
casesE, has sparse column supports. So the formulafion (9)
is still applicable. However, the setting {10) is no longalid,
and thus LRR may not exactly recover the row spag&;"
in this case. Empirically, the conclusion Bf = Z still holds

1Z* — VoV || » < min(d,n) + ro.

5Unlike outlier, a corrupted sample is unnecessary to bepiexigent to the
clean samples.



Algorithm 2 Subspace Segmentation While a strictly block-diagonal affinity matri%y is obtained,

Input: data matrixX, numberk of subspaces. the subspace numbércan be found by firstly computing the
1. obtain the minimizerZ* to problem [[9). normalized Laplacian (denoted &3 matrix of W, and then
2. compute the skinny SVIX* = U*¥*(V*)T, counting the number of zero singular valueslofWhile the
3. construct an affinity matri¥y by (12). obtained affinity matrix is just near block-diagonal (théstie
4. useW to perform NCut and segment the data samplease in reality), one could predict the subspace numbereas t
into k clusters. number of singular values smaller than a threshold. Here, w
suggest a soft thresholding approach that outputs the &stim
Algorithm 3 Estimating the Subspace Number subspace numbér by
Input: data matrixX. . n
1. compute the affinity matri¥/ in the same way as in k=n— int(z fr(0i))- (13)
Algorithm 2. i=1
2. compute the Laplacian matriX = I — D"3WD™%, Here,n is the total number of data samples;;}™, are the
where D = diag (Zj Wiy, 225 Wlhj ). singular values of the Laplacian matix int(-) is the function
3. estimate the subspace number byl (13). that outputs the nearest integer of a real number, ad is
a soft thresholding operator defined as

1, if o>,
Fig demo_nstrates the performan_c_e of LRR,_in the presence fr(0) = { log, (1 + a_z)’ otherwise,
of noise, outliers and sample-specific corruptions. It can b . 4 . )
seen that the results produced by LRR are quite promising¥Vhere0 < < 1 is a parameter. Algorithil 3 summarizes the
One may have noticed that the bound given in aboWehole procedure of estimating the subspace number based

theorem is somewhat loose. To obtain a more accurate boltitR:
in theory, one needs to relax the equality constrainfbfrg@):;i ~ 3) Outlier Detection: As shown in Theorer 5.2, the mini-
mizer E£* (with respect to the variablE) can be used to detect
%{ib{lHZH* +AlEl]20, 8L X = XZ — E|r <&, the outliers that possibly exist in data. This can be simlyed
by finding the nonzero columns @&*, when all or a fraction

where¢ is a parameter for characterizing the amount of the ya4a samples are clean (i.e., Assumption 1 and Assumptic
dense noise (Figl2(a)) possibly existing in data. The aboye - the cases where the leaffit only approximately has

problgm can be solved by ALM, in a S|m|lar procedgre a:>S|oarse column supports, one could use thresholding syratec
Algorithm[1. However, the above formulation needs to iNVOKE -+ is, thei-th data vector ofX is judged to be outlier if and
another parametef, and thus we do not further explore it inonly if

this paper.

. : . I[E*]:.ill2 >, (14)
D. Algorithms for Subspace Segmentation, Model Estimation

and Outlier Detection whereé > 0 is a parameter.

1) Segmentation with Given Subspace Numbter ob- Since the affinity degrees of the outliers are zero or clos
taining (Z*, E*) by solving problem[{9), the matri&* (U'*)” to being zero (see Fid.4 _and Iﬂb.G), the possible outlier
that identifies the column space &f is useful for subspace Can Pe also removed by discarding the data samples who
segmentation. Let the skinny SVD & asU*%*(V*)T, we affinity degrees are smaller than a certain threshold. Such

define an affinity matrix¥’ as follows: strategy is commonly used in spectral-type methods [L3]. [3
' Generally, the underlying principle of this strategy isesgal

(Wi; = ([UUT])2, (12) the same a$ (14). Comparing to the strategy of charactgrizir

~ ol , the outliers by affinity degrees, there is an advantage @igusi
whereU is formed byU” (3*)2 with normalized rows. Here, E* to indicate outliers; that is, the formulatiop] (9) can be

for obtaining betteir perfo_rmance on c_orrlljpted*dgta, We.gass'easily extended to include more priors, e.g., the multidea
each column ofU* a weight by multiplying(X*)z. Notice features as done i 18], [19]
that when the data is clea®* = I and thus this technique e
does not take any effects. The technical detail of uging VI. EXPERIMENTS
is to ensure that the values of the affinity matfiik are LRR has been used to achieve state-of-the-art performan
positive (note that the matrik U7 can have negative values).in several applications such as motion segmentafion [4jgin
Finally, we could use the spectral clustering algorithmshsu segmentation [18], face recognitidn [4] and saliency daiac
as Normalized Cuts (NCut) [26] to segment the data sampd9]. In the experiments of this paper, we shall focus or
into a given numbek of clusters. AlgorithnT 2 summarizesanalyzing the essential aspects of LRR, under the context
the whole procedure of performing segmentation by LRR. subspace segmentation and outlier detection.

2) Estimating the Subspace Numbkr Although it is _
generally challenging to estimate the number of subspadesExperimental Data
(i.e., number of clusters), it is possible to resolve thisdelo 1) Hopkins155:To verify the segmentation performance of
estimation problem due to the block-diagonal structurehef tLRR, we adopt for experiments the Hopkins155![46] motior
affinity matrix produced by specific algorithnis [13], [4445]. database, which provides an extensive benchmark for gestir
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TABLE |

SOME INFORMATION ABOUT HOPKINSLES. use SVD to obtain the rank{r is a parameter) approximation

of the data matrixX, denoted asX ~ UTETVTT; second, we
utilize V,.V,I', which is an estimation of the true SIMV{,

dat # of dat # of o -
dimenaion S;)mpfég Subsgaces el for subspace segmentation in a similar way as Algorfthm@ (th
max 201 556 3 0.0130 only difference is the estimation of SIM); finally, we comput
min 31 39 2 0.0002 E. =X - U2, VT and useE, to detect outliers according
mean 59.7 295.7 2.3 0.0009 t
std. 20.2 140.8 0.5 0.0012 o (14).

2) RPCA: As an improvement over PCA, the robust PCA
(RPCA) methods can also do subspace segmentation and o
lier detection. In this work, we consider two RPCA methods
introduced in[[7] and[[16], which are based on minimizing

min || D||, + A|E|le, st. X =D+ E.
D,E

In [[7], the ¢; norm is used to characterize random corrup-
tions, so referred to as “RPGA In [L6], the {21 norm is
adopted for detecting outliers, so referred to as “RRCA
The detailed procedures for subspace segmentation aneroutl
detection are almost the same as the PCA case above. The o
difference is thafl. is formed from the skinny SVD oD*
various subspace segmentation algorithms. In Hopkins1$hot X), which is obtained by solving the above optimization
there are 156 video sequences along with the features tedrag@roblem. Note here that the value ofis determined by the
and tracked in all the frames. Each sequence is a sole datagghmeter\, and thus one only needs to seléct
(i.e., data matrix) and so there are in total 156 datasets of3) SR:LRR has similar appearance as SR, which has bee
different properties, including the number of subspacks, tapplied to subspace segmentation [13]. For fair comparison
data dimension and the number of data samples. Althougiis work we implement ar, ;-norm based SR method that
the outliers in the data have been manually removed and @@mputes an affinity matrix by minimizing
overall error level is low, some sequences (about 10 se@sgnc
are grossly corrupted and have notable error levels. Tablenin [|Z][, + Al|E|
[l summarizes some information about Hopkinsl55. For a
sequence represented as a data mafriits error level is esti- Here, SR needs to enfordeZ];; = 0 to avoid the trivial
mated by its rank- approximationj| X — U, X, V.|| /|| X ||z, soOlutionZ = I. After obtaining a minimizer(Z*, E*), we
where ¥, contains the largest singular values ofX, and useW = |Z*|+|(Z*)"| as the affinity matrix to do subspace
U, (resp.V,) is formed by taking the top left (resp. right) segmentation. The procedure of usifig to perform outlier
singular vectors. Here, we set = 4k (k is the subspace detection is the same as LRR.
number of the sequence), due to the fact that the rank of eac#) Some other MethodsWe also consider for compari-
subspace in motion data is at most 4. son some previous subspace segmentation methods, inglud
2) Yale-Caltech: To test LRR’s effectiveness in the presRandom Sample Consensus (RANSAC)I[10], Generalize
ence of outliers and corruptions, we create a dataset BEA (GPCA) [24], Local Subspace Analysis (LSA) [2], Ag-
combining Extended Yale Database [B1[47] and Caltech1@lomerative Lossy Compression (ALC)! [3], Sparse Subspac
[48]. For Extended Yale Database B, we remove the image#istering (SSC).[13], Spectral Clustering (SC)![31], Spac
pictured under extreme light conditions. Namely, we onlg ugCurvature Clustering (SCC) [27], Multi Stage Learning (MSL
the images with view directions smaller than 45 degrees alft], Locally Linear Manifold Clustering (LLMC)[50], Loda
light source directions smaller than 60 degrees, resulting Best-fit Flats (LBF)[[29] and Spectral LBF (SLBF) [29].
1204 authentic samples approximately drawn from a union of5) Evaluation Metrics: Segmentation accuracy (error) is
38 low-rank subspaces (each face class corresponds to a sied to measure the performance of segmentation. The are
space). For Caltech101, we only select the classes camgainiinder the receiver operator characteristic (ROC) curveykn
no more than 40 images, resulting in 609 non-face outlie®s AUC, is used for for evaluating the quality of outlier
Fig[@ shows some examples of this dataset. detection. For more details about these two evaluationiosetr
please refer to Appendix.

Fig. 7
EXAMPLES OF THE IMAGES IN THEYALE-CALTECH DATASET.

2,15 st X=XZ+F, [Z]“ =0.

B. Baselines and Evaluation Metrics

Due to the close connections between PCA and LRR, e Results on Hopkins155
choose PCA and RPCA methods as the baselines. Moreoved,) Choosing the Parametek: The parametetn > 0 is
some previous subspace segmentation methods are also ceed to balance the effects of the two parts in problem (9
sidered. In general, the choice of this parameter depends on the pri
1) PCA (i.e., SIM): The PCA method is widely used forknowledge of the error level of data. When the errors arédaglig
dimension reduction. Actually, it can also be applied to-sulwe should use relatively large; when the errors are heavy,
space segmentation and outlier detection as follows: first, we should set\ to be relatively small.
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(@) (b) © TABLE Il
: g RESULTS(ON HOPKINS155)OF ESTIMATING THE SUBSPACE NUMBER

35

=3
[
w
S

3

§ 29 § G § 15 # total  # predicted prediction rate (%) absolute error
é ) é élo 156 121 77.6 0.25
g g g s influences of the parameterr
15 -0.1 0 parameterr 0.06 007 0.08 0.09 010 0.11
T e O ey 00 0408 12 162 prediction rate  66.7 712 77.6 750 72.4 71.2

absolute error  0.37 0.30 0.25 0.26 0.29 0.30

Fig. 8
THE INFLUENCES OF THE PARAMETER )\ OF LRR. (A) ON ALL 156
SEQUENCES OFHOPKINS155,THE OVERALL SEGMENTATION
PERFORMANCE IS EQUALLY GOOD WHILE3 < A < 5. (B) ON THE 43-TH

TABLE IV
SEGMENTATION ERRORS(%) ON HOPKINS155 (155SEQUENCES.

SEQUENCE THE SEGMENTATION ERROR IS ALWAYSO FOR mean Gﬂfyﬁ RA’;E%C M58.|66 Lil.AEM LL“Q%O
0.001 < X <1000. (c) ON THE 62-TH SEQUENCE THE SEGMENTATION PCA LBF ALC _ScCC SLBE
PERFORMANCE IS GOOD ONLY WHEN).8 < A\ < 1.6. mean 4.47 3.72 337 270 1.35
TABLE Il SSC SC | [E]] [4|]RR this paper
SEGMENTATION RESULTS(ON HOPKINS155)0F PCA, RPCA, RPCA 1, mean  1.24 1.20 122 0.85 1.59
SRAND LRR.

the ¢; norm to regularizeF in (@), the segmentation error is

segmentation errors (%) over all 156 sequences

PCA RPCA RPCA; SR LRR 2.03% @\ = 0.6, optimally determined). These iIIustrgte that
mean  4.56 4713 3.26 389 1.71 the errors in this database tend to be sample-specific.
sd. 1080 1037 9.09 7.70 4.85 Besides the superiorities in segmentation accuracy, anoth

max  49.78  45.83 47.15 3257 33.33 : . :
average Tun ime (S6Conds) per Sequence advantage of LRR is that it can work well under a wide range

0.2 0.8 0.8 42 19 of parameter settings, as shown in Eig.8. Whereas, RPC
methods are sensitive to the parameterTaking RPCA ;

. ) o .
Fig[H(a) shows the evaluation results over all 156 Sequgenfce)r_example, it achieves an error rate of 3.26% by choosin

= i 0, ‘
in Hopkins155: whileA ranges froml to 6, the segmentation 0.32. However, the error rate increases to 4.5% a
; o A =0.34, and 3.7% at\ = 0.3.
error only varies froml.69% to 2.81%; while A ranges from The efficiency (in terms of running time) of LRR is
3 to 5, the segmentation error almost remains unchanged, iciency unhning :

slightly varying from 1.69% to 1.87%. This phenomenon igomparable to PCA and RPCA methods. Theoretically, th

mainly due to two reasons as follows. First, on most sequen computational complexity (with regard tbandn) of LRR is

(about 80%) which are almost clean and easy to segment, L same as RPCA_mgthqu. LRR costs more computatlpn
. L . . time because its optimization procedure needs more &gt
could work well by choosing\ arbitrarily, as exemplified in

Fig[8(b). Second, there is an “invariance” in LRR, nameltyhan RPCA to converge.

TheoreniZ implies that the minimizer to probleth (9) always ) Performance of Estimating Subspace Numbgince
satisfiesZ* € span (XT). This implies that the solution of there are 156 sequences in total, this database also psavide
LRR can be partially stable whila is varying. good benchmark for evaluating the effectiveness of Algonit
The analysis above does not deny the importance of mo@e|which_ is to estimate the number of subspaces underlyir
selection. As shown in Fig.8(c), the parametecan largely a collgctlon of data samples. Talblel II! shows the results. B)
affect the segmentation performance on some sequences. 20SiNg” = 0.08, LRR correctly predicts the true subspace

tually, if we turn X to the best for each sequence, the overdjimber of 121 sequences. The absolute error (ike= k|)
error rate is only 0.07%. Although this number is achieved ﬁ]\(eraged over all sequence®i85. These results illustrate that

an “impractical” way, it verifies the significance of selegi 't IS hopeful to resolve the problem of estimating the subspa
the parameten, especially when the data is corrupted. FOrilumber, which is a challenging model estimation problem.
the experiments below, we choose= 4 for LRR. 4) Comparing to State-of-the-art MethodNptice that pre-
2) Segmentation Performancén this subsection, we show Vious methods only report the results for 155 sequencesr Aft
LRR’s performance in subspace segmentation with the syiscarding the degenerate sequence, the error rate of LRR
space number given. For comparison, we also list the restiltst-59% which is comparable to the state-of-the-art methasls,
PCA, RPCA, RPCA, ; and SR (these methods are introduce?’oWn in Tablé IV. The performance of LRR can be furthe:
in Sectior VI-B). Tabl& Tl illustrates that LRR performs test improved by refining the formulatior(}(9), which uses the
than PCA and RPCA. Here, the advantages of LRR are maifserved data matriX itself as the dictionary. When the data
due to its methodology. More precisely, LRfXectly targets IS corrupted by dense noise (this is usually true in realityis
on recovering the row spadg V" , which provably determines Certainly is not the best choice. In [51] and[42], a non-@av
the segmentation results. In contrast, PCA and RPCA methd@gnulation is adopted to learn the original datg and its
are designed for recovering the column sp&gé/{ , which is OW spacelyVy' simultaneously:
designed for dimension reduction. One may have noticed that
RPCA, ; outperforms PCA and RPGA If we use instead 5{%”2”* +AlE st X =D+ E,D=DZ,
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TABLE V 1 = = o
SEGMENTATION ACCURACY (ACC) AND AUC COMPARISON ON THE oomp—a— T
YALE-CALTECH DATASET. 0.967

0.941

0.921

PCA RPCA  RPCA SR LRR ool —8—AUC |
ACC (%) 77.15 82.97 83.72 73.17 86.13 ) —©— Segmentation Accuracy
AUC 0.9653  0.9819 0.9863 0.9239 0.9927 0.88¢ 1

time (sec.) 0.6 60.8 59.2 383.5 152.6 0861 1
0.84f P

D

0.82 1

where the unknown variabld is used as the dictionary. ogb— ..

. X 70 0.06 008 01 012 014 016 018 02 0.22
This method can achieve an error rate of 1.22%/1In [4], it is parameter A
explained that the issues of choosing dictionary can beweti
by considering the unobserved, hidden data. Furthermoise, iT
deduced that the effects of hidden data can be approximate
modeled by the following convex formulation:

Fig. 9
I—|E INFLUENCES OF THE PARAMETER X OF LRR. THESE RESULTS ARE

y

COLLECTED FROM THEYALE-CALTECH DATASET. ALL IMAGES ARE

RESIZED TO20 X 20 PIXELS.

min | Z].+ [ L]+ Al B st X = XZ+ LX + E,

which intuitively integrates subspace segmentation aatlife
extraction into a unified framework. This method can achieve
an error rate of 0.85%, which outperforms other subspace
segmentation algorithms.

While several methods have achieved an error rate below
3% on Hopkins155, subspace segmentation problem is till
far from solved. A long term difficult is how to solve the
model selection problems, e.g., estimating the parametdr
LRR. Also, it would not be trivial to handle more complicated
datasets that contain more noise, outliers and corruptions

D. Results on Yale-Caltech

The goal of this test is to identify 609 non-face outliers
and segment the rest 1204 face images into 38 clusters. The
performance of segmentation and outlier detection is evalu
ated by segmentation accuracy (ACC) and AUC, respectively.
While investigating segmentation performance, the affinit
matrix is computed from all images, including both the face
images and non-face outliers. However, for the convenience Fig. 10
of evaluation, the outliers and the corresponding affigiiee =~ SOME EXAMPLES OF USING LRR TO CORRECT THE ERRORS IN THE
removed (according to the ground truth) before using NCut to YALE -CALTECH DATASET . LEFT: THE ORIGINAL DATA MATRIX X ;
obtain the segmentation results. MIDDLE: THE CORRECTED DATAX Z*; RIGHT: THE ERRORE™*.

We resize all images int@0 x 20 pixels and form a data
matrix of size 400 x 1813. Table[M shows the results of
PCA, RPCA, SR and LRR. It can be seen that LRR is better

than PCA and RPCA methods, in terms of both subspaggel of Hopkins155 is quite low (see Talile 1), whereas, the

segmentation and outlier detection. These experimergaltee yale-Caltach dataset contains outliers and corrupted ésag
are consistent with Theoreim b.2, which shows that LRR hasee Fid.r).

a stronger guarantee than RPCA methods in performance. ) ) _ )
Notice that SR is behind the othefls This is because the T1° visualize LRR’s effectiveness in error correction, we
presence or absence of outliers is unnecessary to notabty #f'€ate another data matrix with sige64 x 1813 by resizing
the sparsity of the reconstruction coefficients, and thus it 2ll images intd6 x84. Fig[10 sh0\£vs some resm:lts produced by
hard for SR to handle well the data contaminated by outlietsRR- It is worth noting that the “error” terns™ can contain
“useful” information, e.g., the eyes and salient objectere
Fig[d shows the performance of LRR while the parameterthe principle is to decompose Fhe data matrix into a low:
varies from 0.06 to 0.22. Notice that LRR is more sensitive &K part and a sparse part, with the low-rank pa¥t“()

) on this dataset than on Hopkins155. This is because the eff8f'esponding to the principal features of the whole datase

and the sparse partt() corresponding to the rare features

5The results (for outlier detection) in Tadlg V are obtaingdusing the Which cannot be modeled by low-rank subspaces. This implie

strategy of [(TH). While using the strategy of checking tfiniaf degree, the that it is possible to use LRR to extract the discriminative

results produced by SR is even worse, only achieving an AUO.81 by features and salient reaions. as done in face reco nitipn [‘
using the best parameters. g , 9

and saliency detection [19].
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VII. CONCLUSION AND FUTURE WORK 3) Independent Subspace# collection of & subspaces

In this paper we proposed low-rank representation (LRR) 1,82, Sk} arek mdepen(ient if and only iS; N
identify the subspace structures from corrupted data. MameZ~j#i Sj =10} (or3 ;S :,@izl‘si)' When.the.subspac_:es
our goal is to segment the samples into their respecti%e of low-rank ar_1d the ambient dimension is h_|gh_, the_lr_1d_e
subspaces and correct the possible errors simultane iRy pendent_assumpt_lon is roughly equal'to the pairwise disjoir
is a generalization of the recently established RPCA mathdgfSumption; that iss; 1 S; = {0}, Vi # j. _

[7], [16], extending the recovery of corrupted data fronggin ~ 4) Full SVD and Skinny SVDFor anm x n matrix
subspace to multiple subspaces. Also, LRR generalizes tHe (Without loss of generality, assuming: < n), its
approach of Shape Interaction Matrix (SIM), giving a way t@\ngular Value Decomposition (SVD) is defined by =
define an SIM between two different matrices (see Theordi®: 0]V, whereU andV’ are orthogonal matrices and=
Z1), and providing a mechanism to recover the true SINag (01,02, -, om) with {03 }i, being singular values. The
(or row space) from corrupted data. Both theoretical angVD defined in this way is also called thell SVD. If

experimental results show the effectiveness of LRR. Howev¥/€ only keep the positive singular values, the reduced forr
there still remain several problems for future work: is called theskinny SVD. For a matrix M of rank r, its

H i _ T _
e It may achieve significant improvements by learning gkinny SVD is computed by = U,%.V,", whereX, =

dictionary A, which partially determines the solution of\%ﬁﬁégl ’I\jl?)’r'e“ ;géi)se\iv;]h ig& ‘i/:lageg?mpe?jsgwetai:zgutlr?;
LRR. In order to exactly recover the row spaé&g, ) P T " y 9

Theoreni 4R illustrates that the dictionaymust satisfy f|r55t r;olur(;m.s oft ?gdv' respte9t|\§\e/ifly. ith ski SVD
the condition ofV}, € span (A”). When the data is only ) Pseudoinverse:For a matrix M with skinny

T . . ; :
contaminated by outliers, this condition can be obeye((]jzv » its pseudoinverse is uniquely defined by

by simply choosingd = X. However, this choice cannot M =yn-1yT.
ensure the validity ofl; € span (A”) while the data
contains other types of errors, e.g., dense noise. 6) Column Space and Row SpacEor a matrix M, its

e The proofs of Theoreni 3.2 are specific to the cas@lumn (resp. row) space is the linear space spanned |
of A = X. As a future direction, it is interesting toits column (resp. row) vectors. Let the skinny SVD bf
see whether the technique presented can be extende@da/>V”, then U (resp.V) are orthonormal bases of the
general dictionary matrices other thah column (resp. row) space, and the corresponding orthogon

e A critical issue in LRR is how to estimate or select th@rojection is given byUU” (resp.VVT). SinceUU™ (resp.
parameten. For the data contaminated by various errorg' 17 is uniquelydetermined by the column (resp. row) space,
such as noise, outliers and corruptions, the estimation sgmetimes we also us€U” (resp. VVT) to refer to the
A is quite challenging. column (resp. row) space.

e The subspace segmentation should not be the only ap7) Affinity Degree:Let M be a symmetric affinity matrix
plication of LRR. Actually, it has been successfully usegbr a collection ofn. data samples, the affinity degree of the

in the applications other than segmentation, e.g., saliencth sample is defined by {(j) : [M];; # 0}, i.e., the number
detection[[18]. In general, the presented LRR method cgh samples connected to tli¢h sample.

be extended to solve various applications well.

B. Proofs

1) Proof of Theorem 4.1:The proof of Theorem 4.1 is
based on the following three lemmas.
In this subsection, we introduce some terminologies used in_ emma 7.1:Let U7, V and M be matrices of compatible

the paper. _ _ _ . dimensions. Suppose bothandV” have orthogonal columns,
1) Block-Diagonal Matrix: In this paper, a matrix\/ is je. T/ =1 andVTV = I, then we have

called block-diagonal if it has the form as in (1). For the rixat

M which itself is not block-diagonal but can be transformed M|, = |lUMVT.,.

to be block-diagonal by simply permuting its rows and/or  Proof: Let the full SVD of M be M = Uy XV, then
columns, we also say that/ is block-diagonal. In summary, UMV = (UUy)Sy(VVa)T. As (UUM)T(UUN) = 1T
we say that a matrix\/ is block-diagonal whenever thereand (VVy)T (VVar) = I, (UU)Ear (Vi V)T is actually an
exist two permutation matriceB, and P, such thatP, M P, SVD of UMV™. By the definition of the nuclear norm, we

APPENDIX
A. Terminologies

is block-diagonal. have||M||, = tr (Sy) = |[UMVT],. ]
2) Union and Sum of Subspacdor a collection oft sub- Lemma 7.2:For any four matricesB, C, D and F of

spaces{Si, Sa, - - , Sk}, their union is defined by* | S; = compatible dimensions, we have

{y : y € S, forsomel < j < k}, and their sum is B ©

defined bny:1 Si={y:y= Z;?:lyj,yj e §;}. If any H{ D P } > |Bl.,,

y € Zle&' can be uniquely expressed gs= Z?Zl Y
yj € S;, then the sum is also called the directed sum, denotetiere the equality holds if and only # = 0,D = 0 and
aSZi-C:l S; = @i?:lSi. F=0.
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Proof: The proof is simply based on the following fact:Together with [(1l7), we conclude thaf = 0. So the optimal
for any two matrices\/; and M,, we have solution is unique. [ |

0 )1 3R alor 114 0 IV St s s o i i

prob-
and the equality can hold if and only /s = 0. m lems, and leads to a simple proof of Theorem 4.1.

Lemma 7.3:Let U, V and M be given matrices of com- Proof: (of Theorem 4.1)Since X € span (A4), we have
patible dimensions. Suppose bdthand V' have orthogonal rank ([X, A]) = rank (A). Let's defineVx andV, as follows:
columns, i.e.,UTU =1 and VTV = I, then the following Compute the skinny SVD of the horizontal concatenation o
optimization problem X and 4, denoted agX, A] = UXVT, and partitionV/ aTs

. T V = [Vx;V4] such thatX = ULVYE and A = UXVy
ot 121l st UT2V =M, (15) (note t[hatVA ;ndVX may be not colu)r(nn-orthogonal). By this
definition, it can be concluded that the matki¥ has full row
rank. That is, if the skinny SVD oV} is U; 3, V/!, thenU;
is an orthogonal matrix. Through some simple computation:s
we have

has a unique minimizeZ* = UMVT,

Proof: First, we prove that|M||, is the minimum
objective function value an&@* = UMV is a minimizer.
For any feasible solutiolZ, let Z = Uz .V} be its full e -
SVD. Let B = UTUz andC' = V}'V. Then the constraint Va(VaVa)™ =Vi¥ Uy (18)

Torcr o ag
U"2V = M is equal to Also, it can be calculated that the constraiht= AZ is equal
BY,C = M. (16) toVE =VIZ, whichis also equal t&; 'Uf VE = ViI'Z. So

roblem (5) is equal to the following optimization problem:
Since BBT = 1 andC7TC = 1, we can find the orthogonalp ®)is eq 9 op P

complementd B, andC, such that min||Z],, s.t. vz =x7ulvy.
{ 5 } and [C,C.] By Lemma[Z.8 and (18), problem (5) has a unique minimize
1
are orthogonal matrices. According to the unitary invac&n 7r = ViSTUTVE = Va(ViVa) VY.

of the nuclear norm, Lemnia 7.2 arid{16), we have Next, it will be shown that the above closed-form solution

B can be further simplified. Notice that! = »~'U” A and
Z = |2 = ¥z|C,C A
1Z1l. 1221, H[ By ] 2(C, CL] . VE =%~1UTX. Then we have
_ ||| BEeC BEzCL 7 = ATUSTN(SWwTAATUS Y le T
Bi2zC BizCy = ATUWUTAATU)WUTX
> |BS2C. = |M].,, = AW A
. - . . = UAUX
Hence, ||M]||, is the minimum objective function value of _ Ax
problem [I5). At the same time, Lemnfia]7.1 proves that o ’
12*]l. = [|[UMVT|, = |[M],. So Z* = UMV™ is a where the last equality is due to thdUTA)TUT =
minimizer to problem[(T5). (BAVITUT = (USAV)T = Al m
~ Second, we prove that* = UMV is the unique min-  2) Proof of Corollary 4.1: Proof:By X € span (A),
imizer. Assume thatz; = UMV” + H is another optimal e have rank (ATX) = rank(X). Hence,rank (Z*) =
solution. ByU"Z,V = M, we have rank (X). At the same time, for any feasible soluti¢h to
UTHV = 0. (17) problerr_w (5), we hav&ank(Z) > rank (AZ) = rank (X).
So, Z* is also optimal to problem (4). [ ]

SinceUTU = 1 and VTV = I, similar to above, we can  3) proof of Theorem 4.2The proof of Theorem 4.2 is

construct two orthogonal matricel/, U, | and [V, V.]. BY pased on the following well-known lemma.

the optimality of Z;, we have Lemma 7.4:For any four matricesB, C, D and F of
1M, A HUMVT +H|. compatible dimensions, we have

B C B 0
(2SIl 2]

The above lemma allows us to lower-bound the objective
value at any solutiorZ by the value of the block-diagonal

H{ g; ] (UMVT + H)[V, V]

*

M UTHV,
uvrav UTHV,

* restriction of Z, and thus leads to a simple proof of Theorem
> M, 4r
According to Lemm& 712, the above equality can hold if and Proof: Let Z* be the optimizer to problem (5). Form a
only if block-diagonal matri¥4” by setting

T _ T _ 77T _
UHV, =ULHV =ULHV, =0. [Z)i;, [A].. and[X]. ; belong to

"When B and/or C' are already orthogonal matrices, i.&, = ¢ and/or Wiy = the same subspace,
C, =0, our proof is still valid. 0, otherwise.
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Write Q = Z* — W. For any data vectofX]. ;, without loss and can usually produce the same evaluation results aslglot
of generality, supposgX]. ; belongs to the-th subspace; i.e., search. Nevertheless, it is possible that two differenstelis
[AZ*]. ; € S;. Then by construction, we hajeliW]. ; € S; are assigned with the same label. So, we use the local seat
and [AQ].; € ®mxiSm. But [AQ].; = [X].; — [AW].; € strategy only wherk > 10.
S;. By independence, we hav§ N @&,,-;5, = {0}, and so  2) Receiver Operator CharacteristicTo evaluate the ef-
[AQ].; =0, Vj. fectiveness of outlier detection without choosing a patame
Hence, AQ = 0, and W is feasible for (5). By Lemma § for (14), we consider the receiver operator characteristi
[7.4, we have| Z*||. > ||W]|.. Also, by the uniqueness of the(ROC), which is widely used to evaluate the performance o
minimizer (see Theorem 4.1), we conclude tlidt= W and binary classifiers. The ROC curve is obtained by trying all
henceZ* is block-diagonal. possible thresholding values, and for each value, plottirg
Again, by the uniqueness of the minimizef*, we can true positives rate on the Y-axis against the false positie
conclude that for all’s, Z; is also the unique minimizer to value on the X-axis. The areas under the ROC curve, known
the following optimization problem: AUC, provides a number for evaluating the quality of outlier
detection. Note that the AUC score is the larger the bettet, a

InJlIlHJH*, st X; =A;J.

By Corollary 4.1, we conclude thatnk (Z;) = rank (X;).
[ |
4) Proof of Theorem 4.3: Proof:Note that the LRR
problem (7) always has feasible solution(s), e.4.= 0, E =
X) is feasible. So, an optimal solution, denoted(&8, E*),
exists. By Theorem 4.1, we have

Z*

arnginHZH* st. X—E"=AZ
AT(X - 1),

(1]

which simply leads taZ* € span (AT). B [

5) Proof of Theorem 5.3: ProofiLet the skinny SVD
of X beUXVT. Itis simple to see thatV' V7, 0) is feasible
to problem (9). By the convexity of (9), we have

1270« < 1271 + AlLE]| V7l
rank (X)

min(d, n).

<

<
- (5]

Hence,

A

1Z* = VoV |l r 1Z* = VoV ll« < 127]] + VoV |«

1Z*|l« + ro < min(d,n) + ro.

(6]
(7]
(8]

C. Evaluation Metrics (0]
1) Segmentation Accuracy (or Error)the segmentation re-
sults can be evaluated in a similar way as classificatioritsasu[lo]
Nevertheless, since segmentation methods cannot prdwide 't
class label for each cluster, a postprocessing step is ddede
assign each cluster a label. A commonly used strategy is(tdl
try every possible label vectors that satisfy the segmiemtat
results. The final label vector is chosen as the one that bEst
matches the ground truth classification results. Sugtobal
searchstrategy is precise, but inefficient when the subspage;
numberk is large. Namely, the computational complexity is
k!, which is higher thar* for & > 2. Hence, we suggest 14
a local searchstrategy as follows: given the ground truth;s;
classification results, the label of a cluster is the index of
the ground truth class that contributes the maximum numbé&$!
of samples to the cluster. This local search strategy isequﬂh]
efficient because its computational complexity is oflyk),

always ranges between 0 and 1.
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