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Abstract

In this paper, we propose a new framework for tackling face recognition problem. The face 

recognition problem is formulated as groupwise deformable image registration and feature 

matching problem. The main contributions of the proposed method lie in the following aspects: (1) 

Each pixel in a facial image is represented by an anatomical signature obtained from its 

corresponding most salient scale local region determined by the survival exponential entropy 

(SEE) information theoretic measure. (2) Based on the anatomical signature calculated from each 

pixel, a novel Markov random field based groupwise registration framework is proposed to 

formulate the face recognition problem as a feature guided deformable image registration problem. 

The similarity between different facial images are measured on the nonlinear Riemannian 

manifold based on the deformable transformations. (3) The proposed method does not suffer from 

the generalizability problem which exists commonly in learning based algorithms. The proposed 

method has been extensively evaluated on four publicly available databases: FERET, CAS-PEAL-

R1, FRGC ver 2.0, and the LFW. It is also compared with several state-of-the-art face recognition 

approaches, and experimental results demonstrate that the proposed method consistently achieves 

the highest recognition rates among all the methods under comparison.

Index Terms

Face recognition; deformable image registration; groupwise registration; Markov random field; 
correspondences; anatomical signature
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1 Introduction

Automatic face recognition (AFR) plays an important role in computer vision. Its 

application includes, but not limited to financial security, human-computer interaction, and 

law enforcement. AFR remains an active yet challenging research topic mainly due to three 

issues. First, facial expressions of the same person can cause large and deformable motions 

across different facial images [1], [2]. Second, the image appearances can be significantly 

altered due to illumination changes [3], [4]. Third, facial images taken under different poses 

also bring additional difficulty in achieving high recognition rates [5], [6].

Many novel methods have been proposed in the literature for AFR, and they can be broadly 

classified into two main categories: holistic methods [7], [8], [9], [10] and local feature 

matching methods [11], [12], [13], [14]. Holistic methods use the whole facial regions as 

input and derive a salient subspace to analyze the similarity between different facial images. 

Therefore, the core problem of holistic methods is about how to define the principles and 

optimization criteria to construct the subspace such that the facial images can be projected to 

the subspace and their similarity can be measured. For instance, Turk and Pentland [7] used 

the principle component analysis (PCA), which is also known as ”eigenface” to project the 

facial images to the subspace with minimum least square reconstruction error. Belhumeur et 

al. [8] proposed the use of linear discriminant analysis (LDA) to project facial images to the 

subspace which simultaneously maximizes the inter-class distances while minimizing the 

intra-class variations. Bartlett et al. [15] proposed the independent component analysis 

(ICA) to construct the subspace such that higher order pixel-wise relationship can be 

captured. In order to analyze facial images in the nonlinear high dimensional feature space, 

kernel based methods were also proposed [16], [17]. In [18], Yan et al. proposed a general 

graph embedding framework, where different dimensionality reduction and subspace 

learning methods such as PCA [7], LDA [8], LPP [19], ISOMAP [20], and LLE [21] can all 

be reformulated within this framework. Recently, Wright et al. [22] proposed a sparse 

representation framework for face recognition in the original facial space, and Naseem et al. 

[23] proposed a linear regression approach for face recognition.

Local feature matching methods extract image appearance features from different local 

regions of facial images, and the extracted features are combined and served as the input to a 

classifier. It is shown that local feature matching methods generally are more robust to local 

illumination changes and expression variations [13], [14], [24]. Two representative features 

used in local feature matching methods are Gabor wavelet [25] and local binary patterns 

(LBP) [11]. Gabor wavelet can be viewed as bandpass filters which analyze facial images in 

different frequency bands, with different orientations and scales. LBP is a powerful yet 

efficient local image descriptor which is originally proposed for texture classification [26] 

and has been widely extended to other classification problems by different researchers [11], 

[27]. In recent years, many local feature matching methods were developed based on Gabor 

wavelet and LBP. For instance, Zhang et al. [12] extracts LBP features from the Gabor 

filtered responses for face recognition. In [13] and [14], magnitudes and phases of the Gabor 

filtered responses are integrated with microscopic local pattern features to conduct face 

recognition. A comprehensive study about the comparison between holistic methods and 

local feature matching methods for face recognition can be found in [24].
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In recent years, there are new methods proposed to model the facial expression process as 

diffeomorphic transformations [28], [29], [30] to aim the recognition task. For instance, Guo 

et al. [29] proposed a generative method to model the dynamic facial expression with the 

diffeomorphic growth model. Moreover, image registration is also served as a possible 

solution for pose-invariant face recognition problems [31], [32]. In this paper, we propose a 

new way to tackle face recognition problem, which is formulated as groupwise deformable 

image registration and feature matching. The basic principle of the proposed method is to 

first construct the common group mean facial image space on the Riemannian manifold, and 

the similarity among different facial images is compared by warping facial images to the 

common group mean space. The main contributions of the proposed method are summarized 

as follows. First, instead of using pixel intensity alone, anatomical features are extracted 

from each pixel position of the facial images from its corresponding most salient scale local 

regions. A new salient region detector is proposed based on the survival exponential entropy 

(SEE) theoretical measure. Second, based on the anatomical signature calculated from each 

pixel position, a feature guided Markov random field (MRF) groupwise registration 

framework is proposed to construct the group mean facial image space on the Riemannian 

manifold in hierarchical manner. Finally, the proposed method is an unsupervised learning 

method. A preliminary version of this work appeared in [33].

The proposed method has been extensively evaluated on four publicly available databases: 

FERET, CAS-PEAL-R1, FRGC ver 2.0, and LFW. It is also compared with several state-of-

the-art face recognition approaches, and experimental results demonstrate that the proposed 

method consistently achieves the highest recognition rates among other methods under 

comparison.

The rest of the paper is organized as follows: Section 2 describes the background with 

respect to groupwise deformable image registration and shows how to formulate the face 

recognition problem as a groupwise image registration problem. Section 3 introduces the 

feature guided MRF groupwise registration framework for face recognition. Section 4 gives 

the experimental results and related analysis. Section 5 concludes the whole paper.

2 Groupwise Image Registration and Its Usage for Face Recognition

In this section, the background knowledge about groupwise deformable image registration is 

described and the motivation of formulating the face recognition problem as group-wise 

image registration problem is presented.

2.1 Groupwise Image Registration

In computer vision, the role of image registration is to transform images taken from different 

times, sensors, viewpoints, or different coordinate systems into a common coordinate system 

or space, such that comparisons can be made across different images in a common image 

space.

Given n input images I1, …, In, the conventional pairwise registration strategy first selects 

an image from I1, …, In, namely the fixed image Ifix, to serve as template. Then, the goal is 

to transform each image Ii (i = 1, …, n), namely the moving image Imov, to the space of fixed 
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image Ifix [34], [35]. The pairwise registration process can be viewed as an iterative 

optimization problem, as shown in Fig. 1. First of all, image features are extracted from 

input images. Of course, the most simple feature is the original facial images alone. Then, 

the optimal transformation ϕopt is estimated based on a pre-defined parametric 

transformation model (in this paper, it is deformable transformation). ϕopt is estimated by 

optimizing the value of a similarity measure function E, which reflects the registration 

quality at the current iteration. To optimize E, an optimization scheme (i.e., optimizer) is 

needed. Also, interpolation of the moving image is required in the case that some pixels of 

the transformed moving image do not fall exactly on the image grid of the fixed image. The 

registration process thus can be expressed by

(1)

where ψ denotes the feature extraction kernel, ⊗ denotes the convolution operation.

However, it is recently observed that [36], [37] explicitly selecting one of the images as the 

fixed image will lead to bias in registering all the other images to it. The main reason is that 

the geodesic distance between the fixed image and some of the moving images on the 

Riemannian manifold represented by deformable transformations may be very large and 

difficult to register. Therefore, groupwise registration strategies have become widely used 

[36], [37], [38], [39]. Groupwise registration does not explicitly select an image as the 

template. Instead, it simultaneously estimates the template Î (i.e., the group mean) and the 

transformation ϕi to warp each image Ii (i = 1, …, n) to Î by minimizing

(2)

where φ(·) is the cost function reflects the matching degree, and Reg(·) is the regularization 

term enforced on ϕi to prevent unrealistic and unsmooth deformable transformations. λ is 

the parameter controlling the tradeoff between the matching term and the regularization 

term. Î is the Fréchet mean on the non-euclidean Riemannian manifold defined by

(3)

The general groupwise registration framework is illustrated in Fig. 2.

2.2 Face Recognition as a Groupwise Image Registration Process

Intuitively, faces are topological objects, and motions of faces have close relationship with 

deformable transformations. For instance, the variation caused by facial expressions, which 

is one of the major challenges for face recognition, is a physical deformable and topology 

preserving transformation. It can be well formulated by the registration problem reflected in 

Equations (1) and (2). Similarly, if robust anatomical features and similarity measure 
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functions are defined, then the registration process can also be robust against illumination 

changes.

Therefore, we are motivated to formulate the face recognition problem as deformable image 

registration and feature matching problem. The most straightforward solution is to register 

each query image to each training image in a pairwise manner, and classify the query image 

to the person which has the resulting smallest energy function value in Equation (1). 

However, as discussed in Section 2.1, formulate face recognition in this way has two 

limitations. First, the query image is to transform each individual training image’s space for 

comparison, comparing the energy function value obtained in different image space is 

problematic. Second, this strategy is sensitive to outliers and registration to a specific 

training image already introduced bias. To resolve the above two limitations, we propose a 

novel groupwise registration framework for face recognition, the basic principle of the 

proposed method is summarized in Algorithm 1.

Algorithm 1

Face Recognition with the Groupwise Registration Framework

Input: Query image Inew, n training images I1,…, In.

Output: A class label lnew assign to Inew.

1. Construct the template image by performing groupwise registration among the training images I1,…, In denote the 
estimated template as Ī, and the deformable transformation from Ii (i = 1,…, n) to Ī as ϕi.

2. Register Inew to Ī, denote the registered query image as ϕnew(Inew), where ϕnew is the optimal transformation to 
Warp Inew to Ī.

3. Calculate the similarity between ϕnew(Inew) and each ϕi(Ii), set lnew as the class label of the transformed training 
image which is most similar to ϕnew(Inew).

4. Return lnew.

In the next section, we will introduce the feature guided hierarchical MRF groupwise 

registration framework for face recognition.

3 The Feature Guided Hierarchical MRF Groupwise Registration Framework

There are two main stages for the proposed registration framework. First, anatomical 

features are extracted from each pixel position at its corresponding most salient scale as the 

pixel signature. Second, based on the extracted features, the deformation model is 

formulated as a MRF labeling problem to perform groupwise registration in a hierarchical 

manner.

3.1 Anatomical Signature Construction for Each Pixel

The first step of the proposed registration framework is to extract salient anatomical features 

at each pixel location to reflect the structural property around the pixel in facial images.

It is shown in [40] that saliency of features is closely related to the scale from which the 

features are extracted. Important structures in facial images such as noses, mouths, and eyes 

have different sizes and shapes. Therefore, anatomical features should be extracted with 
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different scales of interest from different facial regions to ensure their saliency and 

representation power.

We measure the saliency based on local image structural complexity. Specifically, the 

survival exponential entropy [41], [42] was used as a statistical measure for local image 

structural complexity. It is defined by

(4)

where α ≥ 0 is the order of SEE, it is set to 3 in this paper by cross validation. X ∈ Rm is a 

m-dimensional random vector. Let X = [X1, …, Xm]T, |X| denotes the random vector |X| = [|

X1|, …, |Xm|]T.  is the multivariate survival function defined by

(5)

where , and  is defined as:

(6)

In Equation (4), the random vector x is sampled by the following procedure: First, each 

dimension of x is normalized to the same range [0, 1]. Then each dimension of the 

normalized random vector is uniformly partitioned into 64 bins.

Comparing to the conventional Shannon entropy, SEE has the following advantages [41], 

[42]: (1) SEE is always non-negative; (2) SEE has consistent definition in both the 

continuous and discrete domains; and (3) the probability density function (pdf) used to 

compute the Shannon entropy may not exist. However, the survival function defined by 

Equation (5) to calculate SEE always exists.

For each pixel p⃗, we denote the square region centered at it with scale (i.e., the side length) s 

as Rs(p⃗). We also denote the histogram of intensity distribution in Rs(p⃗) as Hs(p⃗). It is clear 

that the larger the value of Mα(Hs(p⃗)), the more complex the image structures contained in 

Rs(p⃗). However, it should also be noted that regions exhibit high self-similarity over a range 

of scales should not be considered as salient, such as regions filled with regular textures. 

Therefore, the saliency measure As(p⃗) is defined as the SEE value of Hs(p⃗) weighted by the 

Jensen Shannon divergence between Hs(p⃗) and Hs−Δs(p⃗) by

(7)

where JSD(·) denotes the Jenson Shannon divergence [43], s − Δs denotes the predecessor 

scale with respect to scale s. For each pixel p⃗, the most salient scale Sp⃗ from which to extract 

features is calculated by
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(8)

In this paper, the best possible scales are defined within a range from 4 to 20 pixels, with 

scale difference parameter Δs set to 1. Fig. 3 shows a typical example of the top 10 most 

salient regions with their corresponding scales determined by the proposed saliency measure 

operator. It can be observed from Fig. 3 that for images belonging to the same person, the 

most salient regions and their corresponding scales detected are very similar to each other 

with high degrees of repeatability, while those from a different person are significantly 

different. There is no additional processing step for the proposed saliency detector such as 

non-maximum suppression. Therefore, the effectiveness of the proposed saliency measure 

operator is illustrated.

Once the most salient scale Sp⃗ to extract features from pixel p⃗ is determined, anatomical 

features are extracted from a local square region RSp⃗(p⃗) centered at p⃗ with scale Sp⃗ Because 

of the robustness of the Gabor wavelet and LBP features against local illumination changes 

and their superior representation power [24], they are used as the anatomical signature for 

each pixel p⃗ within region RSp⃗(p⃗). Specifically, 40 Gabor filters with five center frequencies 

and eight orientations as in [13] are used, and only the magnitude of the Gabor filtered 

responses are used for anatomical features. For the LBP features, we follow the settings in 

[11], where the uniform pattern histogram with radius 2 and number of neighboring pixel 

samples 8 is used as the LBP feature, resulting in 59 dimensional LBP features. Therefore, 

the final anatomical signature for each pixel is a 99 dimensional feature vector (40 Gabor 

features and 59 LBP features).

It is worth pointing out that the role of the anatomical signature calculated for each pixel in 

the proposed method is significantly different from the one in local feature matching 

methods [12], [13]. In local feature matching methods, the extracted local features from 

different regions will be concatenated to form the final global feature and directly served as 

input to the classifiers, while in the proposed method, the anatomical signature for each 

pixel is used to guided the deformable registration process and the spatial relationship 

between different pixels is preserved.

3.2 The Hierarchical MRF Groupwise Registration Model

After calculating the anatomical signature for each pixel in Section 3.1, we introduce a 

hierarchical MRF groupwise registration model to construct the group mean facial image 

space (i.e., the template).

Given n training images I1, …, In, we denote their corresponding feature maps obtained in 

Section 3.1 as F⃗1, …, F⃗n. For each pixel p⃗, F⃗i(p⃗) is the 99 dimensional anatomical signature 

of p⃗ in image Ii (i = 1, …, n).

Recall that the general groupwise registration process can be expressed by Equation (2). In 

this paper, the deformable registration process is formulated as a MRF labeling problem 

defined by
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where Ω denotes the image domain, and  denotes the neighborhood system defined in Ω. 

In this paper, the four-connected neighborhood system is adopted.  is the data term 

representing the penalty of assigning pixel p⃗ in image Ii the label , and  is 

the smoothness term which penalizes the cost of label discrepancy between two neighboring 

voxels p⃗ and q⃗ in image Ii.

The deformable registration problem is converted to a MRF labeling problem by quantizing 

the deformable transformation ϕi. Specifically, we define a discrete set of labels {L|L = {f1, 

f2, …, fm}}, where each label fj (j = 1, …, m) is corresponding to one specific displacement 

vector d⃗j. Therefore, assigning a voxel p⃗ ∈ Ii with label  means moving pixel p⃗ off the 

original position with displacement vector . In this paper, the displacement vector is 

represented by a bounded discrete window W = {0, ±τ, ±2τ, …, ±wτ}U, where U is the 

dimension of the window, since we are dealing with 2D facial images, U = 2. τ is set to 1, 

and w is set to 12 in this paper. Therefore, the bounded discrete window is W = {0, ±1, ±2, 

…, ±12}2.

The smoothness term  is defined by the piece-wise truncated absolute 

distance by

(10)

where λ is a constant representing the maximum penalty.

The data term  is defined based on the anatomical signature difference between the 

warped image Ii and the group mean image Î by

(11)

where F⃗Î (p⃗)denotes the anatomical signature of voxel p⃗ in the group mean image Î, and 

 denotes the anatomical signature of voxel p⃗ in image Ii after p⃗ is displaced off 

the original position with displacement vector .

The optimization of Equation (9) can be achieved by the greedy iterative algorithm similar 

to [36] to iteratively refine the group mean Î and the α-expansion algorithm [44] to solve the 

MRF labeling problem. The optimization procedure can be summarized by Algorithm 2.
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Algorithm 2

Estimate group mean Î and transformation ϕi of each image Ii.

Input: n input images Ii (i = 1,…, n).

Output: Group mean image Î, and transformation ϕi to warp each image Ii, to Î.

1.

Initialize .

2. FOR i = 1 to n

3.  Perform the α-expansion algorithm to estimate the deformable transformation ϕi to warp Ii to Î with the MRF 
labeling framework.

4. END FOR

5.

Update .

6. Repeat Operations 2 to 5 until Î converges.

7. Return Î and ϕi.

With Algorithm 2, we can construct the group mean Î based on input training images Ii. 

However, directly perform groupwise registration among all training images may be not 

sufficient to account for the possible large variations across different training facial images. 

To this end, we propose a hierarchical groupwise registration strategy. The basic principle is 

that, facial images with similar appearance are clustered into a group, assuming that they 

have closer distances in the Riemannian manifold represented by deformable 

transformations. If a group still contains many facial images which may have large 

variations across each other, it can be further clustered into different smaller groups. 

Therefore, a pyramid of groups is formed, and the final group mean (i.e., the template) can 

be constructed in a hierarchical bottom-up manner.

In this paper, affinity propagation (AP) [45] is adopted for clustering, which can 

automatically and robustly determine the number of cluster centers. The input of AP is the 

similarity matrix Q, where Q(i, j) denotes the similarity between the ith facial image and the 

jth facial image. The survival exponential entropy based normalized mutual information 

(SEE-NMI) is adopted as the similarity function to calculated Q(i, j). SEE-NMI not only 

shares the robustness properties of the conventional MI [43] against local illumination 

changes, but also has the advantages of SEE defined in Section 3.1. The SEE-NMI between 

two facial images Ii and Ij is defined by

(12)

where (Ii),  (Ij), and  (Ii, Ij) denote the marginal intensity distribution of Ii, marginal 

intensity distribution of Ij, and the joint intensity distribution of Ii and Ij, respectively.

Fig. 4 shows a typical example of the pyramid constructed for 10 facial images to estimate 

the template in a hierarchical manner. It can be observed from Fig. 4 that images with 

similar appearance are first clustered into the same group to perform groupwise registration. 
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The final template (i.e., on the top of the pyramid) can be built by the bottom-up hierarchical 

groupwise registration strategy with Algorithm 2 as the basic building block to perform 

group-wise registration within each group in the pyramid.

Fig. 5 shows a typical example of the two facial images belonging to the same person but 

with different facial expressions before and after they are transformed to the template space. 

It can be observed that after the groupwise registration process, variations caused by 

different facial expressions can be satisfactorily recovered, which is evidence from the high 

degree of similarity between the two images after they are transformed to the template 

space. Their corresponding deformation fields are also visualized in Figs. 5e and 5f, 

respectively. Therefore, the motivation and effectiveness of the proposed method is 

illustrated.

After estimating the template Î and the deformation field ϕi to transform each training image 

Ii to Î, we can classify a new facial image Inew as described by Operations 3 and 4 in 

Algorithm 1. We estimate the similarity between the transformed new facial image and each 

training image based on their corresponding feature maps calculated by the procedure 

described in Section 3.1 to ensure robustness. Specifically, we first calculate the feature map 

of Inew, and denote it as F⃗Inew. Then, we register Inew to the template Î with the proposed 

MRF labeling based registration method, and denoting the resulting deformation field as 

ϕnew. Finally, we calculate the euclidean distance between ϕnew(F⃗Inew) and ϕi(F⃗Ii) (i = 1, …, 

n), where F⃗Ii is the feature map of training image Ii. The label of Inew is determined as the 

one of the training image which has the most similar transformed feature map to the new 

facial image.

It should be noted that a possible alternative strategy to construct the group mean space is to 

first construct the group mean image of each subject, and then perform group-wise 

registration among the subject-specific group mean images to obtain the final group mean 

image. This strategy is also similar to the hierarchical registration strategy adopted in this 

paper, where the final group mean space is estimated in a bottom-up manner from the 

constructed group means of similar facial images.

It should also be noted that the proposed method requires a training set of facial images to 

construct the template space. However, the proposed method does not require the subject 

identity information (i.e., subject labels) during the training stage. Therefore, it is an 

unsupervised learning method.

4 Experimental Results

Extensive experiments have been conducted to evaluate the proposed method on four face 

recognition benchmark databases: FERET [46], CAS-PEAL-R1 [47], FRGC ver 2.0 [48], 

and LFW [56]. The proposed method has also been compared with different state-of-the-art 

face recognition methods on the three databases. In all experiments, the order α of the 

survival exponential entropy was set to 3, and the parameter λ controlling the maximum 

penalty of the smoothness term in Equation (10) was set to 15 by cross validation. The 

nearest neighbor classifier was adopted in all experiments.

Liao et al. Page 10

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.1 Experimental Results on the FERET Database

In the FERET database [46], the gallery set (i.e., Fa) contains 1, 196 frontal images of 1, 196 

subjects. There are four probe sets in the standard FERET evaluation protocol: The Fb probe 

set contains 1, 195 images of different facial expression variations, Fc contains 194 images 

taken under different illumination conditions, Dup I has 722 images taken later in time with 

aging variations of 243 subjects, and Dup II is a subset of Dup I with 234 images of 75 

subjects which were taken at least one year after the corresponding facial images in the 

gallery set. Sample images of the FERET database are shown in Fig. 6.

For each image, the following preprocessing steps were performed. Each image was cropped 

and normalized to the resolution of 128 × 128 based on the manually located eyes positions 

provided by the FERET database to contain only the facial region. Then, histogram 

equalization was performed to reduce the possible distortions caused by illumination 

changes.

In order to evaluate the effectiveness of the proposed hierarchical groupwise MRF based 

registration strategy, we have also included the results obtained by the pairwise registration 

strategy in our preliminary work in [33] and the results obtained by two state-of-the-art 

deformable registration algorithms, namely the diffeomorphic Demons (D-Demons) [49] 

based on the optical flow equation and the fast free form deformation (FFD) model [50] with 

B-spline basis functions. Table 1 lists the rank-1 recognition rates of different approaches on 

all four probe sets of the FERET database. Results obtained by our method without using the 

hierarchical registration strategy are also reported. For all the other methods under 

comparison, the recognition rates are directly cited from their corresponding papers, as it is 

assumed that the recognition rates reported in the corresponding papers are under their 

optimal parameter settings.

It can be observed from Table 1 that the proposed method consistently achieves the highest 

recognition rate among all methods under comparison on the four probe sets. Therefore, the 

discriminant power and robustness of the proposed method against facial expression 

variations, illumination changes, and aging variations are implied. It can also be observed 

that the recognition performance of the proposed method significantly degrades without 

using the hierarchical registration strategy. Therefore, the importance of mitigating the 

effects of large inter-person face variations at the beginning stage of the registration process 

is reflected. The hierarchical registration strategy reduces the risk of being stuck at 

suboptimal solutions for estimating the template space. Moreover, it is shown that the the 

recognition rates obtained with the groupwise registration scheme are consistently higher 

than those obtained by the pairwise registration strategy (i.e., even without using the 

hierarchical registration strategy). Therefore, the importance of estimating the template 

space in an unbiased manner with the groupwise registration scheme instead of explicitly 

selecting one facial image as the template is also reflected.

It should be noted that the maximum number of images allowed within each group during 

hierarchical groupwise registration also affect the performance of the proposed method. If 

the maximum number of images allowed within each group is too large, then images with 

large variations may be clustered into the same group and lead to inaccurate registration 
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results. On the other hand. If this value is too small, the robustness of our method will be 

reduced as images from the same person maybe clustered into different groups. Fig. 7 shows 

the rank-1 recognition rates of our method with respect to different maximum numbers of 

images allowed within each group on the four probe sets. Moreover, to illustrate the 

importance of incorporating local anatomical features to guide the registration instead of 

using pixel intensity information alone, in Fig. 7 the rank-1 recognition rates of the proposed 

method using only the pixel intensity as feature to guide the registration process are also 

given.

Fig. 7 illustrates that our method achieves its best recognition accuracy when the maximum 

number of images within each group is around 20. This value was set to 20 in this paper for 

all experiments. The recognition performance for different databases may be further 

improved with different values of maximum number of images in each group. In this paper, 

it is empirically fixed to 20 as the input query images and databases are unknown 

beforehand in real world applications. The recognition rate for using pixel intensity alone as 

feature to guide the registration process is significantly lower than the one using salient local 

anatomical features, especially on the Fc probe set with respect to illumination changes.

The running time required to constructed the template space by the proposed groupwise 

registration strategy is around 17.6 minutes, and the average time required to recognize each 

new query image in the recognition phase is around 15 seconds for the FERET database on a 

computer with Intel Xeon 2.66-GHz CPU. It should be noted that the template construction 

stage can be completed offline, which does not affect the efficiency in the recognition stage. 

The computational efficiency of the proposed method can be further improved by parallel 

processing and code optimization.

4.2 Experimental Results on the CAS-PEAL-R1 Database

The CAS-PEAL-R1 database [47] contains 30, 863 images of 1,040 subjects, among which 

595 are males and 445 are females. The CAS-PEAL-R1 standard evaluation protocol 

contains a gallery set consisting of 1,040 images of 1,040 subjects taken under the normal 

condition, a training set consisting of 1,200 images of 300 subjects for building the 

recognition model or tuning the parameters of a model, and six frontal probe sets contain 

facial images with the following types of variations: expression, accessory, lighting, aging, 

background, and distance.

For each image, similar preprocessing steps to the FERET database in Section 4.1 were 

performed, where each image was cropped and normalized to the resolution of 128 × 128 

based on the eyes positions provided by the CAS-PEAL-R1 database, and histogram 

equalization was performed. Samples images from the CAS-PEAL-R1 database are shown 

in Fig. 8.

Table 2 lists the rank-1 recognition rates obtained by different approaches on the CAS-

PEAL-R1 database. For comparison purpose, recognition rates of using the diffeomorphic 

Demons [49] (D-Demons) algorithm, fast free form deformation model [50], and the 

pairwise MRF registration strategy [33] are also included. The recognition rates of all the 

other methods under comparison are directly cited from their corresponding papers. 
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Experimental results obtained by our method without using the hierarchical registration 

strategy are also included. It can be observed from Table 2 that our method achieves the 

highest overall recognition rates. It is shown in Table 2 that without using the hierarchical 

registration strategy, the recognition performance of our method degrades. Also, higher 

recognition rates are obtained by using the group-wise registration scheme than using the 

pairwise registration strategy.

Similar to Section 4.1, we also compare the proposed method which uses salient anatomical 

features to guide the registration process to the one using pixel intensity information alone to 

drive the registration process, and the corresponding rank-1 recognition rates are shown in 

Fig. 9.

It can be observed from Fig. 9 that the proposed method which uses salient local anatomical 

feature to drive registration consistently outperforms the intensity guided registration 

strategy, especially under the illumination change condition. Therefore, the advantage of 

using feature guided registration strategy is strongly implied.

The running time required to construct the template space is around 54.8 minutes, and the 

average time required to recognize each new query image in the recognition phase is around 

16 seconds for the CAS-PEAL-R1 database on a computer with Intel Xeon 2.66-GHz CPU.

4.3 Experimental Results on the FRGC ver 2.0 Database

The proposed method was also evaluated on the FRGC ver 2.0 database. The FRGC ver 2.0 

database [48] is known as one of the largest face image data sets available. Sample images 

of the FRGC ver 2.0 database are shown in Fig. 10. Similar to the experimental settings in 

Sections 4.1 and 4.2, each image was normalized and cropped to the size of 128 × 128, and 

histogram equalization was performed.

The FRGC ver 2.0 database contains 12, 776 images of 222 subjects in the training set, with 

6,360 images were taken under the controlled condition and 6,416 images were taken under 

the uncontrolled condition. It also contains 16,028 target images taken under the controlled 

illumination condition. In this paper, the experiment 1 and experiment 4 standard protocols 

of the FRGC ver 2.0 database were used to evaluate the proposed method. For the 

experiment 1 protocol, there are 16,028 query images taken under the controlled 

illumination condition. For the experiment 4 protocol, there are 8,014 query images taken 

under the uncontrolled illumination condition, which is the most challenging protocol in 

FRGC.

The recognition performance of different methods on the FRGC ver 2.0 database was 

measured by the receiving operator characteristics (ROC), which is the face verification rate 

(FVR) versus the false accept rate (FAR). For both the experiment 1 and experiment 4 

protocols, there are three ROC value: ROC 1 corresponding to images collected within 

semester, ROC 2 corresponding to images collected within year and ROC 3 corresponding 

to images collected between semesters. Table 3 lists the FVR at FAR of 0.1 percent with 

respect to the experiment 1 protocol of different methods. The recognition rates of LGBP ) 
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LGXP are directly cited from reference [14], and the recognition rates of LGBPHS, LBP, 

and the BEE Baseline are directly cited from reference [33].

It can be observed from Table 3 that the proposed method consistently achieves the highest 

FVR values at FAR = 0.1% for all three ROC values among other methods under 

comparison. Specifically, comparing to the BEE baseline algorithm (i.e., PCA on large scale 

data), the proposed method achieves more than 20 percent of the FVR improvement on all 

the three ROC values. Moreover, the advantage of using the hierarchical registration 

strategy is illustrated.

Table 4 lists the FVR value at FAR of 0.1 percent with respect to the experiment 4 protocol 

of different methods, which is the most challenging protocol in FRGC.

It can be observed from Table 4 that our method achieves significantly higher recognition 

rates than other methods under comparison. Therefore, the robustness of the proposed 

hierarchical groupwise MRF based registration strategy is demonstrated.

More comparisons between our method and other state-of-the-art face recognition 

approaches are shown in Table 5 of the ROC 3 values for both the experiment 1 and 

experiment 4 protocols. One of the best results reported in the literature for the FRGC ver 

2.0 experiment 4 protocol is in reference [55], with 92.43 percent recognition rate. The 

recognition performance of the proposed method can also be improved by integrating more 

advanced and novel image features such as those used in reference [55].

The running time required to constructed the template space by the proposed groupwise 

registration strategy is around 32.4 minutes, and the average time required to recognize each 

new query image in the recognition phase is around 8 seconds for the FRGC ver 2.0 

database on a computer with Intel Xeon 2.66-GHz CPU.

4.4 Experimental Results on the LFW Database

Our method was also evaluated on the labeled faces in the wild (LFW) [56] database. It 

contains 13, 233 facial images of 5,749 different persons. The facial images were taken from 

unconstrained environments with large variations in pose, facial expression, background, 

and lighting conditions. In this paper, the ‘View 2’ set in the LFW database (i.e., the set 

designed for final testing and benchmarking [56]) was used for evaluation, where our 

method was evaluated in the 10 fold cross validation manner similar in [57]. We followed 

the standard image restricted configuration setup in [56], where only the match/non-match 

information is available for each pair of training images. Moreover, there is no outside 

training data used other than those provided by the LFW database. Fig. 11 shows some 

typical examples of the matched and non-matched image pairs from the LFW database.

During the training phase, we first estimate the template space with the proposed 

hierarchical groupwise registration method based on the training image pairs in the available 

nine splits (i.e., ‘View 2’ was evaluated in a 10 fold cross validation manner). Then, based 

on the registered training image pairs to the template space, we determine the best matching 

threshold, and apply it to the remaining 10th split. The experiment was repeated 10 times.
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Table 6 lists the estimated mean accuracies and the standard error of the mean obtained by 

our method and those reported by other competing methods on the LFW result website.1 For 

fair comparison purpose, most of the competing methods adopted for comparison had the 

same setting in this paper: They were tested under the strictest LFW protocol by their 

authors, where the image restricted configuration setup was used and there was no outside 

training data used other than those provided by LFW. In order to investigate the contribution 

of the proposed SEE-based salient detector, we also compared the face verification 

performance of our method using the SEE-based salient detector and the difference of 

Gaussian (DoG) salient detector used in SIFT [40], which is one of the best detectors stated 

in [58].

It can be observed from Table 6 that our method achieves the highest verification 

performance among all the compared methods, which reflects the effectiveness of our 

method for face verification under the unconstrained environments. Moreover, the 

verification rate obtained by our method using the SEE-based salient detector is higher than 

the one using the DoG salient detector, which illustrates the advantage of using the proposed 

SEE-based salient detector. It is also observed that using the groupwise registration scheme 

and the hierarchical registration strategy clearly outperforms the pairwise registration 

strategy.

Fig. 12 shows the verification performance of different methods with the ROC curves, and it 

can be observed that our method has the best verification performance among all the 

methods under comparison. It matches with the observations in Table 6.

To investigate how the order α of the survival exponential entropy in Equation (4) influence 

the recognition performance, the mean face verification rates with different values of α for 

the LFW database are shown in Fig. 13.

It can be observed from Fig. 11 that when α = 3, our method gives satisfactory verification 

accuracy. When α is too small, the SEE-based saliency measure in Equation (7) may not be 

effective to capture the salient regions in facial images. On the other hand, when α is too 

large, the SEE-based saliency measure may be too sensitive and not robust.

The average running time to determine whether a pair of query image is matched or non-

matched is around 32 seconds on a computer with Intel Xeon 2.66-GHz CPU.

5 Conclusion

In this paper, we formulate the face recognition problem as a groupwise registration and 

feature matching problem. A robust salient scale detector based on the survival exponential 

entropy is proposed to extract the anatomical features from the most salient scales. The 

deformable transformation space is discretized and represented by the Markov random field 

labeling framework, which is integrated with the salient anatomical signature of each pixel 

to drive the registration process. In order to deal with possible large variations between 

different facial images, a hierarchical groupwise registration strategy is proposed. During the 

1http://vis-www.cs.umass.edu/lfw/results.html.
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recognition phase, each query image is transformed to the template space and compared 

with the existing training images. Our method has been extensively evaluated on four 

benchmark databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the LFW databases. It is 

also compared with several state-of-the-art face recognition methods. Experimental results 

demonstrate that our method achieves the highest recognition and verification rates among 

other methods under comparison, which demonstrates the effectiveness of our method.

References

1. Tian T, Kanade T, Cohn J. Recognizing Action Units for Facial Expression Analysis. IEEE Trans 
Pattern Analysis and Machine Intelligence. Feb; 2001 23(2):97–115.

2. Fasel B, Luettin J. Automatic Facial Expression Analysis: A Survey. Pattern Recognition. 2003; 
36(1):259–275.

3. Shashua A, Riklin-Raviv T. The Quotient Image: Class Based Re-Rendering and Recognition with 
Varying Illuminations. IEEE Trans Pattern Analysis and Machine Intelligence. Feb; 2001 23(2):
129–139.

4. Xie X, Lam K. Face Recognition under Varying Illumination Based on a 2D Face Shape Model. 
Pattern Recognition. 2005; 38(2):221–230.

5. Pan Z, Healey G, Prasad M, Tromberg B. Face Recognition in Hyperspectral Images. IEEE Trans 
Pattern Analysis and Machine Intelligence. Dec; 2003 25(12):1552–1560.

6. Blanz V, Vetter T. Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans Pattern 
Analysis and Machine Intelligence. Sep; 2003 25(9):1063–1074.

7. Turk M, Pentland A. Eigenfaces for Recognition. J Cognitive Neuroscience. 1991; 3:71–86.

8. Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition Using Class 
Specific Linear Projection. IEEE Trans Pattern Analysis and Machine Intelligence. Jul; 1997 19(7):
711–720.

9. Zhu, M.; Martinez, A. Selecting Principal Components in a Two-Stage LDA Algorithm. Proc. IEEE 
Conf. Computer Vision and Pattern Recognition; 2006. p. 132-137.

10. Zhu M, Martinez A. Subclass Discriminant Analysis. IEEE Trans Pattern Analysis and Machine 
Intelligence. Aug; 2006 28(8):1274–1286.

11. Ahonen T, Hadid A, Pietikainen M. Face Description with Local Binary Patterns: Application to 
Face Recognition. IEEE Trans Pattern Analysis and Machine Intelligence. Dec; 2006 28(12):
2037–2041.

12. Zhang, W.; Shan, S.; Gao, W.; Chen, X.; Zhang, H. Local Gabor Binary Pattern Histogram 
Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition. 
Proc. IEEE Conf. Computer Vision; 2005. p. 786-791.

13. Lei Z, Liao S, Pietikainen M, Li S. Face Recognition by Exploring Information Jointly in Space, 
Scale and Orientation. IEEE Trans Image Processing. Jan; 2011 20(1):247–256.

14. Xie S, Shan S, Chen X, Chen J. Fusing Local Binary Patterns of Gabor Magnitude and Phase for 
Face Recognition. IEEE Trans Image Processing. May; 2010 19(5):1349–1361.

15. Bartlett M, Movellan J, Sejnowski T. Face Recognition by Independent Component Analysis. 
IEEE Trans Neural Network. Nov; 2002 13(6):1450–1464.

16. Scholkopf B, Smola A, Muller K. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. 
Neural Computing. 1999; 10:1299–1319.

17. Liu C. Capitalize on Dimensionality Increasing Techniques for Improving Face Recognition Grand 
Challenge Performance. IEEE Trans Pattern Analysis and Machine Intelligence. May; 2006 28(5):
725–737.

18. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph Embedding and Extensions: A General 
Framework for Dimensionality Reduction. IEEE Trans Pattern Analysis and Machine Intelligence. 
Jan; 2007 29(1):40–51.

19. He X, Yan S, Hu Y, Niyogi P, Zhang H. Face Recognition Using Laplacianfaces. IEEE Trans 
Pattern Analysis and Machine Intelligence. Mar; 2005 27(3):328–340.

Liao et al. Page 16

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



20. Tenenbaum J, Silva V, Langford J. A Global Geometric Framework for Nonlinear Dimensionality 
Reduction. Science. 2000; 290(22):2319–2323. [PubMed: 11125149] 

21. Roweis S, Saul L. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science. 
2000; 290(22):2323–2326. [PubMed: 11125150] 

22. Wright J, Yang A, Ganesh A, Sastry S, Ma Y. Robust Face Recognition via Sparse Representation. 
IEEE Trans Pattern Analysis and Machine Intelligence. Feb; 2009 31(2):210–227.

23. Naseem I, Togneri R, Bennamoun M. Linear Regression for Face Recognition. IEEE Trans Pattern 
Analysis and Machine Intelligence. Nov; 2010 32(11):2106–2112.

24. Zou J, Ji Q, Nagy G. A Comparative Study of Local Matching Approach for Face Recognition. 
IEEE Trans Image Processing. Oct; 2007 16(10):2617–2628.

25. Wiskott L, Fellous J, Kruger N, Malsburg C. Face Recognition by Elastic Bunch Graph Matching. 
IEEE Trans Pattern Analysis and Machine Intelligence. Jul; 1997 19(7):775–779.

26. Ojala T, Pietikainen M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture 
Classification with Local Binary Patterns. IEEE Trans Pattern Analysis and Machine Intelligence. 
Jul; 2002 24(7):971–987.

27. Guo Y, Zhao G, Pietikainen M. Discriminative Features for Texture Description. Pattern 
Recognition. 2012; 45(10):3834–3843.

28. Yousefi, S.; Minh, P.; Kehtarnavaz, N.; Yan, C. Facial Expression Recognition Based on 
Diffeomorphic Matching. Proc. Int’l Conf. Image Processing; 2010. p. 4549-4552.

29. Guo, Y.; Zhao, G.; Pietikainen, M. Dynamic Facial Expression Recognition Using Longitudinal 
Facial Expression Atlases. Proc. European Conf. Computer Vision; 2012. p. 631-644.

30. Koelstra S, Pantic M, Patras I. A Dynamic Texture-Based Approach to Recognition of Facial 
Actions and Their Temporal Models. IEEE Trans Pattern Analysis and Machine Intelligence. Nov; 
2010 32(11):1940–1954.

31. Lee M, Ranganath S. Pose-Invariant Face Recognition Using a 3D Deformable Model. Pattern 
Recognition. 2003; 36(8):1835–1846.

32. Asthana, A.; Marks, T.; Jones, M.; Tieu, K.; Rohith, M. Fully Automatic Pose-Invariant Face 
Recognition via 3D Pose Normalization. Proc. IEEE Conf. Computer Vision; 2011. p. 937-944.

33. Liao, S.; Chung, A. A Novel Markov Random Field Based Deformable Model for Face 
Recognition. Proc. IEEE Conf. Computer Vision and Pattern Recognition; 2010. p. 2675-2682.

34. Zhan, Y.; Feldman, M.; Tomaszeweski, J.; Davatzikos, C.; Shen, D. Registering Histological and 
MR Images of Prostate for Image-Based Cancer Detection. Proc. Int’l Conf. Medical Image 
Computing and Computer-Assisted Intervention; 2006. p. 620-628.

35. Shen D, Wong W, Ip H. Affine-Invariant Image Retrieval by Correspondence Matching of Shapes. 
Image and Vision Computing. 1999; 17:489–499.

36. Joshi S, Davis B, Jomier M, Gerig G. Unbiased Diffeomorphic Atlas Construction for 
Computational Anatomy. Neuro-Image. 2004; 23:151–160.

37. Jia H, Wu G, Wang Q, Shen D. ABSORB: Atlas Building by Self-Organized Registration and 
Bundling. NeuroImage. 2010; 51:1057–1070. [PubMed: 20226255] 

38. Cootes T, Twining C, Petrovic V, Babalola K, Taylor C. Computing Accurate Correspondences 
across Groups of Images. IEEE Trans Pattern Analysis and Machine Intelligence. Nov; 2010 
32(11):1994–2005.

39. Balci, S.; Golland, P.; Shenton, M.; Wells, W. Free-Form B-Spline Deformation Model for 
Groupwise Registration. Proc. MICCAI 2007 Statistical Registration Workshop: Pair-Wise and 
Group-Wise Alignment and Atlas Formation; 2007. p. 23-30.

40. Lowe D. Distinctive Image Features from Scale-Invariant Key-points. Int’l J Computer Vision. 
2004; 60(2):91–110.

41. Zografos K, Nadarajah S. Survival Exponential Entropies. IEEE Trans Information Theory. Mar; 
2005 51(3):1239–1246.

42. Liao, S.; Chung, A. Multi-Modal Image Registration Using the Generalized Survival Exponential 
Entropy. Proc. Int’l Conf. Medical Image Computing and Computer Assisted Intervention; 2006. 
p. 964-971.

43. Thomas, M.; Thomas, J. Elements of Information Theory. Wiley-Interscience; 1991. 

Liao et al. Page 17

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



44. Yuri B, Olga V, Ramin Z. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans 
Pattern Analysis and Machine Intelligence. Nov; 2001 23(11):1222–1239.

45. Frey B, Dueck D. Clustering by Passing Messages between Data Points. Science. 2007; 315:972–
976. [PubMed: 17218491] 

46. Phillips P, Moon H, Rizvi A, Rauss P. The FERET Evaluation Methodology for Face Recognition 
Algorithms. IEEE Trans Pattern Analysis and Machine Intelligence. Oct; 2000 22(10):1090–1104.

47. Gao W, Cao B, Shan S, Chen X, Zhou D, Zhang X, Zhao D. The CAS-PEAL Large-Scale Chinese 
Face Database and Baseline Evaluations. IEEE Trans Systems Man, and Cybernetics—Part A: 
Systems and Humans. Jan; 2008 38(1):149–161.

48. Phillips, P.; Flynn, P.; Scruggs, T.; Bowyer, K.; Chang, J.; Hoffman, K.; Marques, J.; Min, J.; 
Worek, W. Overview of the Face Recognition Grand Challenge. Proc. IEEE Conf. Computer 
Vision and Pattern Recognition; 2005. p. 947-954.

49. Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic Demons: Efficient Non-
Parametric Image Registration. NeuroImage. 2009; 45:61–72.

50. Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D. Nonrigid Registration Using Free-
Form Deformations: Application to Breast MR Images. IEEE Trans Medical Imaging. Aug; 1999 
18(8):712–721.

51. Ravela, S.; Manmatha, R. Retrieving Images by Appearance. Proc. IEEE Conf. Computer Vision; 
1998. p. 608-613.

52. Hwang, W.; Park, G.; Lee, J. Multiple Face Model of Hybrid Fourier Feature for Large Face Image 
Set. Proc. IEEE Conf. Computer Vision and Pattern Recognition; 2006. p. 1574-1581.

53. Su Y, Shan S, Chen X, Gao W. Hierarchical Ensemble of Global and Local Classifiers for Face 
Recognition. IEEE Trans Image Processing. Aug; 2009 18(8):1885–1896.

54. Tan X, Triggs B. Enhanced Local Texture Feature Sets for Face Recognition under Difficult 
Lighting Conditions. IEEE Trans Image Processing. Jun; 2010 19(6):1635–1650.

55. Liu Z, Liu C. Fusion of Color, Local Spatial and Global Frequency Information for Face 
Recognition. Pattern Recognition. 2010; 43(8):2882–2890.

56. Huang, G.; Ramesh, M.; Berg, T.; Learned-Miller, E. Technical Report 07–49. Univ. of 
Massachusetts; Amherst: Oct. 2007 Labeled Faces in the Wild: A Database for Studying Face 
Recognition in Unconstrained Environments. 

57. Hussain, S.; Napoleon, T.; Jurie, F. Face Recognition Using Local Quantized Patterns. Proc. 
British Machine Vision Conf; 2012. p. 1-11.

58. Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors. IEEE Trans Pattern 
Analysis and Machine Intelligence. Oct; 2005 27(10):1615–1630.

59. Nowak, E.; Jurie, F. Learning Visual Similarity Measures for Comparing Never Seen Objects. 
Proc. IEEE Conf. Computer Vision and Pattern Recognition; 2007. p. 1-8.

60. Wolf, L.; Hassner, T.; Taigman, Y. Descriptor Based Methods in the Wild. Proc. Faces in Real-
Life Images Workshop in European Conf. Computer Vision; 2008. 

61. Seo H, Milanfar P. Face Verification Using the Lark Representation. IEEE Trans Information 
Forensics and Security. Dec; 2011 6(4):1275–1286.

62. Pinto, N.; DiCarlo, J.; Cox, D. How Far Can You Get with a Modern Face Recognition Test Set 
Using Only Simple Features?. Proc. IEEE Conf. Computer Vision and Pattern Recognition; 2009. 
p. 2591-2598.

Liao et al. Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Biographies

Shu Liao received the BEng degree (First Class Honors and Academic Achievement 

Awards) in computer engineering and the MPhil and PhD degrees in computer science and 

engineering from The Hong Kong University of Science and Technology in 2005, 2007, and 

2010, respectively. He is currently a postdoctoral research fellow in the Department of 

Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel 

Hill. His research interests include medical image analysis, texture analysis, and face 

recognition.

Dinggang Shen is a professor of Radiology, Biomedical Research Imaging Center (BRIC), 

Computer Science, and Biomedical Engineering, University of North Carolina at Chapel 

Hill (UNC-CH). He is currently directing the Image Display, Enhancement, and Analysis 

(IDEA) Lab in the Department of Radiology, and also the medical image analysis core in the 

BRIC. He was a tenure-track assistant professor at the University of Pennsylvania (UPen), 

and a faculty member at the Johns Hopkins University. His research interests include 

medical image analysis, computer vision, and pattern recognition. He has published more 

than 300 papers in the international journals and conference proceedings. He serves as an 

editorial board member for four international journals.

Albert C.S. Chung received the BEng degree (First Class Honors) in computer engineering 

from The University of Hong Kong in 1995 and the MPhil degree in computer science from 

The Hong Kong University of Science and Technology in 1998. He joined the Medical 

Liao et al. Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Vision Laboratory, University of Oxford, United Kingdom, as a doctoral research student 

with a Croucher Foundation scholarship and graduated in 2001. He was a visiting scientist at 

the Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, in 

2001. He is currently an associate professor with the Department of Computer Science and 

Engineering, The Hong Kong University of Science and Technology. His research interests 

include medical image analysis, image processing, and computer vision. He received the 

2002 British Machine Vision Association Sullivan Thesis Award for the best doctoral thesis 

submitted to a United Kingdom university in the field of computer or natural vision.

Liao et al. Page 20

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
The schematic illustration of the pairwise registration process.
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Fig. 2. 
The schematic illustration of groupwise registration. The template (group mean) is estimated 

which has the smallest geodesic distances among the six input images on the Riemannian 

manifold. Each image Ii can be transformed to the template space with transformation ϕi 

(black solid arrows). The template can also be warped to each individual image’s space by 

the backward transformation  (blue dashed arrows).

Liao et al. Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Typical example of the top 10 salient regions detected by the proposed saliency measure 

operator on three facial images of the FERET database. (a) and (b) are facial images 

belonging to the same person, while (c) is a facial image of a different person. The most 

salient regions are highlighted by the green squares, and the side length of each square 

denotes the most salient scale of the corresponding region to extract features.
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Fig. 4. 
A typical example of the pyramid constructed for 10 facial images from the FERET 

database to build the template with hierarchical groupwise registration. The original facial 

images are at the bottom level. Note that all the images will be compared to the same 

template space (i.e., the top level of the pyramid).
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Fig. 5. 
(a) and (b) are two original facial images belonging to the same person but with different 

facial expressions from the FERET database. (c) and (d) are the corresponding results after 

transforming (a) and (b) to the template space, respectively. (e) and (f) are the corresponding 

deformation fields to transform (a) and (b) to the template space, respectively. It can be 

observed that the variations caused by facial expressions have been recovered.
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Fig. 6. 
Sample images from the FERET database.
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Fig. 7. 
Rank-1 recognition rates of our method with respect to the maximum number of images 

within each group on the FERET database. For comparison purpose, the rank-1 recognition 

rates of using only the pixel intensity as feature to guide registration are also included.

Liao et al. Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8. 
Sample images from the CAS-PEAL-R1 database.
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Fig. 9. 
Rank-1 recognition rates of the six probe sets on the CAS-PEAL-R1 database by using the 

proposed method and using pixel intensity guided registration strategy.
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Fig. 10. 
Sample images from the FRGC ver 2.0 database.
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Fig. 11. 
Sample matched and non-matched image pairs from the LFW database.
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Fig. 12. 
The ROC curve comparisons between the proposed method and other state-of-the-art 

methods on the LFW database.
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Fig. 13. 
The mean face verification rates with different values of α in Equation (4) on the LFW 

database.
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TABLE 1

The Rank-1 Recognition Rates (in Percent) of Different Approaches on Four Probe Sets of the FERET 

Database

Methods Fb Fc Dup I Dup II

1. H-Groupwise MRF 99.7 99.2 94.7 93.6

2. Groupwise MRF 98.5 98.8 87.7 86.2

3. Pairwise MRF [33] 98.2 98.8 83.2 79.4

4. D-Demons [49] 95.8 78.4 71.5 68.3

5. FFD [50] 93.2 72.3 66.4 67.8

6. E-GV-LBP [13] 98.4 99.0 82.0 81.6

7. LGBP + LGXP [14] 99.0 99.0 94.0 93.0

8. LGBPHS [12] 98.0 97.0 74.0 71.0

9. LBP [11] 97.0 79.0 66.0 64.0

10. PCA [7] 85.0 65.0 44.0 22.0

11. UMD LDA [51] 96.2 58.8 47.2 20.9

12. USC EBGM [51] 95.0 82.0 59.1 52.1

13. Bayesian, MAP [46] 82.0 37.0 52.0 32.0

H-groupwise MRF and groupwise MRF denote our method with and without using the hierarchical registration strategy, respectively, and pairwise 
MRF denotes the pairwise registration strategy in our preliminary work in [33]. Rows 4 and 5 show the recognition rates obtained by using the 
diffeomorphic Demons [49] and fast free form deformation (FFD) [50] pairwise registration strategies, respectively. For each column, the highest 
recognition rate is bolded.
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TABLE 3

The FVR Value of Different Approaches at FAR = 0.1% in Experiment 1 of the FRGC Ver 2.0 Database, 

Where H-Groupwise MRF and Groupwise MRF Denote Our Method with and without Using the Hierarchical 

Registration Strategy, Respectively

Methods

FVR at FAR = 0.1% (in %)

ROC 1 ROC 2 ROC 3

1. H-Groupwise MRF 99.3 98.6 98.2

2. Groupwise MRF 97.9 96.3 94.9

3. Pairwise MRF [33] 97.5 95.9 92.6

4. D-Demons [49] 91.4 88.7 83.5

5. FFD [50] 87.3 85.0 79.5

6. LGBP + LGXP [14] 98.7 98.1 97.5

7. LGBPHS [33] 92.8 91.2 87.9

8. LBP [33] 86.1 83.3 79.2

9. BEE Baseline [33] 77.6 75.2 70.6

For each column, the highest FVR value is bolded.
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TABLE 4

The FVR Value of Different Approaches at FAR = 0.1% in Experiment 4 of the FRGC Ver 2.0 Database, 

Where H-Groupwise MRF and Groupwise MRF Denote Our Method with and without Using the Hierarchical 

Registration Strategy, Respectively

Methods

FVR at FAR = 0.1% (in %)

ROC 1 ROC 2 ROC 3

1. H-Groupwise MRF 89.7 90.8 90.3

2. Groupwise MRF 79.5 78.7 78.8

3. Pairwise MRF [33] 74.2 73.4 71.8

4. D-Demons [49] 36.5 31.4 27.2

5. FFD [50] 28.1 27.4 24.8

3. LGBP + LGXP [14] 83.6 84.3 84.9

4. LGBPHS [33] 31.1 28.8 23.9

5. LBP [33] 26.8 22.6 19.1

6. BEE Baseline [33] 17.1 15.1 13.5

For each column, the highest FVR value is bolded.
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TABLE 5

Comparisons with More State-of-the-Art Methods on the FRGC Ver 2.0 Database with Respect to FVR at 

FAR = 0.1% (in %)

Methods Exp 1 ROC 3 Exp 4 ROC 3

1. H-Groupwise MRF 98.2 90.3

2. Liu’s method [17] 92.0 76.0

3. Hwang et al’s method [52] 91.5 74.3

4. Su et al’s method [53] 98.0 89.0

5. Tan et al’s method [54] N/A 88.1

6. Lei et al’s method [13] N/A 89.9

7. Liu et al’s method [55] N/A 92.43

For each column, the highest recognition rate is bolded.
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TABLE 6

The Estimated Mean Accuracies and the Standard Deviations for View 2 of the LFW Database

Methods Accuracy (μ ± SE)

1. SEE-H-Groupwise MRF 0.8673 ± 0.0043

2. DoG-H-Groupwise MRF 0.8442 ± 0.0047

3. Groupwise MRF 0.8104 ± 0.0052

4. Pairwise MRF [33] 0.7886 ± 0.0049

5. D-Demons [49] 0.6947 ± 0.0035

6. FFD [50] 0.6173 ± 0.0047

7. Nowak, original [59] 0.7245 ± 0.0040

8. Nowak, funneled [59] 0.7393 ± 0.0049

9. Hybrid descriptor-based [60] 0.7847 ± 0.0051

10. LARK, unsupervised [61] 0.7223 ± 0.0049

11. Pixels/MKL, funneled [62] 0.6822 ± 0.0041

12. V1-like/MKL, funneled [62] 0.7935 ± 0.0055

SEE-H-Groupwise MRF and DOG-H-Groupwise MRF denote our method using the proposed SEE and the difference of Gaussian (DoG) salient 
detector in [40], respectively. Groupwise MRF denote our method without using the hierarchical registration strategy. The highest verification rate 
is bolded.
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