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Fast and Scalable Approximate Spectral
Matching for Higher-Order Graph Matching

Soonyong Park, Sung-Kee Park, and Martial Hebert

Abstract—This paper presents a fast and efficient computational approach to higher-order spectral graph matching. Exploiting
the redundancy in a tensor representing the affinity between feature points, we approximate the affinity tensor with the linear
combination of Kronecker products between bases and index tensors. The bases and index tensors are highly compressed
representation of the approximated affinity tensor, requiring much smaller memory than in previous methods which store the
full affinity tensor. We compute the principal eigenvector of the approximated affinity tensor using the small bases and index
tensors without explicitly storing the approximated tensor. In order to compensate for the loss of matching accuracy by the
approximation, we also adopt and incorporate a marginalization scheme that maps a higher-order tensor to matrix as well as
a one-to-one mapping constraint into the eigenvector computation process. The experimental results show that the proposed
method is faster and requiring smaller memory than the existing methods with little or no loss of accuracy.

Index Terms—Higher-order graph matching, spectral relaxation, approximation algorithm.
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1 INTRODUCTION

Establishing consistent correspondences between two or
more sets of features is a fundamental problem in computer
vision tasks. Those include object recognition [1], object
category discovery [2], image retrieval [3], structure from
motion [4], camera self-calibration [5]. Most of the tasks
start by assuming that feature points were extracted and
their correspondences were detected. There are various
difficulties associated with this problem: huge dimension-
ality of the search space, the existence of outliers and
occlusions, deformations in scale and location of feature
due to viewpoint change, and variation of feature descriptor
due to illumination change. It is therefore challenging to
detect perfect reliable correspondences.

The correspondence problem can be well defined as
graph matching. Given a set of feature points, graph nodes
can represent the points and graph edges can encode the
relationships between two points. The purpose of graph
matching is then to find correspondences between the nodes
of two feature graphs such that both the unary information
(e.g., feature descriptors) on the nodes and the relation
information (e.g., distance or angle) associated with the
edges are preserved as much as possible.

Graph matching can be formulated as the optimization
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problem of a certain cost function that incorporates both
geometric relationships between feature points and their
descriptors. First-order methods [6], [7] mainly focus on
node-to-node (or unary) similarities based on local feature
descriptors. However, they could fail to establish reliable
correspondences due to image ambiguities such as indis-
tinguishable local appearance or repeated textures. Second-
order methods [8], [9], [10] find correspondences by con-
sidering how well edge-to-edge (or pairwise) relationships
such as distances between feature points are preserved. The
pairwise relationships, however, are not invariant to scale
change as well as not enough to enforce entire geometric
consistency. More recently, the problem of higher-order
graph matching has also been studied [11], [12], [13], [14]
to overcome the limitation of second-order methods, by
considering higher-order relationships between tuples of
feature points.

Most recent works [12], [13], [14] on higher-order graph
matching typically extend the spectral matching method [9]
using pairwise relationships to higher-order relationships
(mostly third-order). The higher-order relationships are
represented by an affinity tensor and the correspondences
are then given by discretizing the principal eigenvector
of the tensor. These methods, however, has two problems
of scalability. First, the affinity tensor is huge, requiring
very large memory to store, and thus it could limit the
maximum data sizes, as well as its complete construction is
impracticable and unwarrantable for large data. Second, the
construction of the affinity tensor as well as the eigenvector
computation takes long processing time due to huge size
of the tensor.

In this paper, we address the scalability problems of
higher-order graph matching inspired by the spectral match-
ing method [9]. We show how to perform fast and efficient
higher-order graph matching on a huge affinity tensor
by our proposed HOFASM (Higher-Order FAst Spectral
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graph Matching) algorithm. The main contributions are as
follows:

1) We observe that there exists high redundancy in the
affinity tensor used for general higher-order graph
matching. Based on the observation, we approximate
the tensor by the linear combination of the Kronecker
product of bases and index tensors which are highly
compressed representation of the approximated affin-
ity tensor, requiring much smaller memory than in
previous works.

2) We develop an efficient algorithm to compute the
principal eigenvector of the approximated affinity ten-
sor by using the compressed representation without
explicitly storing the approximated tensor.

3) We adopt a partial marginalization scheme [12] and
a one-to-one mapping constraint [15] for the eigen-
vector computation process. Thus, the proposed algo-
rithm compensates for the loss of matching accuracy
by the approximation and produces a reliable perfor-
mance to large deformation noises and outliers.

Note that the work presented in this paper is an extension
of our second-order method introduced in [16] to higher-
order graph matching. In [16], we approximated the affinity
matrix with the linear combination of Kronecker products
between bases and index matrices. In addition, we proposed
a power method to compute the principal eigenvector of
the approximated affinity matrix. The requirements for the
extension are threefold. First, there are many tuples of
feature points whose corresponding angles are the same
or close each other, such that the affinity tensor has many
redundancies. Second, the affinity tensor can be approx-
imated as the linear combination of Kronecker products
between bases and index tensors. Third, the tensor-vector
multiplication is implementable to compute the principal
eigenvector of the approximated affinity tensor.

This paper is organized as follows. Section 2 reviews
the previous works on graph matching. Section 3 presents
generalized method for higher-order graph matching. Sec-
tion 4 describes our proposed method of approximating
the affinity tensor for higher-order graph matching with
few bases and index tensors, and explains our proposed
method of computing the principal eigenvector using the
tensors. Section 5 provides experimental evaluations and
comparisons. Finally, we conclude in Section 6.

2 RELATED WORK

Graph matching has been formulated as an optimization
problem. According to the types of objective functions,
graph matching algorithms can be categorized into first-
order, second-order, and higher-order methods. Further-
more, more recent algorithms including both second-order
and higher-order methods are generally based on the In-
teger Quadratic Programming (IQP) formulation. Since
the IQP problem is NP-complete [17], different relaxation
approaches have been applied to solve the problem.

First-order methods represent the objective function as
a bipartite graph having a form of cost matrix, in which

each node represents some measure of similarity between
two feature points (e.g., the Euclidean distance between
local image descriptors [18]). One of the first of such
algorithms is the hungarian method proposed by Kuhn [6].
This method locates the set of one-to-one correspondences
in the cost matrix, where the correspondences minimize
the overall cost. Scott and Longuet-Higgins [19] solved the
one-to-one matching by maximizing the inner product of
two matrices, one of which is a Gaussian affinity matrix
representing the proximities between feature points and
the other is the pairing matrix obtained by singular value
decomposition of the affinity matrix. Albarelli et al. [20]
formulated the matching problem as a non-cooperative
game where the set of possible correspondences correspond
to game strategies. The matching results in this method
correspond to evolutionary stable states. These methods,
however, could fail in the presence of image ambiguities
such as indistinguishable local appearance or repeated
textures.

Second-order methods try to deal with the difficulty
of first-order methods, in which the objective function is
defined by a matrix representing the affinity between pairs
of feature points. The idea is as follows: Given two sets
of feature points P and Q where i ∈ P and i′ ∈ Q, if
the pair (i, j) is consistent with the pair (i′, j′), then the
pairwise relationships of (i, j) and (i′, j′) should have high
similarity. The graduated assignment algorithm proposed
by Gold and Rangarajan [21] is one of the first of pairwise
matching methods solving the IQP problem by the spec-
tral relaxation with power iteration, in which Sinkhorn’s
bistochastic normalization [15] is employed to satisfy two-
way assignment constraints for one-to-one mapping. Maciel
and Costeira [22] formulated pairwise matching as a global
optimization solution for the IQP problem by maximizing
all possible correlation computed with unary information
of feature points, in which a concave objective function
is built and the discrete search domain is relaxed into its
convex hull. Berg et al. [8] presented fast-approximate
techniques to address NP-complete problem of the IQP
whose cost function has terms based on similarity of both
unary and pairwise information, in which the minimum
of a linear bounding problem is first found and then a
locally minimum assignment is detected with a manner
of local gradient descent. Leordeanu and Hebert [9] used
similar cost function to [8] while they approximated the IQP
problem as spectral relaxation, in which the cost function
is defined as a matrix representing the geometric affinity
between pairs of feature points and the correspondences are
then given by the principal eigenvector of the affinity matrix
and a corresponding discretization. Cour et al. [10] pro-
posed similar spectral matching algorithm to [9], in which
they modified the cost function with affine constraints and
incorporated one-to-one mapping constraints into power it-
eration step with bistochastic normalization. Cho et al. [23]
proposed a random walk view for graph matching, in
which they incorporated one-to-one mapping constraints by
a reweighting jump scheme. Cho and Lee [24] proposed a
progressive framework for graph matching, which combines
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probabilistic graph progression with graph matching. Using
a Bayesian manner, this algorithm recursively re-estimates
the most plausible target graphs based on the current graph
matching result. Zhou and De la Torre [25] presented
the factorized graph matching (FGM) algorithm, in which
the affinity matrix is factorized as a Kronecker product
of smaller matrices. This method is quite related to our
second-order method [16] in the context of avoiding the
computation of large and sparse affinity matrix. They utilize
the Kronecker product operation to represent the affinity
matrix with smaller matrices. The differences between them
are as follows. The FGM method factorizes the affinity
matrix as a Kronecker product of smaller matrices: source
graph’s incidence matrix, target graph’s incidence matrix,
node affinity matrix, and edge affinity matrix. These ma-
trices encode the composition of the whole affinity matrix
without an approximation. Our second-order method [16],
on the other hand, approximates the affinity matrix with the
linear combination of Kronecker products between bases
and index matrices. These matrices are highly compressed
representation of the approximated affinity matrix, that
require smaller memory than FGM. All these second-
order methods are limited to the affinity matrix embedding
pairwise relationships between feature points with unary
information, where the pairwise relationships are rotation-
invariant but not scale-invariant as well as affine-invariant.

Recent higher-order methods define the objective func-
tion by a tensor representing higher-order affinity between
tuples of feature points. The affinity tensor encodes higher-
order geometric invariants such as scale and affine invari-
ants. The hyper-graph matching algorithm proposed by Zass
and Shashua [11] marginalizes the affinity tensor into a
one-dimensional vector and refines the vector by projecting
it onto the space of soft assignment vectors. Chertok and
Keller [12] extended the hyper-graph matching [11] to
higher-order spectral matching, in which the affinity tensor
is partially marginalized down to a matrix. The matches
are given by soft assignment refinement of the principal
eigenvector of the marginalized matrix and a corresponding
discretization. Duchenne et al. [13] extended the spectral
matching method [9] to higher-order relationships by using
a multi-dimensional power iteration for tensors. They ap-
proximated the IQP problem with the `1-norm relaxation by
the Hadamard product and unit-norm rows normalization.
Lee et al. [14] generalized their second-order method [23]
using the random walk approach to higher-order graph. All
these existing higher-order methods, which solve the IQP
problem with an affinity tensor as an input, show good
performance in accuracy. However, they have the problem
of scalability: the affinity tensor is very huge, and thus
the construction of the tensor as well as the eigenvector
computation takes long processing time. To handle the
increased computational complexity and storage, different
approximation schemes for the affinity tensor have also
been introduced. Zass and Shashua [11] sampled a number
of triangles per feature point and only measured affinities
between sampled triangles of the source and target images.
Duchenne et al. [13] sampled a number of triangles per

Fig. 1: Higher-order affinity based on tuples of feature
points. The affinity can be computed by comparing the
angles of triangles. Higher-order matching based on triplets
is invariant to scale and affine changes.

feature point such as [11], and found a number of nearest
neighbors of the source image for each of sampled triangles
of the target image. Then they computed the tensor value
with a truncated Gaussian kernel. Chertok and Keller [12]
made the affinity tensor sparse with a randomly sparsifying
scheme. In this paper, we solve the scalability problem
with the use of both index and bases tensors as well as
an efficient power method utilizing the tensors.

3 GENERALIZED HIGHER-ORDER GRAPH
MATCHING

Generalized higher-order matching is an extension of the
spectral matching [9] using pair-to-pair comparison. Given
two sets of feature points P and Q, each having nP and
nQ feature points, correspondences are defined as a set C
of pairs (or assignments) (i, i′), where i ∈ P and i′ ∈ Q.
For each m pairs of assignments (ω1, ..., ωm), where ωk =
(ik, i

′
k), there is an affinity Ω(ω1, ..., ωm) that measures

how compatible the feature points (i1, ..., im) in P with
the feature points (i′1, ..., i

′
m) in Q. This m-order affinity

Ω can be represented by an m-dimensional tensor T such
that

T (ω1, ..., ωm) = Ω(ω1, ..., ωm).

For simplicity, we will focus from now on third-order
affinity (m = 3) but extending to higher-order is straight-
forward. In order to achieve scale and affinity invariance,
we exploit triplets of feature points as shown in Fig. 1. We
define the affinity Ω based on the difference in correspond-
ing angles as follow:

Ω(ω1, ω2, ω3) = 4.5− 1
3

(
(θi−θi′ )

2+(θj−θj′ )
2+(θk−θk′ )

2

2σ2
θ

)
.

(1)
This affinity represents the amount of deformation between
three candidate correspondences ω1 = (i, i′), ω2 = (j, j′),
and ω3 = (k, k′). Then the affinity tensor T is determined
by

T (ω1, ω2, ω3) =


Ω(ω1, ω2, ω3), if |θi − θi′ | < 3σθ and

|θj − θj′ | < 3σθ and
|θk − θk′ | < 3σθ;

0 otherwise.
(2)
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where σθ is a parameter to control the sensitivity of the
matching: larger σθ allows more deformations in corre-
sponding triangles, and more triplet relationships to have
positive scores in T . The tensor T is nonnegative as well
as super-symmetric, i.e., invariant under permutations of
indices such that

T (ω1, ω2, ω3) = T (ω1, ω3, ω2) = T (ω2, ω1, ω3)

= T (ω2, ω3, ω1) = T (ω3, ω1, ω2) = T (ω3, ω2, ω1).

This means that it is enough to compute (nPnQ)m

m! elements
of T instead of computing (nPnQ)m elements.

Given the affinity tensor, we want to find the best cluster
of assignments (i, i′) that maximizes the matching score:

S(x) =
∑

ω1,ω2,ω3∈C
T (ω1, ω2, ω3)x(ω1)x(ω2)x(ω3), (3)

where the resulting score S(x) is the summation of affinity
values associated with all triplets of correspondences in a
mapping x. The cluster can then be represented by a binary
indicator vector x with an element for each assignment
ω = (i, i′), such that x(ω) = 1 if i in P is matched with
i′ in Q and 0 otherwise. Using the tensor-vector product
notation in [26], (3) can be simply represented by

S(x) = T ⊗1 x⊗2 x⊗3 x, (4)

where the index d in the notation ⊗d represents that we
multiply T and x on the d-th dimension of T . Then,
the vector x∗ maximizing the score S(x) is given by the
solution of an Integer Quadratic Programming (IQP):

x∗ = arg max
x

S(x). (5)

Relaxing the integral constraints on x by interpreting the
value of x(ω) as the association of ω with the best cluster,
and requiring the norm of x to be 1, the solution of (5)
is given by the principal eigenvector of T associated with
the largest eigenvalue. Since T contains only nonnegative
elements, the elements of x∗ will be in [0, 1]. This is the
relaxed and continuous vector, so we need to binarize x∗

to find discrete assignments. The binarization is performed
by repeating the following greedy steps:

1) Find ω∗ = arg maxω∈L(x∗(ω)), where L is the set of
all tentative correspondences. If x∗(ω∗) = 0, stop the
binarization. Otherwise set x(ω∗) = 1 and remove ω∗

from L.
2) Remove from L all potential correspondences which

conflict with ω∗ = (i, i′). These have the form of
(i, ∗) or (∗, i′).

3) If L is empty, return the solution x. Otherwise go
back to step 1.

There is a scalability issue, however, in computing
the principal eigenvector of T . Note that T is a three-
dimensional tensor whose size is nPnQ × nPnQ × nPnQ,
which means that the number of nonzero elements in T can
grow in proportion to n6Q at maximum, assuming nP ∼ nQ.
Thus, constructing T explicitly in memory is prohibitive.
In the next section, we show how to solve this problem.

4 PROPOSED METHODS

In this section, we propose HOFASM (Higher-Order FAst
Spectral graph Matching), a fast, scalable, and accurate
approximation method for higher-order graph matching
with spectral relaxation. HOFASM consists of two stages.

1) Affinity Tensor Approximation Compute the ap-
proximated affinity tensor T̂ .

2) Eigenvector Computation Compute the principal
eigenvector of T̂ .

We first describe our proposed method of approximating
the affinity tensor, and the fast method for computing the
principal eigenvector of the approximated affinity tensor.

4.1 Affinity Tensor Approximation
As we described in previous sections, due to its heavy
storage requirement, materializing T explicitly and com-
puting the principal eigenvector of T are impracticable
or unwarrantable. To solve this problem, we exploit the
redundancy pattern in the affinity tensor. We can observe
the pattern by identifying that some areas of the affinity
tensor have almost the same elements which we formally
describe as follows.

Lemma 1 (Redundancy in Affinity Tensor). Let
i1, i2, j1, j2, k1, k2 be the feature points in P , with
the corresponding angles following the conditions
θi1 = θi2 , θj1 = θj2 , and θk1 = θk2 . The six points
are discriminative, with the exception that i1, j1, and
k1 can be the same. Let i′, j′, k′ be the arbitrary
points in Q, satisfying i′ 6= j′ 6= k′. Let an = (in, i

′),
bn = (jn, j

′), cn = (kn, k
′), for n = 1, 2. Then, the

sub-tensor of T involving i1, j1, and k1 is identical to
the sub-tensor of T involving i2, j2, and k2. That is,
T (a1, b1, c1) = T (a2, b2, c2).

Proof: Let |θi1 − θi′ | < 3σθ, |θj1 − θj′ | < 3σθ, and
|θk1 − θk′ | < 3σθ. Then,

T (a1, b1, c1) = 4.5− 1
3

(
(θi1−θi′ )

2+(θj1−θj′ )
2+(θk1−θk′ )

2

2σ2
θ

)
= 4.5− 1

3

(
(θi2−θi′ )

2+(θj2−θj′ )
2+(θk2−θk′ )

2

2σ2
θ

)
= T (a2, b2, c2)

where we used the assumptions θi1 = θi2 , θj1 = θj2 , and
θk1 = θk2 in the second equality. The same analysis applies
to the case when |θi1 − θi′ | ≥ 3σθ, |θj1 − θj′ | ≥ 3σθ, or
|θk1 − θk′ | ≥ 3σθ.

Lemma 1 means that if there are two triplets of feature
points in P whose corresponding angles are the same,
then the sub-tensor of T involving the two triplets are
exactly the same. Furthermore, if |θi1 − θi2 |, |θj1 − θj2 |,
and |θk1 − θk2 | are very small, Lemma 1 implies that
T (a1, b1, c1) ∼ T (a2, b2, c2). Thus, if we have many
triplets of feature points whose corresponding angles are
the same or close, then we have many redundancies in the
tensor T .

To make the observation into something useful, it is nec-
essary to check whether there are many triplets of feature
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(a) Clock (b) Refrigerator

(c) Angle-triplet (d) Angle-triplet
distribution of clock distribution of refrigerator

Fig. 2: [Best viewed in color.] Objects and their angle-triplet
distributions. (a-b): Red dots are feature points sampled
from extracted edges. (c-d): The color bar indicates the
number of triplets with same corresponding angles. We use
1◦ for the bin width in this figure.

points with same corresponding angles in real images. For
this purpose, we analyze the angle-triplet distribution from
real images in Fig. 2. Note that inside angles of a triangle
add up to 180 degrees, such that θk = 180− (θi + θj) and
θi + θj < 180. We can see that the distribution is highly
symmetric, and many triplets of feature points have same
or similar corresponding angles.

Given this observation, our proposed idea is to approx-
imate the elements of T by using approximate angles θ̂i,
θ̂j , and θ̂k instead of exact angles θi, θj , and θk. Let θmax
be the maximum corresponding angle of the feature points
in P . We divide the total angle range into K = d θmaxδθ

e
bins, where δθ is the width of a bin and dxe is the smallest
integer not less than x. Then, all the angles within the range
from δθ ·n to δθ(n+ 1) is approximated by θ̂i = δθ(2n+1)

2 .
That is, θi, θj , and θk are approximated by

θ̂i = δθ(b
θi
δθ
c+

1

2
), θ̂j = δθ(b

θj
δθ
c+

1

2
), and

θ̂k = 180− (θ̂i + θ̂j) s.t. θ̂i + θ̂j ≤ 180, (6)

where the function bxc maps a real number x to the largest
integer not greater than x. For example, see Fig. 3 for
the angle-triplet distribution of the clock object shown in
Fig. 2(a). We divide the total angle range of each axis
into 18 bins of width 10. All the angles within a bin are
approximated to the center angle of the bin: e.g., all the
angles from 20◦ to 30◦ are approximated to 25◦.

How do these approximations of θi, θj , θk by θ̂i, θ̂j , θ̂k
change the affinity tensor T ? Let Tijk be the nQ×nQ×nQ
sub-tensor of T , containing the rows (i − 1)nQ + 1 : i ·
nQ, the columns (j − 1)nQ + 1 : j · nQ, and the tubes
(k − 1)nQ + 1 : k · nQ. Let Hijk be the nP × nP × nP
index tensor indicating the location of sub-tensor Tijk in T :

Fig. 3: Angle-triplet distribution of the clock in Fig. 2(a),
divided by bins whose width δθ is 10. All the angles within
a bin are approximated to the center angle of the bin.

Hijk(a, b, c) = 1, if i = a, j = b, k = c, and 0 otherwise.
If we think of filling T with nQ × nQ × nQ blocks, then
Tijk is the area of T covered with the block having the
block row id i, the block column id j, and the block tube
id k. The affinity tensor T can then be represented by the
linear combination of the Kronecker product [27] of Hijk

and Tijk, for i 6= j 6= k:

T =

nP−1∑
i=0

nP−1∑
j=0

nP−1∑
k=0

Hijk ⊗ Tijk, (7)

where the Kronecker product of two tensors Hijk and Tijk
of dimensions nP×nP×nP and nQ×nQ×nQ, respectively,
is a tensor with dimensions nPnQ×nPnQ×nPnQ. Fig 4
shows an example of constructing the affinity tensor with
the index tensor and the sub-tensors.

Recall from (1) and (2) that for three points i, j, k ∈ P
whose corresponding angles are θi, θj , θk, the (i′, j′, k′)-th
element Tijk(i′, j′, k′) of Tijk is determined by

Ωijk(i′, j′, k′) = 4.5− 1
3

(
(θi−θi′ )

2+(θj−θj′ )
2+(θk−θk′ )

2

2σ2
θ

)
,

Tijk(i′, j′, k′) =


Ωijk(i′, j′, k′), if |θi − θi′ | < 3σθ and

|θj − θj′ | < 3σθ and
|θk − θk′ | < 3σθ;

0 otherwise.
(8)

where the sub-tensor is not super-symmetric such that

Tijk(i′, j′, k′) 6= Tijk(i′, k′, j′) 6= Tijk(j′, i′, k′)

6= Tijk(j′, k′, i′) 6= Tijk(k′, i′, j′) 6= Tijk(k′, j′, i′).

The proposed idea is then to approximate Tijk with T̂ijk
whose (i′, j′, k′)-th element T̂ijk(i′, j′, k′) is determined by

Ω̂ijk(i′, j′, k′) = 4.5− 1
3

(
(θ̂i−θi′ )

2+(θ̂j−θj′ )
2+(θ̂k−θk′ )

2

2σ2
θ

)
,

T̂ijk(i′, j′, k′) =


Ω̂ijk(i′, j′, k′), if |θ̂i − θi′ | < 3σθ and

|θ̂j − θj′ | < 3σθ and
|θ̂k − θk′ | < 3σθ;

0 otherwise.
(9)
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(a) Index tensor (b) Sub-tensor (c) Affinity tensor

Fig. 4: [Best viewed in color] The nPnQ×nPnQ×nPnQ affinity tensor (c) can be represented by the linear combination
of the Kronecker product of the nP × nP × nP index tensor (a) and the nQ × nQ × nQ sub-tensors (b) (nP = 3 and
nQ = 4 in this example). The nnPP cubes, bounded by green lines, in the affinity tensor contain corresponding sub-tensors
whose locations are indicated by the index tensor. In addition, the 3-tuple (i, j, k) derived from the i-th row, j-th column,
and k-th tube of the index tensor denotes a triplet of feature points in P , where i 6= j 6= k. The row, column, or tube
(i, i′) of the sub-tensor represents a pair derived from the two sets of feature points (i ∈ P, i′ ∈ Q).

We note that the proposed approximation scheme in (9) is
only applied to the affinity function given in (1), which uses
approximated angles θ̂i, θ̂j , and θ̂k instead of exact angles
θi, θj , and θk. It means that the approximation scheme
cannot be applied to affinity functions using pairwise dis-
tance dij between feature points such as Ω(ω1, ω2, ω3) =
exp(−γ(‖dij − di′j′‖+ ‖dik − di′k′‖+ ‖djk − dj′k′‖)).

Since there are (K = d θmaxδθ
e) distinct θ̂is and θ̂js,

the approximation by (6) and (9) creates (N = K(K+1)
2 )

distinct nQ × nQ × nQ sub-tensors of T̂ . For example, the
number of sub-tensors derived from Fig. 3 is 171, in which
K = 18. Let B = {Bn|0 ≤ n ≤ N − 1} be the set of
such tensors. Then, Bn is created using the approximated
angles:

θ̂i = δθ(k1 +
1

2
), θ̂j = δθ(k2 +

1

2
), θ̂k = 180− (θ̂i + θ̂j)

s.t. k1 + k2 ≤ K − 1 and 0 ≤ k1, k2 ≤ K − 1, (10)

where the index n of Bn is determined by

n = k1 +Kk2 −
k2(k2 − 1)

2
. (11)

Let Hn be the nP ×nP ×nP index tensor containing only
the index of the tensor Bn in T̂ . That is, Hn’s (i, j, k)-th
element Hn(i, j, k) is 1 if T̂ijk = Bn, and 0 otherwise.
Then, T̂ can be represented by the linear combination of
the Kronecker product of Hn and Bn, for 0 ≤ n ≤ N − 1:

T̂ =

N−1∑
n=0

Hn ⊗Bn. (12)

Note that Hn and Bn tensors are highly compressed
representation of the T̂ tensor. Storing Hn and Bn requires
much smaller space than explicitly storing the T̂ matrix, as
we will see in Section 4.1.1.

A remaining question is, how accurate is the approxi-
mation of Tijk(i′, j′, k′) by T̂ijk(i′, j′, k′)? Since θi ∼ θ̂i,
θj ∼ θ̂j , and θk ∼ θ̂k, the tensor elements Tijk(i′, j′, k′)
and T̂ijk(i′, j′, k′) are expected to be close each other. We

provide the bound of the approximation as follows.

Lemma 2 (Bound of Approximation). Assume |θi− θi′ | <
3σθ− δθ

2 , |θj−θj′ | < 3σθ− δθ
2 , and |θk−θk′ | < 3σθ− δθ

2 .
Then, |Tijk(i′, j′, k′)− T̂ijk(i′, j′, k′)| ≤ 1.5δθ

σθ
.

Proof: |Tijk(i′, j′, k′)− T̂ijk(i′, j′, k′)|

=

∣∣∣∣ (4.5− 1
3

(
(θi−θi′ )

2+(θj−θj′ )
2+(θk−θk′ )

2

2σ2
θ

))
−
(

4.5− 1
3

(
(θ̂i−θi′ )

2+(θ̂j−θj′ )
2+(θ̂k−θk′ )

2

2σ2
θ

)) ∣∣∣∣
=

∣∣∣∣ (θi+θ̂i−2θi′ )(θi−θ̂i)6σθ2
+

(θj+θ̂j−2θj′ )(θj−θ̂j)
6σθ2

+ (θk+θ̂k−2θk′ )(θk−θ̂k)
6σθ2

∣∣∣∣ ≤ 18σθ
δθ
2

6σθ2
= 1.5δθ

σθ
,

where the inequality is derived from the facts that |θi−θ̂i| ≤
δθ
2 , |θj − θ̂j | ≤ δθ

2 , and |θk − θ̂k| ≤ δθ
2 which follow from

the definitions of θ̂i, θ̂j , and θ̂k in (6).

Lemma 2 says that the approximated tensor does not
differ much from the original tensor, under the mild as-
sumption. We verify the accuracy of the approximation with
the experiments in Section 5.

4.1.1 Storage Estimation
In this section, we estimate the required memory in the
generalized higher-order graph matching and in our approx-
imation. From the definitions of T in (2) and Tijk in (8), the
tensor T is super-symmetric, but its sub-tensor Tijk is not
super-symmetric. Thus, the maximum number of nonzero
elements inside a block is given by

∏m−1
i=0 (nQ − i) =

nQ(nQ − 1)(nQ − 2), where m = 3. Applying the same
analysis to T and saving only its upper-diagonal elements,
the maximum number of nonzero elements in the tensor T
to store in memory is given by

Maximum nonzeros in T

=
nP (nP − 1)(nP − 2)

6
nQ(nQ − 1)(nQ − 2).

Let ρ be the density of the tensor T , meaning the number
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of edges divided by the maximum possible number of
edges. Assuming nP ∼ nQ, it follows that

Nonzeros in T

= ρ
nP (nP − 1)(nP − 2)

6
nQ(nQ − 1)(nQ − 2) ∝ O(n6Q).

In contrast, storing T̂ requires (N = K(K+1)
2 ) distinct

bases tensors Bn with dimensions nQ×nQ×nQ, and index
tensors Hn with dimensions nP × nP × nP , for 0 ≤ n ≤
N−1. Notice that the number of nonzero elements in all the
index tensors, in total, is at most n3P . Thus, the maximum
number of nonzero elements to store T̂ is given by

Maximum nonzeros to store T̂

= NnQ(nQ − 1)(nQ − 2) + n3P .

Assuming the T̂ has the same density as T , and nP ∼
nQ,

Nonzeros to store T̂

≤ ρNnQ(nQ − 1)(nQ − 2) + n3P ∝ O(n3Q).

Thus, the cubic growth rate of our approximation is
much smaller than the sextic growth rate of the generalized
higher-order graph matching. We verify this growth rate in
Section 5.1.2.

4.2 Eigenvector Computation

The standard method to compute the principal eigenvector
of a matrix is called the power method [28]. In the power
method, we multiply the matrix with a randomly initialized
vector repeatedly until the normalized vector converges.
The converged vector is the principal eigenvector of the
matrix. If the matrix is sparse and the number of its
nonzero elements is nZ , each iteration of the power method
requires O(nZ) operations. Extending the power method
for a matrix to a tensor is straightforward.

To find the maximum score of the higher-order cost
function in (3), we apply a generalization of the power
method proposed in [29]. This algorithm was also recently
used in [13]. While this method is not guaranteed to get
the global maximum, it converges to a local maximum
for tensors that result in convex functions of x [26].
Nevertheless, it almost always provides a good solution.

A naive method to compute the principal eigenvector
of T̂ is to explicitly materialize T̂ and run a standard
power method to compute the principal eigenvector. How-
ever, such method lacks scalability since the materialized
tensor T̂ is very large. Our proposed idea, called bases
power method, is to use the compressed representation
of T̂ for the power method. Recall that we expressed T̂
using the linear combination of Kronecker product of Hn

and Bn tensors in (12). The key observation is that we
can perform the power method on T̂ using Hn and Bn.
Applying the power method on T̂ requires the tensor-vector
multiplication T̂ ⊗1 v ⊗2 v ⊗3 v for a vector v. Since

Algorithm 1: Bases Power Method
Input : Bases tensors Bn and index tensors Hn,

for 0 ≤ n ≤ N − 1
Output: Principal eigenvector x of T̂

1 begin
2 v(0) ← random vector with ||v(0)|| = 1;
3 q ← 0;
4 while v(q) does not converge do
5 q ← q + 1;
6 z ← 0;
7 for n=0...N-1 do
8 T̂n ← Hn ⊗Bn;

9 z ← z+ T̂n ⊗1 v
(q−1) ⊗2 v

(q−1) ⊗3 v
(q−1);

10 end
11 v(q) ← z/||z||;
12 end
13 x← v(q);
14 end

T̂ =
∑N−1
n=0 Hn ⊗Bn, we can instead compute

T̂ v =

(
N−1∑
n=0

Hn ⊗Bn

)
⊗1 v ⊗2 v ⊗3 v

=

N−1∑
n=0

(Hn ⊗Bn)⊗1 v ⊗2 v ⊗3 v

for computing T̂ ⊗1 v ⊗2 v ⊗3 v.
Algorithm 1 describes our proposed bases power method.

In line 2, a random vector with norm 1 is initialized. Then,
the vector is multiplied with the tensor T̂ repeatedly until
convergence, in line 4 to 12. Note that T̂ is never explicitly
constructed: only the bases tensors Bn and index tensors
Hn are used to compute the tensor-vector multiplication.
We also note that the Hn and Bn tensors are accessed
sequentially (not randomly) in line 7-10, which makes
the algorithm suitable for a parallel implementation on
GPUs [30].

4.2.1 Accuracy Compensation
In this section, we introduce an approach to compensate
for the loss of matching accuracy that may be caused by
the approximation method proposed in Section 4.1. The
approach incorporates partial marginalization scheme that
maps the affinity tensor to a matrix and a one-to-one
mapping constraint into the bases power method.

The affinity tensor is nonnegative and super-symmetric,
and we want to obtain its principal eigenvector. In the
second-order graph matching case [9], the solution is given
by the eigenvector of the affinity matrix associated with
the largest eigenvalue according to the Rayleigh quotient
theorem [31]. Since the affinity matrix contains only non-
negative elements, the elements of its principal eigenvector
is in [0, 1] by Perron-Frobenius theorem [32]. The principal
eigenvector can be numerically computed by the power
method, which converges to the global maximum. However,
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Algorithm 2: Bases Power Method with Marginaliza-
tion and Bistochastic Normalization

Input : Bases tensors Bn and index tensors Hn,
for 0 ≤ n ≤ N − 1

Output: Indicator vector x

1 begin
2 v(0) ← random vector with ||v(0)|| = 1;
3 q ← 0;
4 while v(q) does not converge do
5 q ← q + 1;
6 z ← 0;
7 for n=0...N-1 do
8 T̂n ← Hn ⊗Bn;
9 Marginalize:

10 Mn ←
∑
i T̂n(i, j, k);

11 z ← z +Mnv
(q−1);

12 end
13 v(q) ← exp(βz/max z);
14 while V (q) does not converge do
15 Normalize across all rows:
16 V (q)(i, j)← V (q)(i, j)/

∑nP−1
i=0 V (q)(i, j);

17 Normalize across all columns:
18 V (q)(i, j)← V (q)(i, j)/

∑nQ−1
j=0 V (q)(i, j);

19 end
20 v(q) ← v(q)/||v(q)||;
21 end
22 x← v(q);
23 end

we are not able to apply this attribute to tensors: the princi-
pal eigenvector of tensors is not the global maximum [33].

Chertok and Keller [12] suggested a method to avoid
computing the principal eigenvector of tensors due to its
numerical inaccuracy. Instead, they partially marginalize an
affinity tensor T down to a matrix M as follows:

M =
∑
i

T (i, j, k), (13)

where the matrix M is symmetric whose principal eigen-
vector identifies with the principal eigenvector of T . Note
that the principal eigenvector of matrices is the global
maximum and numerically stable [28].

We now want to impose a one-to-one mapping constraint
into the resultant vector from the power method: a feature
point in P must correspond to only one feature point in Q
and vice versa. This constraint can be satisfied using the bis-
tochastic normalization method proposed by Sinkhorn [15],
in which it is proven that a strictly positive square matrix
will converge to a strictly positive doubly stochastic matrix
by the iterative process of alternately normalizing the rows
and columns. The doubly stochastic matrix constrains the
norm of each row and column to 1.

Gold and Rangarajan [21] proposed an efficient algo-
rithm that extends Sinkhorn’s method [15] to an assignment
problem in combinational optimization. Given a positive

matrix Z, their method associates an element V (i, j) ∈
{0, 1} of an assignment matrix V with each Z(i, j), such
that

nP−1∑
i=0

V (i, j) = 1 ∀i and
nQ−1∑
j=0

V (i, j) = 1 ∀j.

Then, the solution is given by the matrix V that maximizes
the mapping score:

S(V ) =

nP−1∑
i=0

nQ−1∑
j=0

V (i, j)Z(i, j). (14)

Algorithm 2 incorporates the marginalization in (13)
and the bistochastic normalization in (14) into the bases
power method. Note that the matrix V is the row-wise
converted replica of the vector v. In line 10, the tensor T̂
is marginalized into a matrix. Line 13 makes assignments
having high affinity become higher, and makes assignments
having small affinity become smaller. In this paper, we
empirically set the inflation parameter β as 30. The bis-
tochastic normalization is performed in line 14 to 19, in
which the one-to-one mapping constraint is enforced. In the
next section, we show that the matching accuracy resulting
from Algorithm 2 is better than Algorithm 1.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
approaches described in Algorithm 1 and Algorithm 2 by
conducting experiments on random synthetic points and
real images. Following [11] and [12], we first use synthetic
points to simulate a real matching problem. It allows us to
quantify the matching accuracy, memory size, and running
time of the proposed algorithms, and compare our methods
to the state-of-the-art methods. Table 1 summarizes the
algorithmic setups of previous state-of-the-art methods,
including our HOFASM method (Algorithm 1) and its
modification HOFASM+MG+BN method (Algorithm 2).
We also perform different experiments on the registration
of real images to show the applicability of the proposed
methods.

5.1 Synthetic points matching
We perform experiments on synthetic points matching to
answer the following questions:
Q1 Accuracy. What is the accuracy of the proposed meth-

ods compared to previous state-of-the-art methods?
Q2 Memory and Running Time. How much do the

proposed methods reduce the required memory and
the running time?

Q3 Parameter. What is the trade-off between the accuracy
and the running time/memory size on different values
of the bin width parameter in the proposed methods?

For the experiments, we randomly sample source points
with the normal distribution N(0, 1) in the 2D plane. To
generate target points, we perturb the source points with
the Gaussian noise N(0, σ2) on their positions. We use
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TABLE 1: Different graph matching methods

Notation Affinity Marginalization One-to-one mapping constraint
HOFASM T approximated none none
HOFASM + MGa+ BNb T approximated M (matrix) Bistochastic normalization
HGM [11] T full v (vector) Bistochastic normalization
HOM [12] T full M (matrix) Bistochastic normalization
TM [13] T full none `1-norm relaxation
RRWHM [14] T full none Personalized page rank
SM [9] M full (matrix) none none
a Marginalization
b Bistochastic normalization

(a) Accuracy w.r.t noise (b) Accuracy w.r.t outliers (c) Accuracy w.r.t scale

Fig. 5: Accuracy performance with varying the deformation noise, number of outliers, and scale.

σθ = 1 for all the experiments, and bin width δθ = 5 for
the experiments in Section 5.1.1 and Section 5.1.2, and vary
the bin width for the experiments in Section 5.1.3.

5.1.1 Accuracy
How accurate are our proposed methods, compared with the
state-of-the-art methods? For the evaluation, we measure
the matching accuracy on different spatial deformations:
noise, outliers, and scale. The matching accuracy is defined
as the ratio between the number of correctly matched pairs
and the number of total matched pairs. We use the following
deformations:
• Varying noise. We generate 30 source points. Then, we

perturb the source points with the deformation noise
σ to create target points, where we vary σ.

• Varying outliers. We generate 20 source points and
disturb them with the deformation noise σ = 0.1 to
create target points. Then, we add nO outliers to both
the source and target sets, where we vary nO. The
outliers are created with the Gaussian noise N(0, 1).

• Varying scale. We generate 30 source points. To create
target points, we perturb the source points with the
deformation noise σ = 0.05. Then, we multiply the
target points by the scale factor δS on their positions
to induce scale change, where we vary δS . Finally, we
add nO = 5 outliers to both the source and target sets.

In each deformation, we repeat the same experiment 100
times and show the mean accuracy over the different trials.
In Figs. 5a - 5c. We can see that our HOFASM+MG+BN

Fig. 6: Perturbation error comparison between HO-
FASM+MG+BN and HOM [12]. Note that the difference
between the ideal indicator vector and the indicator vector
from HOFASM+MG+BN is smaller than that of HOM.

method outperforms the other methods. This also identi-
fies that the marginalization and bistochastic normalization
described in Section 4.2.1 can compensate for the loss of
matching accuracy in our HOFASM method. The HGM
method does not show good performance due to the loss of
information by marginalizing the affinity tensor down to a
vector. The SM method, second-order method, shows un-
satisfied performance when many deformations are added,
because many pairwise relationships become similar. We
also can see that the higher-order methods using the triplets
affinity measure are scale invariant as shown in Fig. 5c,
while the second-order method is vulnerable to the scale
change.
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(a) Memory vs. data size (b) Running time vs. data size

Fig. 7: Performances on memory usage and running time with varying number of points. The x and y axes are in log
scale. The growth rates 3.04 and 6.05 of the memory sizes of the approximated affinity tensor and the full affinity tensor,
respectively, are close to the estimated cubic and sextic growth rates in Section. 4.1.1

.

Our HOFASM+MG+BN method applies the approach
of the HOM method [12] to marginalize the approxi-
mated affinity tensor down to a matrix, which provides
a computationally efficient approximation with HOM. As
shown in Fig. 5, HOFASM+MG+BN improves the match-
ing accuracy on different deformations in comparison with
HOM. At this point, an interesting question is whether the
improvement is due to the approximation of the angles
such as (6). Let v∗ be the principal eigenvector of the
marginalized matrix M∗ of the ideal affinity tensor T ∗

in which only correct correspondences form triplet links.
Let x∗ be the indicator vector obtained from v∗ by the
bistochastic normalization. In a similar way, let x̂ be the
indicator vector derived from the approximated affinity
tensor T̂ and x be the indicator vector derived from the
original affinity tensor T which is a slightly perturbed
version of T ∗ due to deformations. To show the effect of
angle approximation on the matching accuracy, we compare
the perturbation error of the indicator vectors: ‖x̂−x∗‖ for
HOFASM+MG+BN and ‖x−x∗‖ for HOM. We obtain the
ideal tensor T ∗ experimentally, in matching set of points
used in the experiment of Fig. 5a. We randomly rotate and
translate a set of points, without adding Gaussian noise, to
obtain other set. We then measure the mean differences with
the indicator vectors resulting from HOFASM+MG+BN
and HOM in the experiment of Fig. 5a. Fig. 6 shows that
the difference between the ideal indicator vector x∗ and the
indicator x̂ from HOFASM+MG+BN is smaller than that of
HOM. This explains that the angle approximation stabilizes
the indicator vector derived from T̂ in the presence of
deformations.

5.1.2 Memory and running time

How much do our proposed methods save the required
memory and the running time? To compare with the state-
of-the-art methods, we measure the memory size and
running time as we grow the data sizes. Specifically, we
generate nP source points and disturb them with the
Gaussian noise N(0, 0.12) to create target points. As we
see in Fig. 7a, the required memory in the approximated

affinity tensor grows much slowly than in the full affinity
tensor as well as the full affinity matrix of the second-order
method. The growth rates 3.04 and 6.05 of the memory
sizes of the approximated affinity tensor and the full affinity
tensor, respectively, are very close to the estimated cubic
and sextic growth rates in Section. 4.1.1.

The result in Fig. 7b shows that the running times of
HOFASM and HOFASM+MG+BN grow slower than the
state-of-the-art methods. However, the growth rate of the
running time of each method, except for HOFASM and
SM, is larger than their corresponding growth rate of the
memory size. The reason is that the power method used
in each method, except for HOFASM and SM, requires
additional operations such as marginalization and one-to-
one mapping enforcement, while the power methods of
HOFASM and SM still need similar number of floating
point operations to the memory size.

5.1.3 Parameter

How does the bin width parameter affect the performance of
the proposed methods? For the evaluation, we measure the
matching accuracy, the required memory, and the running
time with varying the bin width. We generate 30 source
points and perturb them with the Gaussian noise N(0, 0.22)
to create target points. Fig. 8 shows the trade-off results
with regard to the bin width parameter. The result on the
bin width 0 is from the HOM method [12], and all other
results are from the the proposed methods. Notice that the
results from HOFASM and HOFASM+MG+BN in Fig. 8b
is exactly the same each other, since they use identical
approximated affinity tensor.

We see that increasing the bin width slightly decrease
the accuracy, while decreasing the memory requirement
dramatically. However, their changing patterns are similar
each other. In Fig. 8a, the accuracy decreasing rate of
HOFASM between bin width 3 and 3.5 is relatively large.
We can see similar result in Fig. 8b. The large accuracy
decreasing rate of HOFASM stems from the corresponding
memory decreasing rate. On the other hand, the corre-
sponding accuracy decreasing rate of HOFASM+MG+BN
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(a) Accuracy (b) Memory size (c) Running time

Fig. 8: The effect of the bin width parameter on the performances of HOFASM and HOFASM+MG+BN. The result on
the bin width 0 is from the HOM method [12], and all other results are from the HOFASM and HOFASM+MG+BN
methods.

is relatively small since the marginalization and bistochastic
normalization are still working on compensation for the
loss of matching accuracy. The running time also decreases
as the bin width increase, but not as quickly as the rate
of the memory size decrease since the number of floating
point operations in the power methods of HOFASM and
HOFASM+MG+BN does not change much.

As we described in Section 5.1.1, thanks to the angle ap-
proximation, the HOFASM+MG+BN method outperforms
the HOM method. We can see the effect of angle approxi-
mation on the matching accuracy again in Fig. 8a, in which
HOFASM+MG+BN improves over HOM as the bin width
goes over 0.5. Since the HOM method uses full affinity
tensor, its performances on memory use and running time
are relatively low as shown in Figs. 8b - 8c, compared to
HOFASM+MG+BN.

5.2 Image matching

We perform two kinds of feature matching experiments. We
first analyze the matching of the House image sequence.
Next, we experiment with the matching of natural images.
We use σθ = 1 for all the following experiments, and bin
width δθ = 5 for the experiments in Section 5.2.1, and two
bin widths δθ = 5 and δθ = 0.5 for the experiments in
Section 5.2.2.

5.2.1 Sequence matching
The CMU House dataset1 is widely used to evaluate the
performance of different matching methods. This sequence
of image frames is taken from the same object. The scale
is always approximately the same, but the point of view
varies along the sequence. Thus the deformation between
image frames is related to affine transformation. Then the
lager the sequence gap between the frames is, the larger the
relative deformation as well as the more difficult to match
correctly it is. In order to construct ground truth data, 30
feature points are manually labeled and tracked over all
image frames. We match the first image frame to the frames

1. http://vasc.ri.cmu.edu//idb/html/motion/house/index.html

succeeding it. Figs. 9a-d show a comparative example in-
dicating correspondences founded by each method. Fig. 9e
depicts the overall accuracy performance comparison. Our
HOFASM and HOFASM+MG+BN methods show the per-
fect matching performance in this experiment. We can also
see that the second-order method is hard to deal with affine
deformations.

5.2.2 Natural image matching
We carry out two feature matching experiments using
natural images. Since the number of feature points is large,
it is very time consuming to use all the triplets of feature
points. So we only sample the n nearest neighbors per point
in both source and target images. Then we build t = n(n−1)

2
triplets and compute their descriptors such as shown in
Fig. 1. We store the triplet descriptors in a kd-tree [34]. For
each of the triplets in source image, we find the k nearest
neighbors in target image. We take n = 20 and k = 400 in
this experiment. Then we construct the affinity tensor with
the k nearest neighbors and start the power method.

The first experiment tests on 4 pairs of source and
target images taken from the Oxford VGG database2.
Following [12], we first extract feature points in each
image and compute their SIFT descriptors [35]. Then,
we find correspondences with the lowest SIFT descriptor
distances. We remove outliers in the correspondences with
RANSAC [36] and collect inliers for candidate matches. In
this experiment, the affinity tensor is constructed with these
candidate matches. Namely, the candidate matches are used
as the set of feature points for higher-order graph matching.
Fig. 10 shows the matching image pairs. Each target image
is taken by changing the view point from its source image,
in which the affine deformation is added relative to the
source image. In addition, we downscale the target images
by a scale factor of 2.

Table 2 describes the number of feature points in each
image, and compares the memory size between full affinity
tensor and approximated affinity tensor. As shown in this
table, approximated affinity tensor requires 3× to 541×

2. http://www.robots.ox.ac.uk/~vgg/data/
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(a) HOFASM, HOFASM+MG+BN, (b) HGM: 16 correct matches
HOM, TM: 30 correct matches

(c) RRWHM: 28 correct matches (d) SM: 19 correct matches (e) Accuracy w.r.t sequence gap

Fig. 9: [Best viewed in color] Sequence matching results on the House dataset. (a-d): Correspondences founded by
HOFASM, HOFASM+MG+BN, and the state-of-the-art methods when the sequence gap is 90. Yellow and red lines
indicate the correct and incorrect matches, respectively. (e): Accuracy performance curve with varying the sequence gap.

(a) Graffiti (b) Boat (c) University library (d) Wadham college

Fig. 10: [Best viewed in color] Matching image pairs from the Oxford VGG database. We downscale the target images
by a scale factor of 2. The green circles indicate the feature points used. The number of feature points is described in
Table 2. The blue lines denote an example set of candidate matches randomly selected.

TABLE 2: Size of the data and its affinity tensor

Number of Number of nonzeros Number of nonzeros
Image feature points in full affinity tensor in approximated affinity tensor

δθ = 5 δθ = 0.5

Graffiti 308 11,775,252 37,270 (316× smaller) 3,115,459 (4× smaller)
Boat 711 36,385,560 67,282 (541× smaller) 6,496,317 (6× smaller)

University library 309 10,429,788 38,007 (274× smaller) 3,180,635 (3× smaller)
Wadham college 491 21,076,190 54,652 (386× smaller) 5,113,338 (4× smaller)

TABLE 3: Performance comparison on matching accuracy
Image HOFASM HOFASM+MG+BN HGM HOM TM RRWHM

δθ = 5 δθ = 0.5 δθ = 5 δθ = 0.5

Graffiti 0.05 0.28 0.86 0.88 0.16 0.73 0.72 0.26
Boat 1 1 1 1 1 1 1 1

University library 0.68 0.82 0.90 0.89 0.60 0.86 0.86 0.57
Wadham college 0.72 0.78 0.74 0.87 0.73 0.77 1 0.80

TABLE 4: Performance comparison on running time in seconds
Image HOFASM HOFASM+MG+BN HGM HOM TM RRWHM

δθ = 5 δθ = 0.5 δθ = 5 δθ = 0.5

Graffiti 1.10 3.25 1.50 3.60 9.18 10.97 22.31 10.90
Boat 4.03 6.98 5.70 6.95 23.35 25.89 26.25 26.42

University library 1.02 3.39 1.38 3.71 7.78 8.39 21.42 8.32
Wadham college 2.08 4.95 2.55 5.39 13.17 15.69 14.15 16.41
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(a) HOFASM: 19/24 (b) HOFASM: 21/30 (c) HOFASM: 11/15 (d) HOFASM: 24/42

(e) HOFASM+MG+BN: (f) HOFASM+MG+BN: (h) HOFASM+MG+BN: (i) HOFASM+MG+BN:
22/24 23/30 14/15 26/42

Fig. 11: [Best viewed in color] Example results of image matching on the dataset used in [14]. The cyan lines denote
correct matches. Note that we use 5◦ for the bin width in this figure.

TABLE 5: Average matching accuracy on the dataset used in [14] (30 pairs)

Method HOFASM HOFASM+MG+BN HGM HOM TM RRWHM
δθ = 5 δθ = 0.5 δθ = 5 δθ = 0.5

Avg. accuracy (%) 46.45 47.39 53.54 55.62 45.87 50.63 48.09 50.02

smaller memory than full affinity tensor. The comparison
on accuracy performance is presented in Table 3. The
results show that our proposed methods are able to match
real images with little or no loss of accuracy compared
with the state-of-the-art methods. We can also see that the
marginalization and bistochastic normalization applied in
HOFASM+MG+BN are able to improve the matching ac-
curacy of HOFASM. Table 4 compares the performance on
running time in seconds. HOFASM is 6× to 22× faster than
the state-of-the-art methods. HOFASM+MG+BN is slightly
slower than HOFASM because the additional operations for
accuracy compensation.

The second experiment tests on an image dataset3 used
in [14]. This dataset consists of 30 image pairs that are
mostly collected from Caltech-101 and MSRC datasets.
For each image pair, this dataset provides detected MSER
features [37], initial matches, and manually labeled ground
truth feature pairs. Following [14], we construct the affinity
tensor using the given initial matches. Some example results
from HOFASM and HOFASM+MG+BN are shown in
Fig. 11. Table 5 compares the performance on average
matching accuracy. In this experiment result, we can verify
again that our proposed methods are able to match real
images with little or no loss of accuracy compared with
the others.

6 CONCLUSION

In this paper, we propose HOFASM (Higher-Order FAst
Spectral graph Matching), an approximate higher-order
spectral graph matching algorithm for correspondence prob-
lems with large feature sets whose affinity tensor contains

3. http://cv.snu.ac.kr/research/~RRWHM/

huge number of nonzero elements. The main contributions
are the followings.

1) Approximation. Exploiting the high redundancy in
the affinity tensor used for the state-of-the-art higher-
order graph matching methods, we propose an accu-
rate approximation of the tensor by the linear com-
bination of Kronecker products between bases and
index tensors which require much smaller memory
than in previous works.

2) Fast Algorithm. Using the bases and index tensor,
we develop an efficient algorithm to compute the
principal eigenvector of the approximated tensor.

3) Accuracy Compensation. Applying the marginaliza-
tion and bistochastic normalization, we compensate
for the loss of matching accuracy by the approxima-
tion.

4) Experiments. Extensive experiments show that our
proposed methods are faster, and require smaller
memory than the state-of-the-art methods, with little
or no loss of accuracy.
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