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On Bayesian Adaptive Video Super Resolution
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Abstract—Although multi-frame super resolution has been extensively studied in past decades, super resolving real-world video
sequences still remains challenging. In existing systems, either the motion models are oversimplified, or important factors such
as blur kernel and noise level are assumed to be known. Such models cannot capture the intrinsic characteristics that may
differ from one sequence to another. In this paper, we propose a Bayesian approach to adaptive video super resolution via
simultaneously estimating underlying motion, blur kernel and noise level while reconstructing the original high-res frames. As a
result, our system not only produces very promising super resolution results outperforming the state of the art, but also adapts
to a variety of noise levels and blur kernels. To further analyze the effect of noise and blur kernel, we perform a two-step analysis
using the Cramer-Rao bounds. We study how blur kernel and noise influence motion estimation with aliasing signals, how noise
affects super resolution with perfect motion, and finally how blur kernel and noise influence super resolution with unknown motion.
Our analysis results confirm empirical observations, in particular that an intermediate size blur kernel achieves the optimal image

reconstruction results.

Index Terms—Super resolution, optical flow, blur kernel, noise level, aliasing

1 INTRODUCTION

Multi-frame super resolution, namely estimating the high-
res frames from a low-res sequence, is one of the fundamen-
tal problems in computer vision and has been extensively
studied for decades. The problem becomes particularly
interesting as high-definition devices such as high definition
television HDTV (1920 x 1080) dominate the market. The
resolution of various display has increased dramatically
recently, including the New iPad (2048 x 1536), 2012
Macbook Pro (2880 x 1800), and ultra high definition
television UHDTV (3840 x 2048 or 4K, 7680 x 4320 or
8k). As a result, there is a great need for converting low-
resolution, low-quality videos into high-resolution, noise-
free videos that can be pleasantly viewed on these high-
resolution devices.

Although a lot of progress has been made in the past
30 years, super resolving real-world video sequences still
remains an open problem. Most of the previous work
assumes that the underlying motion has a simple parametric
form, and/or that the blur kernel and noise levels are known.
But in reality, the motion of objects and cameras can be
arbitrary, the video may be contaminated with noise of
unknown level, and motion blur and point spread functions
can lead to an unknown blur kernel.

Therefore, a practical super resolution system should
simultaneously estimate optical flow [12], noise level [23]
and blur kernel [16] in addition to reconstructing the high-
res image. As each of these problems has been well
studied in computer vision, it is natural to combine all
these components in a single framework without making
simplified assumptions.

In this paper, we propose a Bayesian framework for
adaptive video super resolution that incorporates high-res
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image reconstruction, optical flow, noise level and blur ker-
nel estimation. Using a sparsity prior for the high-res image,
flow fields and blur kernel, we show that super resolution
computation is reduced to each component problem when
other factors are known, and the MAP inference iterates
between optical flow, noise estimation, blur estimation and
image reconstruction. As shown in Figure 1 and later exam-
ples, our system produces promising results on challenging
real-world sequences despite various noise levels and blur
kernels, accurately reconstructing both major structures and
fine texture details. In-depth experiments demonstrate that
our system outperforms the state-of-the-art super resolution
systems [1], [31], [36] on challenging real-world sequences.

We are also interested in theoretical aspects of super
resolution, namely to what extent the original high-res
information can be recovered under a given condition.
Although previous work [3], [19] on the limits of super
resolution provides important insights into the increasing
difficulty of recovering the signal as a function of the up-
sampling factor, most of the bounds are obtained for the
entire signal with frequency perspective ignored. Intuitively,
high frequency components of the original image are much
harder to recover as the blur kernel, noise level and/or up-
sampling factor increases.

In a preliminary conference version of the paper [22], we
theoretically analyzed the performance using Wiener filter
theory. With known ground truth motion, Our analysis pre-
dicts that a small blur kernel always produces better image
reconstruction results. However we empirically observed
that a medium-sized blur kernel achieves the best super
resolution results.

When the motion is unknown, our system estimates
the motion from low-res, aliased images. Aliasing causes
problem to motion estimation and is better suppressed by
a large blur kernel. A large blur kernel however boosts
the noise more in the image reconstruction process. In this
paper, we perform a two-step analysis to consider motion
estimation. Our theoretical results confirm our empirical
observations that the blur kernel has a two-fold effect on
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(a) Input low-res
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Fig. 1. Our video super resolution system is able to recover image details after x4 up-sampling.
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Fig. 2. Video super resolution diagram. The original high-res video sequence is generated by warping the
source frame (enclosed by a red rectangle) both forward and backward with some motion fields. The high-res
sequence is then smoothed with a blur kernel, down-sampled and contaminated with noise to generate the
observed sequence. Our adaptive video super resolution system not only estimates the high-res sequence, but
also the underlying motion (on the lattice of original sequence), blur kernel and noise level.

the image reconstruction and a medium-size blur kernel
can reach a tradeoff between aliasing suppression and noise
reduction.

The paper is organized as follows. After reviewing re-
lated work in Sect 2, we introduce our Bayesian super
resolution framework in Sect 3. We prove the performance
bounds in Sect 4, and show experimental results in Sect 5.
After in-depth discussion in Sect 6, we conclude our paper
in Sect 7.

2 RELATED WORK

Since the seminal work by Tsai and Huang [37], significant
progress has been made in super resolution. We refer
readers to [26] for a comprehensive literature review.
Early super resolution work focused on dealing with
the ill-posed nature of reconstructing a high-res image
from a sequence of low-res frames [13]. The lack of
constraints is often addressed by spatial priors on the high-
res image [30]. Hardie et al. [11] jointly estimated the
translational motion and the high-res image, while Bascle
et al. [4] also considered the motion blur using an affine

motion model. But these motion models are too simple to
reflect the nature of real-world sequences.

To deal with the complex motion of faces, Baker and
Kanade [2] proposed to use optical flow for super resolu-
tion, although in fact a parametric motion model was adopt-
ed. Fransens et al.[10] proposed a probabilistic formulation
and jointly estimated the image, flow field and Gaussian
noise statistics within an EM framework. They assumed
that the blur kernel was known, and used Gaussian priors
for both images and flow fields. However, Gaussian priors
tend to over-smooth sharp boundaries in images and flows.

While most of these motion-based super resolution mod-
els use somewhat standard flow estimation techniques,
recent advances in optical flow have resulted in much more
reliable methods based on sparsity priors e.g. [6]. Accurate
motion estimation despite strong noise has inspired Liu and
Freeman [21] to develop a high quality video denoising sys-
tem that removes structural noise in real video sequences.
In this paper, we also want to incorporate recent advances
in optical flow for more accurate super resolution.

Inspired by the successful non-local means method for
video denoising, Takeda et al. [36] avoided explicit sub-
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pixel motion estimation and used 3D kernel regression
to exploit the spatiotemporal neighboring relationship for
video up-sampling. However, their method still needs to
estimate a pixel-wise motion at regions with large motion.
In addition, its data model does not include blur and so its
output needs to be postprocessed by a deblurring method.

While most methods assume the blur kernel is known,
some work considers estimating the blur kernel under
simple settings. Nguyen et al.[24] used the generalized
cross-correlation method to identify the blur kernel using
quadratic formulations. Sroubek er al.[32] estimated the
image and the blur kernel under translational motion models
by joint MAP estimation. However, their models can barely
generalize to real videos due to the oversimplified motion
models.

Significant improvements on blur estimation from real
images have been made in the blind deconvolution com-
munity. Levin er al.[18] showed that joint MAP estimation
of the blur kernel and the original image favors a non-
blur explanation, i.e. , a delta blur function and the blurred
image. Their analysis assumes no spatial prior on the blur
kernel, while Joshi et al.[14] used a smoothness prior for
the blur kernel and obtained reliable estimates. Moreover,
Shan et al.[31] applied the recent development in image
deconvolution to super resolution and obtained promising
improvement, but their method only works on a single
frame and does not estimate the noise statistics.

On the theory side, there has been important work on
the limit of super resolution as the up-sampling factor
increases [3], [19]. Their analysis focused on the stability of
linear systems while ignoring the frequency aspects of the
limit. In fact, many useful tools have been developed in the
signal processing community to analyze the performance
of linear systems w.r.t. a particular frequency component.
Robinson and Milanfar [27] derived the Cramer-Rao bound-
s (CRB) [15] for each frequency bands using translational
motion model. Their analysis does not consider the aliasing
effect and their results suggest that a small blur kernel
always produces the best performance. Empirically we find
that a medium-sized blur kernel can achieve the optimal
performance.

Similar to our iterative system, we perform a two-step
analysis of the CRB for motion estimation and image recon-
struction. First, we analyze the estimation of motion on the
low-res input images with high frequency aliasing. Second,
we analyze the performance of image reconstruction with
errors in the estimated motion. Our analysis is closer to
the estimation procedure and consistent with the empirical
observations.

3 A BAYESIAN MODEL FOR SUPER RESO-
LUTION

Given the low-res sequence {J;}, our goal is to re-
cover the high-res sequence {I;}. Due to computational
issues, we aim at estimating I; using adjacent frames
e, Jem1, ey Jigr, -, Jien. To make the nota-
tions succinct, we will omit ¢ from now on. Our prob-
lem becomes to estimate I given a series of images
{J-n, -+ ,Jn}. In addition, we will derive the equations

using gray-scale images for simplicity although our imple-
mentation is able to handle color images.

The model of obtaining low-res sequence is illustrated
in Figure 2. A full generative model that corresponds to
Figure 2 is shown in Figure 3. At time ¢ = 0, frame
I is smoothed and down-sampled to generate Jy with
noise. At time i = —N,--- N, i # 0, frame [ is first
warped according to a flow field w;, and then smoothed
and down-sampled to generate J; with noise and outlier
R; (we need to model outliers because optical flow cannot
perfectly explain the correspondence between two frames).
The unknown parameters in the generative models include
the smoothing kernel K, which corresponds to point spread
functions in the imaging process, or smoothing filter when
video is down-sampled, and parameter 6; that controls the
noise and outlier when [ is warped to generate adjacent
frames.

We use Bayesian MAP to find the optimal solution
{5 {w} K {0:}"} = argmax p(I, {wi}, K, {6:}[{Ji}),

I{wi}, K ,{60:} 0

where the posterior is the product of prior and likelihood:

p(I,{w:}, K,{0;}[{Ji}) < p(I)p(K) Hp(wi) Hp(oz‘) :

p(JolT, K, 00) [ p(Jill, K wi, 65). (2)
i#0
Sparsity on derivative filter responses is used to model
the priors of image I, optical flow field w; and blur kernel
K

1

p(I)= 70 exp {—n||VI|}, 3)
1

p(w;) = 0N exp{—)\(HVuiH—FHVviH) } , )

M&FZiWM%W&M, )

where V is the gradient operator, ||VI|| =Y ||VI(q)|| =
S L@+, @) (Lo = 21,1, = 1) and q is the
pixel index. The same notation holds for u; and v;, the
horizontal and vertical components of the flow field w;. For
computational efficiency, we assume the kernel K is x- and
y-separable: K =K, ® K,, where K has the same pdf as
K. Z1(n), Zw(\) and Zk (&) are normalization constants
only dependant on 1, A and &, respectively.

To deal with outliers, we assume an exponential distri-

bution for the likelihood
1
Z(6;) eXp{ ©

p(‘]l‘]a Ka 01) =

where the parameter 0; reflects the noise level of frame ¢

and Z(0;) = (26;)~9™(), Matrices S and K correspond

to down-sampling and filtering with blur kernel K, respec-

tively. F,,,, is the warping matrix corresponding to flow w;.

Naturally, the conjugate prior for 6; is a Gamma distribution

= /Ba
I'(a)

J; — SKF,, I

p(0;; v, B) 09" exp{—0;}. 7

Now that we have the probability distributions for both
prior and likelihood, and the Bayesian MAP inference



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 3. The graphical model of video super resolution.
The circular nodes are variables (vectors), whereas the
rectangular nodes are matrices (matrix multiplication).
We do not put priors n, A, &, @ and g on I, w;, K, and
6, for succinctness.

is performed using coordinate descend. Note that in this
model there are only five free parameters: 7, A, £, a and

B.

3.1

Given the current estimates of the flow field w;, the blur
kernel K and the noise level 6;, we estimate the high-res
image by solving

I = argminGOHSKI — JQH —&—77HVIH
I

Image Reconstruction

N
+ Y 0|SKF, I-J.  ®
i=—N,i#0
To use gradient-based methods, we replace the L1 norm
with a differentiable approximation ¢(x2) = /22 + €2
(e = 0.001), and denote the vector ®(|1|?)=[a(I%(q))].
This objective function can be solved by the iterated
reweighted least squares (IRLS) method [20], which itera-
tively solves the following linear system:

[GOKTSTWOSK + n(DZWSDw +D7 WSDy> n

N
Y oFL KTSTWZ»SKFW] I

i=—N,i#0
N
=0K"S"WoJo+ > 0,F, K'STW,J;, (9)
i=—N,i#0

where the matrices D, and D, correspond to the x- and
y- derivative filters. IRLS iterates between solving the
above least square problem (through conjugate gradient)
and estimating the diagonal weight matrices

W, = diag(®'(|SKI — Jo|?)),
W, = diag(®'(|VI[?)),
W, = diag(®'(|SKF,, I — J;|%))

(10)

based on the current estimate.

3.2 Motion and Noise Estimation

Given the high-res image and the blur kernel, we jointly
estimate the flow field and the noise level in a coarse-to-
fine fashion on a Gaussian image pyramid. At each pyramid
level noise level and optical flow are estimated iteratively.
The Bayesian MAP estimate for the noise parameter 6; has
the following closed-form solution

N,
a+ N, -1 1
0 =——~L — ’5272
B+ Ny qu:1

(Ji—SKF,,I)(g)|. (11)

where 7 is sufficient statistics. When noise is known, the
flow field w; is estimated as

w;

; (12)

where we again approximate |z| by ¢(z?) Notice that this
optical flow formulation is different from the standard ones:
the flow is established from high-res I to low-res .J;.

By first-order Taylor expansion

Fwi+dwil ~ FwLI + Lpdu; + Iydviz (13)

where I, = diag(F,,I,) and I, = diag(F,,I,), we can
approximate the first (data) term in Eqn. 12 as

|ISKF ., I — Ji|| & (Fu, I + Ldu; + I,dv; —

W; (Fwil + I.du; + Iyd’Ui —

Ji)"
Ji), (14)

where W, = KT'STW,SK, the second (spatial) term for
the horizontal flow as

where
L = D] diag(®'(|Vu;|*))D, + D} diag(®'(|Vus|*))D, (16)

is a weighted Laplacian matrix, and similarly for the third
term. Taking derivative w.r.t. the unknown flow increment
(du;, dv;) and setting it to be zero, we can derive

[ W, +GL  IIWI, } { du; ]
Wi, I'WI, +GL || dv
_ { GiLu;

IT
L

where (; = (% Again, we use IRLS [20] to solve the above
equation iteratively.

One may notice that it is more expensive to solve
Eqn. 17 than ordinary optical flow because in each iteration
smoothing and down-sampling as well as the transposes
need to be computed. We estimate optical flow from J;
to Jy on the low-res lattice, and up-sample the estimated
flow field to the high-res lattice as initialization for solving
Eqn. 17.

} (W,F,, I —K'STW,J), (17

3.3 Kernel Estimation

Without loss of generality, we only show how to estimate
the x-component kernel K, given I and .Jy. Let each row
of matrix A be the concatenation of pixels corresponding
to the filter K, and define M, : M, K, =K, ® K, =K.
Estimating K, leads to

K = argmin GOHSAMyKl. - JOH n gng.
K.

, (18)
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which is optimized by IRLS.

Although similar Bayesian MAP approach performed
poorly for general debluring problems [18], the spatial
smoothness prior on the kernel prevents kernel estimation
from converging to the delta function, as shown by [14].
Our experiments also show that our estimation is able to
recover the underlying blur kernel.

TABLE 1
The coordinate descent algorithm for Bayesian
inference on video super resolution

Input: low-res frames {.J;}}*. _ and upsampling factor s

o Initialize k = 1, I®) = J; 1 s (bicubic upsampling)
e Loop until [I+=1) — [(®)| < ¢ (outer iteration)
(

- Estimate motion wik) by solving Eqn. 17

- Estimate noise Qz(k) by solving Eqn. 11

- Initialize m = 1, [(-0) = (k=1

- Loop until [I(km) — [(km=1)| < ¢ (inner iteration)
- Compute weight Wy, W, W, using Eqn. 10
- Estimate 1(*™) by solving Eqn. 9
-m=m-+1

- Estimate kernel K_gk)

Ck=k+1

and Kl(,k) by solving Eqn. 18

Output: [ = [(F)

3.4 Coordinate Descent

Our optimization algorithm iterates between estimating the
high-res frame I, flow fields {w;}, noise level {6;}, and
blur kernel K. As shown in Table 1, our optimization
strategy is coordinate descent, namely sequentially optimiz-
ing each of the four sets of variable, and sweep through
the entire sets several times until convergence. One sweep
is called an outer iteration, whereas one IRLS step in
optimizing a particular set of variable is called an inner
iteration.

Although more details of the experiments will be dis-
cussed in Sect 5, we show the convergence of our system
in Figure 4. In the beginning (the first row), the high-res
image [ is blurry (initialized as bicubic up-sampling of
the low-res input), so the estimated motion {w;} is not
very accurate. However, because of the propagation from
nearby frames, the image still gets sharper in the end. As
soon as a new high-res [ is estimated, motion estimation,
noise estimation and kernel estimation are performed, and
we enter the next inner iteration of estimating I. Clearly,
with more accurate estimates of other variables (especially
motion), we are able to achieve sharper images.

4 PERFORMANCE BOUNDS

Intuitively super resolution becomes more challenging
when noise level increases. It may be futile to perform super
resolution if the blur kernel is too large and smoothes out
all the high frequency components. Hence we are interested
in theoretically analyzing the performance bound. Such an

TABLE 2
Notations for deriving the performance bounds.

A(w) magnitude of signal at frequency w
Ar=A(w1) magnitude of low frequency signal
Ax=A(w2) magnitude of aliasing signal

Go, (w) DFT of Gaussian blur kernel

Ngr length of high-res signal

Ny, length of low-res signal

M downsampling ratio, M = %—IL{

w1 low frequency

wg=w1+ Ny,  aliasing high frequency

on standard deviation of imaging noise

ok standard deviation of Gaussian blur kernel
u2 translation between two high-res signals

analysis can serve as a good guideline for building up
practical systems.

It is difficult, however, to exactly analyze the proposed
non-linear system that iteratively estimates the motion and
the image. Hence we simplify both the problem setting and
the algorithm. The generative imaging process is the same
as in Section 3. The input are 1D signals whose spectrum
follows the power law for natural images, i.e. the magnitude
of signal decreases w.r.t. frequency. We assume that the
motion is a global translation.

In addition, we analyze the errors produced by one
iteration to solve the proposed non-linear system. Given the
input low-res signals, the algorithm first performs motion
estimation using the input signals and then reconstructs
the high-res signal using the estimated motion. For the
motion estimation step, we want to analyze how noise
and blur kernel affect motion estimation. For the image
reconstruction step, we analyze how the imaging noise
and the error in the estimated motion affect the image
reconstruction. Such a semi-quantitative analysis illustrates
the tradeoff we need to consider for building up the system.

The influence of the noise is easy to understand. A
small noise level always results in better motion and image
estimates. The influence of the blur kernel is more subtle
because several factors are involved, particularly aliasing.
High frequency components in the original signal become
aliasing after downsampling, as shown in Figure 5. The
aliasing signals appear to have different motion than the
low frequency components at the low resolution grid (see
analysis below) and cause errors in motion estimation. We
need a large blur kernel to reduce the influence of aliasing.
However, a large blur kernel boosts the noise more in
image reconstruction. An optimal blur kernel should reach
a tradeoff between these two conflicting requirements.

To better describe these relationships, we analyze the
Cramer-Rao bounds (CRB) for both the motion estimation
and the image reconstruction problems. The CRB gives
the minimum mean square error (MSE) that any unbiased
estimator can achieve [8], [15]. For certain problems the
bounds can be achieved by the maximum likelihood esti-
mator.
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Fig. 4. The convergence of our video super resolution algorithm. The outer iteration consists of sweeping
through estimating motion, noise level, blur kernel and the high-res frame. The inner iteration here consists of
updating high-res frame, namely the iteratively reweighted least square (IRLS) procedure in solving Eqgn. 9. The
index (#i,#7) shows the reconstruction result for outer iteration ¢ and inner iteration j.
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(a) Time domain
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Fig. 5. Aliasing in downsampling. With low sampling
rates, the high frequency signal (solid blue) appears to
be a low frequency signal (dash red) both in the tem-
poral domain (left) and the frequency domain (right).
Note that downsampling also decrease the energy of
the signal, as shown in the frequency domain.

4.1 Performance Bound for Motion Estimation
with Aliasing and Noise

4.1.1 Problem Setting

A basic approach to analyze a linear system is to study the
response of a particular frequency input [25]. To analyze the
effect of aliasing, we pair each low frequency component of
the original signal with the corresponding high frequency
aliasing component. We study the effects of the noise and
the blur kernel on motion estimation in Sections 4.1.2
and 4.1.3. We then combine the analysis for all the pairs
to obtain the performance bound for the whole signal in

Section 4.1.4. Such analysis is exact for linear systems and
can also be used to analyze non-linear systems [5].

We assume the spectrum of the original signal follows
a power-law distribution [28], i.e. |A(w)| = |w|~1:%4, as
shown in Figure 6.

|A(w)]

L w

Fig. 6. Assumed spectra of natural images. High
frequency components tend to have smaller magni-
tude.

We pair each low frequency component w; with a
corresponding high frequency aliasing component ws. i.e. ,
wo = w1 + kN, [25], where Ny, is the length of the input
low-res signal. The lowest aliasing frequency component
tends to have a much larger magnitude than the other
aliasing frequencies. Hence we assume that there is only
one aliasing frequency component we = wy+ Ny, as shown
in Figure 7.
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The original signal with two frequency components in
the time domain is

A, _i2rwn Ao _i2mwon
Il(n):Nilee Ni +N7L€ NH2
Ay Az
= Dlpymein g 22y 19
N, N (19)

where Ny and Np are the lengths of the low-res and
original signals, w; is the low frequency and wy is the
aliasing high frequency, and 1L serves as a normalization
constant. To make the derivation more succinct, we use
W = eNH We are using complex signals here. For real
signals, the DFT coefficient at w is the conjugate of that at
—w and we have the same number of unknowns to estimate.
The derivation is the same but involves the DFT coefficients
at both the positive and the negative frequencies.
The translated signal is
A

Ay
I — 7W—w1(n us)
2(n) Np N NL
where uo is the motion on the high-res grid.

In the Discrete Fourier transforms (DFT) domain, the
shift in time becomes a change in the phase of the signal.
The DFTs of the original signals are
L(w) =M[A16(w—w1) + Azd(w — w2)], @1
Iy(w) =M[A16(w—w1) W2 4 Agb(w—wa ) W"2],(22)
where M = ]TH is the downsampling ratio.

The effect of downsampling causes the low frequency
and other frequency components to overlap with each other.
The DFTs of the low-res signals are

T (@) =[Gy (w1) A1+ G, (w2) A2]b (w—w1) +n1(w) 23)
J2(w) =[G, (wW1) A W24 + G, (w2) A WH24]6 (w—w1)
+n2(w), (24

—wg(n—ug)
)

(20)

where n; and ny are assumed to be additive white Gaussian
noise (AWGN) with variance o2, and 2the DFT of the
Gaussian blur kernel is G,, (w) = e %, where oy, is
the standard deviation of the Gaussian blur kernel.

We can obtain the pixel-wise motion estimate by correla-
tion methods [27] but need to solve for the subpixel motion
on the low-res signals. The phase of the low frequency
signal is linear w.rt. the unknown motion. However the
phase of the aliasing high frequency component (Z’Tﬁiifz)
has a nonlinear relationship w.r.t. the motion ug, if we
treat the aliasing component as a part of the low frequency
signal.

4.1.2 Treating Aliasing as Noise

We propose to model aliasing as random noise in the
motion estimation process because the magnitude of the
aliasing signal is relatively small compared to the low
frequency signal. For natural images, their power spectra
follow a power law |A(w)?> = |w|~1%* [28] and the
magnitude of the low frequency coefficient is larger than
the high frequency one (the ratio between w; = 1 and
wo = 9 is larger than 30 for Ny = 16 and M = 2) . In
addition, the Gaussian blur kernel also attenuates the high
frequency components more than the low frequency ones

(the ratio between w; = 1 and wy = 9 is about 2). Hence
|Go, (w1)A1] > |Gy, (w2)As2| and it is reasonable to treat
the aliasing component as AWGN.

Now the problem settings become

J1(w) =[Go, (w1) A1+ G, (w2) As)d(w—w1) +n1 (w),
=G, (1) A13(w — w1) + 1y (), (25)
where n), = n1 + Gop(wz)As has variance 02, =
G2, (w2)A3 4 o2. Similarly
Jo(w) = Gop (w1) A1 (w — w)) W +ny(w),  (26)

’ . ’
where 7, has the same variance as n;.

4.1.3 Cramer Rao bounds (CRB) for motion estima-
tion

The CRB is the inverse of the Fisher information and
provides a bound for unbiased estimators [8]. The Fisher
information matrix describes the sensitivity of the likeli-
hood function to the unknown parameters. We can obtain
the Fisher information by taking the derivatives of the log
likelihood function w.r.t. the unknown parameters. The neg-
ative log likelihood function for the input low-res signals
is

~logp(J1, Jol A 12) =5 {11 (1) = G, () As]

n

12 (w1) =G () W2}, @T)

where || % || evaluates the L2 norms for complex signals.
The Fisher information matrix for the unknown parame-
ters 0 = {Re{A1},Im{A;},ua} is

2 0 A1W127T
N
G2 (wl) A wH271-
L=—2—| 0 2 N @
O Ajwy2m Ajwi2m A§w14ﬂ'2
Nu N N%
and its inverse is
_ __Nu
0_2 1 3 Trﬁllwl
—1 ’ ¢ _ H
=5 | me e ] @
( ) NH NH NH
TALw1 TA Wy 2A2wf

We obtain the following CRB for estimating the motion
Uy as

Niy

N >]—1 3,3 :7( 721 14k,
var[ts] > I, (3,3) STATS one

(30)

The effect of the blur kernel (o) on the motion es-
timation is two-fold. A small blur kernel preserves the
effective low frequency components for matching, boosts
less the imaging noise (first term), but suppresses less the
aliasing component (second term). A large blur kernel, on
the other hand, preserves less the effective low frequency
components, boosts more the imaging noise, but reduces the
aliasing artifacts. An intermediate size blur kernel achieves
the optimal performance. In addition, as shown in Figure 8,
the optimal blur kernel becomes smaller as the noise level
increases. When the noise dominates the aliasing signal, a
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that downsampling results in a reduction in magnitude in the frequency domain.
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small blur kernel will preserve the low frequency signal.
When the aliasing signal dominates the noise, a large blur
kernel will reduce the aliasing to help motion estimation.

4.1.4 Summing Contributions from All Frequencies

Each frequency pair provides an estimate of the unknown
motion. Because of the AWGN assumption, the imaging
noises at different frequencies are independent. We can
obtain the final motion estimate by computing a weighted
average of all the estimates from each frequency pair.
The weighted average in uncorrelated noise problem is
discussed in Example (6.2) in [15]. The optimal estimator
combines the motion estimates at each frequency band
according to their inverse variances. The CRB for the
variance of the optimal estimator is

=
N1
& 2m2 A% (w)w? /NZ \
(w4f(w+NL>4)ai/

var[iig] > 7
w0 02e 3 +A2(w+Np)e 1

GD

The estimate from the DC frequency will be automatical-
ly excluded because the variance from the DC frequency is
infinite (we cannot estimate motion using the DC frequen-
cy: translating the DC signal by any amount results in the
same signal).

4.2 Performance Bound for Image Reconstruc-
tion with Errors in Motion

4.2.1 Maximum Likelihood (ML) Estimator with Per-
fect Motion

Given the perfect motion uy, we want to estimate the
unknown 6; = {Re{A:},Im{A4;}, Re{As},Im{As}}.
For this parameter estimation in white Gaussian noise
problem, the maximum likelihood estimator achieves the
lower bound predicted by the CRB [15]. The nega-
tive log likelihood function for the unknown parameters
—log p(J1, J2| A1, A2) =

1

202

[12(w1) = G (1) AWt = G, (w) A W22 2|

{I171@1) = Go, (1) A1 =G, (@) Aol (32)

We can derive the Fisher information matrix and its
derivatives similarly and obtain the CRB for recovering A;
is

(33)

which means that, with perfect motion, a smaller blur kernel
leads to better results and a higher noise level results in
worse performance, as shown in Figure 9.

4.2.2 Performance of the ML Estimator with Motion
Error

Given the estimated motion o, we want to reconstruct
the original signal, including both the low and the high
frequency components. Note that although the aliasing high
frequency component behaves like noise in the motion

estimation process, it can be estimated once we have
obtained an estimate of the motion.

Let @9 = ug +n,,. Because we are performing subpixel
motion estimation, the motion error n,, tends to be small
and we treat the error as AWGN.

We can perform Taylor expansion around the perfect mo-
tion, ignore higher-order term, and incorporate the motion
estimation error into the noise term. Note that the motion
estimation error has been averaged over all the frequencies
and tends to be uncorrelated with the imaging noise at a
particular frequency.

Jo (wl) :ng (wl)Alw(“2+”u2 Jw1

+Gak (WQ)AQW(U2+7L“2)W2 +n2(w)
27y
%ng(wl)Alwuwl(ler)
Ny
27Ny, w2
N
:Gak (wl)A1Wu2wl+ng (WQ)AQWUQ“)z—"-n; (w),

(34)

+G0k (UJQ)AQWUQWQ(]. )-I—TLQ(UJ)

. . "
where the new noise term is n, (w)=

2
+— <Gok(w1 )Ajwy +G0k(UJ2>WQA2) Ny,  (35)

n(w) N,

with variance

5 Arm?

oln=c2+ 5 (ng(on )A%wf —I—Gik(ng)ngg) var[tz]. (36)
Ny

We can replace the new noise variance into Eqn. 33 and
obtain the CRB for recovering A; as

~ 2 2// “’4”4,
var[A,] > %_6 L7k
(1 — cos(=27))

(37)

Using Eqns (31) and (36), we can obtain the bound for

reconstructing the low frequency component in terms of
the noise level and the blur kernel in Eqn. 38. A small blur
kernel will reduce the influence of noise (first term), but
suppresses less the aliasing component (second term). A
large blur kernel plays the opposite role. Hence an inter-
mediate size blur kernel achieves the optimal performance,
as shown in Figure (10).
Discussions. In this section, we have analyzed how the
noise level and the blur kernel affect the performance of
super resolution, using CRB analysis from signal process-
ing. Our results confirm the intuition that a higher noise
level makes super resolution harder (Eqn 33). We also
show the blur kernel has the following influence: a small
blur kernel boosts less imaging noise but suppresses less
aliasing, while a large blur kernel boosts more imaging
noise but suppresses more aliasing (Eqn 38). In the next
section, we will empirically validate the prediction of the
theoretical analysis. We show that our super resolution
system has degraded performance with higher noise levels
(Figure 11). We also find that the effect of the blur kernel
is consistent with our theoretical analysis (Figure 12).
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Fig. 11. Our video super resolution system is robust to noise. We added synthetic additive white Gaussian
noise (AWGN) to the input low-res sequence, with the noise level varying from 0.00 to 0.05 (top row, left to right).
The super resolution results are shown in the bottom row. The first number in the parenthesis is PSNR score

and the second is SSIM score.

(a) o, =1.2 (25.41db, 0.832) (b) o =1.6 (26.05db, 0.790) (c) o, =2.0 (24.58db, 0.713) (d) o =2.4 (24.06db, 0.654)

Fig. 12. Our video super resolution system is able to estimate the PSF. We varied the standard deviation of
the blur kernel (PSF) o, = 1.2, 1.6, 2.0, 2.4, and our system is able to estimate the underlying PSF. Aliasing
causes performance degradation for the small blur kernel o, = 1.2 (see text for detail), consistent with the
theoretical prediction of our performance analysis. Top: bicubic up-sampling (x4); middle: output of our system;
bottom: the ground truth kernel (left) and estimated kernel (right). The first number in the parenthesis is PSNR

score and the second is SSIM score.
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Fig. 13. Super resolution results. From top to bottom are city, calendar, foliage and walk sequences. The
3DKR implementation does not have valid output for pixels near the image boundaries and we fill in the gaps
using gray pixels. Please view this figure on the screen.

5 EXPERIMENTAL RESULTS

We will first examine the performance of our system under
unknown blur kernel and noise level and then compare it to
state-of-the-art video super resolution methods on several
real-world sequences. Please refer to the supplemental
materials or the authors’ website! to view the super
resolved sequences. Please enlarge and view Figures 11,
12 and 13 on the screen for better comparison.
Parameter setting. We empirically set the free parameters
asn =002, A=1,£(=07 a=1and g =0.1.
Performance evaluation. We used the benchmark se-
quence city in video compression society to evaluate the
performance. Rich details at different scales make the city
sequence ideal to observe how different frequency com-
ponents get recovered. We simulated the imaging process
by first smoothing every frame of the original video with a
Gaussian filter with standard deviation o. We downsample
the smoothed images by a factor of 4, and add white
Gaussian noise with standard deviation o,,. As we vary the
blur kernel o, and the noise level o,, for evaluation, we
initialize our blur kernel K, K, with a standard normal

1. http://research.microsoft.com/en-us/um/people/celiv/CVPR2011

distribution and initialize noise parameters 6; using the
temporal difference between frames. We use 15 forward
and 15 backward adjacent frames to reconstruct a high-res
image.

We first tested how our system performs under various
noise levels. We fixed oy, to be 1.6 and changed o,, from
small (0) to large (0.05). When o,, = 0, quantization is
the only source of error in the image formation process.
As shown in Figure 11, our system is able to produce fine
details when the noise level is low (o, = 0.00, 0.01).
Our system can still recover major image structure even
under very heavy noise (0, = 0.05). These results suggest
that our system is robust to unknown noise. Note that the
performance drop as the noise level increases is consistent
with our theoretical analysis.

Next, we tested how well our system performs under
various blur kernels. We gradually increase oy from 1.2 to
2.4 with step size 0.4 in generating the low-res input. As
shown in Figure 12, the estimated blur kernels match the
ground truth well. The optimal performance (in PSNR) of
our system occurs for o, = 1.6, consistent with our theoret-
ical analysis that a medium-sized blur kernel achieves the
optimal performance. A small blur kernel generates strong
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Fig. 14. Comparison of different down-sampling rate. (a) and (b): down-sampling and up-sampling by a factor
of 4. (c) and (d): down-sampling and up-sampling by a factor of 2. (e): original frame. For (b), 15 forward and 15
backward frames were used, where as 7 forward and 7 backward frames were used for (d). Because it is down-
sampling by a factor of two, we simply estimated the optical flow between input frames without re-estimating flow
between the underlying high-res and the input frame. The results suggest that our system is able to handle x2

super resolution well.

aliasing, which severely degrades motion estimation and
therefore prevents reconstructing the true high-frequency
details. A large blur kernel removes too many image details
and results in less accurate reconstructed images.
Comparison to the state of the art. We compared our
method to two recent methods [31], [36] using the public
implementations downloaded from the authors’ websites 2
and one state-of-the-art commercial software, “Video En-
hancer” [1]. Since the 3DKR method [36] produced the
best results amongst these methods, we only display their
results due to the limited space.

We used three additional real-world video sequences,
calendar, foliage and walk for the comparison. The results
are listed in Figures 15 and 13. Although the 3DKR
method has recovered the major structures of the scene,
it tends to over-smooth fine details. In contrast, our system
performed consistently well across the test sequences. On
the city sequence our system recovered the windows of
the tall building while 3DKR only reconstructed some
blurry outlines. On the calendar sequence, we can easily
recognize the banner “MAREE FINE” from the output of
our system, while the 3DKR method failed to recover such

2. The implementation of the 3DKR method [36] does not include the
last deblurring step as described in their paper. We used a state-of-the-
art deconvolution method [17] to post-process its output. We used the
default parameter setting of the 3DKR code to upscale the low-res video
and adjusted the deconvolution method [17] to produce visually the best
result for each individual sequence. The 3DKR implementation does not
have valid output for pixels near the image boundaries. We filled in the
gaps using gray pixels.

(a) Bicubic x4 (b) 3DKR [36] (c) Our system

(d) Original

Fig. 15. Closeup of Figure 13. From top to bottom: city,
calendar, foliage and walk.

detail. Moreover, our system recovered the thin branches
in the foliage sequence and revealed some facial features
for the man in the walk sequence. The 3DKR method,
however, over-smoothed these details and produced visually
less appealing results.

We also observe failures from our system. For the fast
moving pigeon in the walk sequence, our system produced
sharp boundaries instead of preserving the original motion
blur. Since motion blur has not been taken into account in
our system, the sparse spatial prior favors sharp boundaries
in reconstructing smooth regions such as motion blur.
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TABLE 3
PSNR and SSIM scores. 3DKR-b is the output of the 3DKR
method before postprocessing.

PSNR city calendar  foliage walk
Proposed 27.100 21.921 25.888  24.664
3DKR [36] 24.672 19.360 24.887  22.109
3DKR-b [36] 24.363 18.836 24376  21.938
Enhancer [1] 24.619 19.115 24476 22303
Shan et al. [31] | 23.828 18.539 22.858  21.018
Bicubic 23.973 18.662 24393  22.066
SSIM
Proposed 0.842 0.803 0.845 0.786
3DKR [36] 0.647 0.600 0.819 0.584
3DKR-b [36] 0.637 0.554 0.797 0.554
Enhancer [1] 0.677 0.587 0.803 0.604
Shan et al. [31] | 0.615 0.544 0.747 0.554
Bicubic 0.597 0.529 0.789 0.548

Furthermore, motion blur can significantly degrade motion
estimation and results in undesired artifacts.

Tables 3 summarizes the PSNR and SSIM scores® for
these methods on the video frames in Figure 13. Our system
consistently outperforms other methods across all the test
sequences.

Computational performance. Our C++ implementation
takes about two hours on an Intel Core i7 Q820 workstation
with 16 GB RAMs when super resolving a 720x480 frame
using 30 adjacent frames at an up-sampling factor of 4.
The computational bottle neck is solving the optical flow
equation in Eqn. 17, which takes about one minute for a
pair of high-res and low-res frames. Computing flow for all
adjacent frames takes more than half an hour. To compare,
one IRLS iteration for image reconstruction takes about two
minutes.

Up-sampling by a factor of 2. For practical concerns,
we only need to do up-sampling by a factor of 2, espe-
cially when standard-definition (SD, typically 720x480)
videos are super-resolved to high-definition (HD, typically
1920x 1080). For the up-sampling by a factor of 2, we
can simply take the motion between the low-res input,
resize it and magnify it by two as the true motion between
the underlying high-res frame and adjacent low-res frames.
This omission makes our system run at 2 minutes per frame
for 720 x 480 videos. The difference between x2 and x4
super-resolution is illustrated in Figure 14. Clearly, sharper
image details were obtained for X2 super resolution.
Real-world videos without ground truth. We applied
our system to several real-world videos. As shown in
Figure 16, the enhanced videos are visually more appealing
and contain more details than the input.

6 DiscussION

When the model works and when it fails. The basic
assumption of our model is that the video is generated by
reshuffling pixels of a high-res frame. Therefore, our model
works the best for slow and smooth motion, and would fail
when the there is significant lighting changes and occlusion
(where the underlying assumption is broken). We also did

3. We discarded rows and columns within 20 pixels to the boundary in
computing these numbers because the 3DKR method did not have valid
output in these regions.

Fig. 16. Real-world videos. Our system is applied to
enhance the resolution of real-world videos. Left: input
low-res video. Right: x2 super-resolved output. Better
enlarge and view on the screen.

not model motion blur, which often takes place for fast
motion and/or long-exposure (for example, low light).

Aliasing: both a friend and enemy of super resolution.
In this paper, we discussed in depth how aliasing would
affect super resolution. Intuitively, on one hand, if there is
no aliasing (namely the smoothing kernel is large enough),
then there is little information to propagate from adjacent
frames for generate high-frequency details. On the other
hand, if the aliasing is too strong, then the false signal from
aliasing would affect motion estimation and degrade super
resolution. Therefore, the optimum smoothing kernel (with
respect to noise level) exists. We analyzed both theoretically
and empirically how the reconstruction error is affected by
blur size and noise level, and these analysis results match.
These results can be used as guidelines for designing super
resolution systems.

Future research directions. Future work will incorporate
the recent developments in each sub problem, such as
high-order image prior model [29], non-local motion prior
model [35], feature matching for fast moving objects [7],
[33], [40] and advanced inference methods for estimating
the spatially-variant blur kernel [9], [39]. Our system cannot
deal with large occlusions, for which the layered represen-
tation [38] is more suitable. For scenes with changing illu-
minations, inferring the illumination and super resolving the
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surface properties can relax our assumption that every input
frame can be generated by reshuffling the center frame.
Motion blur can be incorporated into the generative model
too. Furthermore, our system does not model compression
artifacts, which are ubiquitous in low-bit compressed videos
on the web and act like high-frequency false signals. We
have developed a non-causal system to jointly estimate
the optical flow and the original video sequence using the
encoded bit streams [34]. Incorporating the compression
process will make our system more robust. Finally it is of
great practical value to theoretically predict how much a
given video sequence can be super resolved.

7 CONCLUSION

In this paper we have demonstrated that our adaptive video
super resolution system based on a Bayesian probabilistic
model is able to reconstruct original high-res images with
great details. Our system is robust to arbitrary motion,
unknown noise level and/or unknown blur kernel because
we jointly estimate motion, noise and blur with the high-
res image using sparse image/flow/kernel priors. Very
promising experimental results suggest that our system
consistently outperform the state-of-the-art methods on a
variety of real-world sequences. On the theoretical side,
we have performed a two step analysis of how noise level
and blur kernel affect the performance using the Cramer-
Rao bounds. Our analytical results are consistent with our
experiments, indicating that they can be good guidelines
for analyzing super resolution systems.
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